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Abstract: A novel approach for the treatment of irregular ocean1

bottoms within the framework of the standard parabolic equation is2

proposed. The present technique is based on the immersed interface3

method originally developed by LeVeque and Li [SIAM J. Numer. Anal.4

31(4), 1019–1044, (1994)]. It is intrinsically energy-conserving and al-5

lows to naturally handle generic range-dependent bathymetries, with-6

out requiring any additional specific numerical procedure. An illus-7

tration of its capabilities is provided by solving the well-known wedge8

problem.9

c© 2017 Acoustical Society of America.

a)Author to whom correspondence should be addressed.
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1. Introduction10

Propagation models based on different types of parabolic equations have been extensively11

used during the last four decades in underwater acoustics. Interested readers can find an12

exhaustive review in the book of Jensen et al. (2011) as well as in the paper of Xu et al.13

(2016). Since the earliest investigations of ocean sound propagation, one of the main issues14

has been related to the correct treatment of the interface between the water column and the15

seabed. Indeed, when solving a parabolic equation by approximating the seafloor as a series16

of stair-steps, a fundamental problem of energy conservation arises (see Jensen et al. (2011)17

and references therein). Current methods which allow to properly handle range-dependent18

bottoms essentially include: stair-step approximations within energy-conserving parabolic19

models (Collins and Westwood, 1991); domain rotations (Collins, 1990); and mapping tech-20

niques (Metzler et al., 2014). In this letter, a novel approach, based on the immersed interface21

method (IIM) originally developed by LeVeque and Li (1994), is proposed. The parabolic22

equation is solved on a regular Cartesian grid, in which the bathymetry is “immersed”. Away23

from the bottom interface, standard centered finite difference schemes are employed to com-24

pute the derivatives along the vertical axis and the Crank-Nicolson method is used for the25

integration in range. Conversely, at grid points lying across the bottom, the aforementioned26

numerical schemes are slightly modified in order for the acoustic field to satisfy not only the27

governing equation but also the physical interface conditions. As a result, the proposed ap-28

proach is intrinsically energy-conserving and allows to handle generic range-dependent ocean29
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bottoms. Therefore, it can be viewed as a generalization of the IFD method developed by30

Lee and McDaniel (1988).31

In this letter, the new technique is developed for the standard parabolic equation and32

for fluid-fluid interfaces. Extensions to more wide-angle parabolic equations and to fluid-33

solid interfaces will be considered in future works. The letter is organized as follows: after34

a brief review of the standard parabolic model (Section 2), the new method is presented35

(Section 3); an example of application is then described (Section 4); concluding remarks are36

finally drawn.37

2. The standard parabolic equation and interface conditions38

In the context of this work, wave propagation is assumed to be azimuthally symmetric. A39

cylindrical coordinate system Orz, with the origin O on the sea surface, is thus considered.40

The bottom interface z = ξ(r) is supposed to be irregular and the seabed is modeled as an41

equivalent fluid medium. A point source is placed on the z-axis at depth zs. A sketch of42

the problem is illustrated in Fig. 1. In both the water column (medium 1) and the seabed4344

(medium 2), the acoustic field in the far field can be described, in the frequency domain, by45

the standard parabolic equation1 (Jensen et al., 2011)46

ψr = F , F =
ik0
2

(
ε2 − 1

)
ψ +

i

2k0
ψzz, (1)

with p̂′(r, z) = ψ(r, z)H(1)
0 (k0r), where p̂′ is the temporal Fourier transform of the pertur-47

bation of pressure, ψ an envelope function, H1
0 the zeroth-order Hankel function of the first48

kind, k0 = ω/c0 a reference wavenumber computed with respect to a reference speed of sound49
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Fig. 1. Sketch of the problem

c0 and ω the angular frequency. Finally, the term ε = c0/c represents the index of refraction,50

where c is the speed of sound.51

At the interface z = ξ(r) between the water column and the seabed, two conditions52

must be satisfied: the continuity of pressure and the continuity of the normal component of53

the particle velocity, which can be expressed in terms of the envelope function ψ as (see also54

Lee and McDaniel (1988))55

ψ− = ψ+, (2a)

56

ψ−z − ψ−r ξr + k0ψ
−H

(1)
1 (k0r)

H(1)
0 (k0r)

ξr =
ρ−

ρ+

[
ψ+
z − ψ+

r ξr + k0ψ
+H

(1)
1 (k0r)

H(1)
0 (k0r)

ξr

]
, (2b)

where ρ is the density of the medium, H1
1 is the first-order Hankel function of the first kind57

and the superscripts ± indicate the limits limz→ξ(r)± for a given range r.58

3. An IIM method for the standard parabolic equation59
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Fig. 2. Seabed interface immersed in the computational grid. Intersection between the interface

and (a) the radial direction or (b) the vertical axis.

A uniform mesh rn = n∆r, zj = j∆z, with n = 0, 1, . . . , Nr, j = 0, 1, . . . , Nz, is employed,

where ∆r and ∆z are the step sizes in the radial and vertical directions respectively. In

what follows, the subscript j and the superscript n will be used to refer to point (rn, zj). In

the present approach, the bathymetry is “immersed” in the computational domain and, as

schematically illustrated in Fig. 2(a) and Fig. 2(b), might cross the grid both in the radial

direction and on the vertical axis. To introduce the new technique, a node (rn, zj) away from

the interface is first considered. At this regular mesh point, the second derivative ψnzz,j is

approximated through the standard second order finite difference scheme

ψnzz,j =
1∑

m=−1

bmψ
n
j+m, with b−1 = b+1 =

1

∆z2
, b0 = − 2

∆z2
,

and the solution ψn+1
j at range rn+1 is integrated using the Crank-Nicolson method

ψn+1
j − ψnj

∆r
=

1

2

[
Fnj + Fn+1

j

]
.
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The resulting algorithm is second order accurate both in depth and in range. Nevertheless,60

at nodes (rn, zj) close to the seafloor, the aforementioned schemes cannot be employed. As61

described in the following two paragraphs, their coefficients are then modified in such a62

way that the unknown function satisfies not only the governing equation but also the jump63

conditions.64

3.1 Range-marching65

Let % ∈ [rn, rn+1[ be the interface position on the line z = zj. To integrate the solution ψj

between ranges rn and rn+1, Li (1997) elaborated the following first-order accurate scheme

ψn+1
j − ψnj

∆r
−Qn+1/2

k =
1

2

(
Fn+1
j + Fnj

)
,

where the correction term Q
n+1/2
j is given by66

Q
n+1/2
j = −r

n + ∆r/2− %
∆r

ξr(%) ×


+ψn+1

z,j − ψnz,j ξn ≥ ξn+1

−ψn+1
z,j + ψnz,j ξn < ξn+1

. (3)

Depending on the interface location along the vertical axis, the first derivatives appearing67

in Eq. (3) are computed using a standard or a modified finite difference scheme.68

3.2 Depth derivative69

Let ξn ∈ [zj, zj+1[ be the interface position at range rn (cf. Fig. 2(b)). As previously70

mentioned, modified standard finite difference methods, which take into account the jump71

conditions, are needed at the irregular nodes zj and zj+1. In what follows, the derivation of72

such methods shall be treated in details only for the grid point zj. To begin with, schemes73

for the derivatives ψnz,j and ψnzz,j are sought in the forms ψnz,j =
∑1

m=−1 a
(n,j)
m ψnj+m and74
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ψnzz,j =
∑1

m=−1 b
(n,j)
m ψnj+m. Second, up to first order accuracy, the terms ψnz,j and ψnzz,j can be75

written as ψnz,j = ψnz
− +O(∆z) and ψnzz,j = ψnzz

− +O(∆z). As a consequence, determining76

the a
(n,j)
m s and the b

(n,j)
m s amounts to expressing ψnz

− and ψnzz
− as functions of the grid values77

ψj−1, ψj, ψj+1. Since ψnz
− and ψnzz

− are linked to the eight jump values ψn±, ψnz
±, ψnr

±, ψnzz
±,78

eight equations are required to compute the unknowns ψn±, ψnz
±, ψnr

±, ψnzz
±. Two relations79

are provided by the jump conditions (2a) and (2b),80

ψn− = ψn+, (4a)

ψnz
− − ξnr ψnr

− + k0
H(1)

1 (k0r
n)

H(1)
0 (k0rn)

ξnr ψ
n− =

ρ n
−

ρ n+

[
ψnz

+ + ξnr ψ
n
r
+ + k0

H(1)
1 (k0r

n)

H(1)
0 (k0rn)

ξnr ψ
n+

]
. (4b)

According to Li (1997), a supplementary expression can be obtained by deriving Eq. (2a)81

with respect to r. Using the chain rule, it follows that82

ψnr
− + ξnr ψ

n
z
− = ψnr

+ + ξnr ψ
n
z
+. (5)

Furthermore, Eq. (1) must be satisfied on both sides of the interface, i.e.83

ψnr
− = F−, (6a) ψnr

+ = F+ (6b)
84

The last three equations are given by the following truncated Taylor expansions85

ψnj−1 = ψn− + (zj−1 − ξn)ψnz
− +

1

2
(zj−1 − ξn)2 ψnzz

−, (7a)

ψnj−1 = ψn− + (zj+0 − ξn)ψnz
− +

1

2
(zj+0 − ξn)2 ψnzz

−, (7b)

ψnj+1 = ψn+ + (zj+1 − ξn)ψnz
+ +

1

2
(zj+1 − ξn)2 ψnzz

+. (7c)

Finally, solving the system (4-5-6-7) allows to express the terms ψ−z and ψ−zz as functions of86

the grid values ψj−1, ψj, ψj+1 and thus to identify the coefficients a
(n,j)
m , b

(n,j)
m , m = −1, . . . , 1.87
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In a similar manner, the derivatives ψnz,j+1 and ψnzz,j+1 at node zj+1 are computed as88

ψnz,j+1 = ψnz
+ =

∑2
m=0 a

(n,j+1)
m ψnj+m and ψnzz,j+1 = ψnzz

+ =
∑2

m=0 b
(n,j+1)
m ψnj+m. The coeffi-89

cients a
(n,j+1)
m , b

(n,j+1)
m , m = 0, . . . , 2 are determined from a linear system analogous to the90

previous one, where Eq. (7a) is replaced by a Taylor expansion for the term ψnj+2.91

It is worth emphasizing that, since the interface position ξ(r) depends on the range r,92

the terms a
(n,j)
m , b

(n,j)
m , m = −1, . . . , 1, and a

(n,j+1)
m , b

(n,j+1)
m , m = 0, . . . , 2, must be computed93

at each step n.94

It is also worth noting that, although the local truncation error near the bottom95

becomes one order lower than at regular points, the global second order accuracy of the96

solution remains unaffected (Li, 1997).97

To conclude, as in the IFD method, the implicit finite-difference equations which are98

obtained at grid points away from and close to the seafloor can be recast into a tridiagonal99

form, allowing standard fast linear solver to be employed. In addition, it is straightforward100

(although tedious) to show that the present numerical algorithm reduces to the IFD method101

in the case of an horizontal interface located on the line z = zj.102

4. Example of application103

In order to show the capabilities of the new approach, the second wedge problem proposed104

by Jensen and Ferla (1990) and graphically illustrated in Fig. 3 is solved. The environment105106

consists of a homogeneous water column (c1 = 1500 m.s−1, ρ1 = 1000 kg.m−3), limited above107

by a pressure-release flat sea surface (ψ(r, 0) = 0) and below by a sloping seafloor. The water108

depth is equal to 200 m at the source position and decreases to zero at 4 km range. The109
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Fig. 3. Test environment

bottom is modeled as a homogeneous fluid half-space with a sound speed of c2 = 1700 m.s−1110

and a density of ρ2 = 1500 kg.m−3. A source of frequency equal to f = 25 Hz is placed at111

zs = 100 m depth. Finally, the Gaussian starter ψ(0, z) =
√
k0e
−k20(z−zs)2/2 is used (Jensen112

et al., 2011), where the reference wavenumber k0 is defined with respect to the speed of sound113

in the water column, k0 = 2πf/c1. The computational domain is truncated at D = 350 m114

depth by a pressure-release false bottom (ψ(r,D) = 0). In order to avoid spurious reflections,115

the PML technique developed by Lu and Zhu (2007) is employed. The absorbing layer is116

located below 300 m depth. Finally, for the present calculations, the grids steps ∆r and ∆z117

are both set equal to 1 m.118

As an illustration, the envelope function ψ(r, z) is displayed in Fig. 4. Acoustic energy119120

penetrates into the bottom at short ranges, where the incidence angle of the beam on the121

interface is close to π/2, and around 3.5 km. Besides, the PML technique clearly proves to be122

effective: in the PML layer, outgoing waves are absorbed without generating spurious reflec-123

tions toward the water column. The transmission losses TL(r, z) = −20 log10(|ψ(r, z)|/
√
r)124
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Fig. 4. Envelope function ψ(r, z).

computed at 30 m and 150 m depth are plotted in Fig. 5(a) and Fig. 5(b) respectively, along125

with the curves obtained by a coordinate rotation (Collins, 1990) and using a standard126

stair-step approximation of the bottom. At both depth, a very good agreement with the127

reference solution determined with the rotated PE equation is observed, which means that,128

as expected, the present results are not affected by energy losses.129

5. Conclusion130

A novel approach for the correct treatment of irregular fluid-fluid interfaces in parabolic131

wave equation models has been presented. The proposed technique is intrinsically energy-132

conserving and allows to consider generic range-dependent ocean floors. It is based on the133

immersed interface method, which consists in modifying the numerical algorithm in such a134

way that the acoustic field near an interface satisfies not only the governing equation but135

also the jump conditions. The present approach has been derived for the standard parabolic136

equation and has been validated with a well-known test case. This work represents a first137
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Fig. 5. Transmission loss at (a) z = 30m and (b) z = 150m: present results (solid lines), results

obtained with a stair-step approximation (dashed lines), solution computed from a rotated equation

(red crosses).

step toward the development of a new methodology for the proper handling of irregular138

bottoms in the context of generic wide-angle parabolic equations.139
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