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Abstract

In this work, we propose a new algorithm in order to perform direction-of-arrival (DOA) estimation considering waves
propagating through a fluctuating medium. In this particular context, the measurements are affected by a phase noise,
which can mislead the estimation. It is then important to take into account these phase uncertainties in the estimation
procedures. In this paper, we propose to model the phase noise by some random distribution and combine it with a
sparse-enforcing distribution on the directions of arrival. These prior models are exploited through a message passing
algorithm. Our method relates to previous works in phase recovery and can be seen in particular as an extension of
the so-called “prSAMP” algorithm. Once implemented, we evaluated the performance of our algorithm in terms of
quality of the reconstruction in comparison with other state-of-the-art algorithms. In particular, the method proves to
be more robust to additive noise and present a better behavior than conventional beamforming and recent variational
Bayesian algorithms.

Keywords: DOA estimation, sparse representation, Bayesian estimation, variational Bayesian approximations, message
passing algorithms

1 Introduction

Common to many applications such as SONAR, RADAR, and telecommunications, the task of direction-of-
arrival (DOA) estimation aims at locating one or more sources emitting in some propagation media. Many
various methods dealing with this problem have been proposed in the literature. They can roughly be dis-
tinguished by the assumptions put on the propagating medium and the sources. Thus, the beamforming
approach [1], which constitutes probably the most famous approach, exploits a simple assumption of Gaussian
additive noise, while the so-called “high-resolution” techniques consider in addition some assumptions over
the number or the nature of the sources. This is the case of the well-known MUSIC method [2], based on
strong assumptions on the number of sources and the separability of the sub-spaces where noise and signal are
assumed to live. More recently, we can also mention the “compressive” beamforming approaches proposed in
[3] that benefit from an explicit sparse model on the sources.

In addition to these assumptions, recent work has focused on the integration of phase noise models. The
objective of such approaches is to take into account the wave front distortion occurring when waves travel
through fluctuating media. This case study is observed in many application areas as in acoustics [4], space
observation or communications [5].

These contributions mainly relate to recent advances in phase recovery (see e.g. [6]) and extend them in
the sense that they put informative prior on the missing phases. In this respect, we can mention the work [7]
which proposes a method inspired by the PhaseCut algorithm and the Bayesian approach based on a mean-field
approximation.

Part of the continuity of this latter work, we propose here a novel approach, based on the “swept approx-
imate message passing” (SwAMP) algorithm introduced in [8]. The major contribution of this work is the
consideration of a corrupting phase model over our measurement, which have a strong impact on the success
of classical DOA techniques due to the poor integration of the propagation model in the case of fluctuating
medium.

∗This work has been supported by the DGA.

1



2 PROBLEM STATEMENT 2

2 PROBLEM STATEMENT

In this section, we recall the Bayesian modeling introduced in [9], which we shall follow in the remaining of
the paper, and introduce the estimation problem we propose to solve.

2.1 Observation Model

We consider an antenna composed of N sensors. Then, the received signal at sensor n can be expressed as

yn = ejθn
( M∑
m=1

dnmxm + µzn

)
, (1)

where θn stands for the phase noise due to the propagation through the fluctuating medium and µzn is an

additive noise. The scalar dmn is the n-th element of the steering vector dm = [ej
2π
λ ∆ sin(φm) . . . ej

2π
λ ∆N sin(φm)]T

where the φm’s are some potential angles of arrival, ∆ is the distance between two adjacent sensors and λ is
the wavelength of the propagation waves.

At each sensor of the antenna, we thus assume that the received field is a combination of a few waves
arriving from different angles φm. The DOA estimation problem consists then in identifying the positions of
the non-zero coefficients in x , [x1 . . . xm]T . To model the sparse assumption on the number of the sources,
we adopt a Bernoulli-Gaussian model

p(xm) = ρm CN (xm; 0, σ2
x) + (1− ρm)δ0(xm), (2)

where ρm is the Bernoulli parameter and equals the probability for xm to be non-zero, CN (xm; 0, σ2
x) stands

for the centered circular complex Gaussian distribution with variance σ2
x and δ0(xm) for a Dirac distribution.

The Bernoulli-Gaussian model is now widely used when considering Bayesian inference methods for sparsity-
constrained problems (see e.g. [10]).

To model spatial fluctuations all along the antenna, we assume in addition that the phase noise obeys the
following Markov model

p(θn|θn−1) = N (β θn−1, σ
2
θ), ∀n ∈ {2, . . . , N}, (3)

p(θ1) = N (0, σ2
1), (4)

with β ∈ R+. Note that variance σ2
θ allows us to take into account the strength of the fluctuations.

Finally, the additive noise µzn is assumed to be circular complex Gaussian of variance σ2.

p(yn|x, θn) xm p(xn)

θn

p(θ)

Fig. 1: Factor graph of the observation model

To illustrate model (1)-(4), Figure 1 gives the corresponding factor graph. White circles denote random
variables when black squares are for the probability distribution factors.

2.2 Bayesian formulation of the problem

Within model (1)-(4), we focus on the following Minimum Mean Square Error (MMSE) problem:

x̂ = argmin
x̃

∫
x

||x− x̃||22 p(x|y)dx (5)
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where y , [y1 . . . yN ]T and

p(x|y) =

∫
θ

p(x,θ|y)dθ (6)

with θ , [θ1 . . . θN ]T .
To solve this problem, we propose to resort to a Bayesian inference strategy, that approximates the posterior

distributions by distributions having suitable factorization. In [9], a mean-field approximation p(x,θ|y) '
q(θ)

∏M
m=1 q(xm) was considered. In this paper, we are interested in a different type of factorization, relating

to the “approximate message passing” (AMP) algorithms [11]. We motivate and detail our approach in the
next section.

3 Proposed paSAMP approach

3.1 Motivation and main principles of the approach

AMP algorithms have been considered since a few years as a serious solution to linear problems under sparsity-
constraints. First considered in the sole case of random matrices1, they have been recently improved by the
so-called “swept approximate message passing” (SwAMP) approach, which helps alleviate the convergence
issues of AMP.

Both AMP and SwAMP have been extended to generalized but component-wise measurement models [12].
They have been then successfully applied to the phase recovery task where θn ∼ U [0, 2π], ∀n ∈ {1, . . . , N},
given raise to the prGAMP [13] and the prSAMP [6] algorithms. In particular, the latter has proved to
outperform other state-of-the-art algorithms among which the mean-field approximation [9].

The prSAMP algorithm constitutes thus a promising approach for our DOA estimation problem (5). How-
ever, in our study case, the phases θn’s are considered as dependent on each other (as highlighted by figure
1). This prevents us from a direct adaptation of prSAMP.

We thus propose an iterative algorithm based on the two following mathematical derivations:

i) extend prSAMP to a i.i.d. Gaussian prior on the phases,

ii) use a mean-field approximation to estimate the (Gaussian) posterior distribution on the phases.

We detail both operations in the next two sub-sections.

3.2 Extension of prSAMP to i.i.d. Gaussian phases

For a sake of clarity and due to space limitation, we will adopt and refer the reader to the notations of paper
[8] which introduced the SwAMP algorithm described in Algorithm 1.

We would like to adapt this algorithm in order to fit our noise model and the prior on our signal x.

The work of [8] evoke the possibility to obtain a generalized version of SwAMP by replacing
yn−µzn (t)
σ2+Σzn (t)

in gn and the 1
Σzn (t)+σ2 term in the µrm(t) by gout(ω, V ) and −g′out(ω, V ), where gout(ω, V ) and g′out(ω, V )

are respectively the moment of order 1 and 2 of the following pdf, assuming that the zn’s follow Gaussian
distributions of mean µzn and variance Σzn as mixtures of Bernoulli-Gaussian distributions.

p(zn|yn, µzn ,Σzn) =
p(yn|zn)CN (zn;µzn ,Σzn)∫
z′n
p(yn|z′n)CN (z′n;µzn ,Σzn)

=
p(yn|zn)CN (zn;µzn ,Σzn)

Znor
(7)

1 Namely, the elements dnm are assumed to be i.i.d. randomly distributed.
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Algorithm 1 prSAMP Algorithm

Input: y, D, σ2, σ2
x,Tmax

Define:

gout,n ,
yn−µm+1

zn
(t)

σ2+Σm+1
zn

g′out,n , −1
Σzn+σ2

gin,m , EX|Y {xm|µxm ,Σxm}
g′in,m , varX|Y {xm|µxm ,Σxm}

1: while t < Tmax do
2: for n = 1 . . . N do
3: ẑn(t) =

∑M
m=1 dnmam(t)

4: Σ1
zn(t+ 1) =

∑M
m=1 |dnm|2vm(t)

5: µ1
zn(t+ 1) = ẑn(t)− Σ1

zn(t)gout,n
6: end for
7: for m = permute[1 . . .M ] do

8: Σxm(t+ 1) = (−
∑N
n=1 |dnm|2g′out,n)−1

9: µxm(t+1)=am(t)+Σxm(t+1)
∑N
n=1 dnmgout,n

10: vm(t+ 1) = Σxm(t+ 1)g′in,m
11: am(t+ 1) = gin,m
12: for n = 1 . . . N do
13: Σm+1

zn (t+ 1) =
Σmzn(t+ 1) + |dnm|2(vm(t+ 1)− vm(t))

14: µm+1
zn (t+ 1) =
µmzn(t+ 1) + dnm(am(t+ 1)− am(t))
−gout,n(t)(Σm+1

zn (t+ 1)− Σmzn(t+ 1))
15: end for
16: update σ2 according to [8].
17: update [θmn ,Σθn ] according to (14-15).
18: end for
19: end while
20: Output: {x̂m = am(Tmax)}m

First by computing Znor:

Znor =

∫
z′n

p(yn|z′n)CN (z′n;µzn ,Σzn) (8)

=

∫
z′n,θn

p(yn|z′n, θn)p(θn)CN (z′n;µzn ,Σzn) (9)

=

∫
z′n,θn

p(θn)CN (z′n; ye−jθn , σ2)CN (z′n;µzn ,Σzn) (10)

=

∫
z′n,θn

p(θn)CN (yne
−jθn ;µzn ,Σzn + σ2)CN (z′n;

yne
−jθnΣzn + µznσ

2

σ2 + Σzn
,

1
1
σ2 + 1

Σzn

) (11)

=

∫
θn

p(θ)CN (yne
−jθn ;µzn ,Σzn + σ2)

∫
z′n

CN (z′n;
yne
−jθnΣzn + µznσ

2

σ2 + Σzn
,

1
1
σ2 + 1

Σzn

) (12)

=

∫
θn

p(θn)CN (yne
−jθn ;µzn ,Σzn + σ2) (13)

=

∫
θn

1√
2π(Σzn + σ2)

exp

[
− |yne

−jθn − µzn |2

2(Σzn + σ2)

]
p(θn) (14)

= exp

[
− |yn|

2 + |µzn |2

2(Σzn + σ2)

]
1√

2π(Σzn + σ2)

∫
θn

exp

[
|yn||µzn |cos(arg(y∗nµzn) + θn)

Σzn + σ2

]
p(θn) (15)

Using Von Mises approximations [14] we approximate the cosinus part considering small a:

1√
2πa

e−
1
2a (x−xm)2

≈ 1

πI0( 1
a )
e

1
a cos(x−xm) (16)
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Znor = exp

[
− |yn|

2 + |µzn |2

2(Σzn + σ2)

]
π√

2π(Σzn + σ2)
I0

(
|yn||µzn |
V + σ2

)
(17)∫

θn

N
(
θn;− arg(y∗nµzn),

V + σ2

|yn||µzn |

)
N (θn, µθn ,Σθn). (18)

= exp

[
− |yn|

2 + |µzn |2

2(Σzn + σ2)

]
π√

2π(Σzn + σ2)
I0

(
|yn||µzn |
V + σ2

)
(19)∫

θn

N
(
θn;µzθn ,Σ

z
θn

)
N (− arg(y∗nµzn); θn, α+ σθn) (20)

with,

1

Σzθ
=

1

α
+

1

Σθn
, µzθn =

− arg(y∗nµzn )
α +

µθn
Σθn

1
α + 1

Σθn

, α =
Σzn + σ2

|yn||µzn |
,

Finally:

Znor = exp

[
− |yn|

2 + |µzn |2

2(Σzn + σ2)

]
π√

2π(Σzn + σ2)
I0

(
|yn||µzn |
V + σ2

)
(21)

1√
2π(a+ σ2

θn
)

exp

[
− |µθm − arg(y∗nµzn)|2

2(a+ σ2
θn

)

]
(22)

Now we can compute the momentum by integrating over the realizations of zm and then over θm:

EZ|Y {zn|yn, µzn ,Σzn} =
1

Znor

∫
θn

∫
zn

znN (zn; yne
−jθn , σ2)N (zn, µzn ,Σzn) (23)

=
1

Znor

∫
θn

N (yne
−jθn ;µzn ,Σzn + σ2)p(θn) (24)∫

zn

znN
(
zn;

[
yne
−jθnΣzn + µznσ

2

σ2 + Σzn

]
,

1
1
σ2 + 1

Σzn

)
(25)

=
1

Znor

∫
θn

N (yne
−jθn ;µzn ,Σzn + σ2)p(θn)

[
yne
−jθnΣzn + µznσ

2

σ2 + Σzn

]
(26)

=
1

Znor

[
ynΣzn
σ2 + Σzn

] ∫
θn

e−jθnN (yne
−jθn ;µzn ,Σzn + σ2)p(θn) +

[
µznσ

2

σ2 + Σzn

]
(27)

=
1

Znor

[
ynΣzn
σ2 + Σzn

]
exp

[
− |yn|

2 + |µzn |2

2(Σzn + σ2)

]
1√

2π(Σzn + σ2)
(28)∫

θn

exp(−jθ) exp

[
|yn||µzn |cos(arg(y∗nµzn) + θn)

Σzn + σ2

]
p(θn) +

[
µznσ

2

σ2 + Σzn

]
(29)

(30)

Again by identifying with a Von Mises Distribution :

EZ|Y {zn|yn, µzn ,Σzn} =
1

Znor

[
ynΣzn
σ2 + Σzn

]
exp

[
− |yn|

2 + |µzn |2

2(Σzn + σ2)

]
π√

2π(Σzn + σ2)
I0

(
|yn||µzn |
V + σ2

)
(31)∫

θn

e−jθnN
(
θn;µzθn ,Σ

z
θn

)
N (− arg(y∗nµzn); θn, a+ σθn) +

[
µznσ

2

σ2 + Σzn

]
(32)

by variable change θn + µzθn ← θn

EZ|Y {zn|yn, µzn ,Σzn} =
1

Znor

[
ynΣzn
σ2 + Σzn

]
exp

[
− |yn|

2 + |µzn |2

2(Σzn + σ2)

]
π√

2π(Σzn + σ2)
I0

(
|yn||µzn |
V + σ2

)
(33)

1√
2π(a+ σ2

θn
)

exp

[
− |µθm − arg(y∗nµzn)|2

2(a+ σ2
θn

)

] ∫
θn

exp(−j(θn + µzθn)) (34)

1√
2πΣzθn

exp

(
− θ2

n

2Σzθn

)
+

[
µznσ

2

σ2 + Σzn

]
(35)
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thanks to Von Mises identification :

EZ|Y {zn|yn, µzn ,Σzn} =
1

Znor

[
ynΣzn
σ2 + Σzn

]
exp

[
− |yn|

2 + |µzn |2

2(Σzn + σ2)

]
π√

2π(Σzn + σ2)
I0

(
|yn||µzn |
V + σ2

)
(36)

exp (−jµzθn)√
2π(a+ σ2

θn
)

exp

[
− |µθm − arg(y∗nµzn)|2

2(a+ σ2
θn

)

]
R0

(
1

Σzθ

)
+

[
µznσ

2

σ2 + Σzn

]
(37)

After simplification with Znor we obtain:

EZ|Y {zn|yn, µzn ,Σzn} =
ynΣzne

−jµzθn

σ2
n + V

R0

(
1

Σzθ

)
+

µznσ
2

σ2 + Σzn
, (38)

By similar method we obtain :

varZ|Y {zn|yn, µzn ,Σzn} =
|ynΣzne

−jµzθn + µznσ
2|2

|σ2 + Σzn |2
R0

(
1

Σzθ

)
+

Σznσ
2

σ2 + Σzn
− EZ|Y {zn|yn, µzn ,Σzn}2, (39)

µθn (resp. Σθn) is the marginalized posterior mean (resp. variance) of the phase noise θn as discussed in the

next section, and R0(·) = I1(·)
I0(·) where In(·) is the modified Bessel function of the first kind at order n.

Another distribution we have to compute is px|R(x|µxm ,Σxm), is the a-posteriori distribution of x regarding
propagation of the Gaussian fields propagated by the model, the calculation of the momentum defined as gin
and g′in will follow the works presented in [10] to redefine the generic function proposed in SwAMP.

EX|Y (xm|µxm ,Σxm) =
ρ
√

2πν2

Znor
e
− |mx−µxm |

2

2(σ2+Σxm ) M̃ (40)

varX|Y (xm|µxm ,Σxm) =
ρ
√

2πν2

Znor
e
− |mx−µxm |

2

2(σ2+Σxm ) |M̃2 + ν2| − EX|Y (xm|µxm ,Σxm)2 (41)

with

Znor = ρ
√

2πν2e
− |mx−µxm |

2

2(σ2+Σxm ) + (1− ρ)e
− |µxm |

2

2Σxm , (42)

M̃ =
σ2µxm + Σxmmx

Σxm + σ2
, ν2 =

σ2Σxm
Σxm + σ2

. (43)

3.3 Mean-field approximation for the phase noise

To simplify the computation of the posterior distribution of the phase noise θ, we propose in this step to
resort to a mean-field approximation. Thus, we define

q(θ) ∝ p(θ) exp

(∫
x

p(x|R;µr) log p(y|x,θ) dx

)
. (44)

Particularized to the previous derivations, we get, in a similar way as in [9]

q(θ) = N (θ;µθ,Σθ), (45)

where Σ−1
θ = Λ−1

θ + diag

(
2

σ2
|η|
)
, (46)

µθ = Σθ

(
diag

(
2

σ2
|η|
)

arg(η)

)
, (47)

η , [η1 . . . ηN ]T with ηn = ynE
∗
Z|Y {zn|yn, µzn ,Σzn}, and Λ−1

θ is the precision matrix attached to the prior

distribution (4) on θ, i.e.

Λ−1
θ =



1
σ2

1
+ β2

σ2
θ
− β
σ2
θ

0 0

− β
σ2
θ

1+β2

σ2
θ

. . . 0

0
. . .

. . . − β
σ2
θ

0 0 − β
σ2
θ

1
σ2
θ

 . (48)

Note that the distribution q(θ) being Gaussian, the marginals q(θn) used in the prSAMP-step of the
algorithm come straightforwardly as

q(θn) = N (θn;µθn ,Σθn) (49)

where µθn (resp. Σθn) is the nth element in µθ (resp. in the diagonal of Σθn).



4 Numerical Experiment 7

Algorithm 2 paSAMP Algorithm

Input: y, D, σ2, ρ, σ2
x, µθ,Σθ, Tmax

Define:
gout,n , 1

Σzn
(EZ|Y,P {zn|yn, µzn ,Σzn} − µzn)

g′out,n , 1
Σzn

(
(varZ|Y,P {zn|yn,µzn ,Σzn})

Σzn
− 1)

gin,m , EX|Y {xm|µxm ,Σxm}
g′in,m , varX|Y {xm|µxm ,Σxm}

1: while t < Tmax do
2: for n = 1 . . . N do
3: ẑn(t) =

∑M
m=1 dnmam(t)

4: Σ1
zn(t+ 1) =

∑M
m=1 |dnm|2vm(t)

5: µ1
zn(t+ 1) = ẑn(t)− Σ1

zn(t)gout,n
6: end for
7: for m = permute[1 . . .M ] do

8: Σxm(t+ 1) = (−
∑N
n=1 |dnm|2g′out,n)−1

9: µxm(t+1)=am(t)+Σxm(t+1)
∑N
n=1 dnmgout,n

10: vm(t+ 1) = Σxm(t+ 1)g′in,m
11: am(t+ 1) = gin,m
12: for n = 1 . . . N do
13: Σm+1

zn (t+ 1) =
Σmzn(t+ 1) + |dnm|2(vm(t+ 1)− vm(t))

14: µm+1
zn (t+ 1) =
µmzn(t+ 1) + dnm(am(t+ 1)− am(t))
−gout,n(t)(Σm+1

zn (t+ 1)− Σmzn(t+ 1))
15: end for
16: update σ2 according to [8].
17: update [θmn ,Σθn ] according to (14-15).
18: end for
19: end while
20: Output: {x̂m = am(Tmax)}m

3.4 Additive noise estimation

In order to refine our estimation we propose to estimate σ2, the second order momentum of the additive noise,
according to the maximum likelihood criterion of the posterior distribution, we finally have to find :

σ̂2 = argmax
σ2

∫
z,θ

p(z,θ|y) log(p(y, z,θ;σ2))dzdθ (50)

According to [9]

σ̂2 =
1

N

(
yHy − 2R(yHEZ|Y ) + EH

Z|Y EZ|Y + varHZ|Y varZ|Y

)
(51)

with

y =

[
yne
−jµθnR0

(
1

Σθ

)]
n={1,...,N}

, (52)

EZ|Y = [E∗Z|Y {z1|y1, ω1, V
2} . . . E∗Z|Y {zN |yN , µzn ,Σzn}]

T .

In the following, we refer to the proposed two-procedure as “paSAMP” for “phase-aware SwAMP algo-
rithm”. The pseudo-code of paSAMP is presented in Algorithm 2 with the references to the intermediary
variables (µzn , Σzn , µxn , Σxn) introduced above.

Once implemented, paSAMP will return a and v, respectively the mean and variance of p(x|y), with a the
reconstructed vector x.

4 Numerical Experiment

In this section, we confront our method to extensive synthetic experiments and evaluate its performance in
comparison to other state-of-the-art algorithms.

We consider the problem of identifying the directions of arrival of K plane waves from a antenna composed
of N = 256 sensors. We assume that the angles of the K incident waves can be written as φk = π

2 + ik
π
50 with



5 CONCLUSION 8

10 -2 10 -1 10 0

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 c
or

re
la

tio
n

10 -2 10 -1 10 0

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 c
or

re
la

tio
n

Fig. 2: Evolution of the (averaged) normalized correlation as a function of the variance σ2 for K = 2 (left)
and K = 5 (right), Comparison of the performance of Conventionnal Beam Forming (triangles black),
prSAMP (diamonds black), paVBEM (circles red) and paSAMP (squares blue). Performance shows
that paSAMP provides better results and successfully integrates the phase noisy observation model.

ik ∈ [1, 50]. A set of M = 50 steering vectors is defined from a set of angles {φi = −π + i π50}i∈{1,...,50} and
the choice of the parameter ∆/λ = 4. For each of the K incident waves, the coefficient xik is initialized with
mx = 0.5 + j0.5 and σ2

x = 0.1. Finally, we set the following parameters for the phase Markov model : σ2
0 = 10,

σ2
θ = 0.1 and β = 0.8. This corresponds to a situation where we have a high uncertainty of the initial value

but a physical link between two space-consecutive angle measurements is taken into account.

We compare the performance of the 4 different algorithms: i) the standard beamforming introduced in [1]
(dashed black curve, triangle mark); ii) the so-called “prSAMP” algorithm proposed in [6] as a solution to the
phase retrieval problem (continuous black curve, diamond mark); iii) the “paVBEM” procedure proposed in
[9] exploiting the same prior models (dashed red curve, circle mark); iv) the “paSAMP” algorithm described in
Section 3 (continuous blue curve, square mark). To quantify the performance of these procedures, we consider

the normalized correlation between the ground truth x and its reconstruction x̂, that is |xH x̂|
‖x‖‖x̂‖ , as a function

of the additive noise variance σ2. This quantity is averaged over 100 realizations for each point of simulation.
The results achieved by the 4 procedures are presented in Figure 2, resp. for K = 2 (left) and K = 5

(right) sources. In both cases, we see that the conventional beamforming and the “prSAMP” algorithm fail
to reconstruct x properly. This observation illustrates the benefits of carefully accounting for the phase noise
in the type of fluctuating configurations. Moreover, we can also notice the superiority of “paSAMP” over
it mean-field homologue “paVBEM”, especially in presence of a strong additive noise. This comes in the
continuity of previous work [6], where “prSAMP” proved to outperform “prVBEM”. Finally, it is interesting
to compare the performance of both “paSAMP” and “paVBEM” algorithms with regard to the number of
sources. Both achieve better performance when confronting to K = 5 sources than to K = 2 sources. As
mentioned in [9], this behavior is typical for the phase retrieval problems, where the loss information on the
phases can be compensated by a larger number of sources.

5 CONCLUSION

We have presented in this paper a novel Belief Propagation able to perform DOA in a corrupted phase noisy
environment. This approach relied on Bethe approximations and strong assumption over the sparsity on x
and on the structure of the covariance matrix of the multiplicative noise. We confronted it to conventional
Beamforming and paVBEM which is known to have good performances with this kind of model. Regarding the
good performances of this algorithms, we hope to include further assessment like the estimation of the physical
parameter, multi-frequential estimation and taking temporal evolution of the fluctuations into account.
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