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Abstract

In underwater acoustics, wave propagation can be greatly disrupted by random fluctuations in the ocean environment.
In particular, phase measurements of the complex pressure field can be heavily noisy and can defeat conventional
direction-or-arrival (DOA) estimation algorithms.

In this paper, we propose a new Bayesian approach able to handle such phase noise through an informative prior
on the measurements. This is combined to a sparse assumption on the directions of arrival to achieve a highly-
resolved estimation and integrated into a message-propagation algorithm that we name “paSAMP” algorithm (for
Phase-Aware Swept Approximate Message Passing). This algorithm can be seen as an extension of the recent phase-
retrieval algorithm “prSAMP” to phase-aware priors.

Tested on simulated data mimicking real environments, paSAMP turns out to successfully integrate the generative
model with a multiplicative noise and offers better performance in terms of DOA estimation than other conventional
approaches (e.g. classic beamforming). In addition, the method proves to be more robust to additive noise than other
variational methods (e.g. based on mean-field approximation).

Keywords: DOA estimation, sparse representation, Bayesian estimation, variational Bayesian approximations, message
passing algorithms

1 Introduction

Common to many applications such as SONAR, RADAR, and telecommunications, direction-of-arrival (DOA)
estimation aims at locating one or more sources emitting in some propagation media. Various methods have
been proposed to address this problem. They can roughly be distinguished by the assumptions made on the
propagating medium and sources.

The beamforming approach [1] constitutes the most famous approach. As it implicitly assumes the noise
to be Gaussian and additive, it leads to poor estimation performance within a phase perturbation model. The
so-called “high-resolution” techniques consider additional assumptions over the number or the nature of the
sources. This is the case of the well-known MUSIC method [2]. MUSIC assumes the number of sources to be
known and the separability of the sub-spaces where the noise and the signal live. More recently, “compressive”
beamforming approaches proposed e.g. in [3] benefit from an explicit sparse model on the sources.

While all the previously cited approaches rely on an additive Gaussian noise model, recent work has focused
on the integration of phase-noise models better accounting for complex propagation processes. Such approaches
aim to take into account the wave-front distortion occurring when waves travel through fluctuating media.
This case study is of interest for many application areas as underwater acoustics [4, 5] or atmospheric sound
propagation [6, 7].

These contributions mainly relate to recent advances in phase recovery (see e.g. [8, 9, 10, 11]) and extend
them to informative prior on the missing phases. In this respect, we can mention the Bayesian approach
“paVBEM” based on a mean-field approximation [12].

Here, we further explore a variational Bayesian approach. Knowing that higher-order approximations
and associated message-passing algorithms outperform mean-field approximations for a wide range of inverse
problems [13], we propose a novel approach based on the “swept approximate message passing” (SwAMP)
algorithm introduced in [14]. The algorithm is proved to be more robust to additive noise and multiplicative
phase noise than previous approaches using phase-aware prior such as the paVBEM approach [12] and those
using non-informative phase priors [9].

∗This work has been supported by the DGA.

1



2 PROBLEM STATEMENT 2

2 PROBLEM STATEMENT

In this section, we recall the Bayesian modeling introduced in [12], which we shall follow in the remaining of
the paper, and introduce the estimation problem we propose to solve.

2.1 Observation Model

The objective here is to provide an algorithm able to recover the directions of arrival of a few waves, despite a
structured phase-noisy environment, exploiting one single temporal snapshot on a uniform linear sensor array.
In underwater acoustics, this noise is mainly due to internal waves, changing the local sound-speed (see e.g.
[4]). These internal waves, and in particular their impact on the acoustic measurements, have been the object
of study of different past works (see [4, 5]), enabling the statistical characterization of the phase noise.

In this context, we propose the following observation model: we consider a linear antenna composed of N
regularly-spaced sensors and assume that the received signal at sensor n can be expressed as

yn = ejθn
M∑
m=1

dnmxm + ωn, (1)

where θn stands for the phase noise due to the propagation through the fluctuating medium and ωn an additive
noise. The scalar dnm is the n-th element of the steering vector dm = [ej

2π
λ ∆ sin(φm) . . . ej

2π
λ ∆N sin(φm)]T where

the φm’s are some potential angles of arrival, ∆ is the distance between two adjacent sensors and λ is the
wavelength of the propagation waves.

Within model (1), at each sensor of the antenna, we thus assume that the received field is a combination
of a few waves arriving from different angles φm. The DOA estimation problem consists then in identifying
the positions of the non-zero coefficients in x , [x1 . . . xM ]T .

In underwater acoustics, the phase noise considered in (1) is well-suited to characterize phase perturbations
of the wave front in a fluctuating ocean [5], especially in the case of the so-called “partially saturated ”
propagation regime defined in [4]. This particular regime focuses on far-field propagation at high frequency
with no multipath. In this case, amplitude variations of the measured acoustic field can be neglected regarding
the high sensibility to a structured phase-noise. Note that a similar fluctuation regime has been also identified
in atmospheric sound propagation (see [?]).

2.2 Bayesian formulation of the problem

We are interested in the problem of estimating x from the measurements y , [y1, . . . , yN ]T in the presence
of (unknown) additive noise ω , [ω1, . . . , ωN ]T and multiplicative phase noise θ , [θ1, . . . , θN ]T . To solve
this problem, we propose to resort to a Bayesian framework and define here some prior assumptions on the
different variables in (1).

A first assumption is put on the number of sources (i.e. the non-zero coefficients in x) that we suppose
to be small in front of the number of sensors. To take into account this sparse hypothesis, we adopt a
Bernoulli-Gaussian model ∀m ∈ {1, . . . ,M}

p(xm) = ρ CN (xm;mx, σ
2
x) + (1− ρ)δ0(xm), (2)

where ρ is the Bernoulli parameter and equals the probability for xm to be non-zero1, CN (xm;mx, σ
2
x) stands

for the circular complex Gaussian distribution with mean mx and variance σ2
x, and δ0(xm) for the Dirac

distribution. The Bernoulli-Gaussian model is widely used when considering Bayesian inference methods for
sparsity-constrained problems (see e.g. [15, 16]).

A second prior assumption can be inferred on the phase-noise model from existing studies of the statistical
impacts of fluctuation phenomena. In underwater acoustics, previous works [4, 5] demonstrated and quantified
the existence of a spatial correlation of the measured field all along the antenna through a measurable quantity
called coherence length. In the particular regime of fluctuations (the so-called “partially saturated” regime)
we are interested in, this coherence length can be intuitively incorporated into a Markov model as

p(θn|θn−1) = N (θn;β θn−1, σ
2
θ), ∀n ∈ {2, . . . , N}, (3)

p(θ1) = N (θ1; 0, σ2
1), (4)

with β ∈ R+. Variance σ2
θ is related to the coherence length and allows us to take into account the strength of

the fluctuations. As an example, a large σ2
θ will model strong fluctuations of the medium, it involves a small

coherence length: the phase noise at a given sensor is expected to be widely different from its neighbors.

1 We assume the Bernoulli parameter to be the same for each m ∈ {1, . . . ,M}.
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Finally, we define the additive noise ω as a zero-mean Gaussian variable with variance σ2. This choice is
a classic one, justified by the central limit theorem under the assumption that the additive noise results from
the combination of a large number of random parasitic phenomena.

Based on these prior models, we focus on the following Minimum Mean Square Error (MMSE) problem:

x̂ = argmin
x̃

∫
x

||x− x̃||22 p(x|y)dx (5)

where p(x|y) =
∫
θ
p(x,θ|y)dθ.

To solve efficiently this problem, we propose to exploit a Bayesian inference strategy, that approximates
the posterior joint distribution p(x,θ|y) by a distribution having a suitable factorization. In [12], a mean-field

approximation p(x,θ|y) ' q(θ)
∏M
m=1 q(xm) was considered. Here, we address a different type of factorization,

called the Bethe approximation, relating to the “approximate message passing” (AMP) algorithms [13]. We
motivate and detail our approach in the next section.

3 Proposed paSAMP approach

3.1 Motivation and main principles of the approach

AMP algorithms have been considered since a few years as a serious solution to linear problems under sparsity-
constraints.

First considered in the sole case of i.i.d (sub-)Gaussian matrices, they have been recently extended to
random but more general matrices by the “vector approximate message passing” (VAMP) algorithm [17] and
to highly correlated matrices by the “swept approximate message passing” (SwAMP) approach [14]. Both
methods aim at alleviating the convergence issues of AMP (notably highlighted in [18]) due to its parallel
update structure.

AMP, VAMP and SwAMP have been extended to generalized but component-wise measurement models
[19, 20, 14]. They have been then successfully applied to the phase recovery task where θn ∼ U [0, 2π],
∀n ∈ {1, . . . , N}, given raise to the so-called “prGAMP” [21], “prVAMP” [10] and “prSAMP” [9] algorithms.
In particular, the latter has proved to outperform other state-of-the-art algorithms among which the mean-field
approximation [8].

The prSAMP algorithm constitutes thus a promising approach for our DOA estimation2 problem (5).
However, in our study case, the phases θn’s are considered as dependent on each other (as represented in the
Markov model). This prevents us from a direct application of prSAMP.

We thus propose an iterative algorithm based on the two following mathematical derivations:

i) the extension of prSAMP to a i.i.d. Gaussian prior on the phases,

ii) the use of a mean-field approximation to estimate the (Gaussian) posterior distribution on the phases.

We detail both aspects in the next two sub-sections. In the following, we refer to the proposed procedure as
“paSAMP” for “phase-aware SwAMP algorithm”. The pseudo-code of paSAMP is presented in Algorithm
1.

3.2 Extension of prSAMP to i.i.d. Gaussian phases

For a sake of clarity and due to space limitation, we will adopt and refer the reader to the notations of paper
[14] which introduced the SwAMP algorithm described in Algorithm 1.

We would like to adapt this algorithm in order to fit our noise model and the prior on our signal x.

The work of [14] evoke the possibility to obtain a generalized version of SwAMP by replacing
yn−µzn (t)
σ2+Σzn (t)

in gn and the 1
Σzn (t)+σ2 term in the µrm(t) by gout(ω, V ) and −g′out(ω, V ), where gout(ω, V ) and g′out(ω, V )

are respectively the moment of order 1 and 2 of the following pdf, assuming that the zn’s follow Gaussian
distributions of mean µzn and variance Σzn as mixtures of Bernoulli-Gaussian distributions.

p(zn|yn, µzn ,Σzn) =
p(yn|zn)CN (zn;µzn ,Σzn)∫
z′n
p(yn|z′n)CN (z′n;µzn ,Σzn)

=
p(yn|zn)CN (zn;µzn ,Σzn)

Znor
(6)

2 Note in addition that the DOA estimation problem involves a highly-correlated matrix. This further motivates a SwAMP-like
approach.
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Algorithm 1 prSAMP Algorithm

Input: y, D, σ2, σ2
x,Tmax

Define:

gout,n ,
yn−µm+1

zn
(t)

σ2+Σm+1
zn

g′out,n , −1
Σzn+σ2

gin,m , EX|Y {xm|µxm ,Σxm}
g′in,m , varX|Y {xm|µxm ,Σxm}

1: while t < Tmax do
2: for n = 1 . . . N do
3: ẑn(t) =

∑M
m=1 dnmam(t)

4: Σ1
zn(t+ 1) =

∑M
m=1 |dnm|2vm(t)

5: µ1
zn(t+ 1) = ẑn(t)− Σ1

zn(t)gout,n
6: end for
7: for m = permute[1 . . .M ] do

8: Σxm(t+ 1) = (−
∑N
n=1 |dnm|2g′out,n)−1

9: µxm(t+1)=am(t)+Σxm(t+1)
∑N
n=1 dnmgout,n

10: vm(t+ 1) = Σxm(t+ 1)g′in,m
11: am(t+ 1) = gin,m
12: for n = 1 . . . N do
13: Σm+1

zn (t+ 1) =
Σmzn(t+ 1) + |dnm|2(vm(t+ 1)− vm(t))

14: µm+1
zn (t+ 1) =
µmzn(t+ 1) + dnm(am(t+ 1)− am(t))
−gout,n(t)(Σm+1

zn (t+ 1)− Σmzn(t+ 1))
15: end for
16: update σ2 according to [8].
17: update [θmn ,Σθn ] according to (14-15).
18: end for
19: end while
20: Output: {x̂m = am(Tmax)}m

First by computing Znor:

Znor =

∫
z′n

p(yn|z′n)CN (z′n;µzn ,Σzn) (7)

=

∫
z′n,θn

p(yn|z′n, θn)p(θn)CN (z′n;µzn ,Σzn) (8)

=

∫
z′n,θn

p(θn)CN (z′n; ye−jθn , σ2)CN (z′n;µzn ,Σzn) (9)

=

∫
z′n,θn

p(θn)CN (yne
−jθn ;µzn ,Σzn + σ2)CN (z′n;

yne
−jθnΣzn + µznσ

2

σ2 + Σzn
,

1
1
σ2 + 1

Σzn

) (10)

=

∫
θn

p(θ)CN (yne
−jθn ;µzn ,Σzn + σ2)

∫
z′n

CN (z′n;
yne
−jθnΣzn + µznσ

2

σ2 + Σzn
,

1
1
σ2 + 1

Σzn

) (11)

=

∫
θn

p(θn)CN (yne
−jθn ;µzn ,Σzn + σ2) (12)

=

∫
θn

1√
2π(Σzn + σ2)

exp

[
− |yne

−jθn − µzn |2

2(Σzn + σ2)

]
p(θn) (13)

= exp

[
− |yn|

2 + |µzn |2

2(Σzn + σ2)

]
1√

2π(Σzn + σ2)

∫
θn

exp

[
|yn||µzn |cos(arg(y∗nµzn) + θn)

Σzn + σ2

]
p(θn) (14)

Using Von Mises approximations [22] we approximate the cosinus part considering small a:

1√
2πa

e−
1
2a (x−xm)2

≈ 1

πI0( 1
a )
e

1
a cos(x−xm) (15)
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Znor = exp

[
− |yn|

2 + |µzn |2

2(Σzn + σ2)

]
π√

2π(Σzn + σ2)
I0

(
|yn||µzn |
V + σ2

)
(16)∫

θn

N
(
θn;− arg(y∗nµzn),

V + σ2

|yn||µzn |

)
N (θn, µθn ,Σθn). (17)

= exp

[
− |yn|

2 + |µzn |2

2(Σzn + σ2)

]
π√

2π(Σzn + σ2)
I0

(
|yn||µzn |
V + σ2

)
(18)∫

θn

N
(
θn;µzθn ,Σ

z
θn

)
N (− arg(y∗nµzn); θn, α+ σθn) (19)

with,

1

Σzθ
=

1

α
+

1

Σθn
, µzθn =

− arg(y∗nµzn )
α +

µθn
Σθn

1
α + 1

Σθn

, α =
Σzn + σ2

|yn||µzn |
,

Finally:

Znor = exp

[
− |yn|

2 + |µzn |2

2(Σzn + σ2)

]
π√

2π(Σzn + σ2)
I0

(
|yn||µzn |
V + σ2

)
(20)

1√
2π(a+ σ2

θn
)

exp

[
− |µθm − arg(y∗nµzn)|2

2(a+ σ2
θn

)

]
(21)

Now we can compute the momentum by integrating over the realizations of zm and over θm:

EZ|Y {zn|yn, µzn ,Σzn} =
1

Znor

∫
θn

∫
zn

znN (zn; yne
−jθn , σ2)N (zn, µzn ,Σzn) (22)

=
1

Znor

∫
θn

N (yne
−jθn ;µzn ,Σzn + σ2)p(θn) (23)∫

zn

znN
(
zn;

[
yne
−jθnΣzn + µznσ

2

σ2 + Σzn

]
,

1
1
σ2 + 1

Σzn

)
(24)

=
1

Znor

∫
θn

N (yne
−jθn ;µzn ,Σzn + σ2)p(θn)

[
yne
−jθnΣzn + µznσ

2

σ2 + Σzn

]
(25)

=
1

Znor

[
ynΣzn
σ2 + Σzn

] ∫
θn

e−jθnN (yne
−jθn ;µzn ,Σzn + σ2)p(θn) +

[
µznσ

2

σ2 + Σzn

]
(26)

=
1

Znor

[
ynΣzn
σ2 + Σzn

]
exp

[
− |yn|

2 + |µzn |2

2(Σzn + σ2)

]
1√

2π(Σzn + σ2)
(27)∫

θn

exp(−jθ) exp

[
|yn||µzn |cos(arg(y∗nµzn) + θn)

Σzn + σ2

]
p(θn) +

[
µznσ

2

σ2 + Σzn

]
(28)

(29)

Again by identifying with a Von Mises Distribution :

EZ|Y {zn|yn, µzn ,Σzn} =
1

Znor

[
ynΣzn
σ2 + Σzn

]
exp

[
− |yn|

2 + |µzn |2

2(Σzn + σ2)

]
π√

2π(Σzn + σ2)
I0

(
|yn||µzn |
V + σ2

)
(30)∫

θn

e−jθnN
(
θn;µzθn ,Σ

z
θn

)
N (− arg(y∗nµzn); θn, a+ σθn) +

[
µznσ

2

σ2 + Σzn

]
(31)

by variable change θn + µzθn ← θn

EZ|Y {zn|yn, µzn ,Σzn} =
1

Znor

[
ynΣzn
σ2 + Σzn

]
exp

[
− |yn|

2 + |µzn |2

2(Σzn + σ2)

]
π√

2π(Σzn + σ2)
I0

(
|yn||µzn |
V + σ2

)
(32)

1√
2π(a+ σ2

θn
)

exp

[
− |µθm − arg(y∗nµzn)|2

2(a+ σ2
θn

)

] ∫
θn

exp(−j(θn + µzθn)) (33)

1√
2πΣzθn

exp

(
− θ2

n

2Σzθn

)
+

[
µznσ

2

σ2 + Σzn

]
(34)
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thanks to Von Mises identification :

EZ|Y {zn|yn, µzn ,Σzn} =
1

Znor

[
ynΣzn
σ2 + Σzn

]
exp

[
− |yn|

2 + |µzn |2

2(Σzn + σ2)

]
π√

2π(Σzn + σ2)
I0

(
|yn||µzn |
V + σ2

)
(35)

exp (−jµzθn)√
2π(a+ σ2

θn
)

exp

[
− |µθm − arg(y∗nµzn)|2

2(a+ σ2
θn

)

]
R0

(
1

Σzθ

)
+

[
µznσ

2

σ2 + Σzn

]
(36)

After simplification with Znor we obtain:

EZ|Y {zn|yn, µzn ,Σzn} =
ynΣzne

−jµzθn

σ2
n + V

R0

(
1

Σzθ

)
+

µznσ
2

σ2 + Σzn
, (37)

By similar method we obtain :

varZ|Y {zn|yn, µzn ,Σzn} =
|ynΣzne

−jµzθn + µznσ
2|2

|σ2 + Σzn |2
R0

(
1

Σzθ

)
+

Σznσ
2

σ2 + Σzn
− EZ|Y {zn|yn, µzn ,Σzn}2, (38)

µθn (resp. Σθn) is the marginalized posterior mean (resp. variance) of the phase noise θn as discussed in the

next section, and R0(·) = I1(·)
I0(·) where In(·) is the modified Bessel function of the first kind at order n.

Another distribution we have to compute is px|R(x|µxm ,Σxm), is the a-posteriori distribution of x regarding
propagation of the Gaussian fields propagated by the model, the calculation of the momentum defined as gin
and g′in will follow the works presented in [15] to redefine the generic function proposed in SwAMP.

EX|Y (xm|µxm ,Σxm) =
ρ
√

2πν2

Znor
e
− |mx−µxm |

2

2(σ2+Σxm ) M̃ (39)

varX|Y (xm|µxm ,Σxm) =
ρ
√

2πν2

Znor
e
− |mx−µxm |

2

2(σ2+Σxm ) |M̃2 + ν2| − EX|Y (xm|µxm ,Σxm)2 (40)

with

Znor = ρ
√

2πν2e
− |mx−µxm |

2

2(σ2+Σxm ) + (1− ρ)e
− |µxm |

2

2Σxm , (41)

M̃ =
σ2µxm + Σxmmx

Σxm + σ2
, ν2 =

σ2Σxm
Σxm + σ2

. (42)

3.3 Mean-field approximation for the phase noise

To simplify the computation of the posterior distribution of the phase noise θ, we propose in this step to
resort to a mean-field approximation. Thus, we define

q(θ) ∝ p(θ) exp

(∫
x

p(x|µx,Σx) log p(y|x,θ) dx

)
. (43)

Particularized to the previous derivations, we get, in a similar way as in [12]

q(θ) = N (θ;µθ,Σθ), (44)

where Σ−1
θ = Λ−1

θ + diag

(
2

σ2
|η|
)
, (45)

µθ = Σθ

(
diag

(
2

σ2
|η|
)

arg(η)

)
, (46)

η , [η1 . . . ηN ]T with ηn = ynE
∗
Z|Y {zn|yn, µzn ,Σzn}, and Λ−1

θ is the precision matrix attached to the prior

distribution (4) on θ, i.e.

Λ−1
θ =



1
σ2

1
+ β2

σ2
θ
− β
σ2
θ

0 0

− β
σ2
θ

1+β2

σ2
θ

. . . 0

0
. . .

. . . − β
σ2
θ

0 0 − β
σ2
θ

1
σ2
θ

 . (47)

Note that the distribution q(θ) being Gaussian, the marginals q(θn) used in the prSAMP-step of the
algorithm come straightforwardly as

q(θn) = N (θn;µθn ,Σθn) (48)

where µθn (resp. Σθn) is the nth element in µθ (resp. in the diagonal of Σθn).
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Algorithm 2 paSAMP Algorithm

Input: y, D, σ2, ρ, σ2
x, µθ,Σθ, Tmax

Define:
gout,n , 1

Σzn
(EZ|Y,P {zn|yn, µzn ,Σzn} − µzn)

g′out,n , 1
Σzn

(
(varZ|Y,P {zn|yn,µzn ,Σzn})

Σzn
− 1)

gin,m , EX|Y {xm|µxm ,Σxm}
g′in,m , varX|Y {xm|µxm ,Σxm}

1: while t < Tmax do
2: for n = 1 . . . N do
3: ẑn(t) =

∑M
m=1 dnmam(t)

4: Σ1
zn(t+ 1) =

∑M
m=1 |dnm|2vm(t)

5: µ1
zn(t+ 1) = ẑn(t)− Σ1

zn(t)gout,n
6: end for
7: for m = permute[1 . . .M ] do

8: Σxm(t+ 1) = (−
∑N
n=1 |dnm|2g′out,n)−1

9: µxm(t+1)=am(t)+Σxm(t+1)
∑N
n=1 dnmgout,n

10: vm(t+ 1) = Σxm(t+ 1)g′in,m
11: am(t+ 1) = gin,m
12: for n = 1 . . . N do
13: Σm+1

zn (t+ 1) =
Σmzn(t+ 1) + |dnm|2(vm(t+ 1)− vm(t))

14: µm+1
zn (t+ 1) =
µmzn(t+ 1) + dnm(am(t+ 1)− am(t))
−gout,n(t)(Σm+1

zn (t+ 1)− Σmzn(t+ 1))
15: end for
16: update σ2 according to [8].
17: update [θmn ,Σθn ] according to (14-15).
18: end for
19: end while
20: Output: {x̂m = am(Tmax)}m

3.4 Additive noise estimation

In order to refine our estimation we propose to estimate σ2, the second order momentum of the additive noise,
according to the maximum likelihood criterion of the posterior distribution, we finally have to find :

σ̂2 = argmax
σ2

∫
z,θ

p(z,θ|y) log(p(y, z,θ;σ2))dzdθ (49)

According to [12]

σ̂2 =
1

N

(
yHy − 2R(yHEZ|Y ) + EH

Z|Y EZ|Y + varZ|Y

)
(50)

with

y =

[
yne
−jµθnR0

(
1

Σθ

)]
n={1,...,N}

, (51)

EZ|Y = [E∗Z|Y {z1|y1, ω1, V
2} . . . E∗Z|Y {zN |yN , µzn ,Σzn}]

T .

In the following, we refer to the proposed two-procedure as “paSAMP” for “phase-aware SwAMP algo-
rithm”. The pseudo-code of paSAMP is presented in Algorithm 2 with the references to the intermediary
variables (µzn , Σzn , µxn , Σxn) introduced above.

Once implemented, paSAMP will return a and v, respectively the mean and variance of p(x|y), with a the
reconstructed vector x.

4 Numerical Experiment

In this section, we perform a quantitative and qualitative evaluation of the proposed approach with respect to
state-of-the-art algorithms.

We consider the problem of the identification of the directions of arrival of K plane waves from an antenna
composed of N = 256 sensors. We assume that the angles of the K incident waves can be written as
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Fig. 1: Evolution of the (averaged) normalized correlation as a function of the variance σ2 for K = 2 (left)
and K = 5 (right), Comparison of the performance of Conventionnal Beam Forming (triangles black),
prSAMP (diamonds black), paVBEM (circles red) and paSAMP (squares blue). Performance shows
that paSAMP provides better results and successfully integrates the phase noisy observation model.

φk = π
2 + ik

π
50 with ik ∈ [1, 50]. A set of M = 50 steering vectors is defined from a set of angles {φi =

−π+ i π50}i∈{1,...,50} and the choice of the parameter ∆/λ = 4. For each of the K incident waves, the coefficient
xik is initialized with mx = 0.5 + j0.5, ρ = K/M and σ2

x = 0.1. Finally, we set the following parameters for
the phase Markov model (3): σ2

0 = 10, σ2
θ = 0.1 and β = 0.8. This corresponds to a situation where we have

a high uncertainty on the initial value but a physical link between two space-consecutive angle measurements
is taken into account.

We compare the performance of the following 4 different algorithms: i) the standard beamforming intro-
duced in [1] (dashed black curve, triangle mark); ii) the prSAMP algorithm proposed in [9] as a solution to
the phase retrieval problem (continuous black curve, diamond mark); iii) the paVBEM procedure proposed in
[12] exploiting the same prior models (dashed red curve, circle mark); iv) the paSAMP algorithm described in
Section 3 (continuous blue curve, square mark). To evaluate the performance of these procedures, we consider

the normalized correlation between the ground truth x and its reconstruction x̂, that is |xH x̂|
‖x‖‖x̂‖ , as a function

of the additive noise variance σ2. This quantity is averaged over 100 realizations for each point of simulation.
The results achieved by the 4 procedures are presented in Figure 1, resp. for K = 2 (left) and K = 5

(right) sources. In both cases, we see that the conventional beamforming and the prSAMP algorithm fail
to reconstruct x properly. These resuts illustrate the benefits of carefully accounting for the phase noise
in fluctuating environments. We can also notice the superiority of paSAMP over its mean-field counterpart
paVBEM, especially in presence of a strong additive noise. This comes in the continuity of previous work [9],
where prSAMP proved to outperform prVBEM. Finally, it is interesting to compare the performance of both
paSAMP and paVBEM algorithms with regard to the number of sources. Both achieve better performance
when confronting to K = 5 sources than to K = 2 sources. As mentioned in [12], this behavior is typical
for the phase retrieval problems, where the loss information on the phases can be compensated by a larger
number of sources. In addition, we observe that the performance gap between paSAMP and paVBEM tends
to increase with the number of sources. This is in accordance with previous work [13] demonstrating the
relevance of the Bethe approximation over the mean-field approximation when the signal to recover exhibits a
low sparsity (i.e. a high number of non-zero coefficients).

5 CONCLUSION

We have presented in this paper a novel Belief Propagation able to perform DOA in a corrupted phase noisy
environment. This approach relied on Bethe approximations and strong assumption over the sparsity on x
and on the structure of the covariance matrix of the multiplicative noise. We confronted it to conventional
Beamforming and paVBEM which is known to have good performances with this kind of model. Regarding the
good performances of this algorithms, we hope to include further assessment like the estimation of the physical
parameter, multi-frequential estimation and taking temporal evolution of the fluctuations into account.
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[6] S. Cheinet, L. Ehrhardt, D. Juvé, and P. Blanc-Benon, “Unified modeling of turbulence effects on sound
propagation,” The Journal of the Acoustical Society of America, vol. 132, no. 4, pp. 2198–2209, 2012.
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