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DOA estimation in fluctuating environments:

an approximate message-passing approach

technical report
Guillaume Beaumont, Ronan Fablet, Angélique Drémeau

Abstract

In this work, we propose an new algorithm in order to perform direction-of-arrival (DOA) estimation

considering waves propagating through a fluctuating medium. In this particular context, the measurements

are affected by a phase noise, which can mislead the estimation. It is then important to take into account

these phase uncertainties in the estimation procedures. In this paper, we propose to model the phase

noise by some random distribution and combine it with a sparse-enforcing distribution on the directions

of arrival. These prior models are exploited through a message passing algorithm. Our method relates to

previous works in phase recovery and can be seen in particular as an extension of the so-called “prSAMP”

algorithm. Once implemented, we evaluated the performance of our algorithm in terms of quality of the

reconstruction in comparison with other state-of-the-art algorithms. In particular, the method proves to

be more robust to additive noise and present a better behavior than conventional beamforming and recent

variational Bayesian algorithms.

Index Terms

DOA estimation, sparse representation, Bayesian estimation, variational Bayesian approximations,

message passing algorithms

I. INTRODUCTION

Common to many applications such as SONAR, RADAR, and telecommunications, the task of

direction-of-arrival (DOA) estimation aims at locating one or more sources emitting in some propagation
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media. Many various methods dealing with this problem have been proposed in the literature. They can

roughly be distinguished by the assumptions put on the propagating medium and the sources. Thus, the

beamforming approach [1], which constitutes probably the most famous approach, exploits a simple

assumption of Gaussian additive noise, while the so-called “high-resolution” techniques consider in

addition some assumptions over the number or the nature of the sources. This is the case of the well-

known MUSIC method [2], based on strong assumptions on the number of sources and the separability

of the sub-spaces where noise and signal are assumed to live. More recently, we can also mention the

“compressive” beamforming approaches proposed in [] that benefit from an explicit sparse model on the

sources.

In addition to these assumptions, recent work has focused on the integration of phase noise models.

The objective of such approaches is to take into account the wave front distortion occurring when waves

travel through fluctuating media. This case study is observed in many application areas as in acoustics

[3], space observation or communications [4].

These contributions mainly relate to recent advances in phase recovery (see e.g. [5]) and extend them

in the sense that they put informative prior on the missing phases. In this respect, we can mention the

work [] which proposes a method inspired by the PhaseCut algorithm [] and the Bayesian approach []

based on a mean-field approximation.

Part of the continuity of this latter work, we propose here a novel approach, based on the “swept

approximate message passing” (SAMP) algorithm introduced in [].

II. PROBLEM STATEMENT

In this section, we recall the Bayesian modeling introduced in [], which we shall follow in the remaining

of the paper, and introduce the estimation problem we propose to solve.

A. Observation Model

We consider an antenna composed of N sensors. Then, the received signal at sensor n can be expressed

as

yn = ejθn
( M∑
m=1

dnmxm + ωn

)
, (1)

where θn stands for the phase noise due to the propagation through the fluctuating medium and

ωn is an additive noise. The scalar dmn is the n-th element of the steering vector dm =
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[ej
2π

λ
∆ sin(φm) . . . ej

2π

λ
∆N sin(φm)]T where the φm’s are some potential angles of arrival, ∆ is the distance

between two adjacent sensors and λ is the wavelength of the propagation waves.

At each sensor of the antenna, we thus assume that the received field is a combination of a few waves

arriving from different angles φm. The DOA estimation problem consists then in identifying the positions

of the non-zero coefficients in x , [x1 . . . xm]T . To model the sparse assumption on the number of the

sources, we adopt a Bernoulli-Gaussian model

p(xm) = ρm CN (xm; 0, σ2
x) + (1− ρm)δ0(xm), (2)

where ρm is the Bernoulli parameter and equals the probability for xm to be non-zero, CN (xm; 0, σ2
x)

stands for the centered circular complex Gaussian distribution with variance σ2
x and δ0(xm) for a Dirac

distribution. The Bernoulli-Gaussian model is now widely used when considering Bayesian inference

methods for sparsity-constrained problems (see e.g. []).

To model spatial fluctuations all along the antenna, we assume in addition that the phase noise obeys

the following Markov model

p(θn|θn−1) = N (a θn−1, σ
2
θ), ∀n ∈ {2, . . . , N}, (3)

p(θ1) = N (0, σ2
1), (4)

with a ∈ R+. Note that variance σ2
θ allows us to take into account the strength of the fluctuations.

Finally, the additive noise ωn is assumed to be circular complex Gaussian of variance σ2
n.

p(yn|x, θn) xm p(xn)

θn

p(θ)

Fig. 1. Factor graph of the observation model

To illustrate model (1)-(4), Figure 1 gives the corresponding factor graph. White circles denote random

variables when black squares are for the probability distribution factors.
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B. Bayesian formulation of the problem

Within model (1)-(4), we focus on the following Minimum Mean Square Error (MMSE) problem:

x̂ = argmin
x̃

∫
x
||x− x̃||22 p(x|y)dx (5)

where y , [y1 . . . yN ]T and

p(x|y) =

∫
θ
p(x,θ|y)dθ (6)

with θ , [θ1 . . . θN ]T .

To solve this problem, we propose to resort to a Bayesian inference strategy, that approximates the

posterior distributions by distributions having suitable factorizations. In [], a mean-field approximation

p(x,θ|y) ' q(θ)
∏M
m=1 q(xm) was considered. In this paper, we are interested in a different type of

factorization, relating to the “approximate message passing” (AMP) algorithms []. We motivate and

detail our approach in the next section.

III. PROPOSED PA-SAMP APPROACH

A. Motivation and main principles of the approach

AMP algorithms have been considered since a few years as a serious solution to linear problems

under sparsity-constraints. First considered in the sole case of random matrices1, they have been recently

improved by the so-called “swept approximate message passing” (SAMP) approach, which helps alleviate

the convergence issues of AMP.

Both AMP and SAMP have been extended to generalized but component-wise measurement models

[]. They have been then successfully applied to the phase recovery task where θn ∼ U [0, 2π], ∀n ∈

{1, . . . , N}, given raise to the prGAMP [] and the prSAMP [] algorithms. In particular, the latter has

proved to outperform other state-of-the-art algorithms among which the mean-field approximation [].

The prSAMP algorithm constitutes thus a promising approach for our DOA estimation problem (5).

However, in our study case, the phases θn’s are considered as dependent on each other (as highlighted

by figure 1). This prevents us from a direct adaptation of prSAMP.

We thus propose an iterative algorithm based on the two following mathematical derivations:

i) extend prSAMP to a i.i.d. Gaussian prior on the phases,

ii) use a mean-field approximation to estimate the (Gaussian) posterior distribution on the phases.

We detail both operations in the next two sub-sections.

1Namely, the elements dnm are assumed to be i.i.d. randomly distributed.
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B. Extension of prSAMP to i.i.d. Gaussian phases

For a sake of clarity and due to space limitation, we will adopt and refer the reader to the notations

of paper [] which introduced the SAMP algorithm.

Letting zn =
∑M

m=1 dnmxm, ∀n ∈ {1, . . . , N} and assuming that the zn’s follow Gaussian distributions

of mean ωn and variance V 2 as mixtures of Bernoulli-Gaussian distributions, we can write the following

version of Bayes Formula

p(zn|yn, ωn, V ) =
p(yn|zm)CN (zn;ωn, V )∫
z′n
p(yn|z′n)CN (z′n;ωn, V )

. (7)

By integrating over the realizations of zm and then over θm and with the use of Von Mises approximations

[6] to compute the momentums of the distribution, we can obtain the following formulas :

EZ|Y {zn|yn, ωn, V } =
ynV e

−jµzθn

σ2
n + V

R0

(
1

Σz
θ

)
+

ωnσ
2

σ2 + V
, (8)

varZ|Y {zn|yn, ωn, V } =
|ynV 2e−jµ

z
θn + ωnσ

2|2

|σ2 + V |2
R0

(
1

Σz
θ

)
+

V σ2

σ2 + V
− EZ|Y {zn|yn, ωn, V }2, (9)

with
1

Σz
θ

=
1

α
+

1

Σθn

, µzθn =
− arg(y∗nωn)

α + µθn
Σθn

1
α + 1

Σθn

, α =
V +σ2

|yn||ωn|
,

µθn (resp. Σθn) is the marginalized posterior mean (resp. variance) of the phase noise θn as discussed in

the next section, and R0(·) = I1(·)
I0(·) where In(·) is the modified Bessel function of the first kind at order

n. We refer the reader to our technical report [] which details the derivations of the computations.

Another distribution we have to compute is px|R(x|r̂;µr), is the a-posteriori distribution of x regarding

propagation of the Gaussian fields propagated by the model, the calculation of the momentum defined

as gin and g′in will follow the works presented in [7].

C. Mean-field approximation for the phase noise

To simplify the computation of the posterior distribution of the phase noise θ, we propose in this step

to resort to a mean-field approximation. Thus, we define

q(θ) ∝ p(θ) exp

(∫
x
p(x|r̂;µr) log p(y|x,θ) dx

)
. (10)
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Particularized to the previous derivations, we get, in a similar way as in []

q(θ) = N (θ;µθ,Σθ), (11)

where Σ−1
θ = Λ−1

θ + diag
(

2

σ2
|η|
)
, (12)

µθ = Σθ

(
diag

(
2

σ2
|η|
)

arg(η)

)
, (13)

η , [η1 . . . ηN ]T with ηn = ynE
∗
Z|Y {zn|yn, ωn, V

2}, and Λ−1
θ is the precision matrix attached to the

prior distribution (4) on θ, i.e.

Λ−1
θ =



1
σ2
1

+ a2

σ2
θ
− a
σ2
θ

0 0

− a
σ2
θ

1+a2

σ2
θ

. . . 0

0
. . . . . . − a

σ2
θ

0 0 − a
σ2
θ

1
σ2
θ

 . (14)

Note that the distribution q(θ) being Gaussian, the marginals q(θn) used in the prSAMP-step of the

algorithm come straightforwardly as

q(θn) = N (θn;µθn ,Σθn) (15)

where µθn (resp. Σθn) is the nth element in µθ (resp. in the diagonal of Σθn).

D. Additive noise estimation

In order to refine our estimation we propose to estimate σ2, the second order momentum of the additive

noise, according to the maximum likelihood criterion of the posterior distribution, we finally have to find

:

σ̂2 = argmax
σ2

∫
z,θ
p(z,θ|y) log(p(y, z,θ;σ2))dzdθ (16)

After some calculus2, we obtain

σ̂2 =
1

N

(
yHy − 2R(yHEZ|Y ) + EHZ|YEZ|Y + varHZ|Y varZ|Y

)
(17)

with

y =

[
yne
−jµθnR0

(
1

Σθ

)]
n={1,...,N}

, (18)

EZ|Y = [E∗Z|Y {z1|y1, ω1, V
2} . . . E∗Z|Y {zN |yN , ωN , V

2}]T .

2We refer here again the reader to our technical report []
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In the following, we refer to the proposed two-procedure as “paSAMP” (ou PARMESAN) for “phase-

aware SAMP algorithm”. The pseudo-code of paSAMP is presented in Algorithm 1 with the references

to the intermediary variables ({ωn}n, V 2... A COMPLETER) introduced above.

With the two function phase.estimation and additive.noise.estimation which follows the previously

evoked calculations (see 3.2 & 3.3).

IV. NUMERICAL EXPERIMENT

After these calculations we proceeded to a MATLAB implementation. Now we will compare its

performances regarding other algorithms which propose to solve the same phase-retrieval problem with

bayesian approaches.

A. Testing environment

In order to evaluate those performances, we fixed model parameters. We will consider a 256 sensors

(N) array measuring random projections of x of size 64. For this sparse vector, we consider two cases.

The first vector considers only two active sources, known as a critical cases for DOA techniques. The

second case consider five active sources to check on the benefits of pa-SAMP with the structured noise

model.

We also represent the structured phase noise model of parameters σθ1 = 106 et σθ = 1 and an

interdependence factor a = 0.8 to represent the high uncertainty of angle measurement and also the

physical link between two space-consecutive angle measurements.

In order to characterize the performances of this algorithm we consider the normalized correlation between

the true vector x and it’s estimation x̂ regarding to the SNR of the received signal after 500 iterations

of each algorithm.

We consider 100 reconstruction results per noise value and the momentum of the normalized correlation

which are resulting.

We chose to compare this results regarding the the original AMP algorithm; i.e pr-SAMP[5],an EM-type

algorithm based on a similar model, pa-VBEM[8], and the performances of conventional beamforming.

B. Results

After applying the previous testing environment on our algorithm we finally obtain the following

results:
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Fig. 2. Normalized correlation of x estimation regarding additive noise, with 2 sources (left) and 5 sources (right)

The performance illustrated in Fig. 2 shows us that the conventional beamforming algorithm and the

Pr-SAMP algorithm fail to reconstruct x properly as the linear model is no longer used. Which underline

the importance of the new ”physically-based” DOA estimation algorithms in order to tackle with the

fluctuation issue.

We can see that for the critical case of two sources, Pa-SAMP (squares blue) and pa-VBEM (circles

red) offers similar performances.

We can also see that performances of the Pa-SAMP (squares blue) offers better performances than CB

(triangles black), pr-SAMP (diamonds black) and pa-VBEM (circles red ), especially when dealing with

important additive noise, i.e realistic noises. Even if they both integrates the same knowledge of priors

over x and θ, Pa-SAMP seems more accurate than pa-VBEM considering the normalized correlation

between the true x and the reconstructed x.

V. CONCLUSION

We have presented in this paper a novel Belief Propagation able to perform DOA in a corrupted

phase noisy environment. This approach relied on Bethe approximations and strong assumption over the

sparsity on x and on the structure of the covariance matrix of the multiplicative noise. We confronted it

to conventional Beamforming and pa-VBEM which is known to have good performances with this kind

of model. Regarding the good performances of this algorithms, we hope to include further assessment

like the estimation of the physical parameter, multi-frequential estimation and taking temporal evolution

of the fluctuations into account.
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Algorithm 1 Pa-SAMP Algorithm
Require: y, D, σ2, ρ, σ2

x, µθ,Σθ, Tmax

Define:

gout,m(ω, V ) = 1
µp

(EZ|Y,P {Z|ym, ω, V } − ω)

g′out,m(ω, V ) = 1
V (

(varZ|Y,P {Z|ym,ω,V })
V − 1)

pX|Y(x|y;R,µr) = pX(x)N (x;R,µr)∫
x′ pX(x′)N (x′;R,µr)

gin,n(R,µr) = EXn|Rn{Xn|R;µr}

g′in,n(R,µr) = varXn|Rn{Xn|R;µr}

1: while t < Tmax do

2: for m = 1, 2, 3...M do

3: ẑm(t) =
∑N

n=1 dmnan(t)

4: V 2(t) =
∑N

n=1 |dmn|2vn(t)

5: ω(t) = ẑm(t)− V.gout(t− 1)

6: ûm(t) = gout(ym, ω(t), V (t))

7: µum(t) = −g′out(ym, ω(t), V (t))

8: for n = 1, 2, 3...N do

9: µrn(t) = (
∑N

n=1 |dmn|2µum(t))−1

10: Rn(t) = an(t) + µrn(t)
∑M

m=1 |dmnûm(t)|

11: vn(t+ 1) = µrn(t)g′in(Rn(t), µrn(t))

12: an(t+ 1) = gin(Rn(t), µrn(t))

13: for m = 1, 2, 3...M do

14: V n+1
m (t+ 1) =

15: V n
m(t+ 1) + d2

mn(vn(t+ 1)− vn(t))

16: ωn+1
m (t+ 1) =

17: ωn+1
m (t) + dmn(an(t+ 1)− an(t))

18: end for

19: end for

20: update σ2 according to (20).

21: update [θmm
,Σθm ] according to (14-15).

22: end for

23: end while
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