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Abstract

Edge-scrolling techniques automatically scroll the viewport when the user points near

its edge, enabling users to reach out-of-view targets during activities such as selection or

drag-and-drop. Despite the prevalence of edge-scrolling techniques in desktop interfaces,

there is little public research on their behaviour, use or performance. We present a

conceptual framework of factors influencing their design. We then analyse 19 different

desktop implementations of edge-scrolling by reverse-engineering their behaviour, and

demonstrate substantial variance in their design approaches. Results of an interactive

survey with 214 participants show that edge-scrolling is widely used and valued, but also

that users encounter problems with control and with behavioural inconsistencies. Finally,

we report results of a controlled experiment comparing four different implementations of

edge-scrolling, which highlight factors from the design space that contribute to substantial

differences in performance, overshooting, and perceived workload.

Keywords: edge-scrolling, scrolling, autoscroll, dragging

1. Introduction

Edge-scrolling is an interactive technique that automatically scrolls a viewport when

the user points near its edge. It is typically used when other scrolling tools are unavailable
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Figure 1: Situations commonly encountered in desktop applications where edge-scrolling can be employed
to automatically scroll a viewport to complete a task: (a) selecting a font in a large menu, (b) selecting a
wide range of cells in a spreadsheet, (c) resizing a shape in a drawing application, and (d) moving a file
in a subdirectory.

or unsuitable, for example when the user is already engaged in a dragging action. Figure 1

shows several of these situations commonly encountered in desktop applications: (a)

selecting a font in a large menu, (b) selecting a wide range of cells in a spreadsheet

application, (c) resizing a shape in a drawing application, and (d) moving a file in a

subdirectory. In these examples, the user has their pointer near the edge of the viewport

and needs to scroll the view to complete their task; edge-scrolling assists by automatically

scrolling the view at a certain speed in the desired direction.

Edge-scrolling is used daily by millions of desktop computer users, and is available in

most desktop applications. However, there are substantial differences between implement-

ations. For example, a Windows 8 user will experience different behaviours when selecting

text in Internet Explorer and in Notepad: in the former, the viewport automatically scrolls

while the pointer remains below its bottom edge, but the latter additionally requires

continual pointer movement for scrolling to occur. Many other behaviours are displayed

both within and between operating systems. These differences are near certain to have

important implications for user performance, errors, and preferences, as suggested by

results of prior studies into alternative techniques for general scrolling [e.g., 1, 2, 3].

Yet, despite the ubiquity of edge-scrolling use and the seemingly ad-hoc variance of the

available implementations, there has been little research to understand how users interact

with edge-scrolling and how it should be designed.

2



Lorem ipsum dolor sit 
amet, consectetur 
adipiscing elit. Phasellus 
sollicitudin tortor vel nisl 
elementum, eget vulputate

viewport

document

display

viewport edge

adipiscing elit. Phasellus 
sollicitudin tortor vel nisl 
elementum, eget vulputate
eros interdum. Quisque ut 
elit feugiat, suscipit magna

scrolling area

elit feugiat, suscipit magna
a, rhoncus quam. Aenean 
quis est sit amet dui 
pharetra lacinia vel amet 
turpis. Nullam vestibulum

Figure 2: Edge-scrolling is used in the course of a task (here, selecting text) in order to scroll a document
that is displayed inside a viewport placed on the display. The user activates edge-scrolling by entering a
scrolling area near the viewport edge (left). Inside the scrolling area, pointing actions control the pace of
scrolling (middle, right).

To advance understanding and design of edge-scrolling techniques, we present an

analysis in four parts, respectively addressing the following questions: (1) what factors

influence the design of edge-scrolling techniques; (2) exactly how do current implementa-

tions behave; (3) how are existing techniques used and perceived by users; and (4) how

is user performance influenced by different edge-scrolling behaviours? After a review of

related literature, we answer these questions by first providing a framework for understand-

ing edge-scrolling techniques based on task requirements and the method’s behavioural

characteristics. We then use this framework to examine 33 existing edge-scrolling imple-

mentations, reverse-engineering their behaviour and demonstrating substantial variance

in design approaches. Results of an interactive online survey, completed by 214 par-

ticipants, confirm that edge-scrolling is widely used, and identifies common usability

problems. We then describe a controlled experiment evaluating user performance when

using various edge-scrolling designs for a text selection task, with results showing that

different approaches to supporting edge-scrolling cause substantial differences in task

completion time and perceived workload. Finally, from these results, we derive a series of

recommendations for the design of future edge-scrolling techniques.

2. Background

When a document has more information than can be displayed inside a viewport placed

on the display, the interface must allow scrolling so that relevant document parts can be

brought into view. Various scrolling techniques and devices have received much attention
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in the literature, but it seems to us that academic research has missed an opportunity

to formalise understanding on an important interaction that is widely disseminated yet

problematic. Edge-scrolling defines a scrolling area relative to the viewport edge (Figure 2),

and when the pointer is inside the scrolling area, pointing actions control the scrolling

rate.

This section reviews related literature relevant to edge-scrolling, including general

scrolling techniques and transfer functions, pointing-based scrolling techniques, edge-based

pointing techniques, as well as edge-scrolling disclosures.

2.1. Scrolling techniques and transfer functions

Scrolling has been a basic component of interaction since the earliest graphical

interfaces [4], and a wide array of input devices and techniques have been used to support

it. Widely deployed hardware devices with scrolling adaptations include the keyboard [5],

touchpad [6, 7], and mouse [8, 9, 10]. Desktop and touch-enabled systems also commonly

support scrolling methods that are based on pointing actions, such as scrollbar controls,

middle-click rate-based scrolling [9], and touch-based flick-scrolling [11, 12]. Other forms

of input for scrolling control include gaze [13], the position of a mobile device in 3D

space [14], and device orientation [15].

All scrolling techniques require a transfer function that determines the mapping from

the input signals to the resultant scrolling output, which is typically in terms of either the

absolute position of the document, its relative position, or its rate of movement (although

other variants are theoretically possible, such as document acceleration). The following

subsections review work on these three primary forms of control. We use the conceptual

model of transfer functions provided by Quinn et al. [3], which describes three successive

transformations: translation (where the input signal is converted to display space units),

gain (which modifies the amplitude of the control signal), and persistence (where effects,

such as simulated friction, are applied across time).

Figure 3 provides an overview of relationships between literature reviewed in this

section.
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Figure 3: Overview of scrolling techniques and studies from the literature discussed in this section, by
type of input (pointing or dedicated input) and transfer function (absolute/relative position control or
rate control). Grey triangles are patents. The orange frame delimits edge-scrolling, a pointing-based
family of scrolling techniques that is the focus of this work.
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2.1.1. Absolute position control

Absolute position control functions map each point inside an area in a physical or

virtual coordinate space to a single position of the viewport in document coordinates—they

map an input position to a scroll position. Such functions have been used in dedicated

devices [16, 7] and on touchscreens [17]. They allow users to quickly jump to remote parts

of a document, but precise selections and short-distance movements are compromised [17].

Precision problems occur at the translation stage of the transfer function, either

because the number of sampled elements of the input space does not match the number of

elements in the document space, or because the transfer function itself does not consider

the whole input resolution [18]. When using pointing input, this granularity problem can

be solved with zooming techniques [19], or by increasing pointer precision beyond the

pixel barrier [18].

2.1.2. Relative position control

Relative position control offers an articulatory direct [20] mapping of the user’s

movements to scrolling displacements: input movement causes document movement.

Although intended scrolling movements may range from a few pixels to hundreds of lines

of text [2], the physical or virtual footprint available for input is limited. Therefore, in

long distance scrolling, the user must frequently disengage then re-engage the device

(clutch) to compensate the limited input area. Repeated clutching typically compromises

the user’s ability to maintain a steady scrolling speed (for example, when reading) [1], can

increase scrolling time [21], and requires more physical effort [2], but clutching can also

be performed intentionally as part of a user strategy to optimise device movements [22].

Improvements to scrolling performance and undesired clutching exist in each of the

three transformations composing the transfer function. At the translation stage, mapping

circular motion to scrolling [23, 24, 6] removes the need to clutch, but these mappings

take up two degrees of freedom in order to control one-dimensional scrolling. Instead of a

circle, Malacria et al. [25] proposed using oscillatory motions along a line for 2D scrolling

input, however oscillatory techniques may be harder to learn than non-oscillatory ones.
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At the gain stage, manipulating the control-display gain reduces device footprint [26],

but high gains can decrease precision unless using a non-linear transfer function that

maps low input velocities to low gains and high input velocities to high gains, making

both fast and precise movements possible. Non-linear transfer functions have been shown

to decrease scrolling time [2] compared to a proportional gain function. Cockburn et al.

[27] showed that, in addition to velocity, incorporating document length as a key input

parameter substantially improved long distance scrolling performance across a variety of

scrolling input devices. Finally, at the persistence stage, simulated inertia and friction

can allow scrolling to continue autonomously while the user is clutching [12]. Inertial

scrolling requires less clutching but does not necessarily improve performance compared

to a non-linear transfer function [28].

2.1.3. Rate control

With rate control, user input controls the velocity of scrolling. The added indirection

reduces movement compatibility [29, 30], but this can allow smooth and continuous

scrolling velocities to be maintained throughout the scrolling movement [1, 2]. Examples

include middle-button dragging in many desktop applications, and ‘flick scrolling’ on

mobile devices. The persistence stage of rate control transfer functions may maintain

the velocity over time or may gradually attenuate it (e.g., simulating friction [31]). Rate

control methods require less physical effort than others [9, 28], but they can be difficult

to control precisely [2]. In addition, Igarashi and Hinckley [32] remarked that beyond a

certain velocity, rate-based scrolling caused disorentation, and proposed to compensate

increased scrolling speed by decreasing the scale at which the document is displayed,

ensuring a constant visual flow.

In summary, the existing literature on scrolling transfer functions has dealt extensively

with the drawbacks and benefits of each type of control, and some works have even proposed

or studied hybrid functions combining absolute and relative position control [16, 33],

relative position and rate control [11], or absolute position and rate control [17].
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2.1.4. Studying scrolling transfer functions

Quinn et al. [3] observed that the reproducibility of empirical studies of scrolling

performance was compromised due to lack of transfer function details. They also described

a method to reverse-engineer the behaviour of external scrolling devices connected through

USB. Subsequent work extended the methodology to touch scrolling devices, using a

robotic arm to precisely control gestural input [12].

These methods permit analysis of transfer functions associated with dedicated scrolling

devices and touch-based techniques, but they do not extend to edge-scrolling techniques

controlled by indirect pointing on desktop applications. Moreover, the logging strategy in

these methods are not always suitable to study edge-scrolling. Quinn et al. [3] logged

the behaviour of device drivers by using low-level event APIs, and Quinn et al. [12] used

custom programs instrumenting specific widgets. Other methods are needed to study the

viewports in closed-source applications, as edge-scrolling is implemented at the application

level and is likely to vary between applications.

Indeed, there are different levels of developer guidance on how to implement edge-

scrolling in custom widgets. Java’s Swing documents how to comply with the de-

fault toolkit behaviour in the setAutoscrolls method of class JComponent1 and in the

Autoscroll interface2. In Cocoa applications, edge-scrolling is automatically present in

any view inside a NSScrollView, but to be available during drag-and-drop it must be

implemented in an ad-hoc fashion3. Other toolkits like Windows Presentation Foundation,

Qt, or GTK+ provide no recommendation or widget-independent behaviour to developers.

Consequently, edge-scrolling requires an adapted reverse-engineering methodology

based on indirect pointing input and compatible with closed-source applications (described

later).

1http://docs.oracle.com/javase/7/docs/api/javax/swing/JComponent.html#

setAutoscrolls(boolean)
2http://docs.oracle.com/javase/7/docs/api/java/awt/dnd/Autoscroll.html
3https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/

NSScrollViewGuide/Articles/Scrolling.html#//apple_ref/doc/uid/TP40003463-SW3
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2.2. Issues with pointing-based scrolling

A significant portion of existing scrolling techniques use a dedicated input stream

distinct from pointing input (e.g., a scrollwheel). These techniques are fundamentally

different from edge-scrolling, which shares the pointing input stream and uses mode

delimitation to switch between pointing and edge-scroll modes. Studies have suggested

that dual-stream input eliminates costs related to sequential operation and mode switching

in single-stream input [16, 34, 35]. However, it is unlikely that edge-scrolling presents

these costs.

First, there is little evidence that pointing and scrolling are performed in parallel in

compound tasks [16]. Based on the global precedence principle found in human motor

and perceptual systems, Guiard et al. [36] argued that compound scrolling and pointing

is a high-level pointing task composed of (1) a “view pointing” phase (scrolling) where

the scrolling position of the document inside the viewport is controlled by the user

until it intersects the target within the coordinate system of the document; followed

by (2) a “cursor pointing” phase (pointing) where the user acquires the target in view

through the actual pointer within the coordinate system of the display. In addition, Zhai

et al. [1] showed that the opportunity of parallel interaction does not guarantee superior

performance to a sequential technique if other factors, such as the transfer function, are

neglected.

Second, while scrollbars remove attention and resources from the main task [9], this is

not the case when switching between pointing and edge-scroll modes. Using a scrollbar

requires focusing on and pointing to a small widget, but the transition between pointing

and edge-scrolling is less dependent on visual feedback because it is performed by entering

a large dedicated area near a viewport edge or by simply crossing the viewport edge.

Moreover, taking Guiard et al.’s [36] argument further, edge-scrolling can be regarded as

a direct extension of pointing actions.

9



2.3. Edge-based pointing

Edge-scrolling relies on the edges of the viewport for activation and control. When

pointing to targets close to virtual display edges, or “edge pointing”, users can perform

primarily ballistic movements because the pointer remains within the target when it

is stopped at the display edge. Edge pointing has been shown to bring performance

benefits depending on the shape of the pointer and the direction of movement [37]. But

viewport edges are seldom collinear with display edges, notably because title bars, sidebars,

scrollbars, and status bars that often surround the viewport provide a small padding area

when the window is maximised. Nevertheless, crossing the area dedicated to edge-scrolling

can be quick when it occupies the whole screen space beyond the considered viewport

edge [38].

2.4. Edge-scrolling

2.4.1. Edge-scrolling inventions

Various patents have described edge-scrolling techniques, and have claimed to resolve

particular interaction problems. However, no public empirical work has validated these

solutions.

Meier et al. [39] described a technique that facilitates drag-and-drop by automatically

scrolling while dwelling inside an area placed along the inside edges of the viewport.

Scrolling velocity increases as the pointer approaches the edge. Bardon et al. [40] disclosed

a relative position-based technique in which pointer movements outside and away from the

viewport cause scrolling movements in the same direction and with the same magnitude.

Kwatinetz [41] commented that the high scrolling velocity found in existing rate-based

edge-scrolling designs causes frequent overshooting. He proposed a method in which

scrolling speed is proportional to the acceleration of the pointer.

Other patents have addressed problems associated with disambiguating the user’s

intention during drag-and-drop actions near the viewport edge – possibly the intended

target lies within another viewport (e.g., dragging between windows), or possibly the

user wants to edge-scroll the current viewport. Berry et al. [42] proposed the use of a
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mouse button to achieve disambiguation, pressed before the cursor reaches the viewport

edge. Li and Shrader [43] instead proposed that a keyboard modifier be used to achieve

disambiguation, with the key being pressed when the user wants to drag to a different

viewport; without the modifier keypress, the cursor would not be permitted to cross the

window edge.

To reduce problems of unintended activation of edge-scrolling while pointing near the

viewport edge, Belfiore et al. [44] proposed using a threshold on pointer velocity while

the pointer is inside the scrolling area–edge-scrolling only occurs when pointer velocity is

below the threshold.

2.4.2. Performance studies on edge-scrolling

The patents described above suggest that inventors and designers are aware of the need

for edge-scrolling as well as the limitations of current solutions. HCI research, however,

has given little attention to these issues, with a few exceptions.

In an early comparison of touchscreen scrolling techniques, Johnson [45] found that

a basic edge-scrolling technique (using a fixed scrolling rate, activated by dwelling near

the screen edge) was outperformed by a simple swipe-based scrolling method. Kaptelinin

[46] compared four navigation techniques based on indirect pointing, including a rate-

based edge-scrolling technique activated when the pointer was outside the window and

where scrolling velocity was proportional to the distance to the edge. Results showed

that edge-scrolling outperformed scrollbar navigation, but was outperformed by a two-

dimensional absolute scrolling technique. More recently, Kulik et al. [47] examined

methods for drag-based object manipulation on smartphones. They compared rate-based

edge-scrolling (activated when the finger is less than 4mm away from the screen edges) to

a new bimanual technique that allowed panning with the non-dominant hand in parallel

with object dragging. The bi-manual method was faster than edge-scrolling.

To our knowledge, the study by Malacria et al. [28] was the only one that sought

to improve desktop edge-scrolling techniques. They proposed two position-based edge-

scrolling methods, push-edge and slide-edge scrolling, offering full transfer function details
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Figure 4: Designing edge-scrolling methods requires understanding two categories of considerations: the
user’s task (left) and the system’s behavioural characteristics (right).

to facilitate replication. Baseline performance of contemporary edge-scrolling solutions

was measured using a rate-based edge-scrolling technique across a wide range of scrolling

distances. In text selection tasks, the position-based methods offered performance

improvements of up to 13% compared to the rate-based technique.

3. The design space of edge-scrolling

This section describes a framework that encapsulates critical factors that must be

considered when designing edge-scrolling techniques. The section also serves as a definition

and explanation of terms used in the remainder of the paper. The two major components

of the framework, described below, are summarised in Figure 4.
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3.1. The user’s task

Edge-scrolling techniques are used during pointing or manipulation activities where

the endpoint is located outside the visible part of the document. They have particular

value when the user has entered a dragging state, because doing so may preclude the

use other scrolling input techniques – for example, scrollbars cannot be used until the

dragging state is terminated, and mouse-wheel input is often disabled during dragging.

We consider four types of target-directed tasks that may require edge-scrolling:

Select The user selects a region of the information space by marking an initial location

(e.g., by pressing the mouse button), dragging over a region within the viewport,

and marking the final location of the selection (e.g., by releasing the mouse button).

For example, selecting a series of cells in a spreadsheet (Figure 1b).

Edit The user modifies an object by dragging. Edge-scrolling facilitates manipulating

the object beyond the content displayed in the current viewport. For example,

resizing a shape in a drawing application (Figure 1c).

Move The user moves an object by dragging. For example, moving a file icon in a

subdirectory (Figure 1d), or moving a paragraph within a document by drag-and-

drop.

Point The user reaches a remote point in a document and selects it. For example,

selecting a font in a large menu (Figure 1a).

During the execution of Select and Edit tasks, there is no ambiguity about the viewport

that contains the user’s intended target – the target must reside within the viewport that

contained the starting point. Move and Point tasks, however, can be ambiguous – the

user’s target may lie within the initial viewport, or it may lie within a different viewport

on the same display (for example, during drag-and-drop between windows). Designing

edge-scrolling techniques therefore requires considering the merits of the technique in

facilitating intra-viewport scrolling, as well as considering the risks that the technique
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may interfere with the user’s legitimate inter-viewport activities. Furthermore, there are

risks that inconsistencies between edge-scrolling techniques will confuse users or impair

their performance, suggesting that there may be end-user advantages of consistency, even

when task requirements permit different approaches.

The display layout also influences the nature of the user’s task and their ability to

effectively use different edge-scrolling techniques. When the viewport edge lies within the

display (visible edge configuration) there is available space for a scrolling area that extends

beyond the viewport, but this is not the case when the viewport is either coincident with

the display edge (e.g., a maximised window) or lies outside the display (hidden edge).

3.2. Behavioural characteristics

The behaviour of edge-scrolling techniques is determined by four key considerations,

summarised in Figure 4: scrolling area, transfer function, activation conditions, and visual

guidance to the user. Prior work from the edge-scrolling literature, reviewed earlier, is

classified according to these considerations in Figure 5.

3.2.1. Scrolling area

The scrolling area is the part of the screen, relative to the viewport, that is used to

activate and control edge-scrolling. We consider two types of scrolling areas: edge-zone
14



and display-bound (Figure 4, top-right). An edge-zone area is placed near the viewport

edge. It has the same width as the viewport, and has a comparatively small height. An

edge-zone may be inside the viewport, outside the viewport, or a combination that need

not be symmetrical. A display-bound area, in contrast, extends from the viewport edge

(or close to it) to the adjacent display edge.

Larger scrolling areas permit a larger pointing footprint, and therefore may facilitate

finer granularity of input control. However, the likelihood of accidental activation of

edge-scrolling increases as the area increases. Furthermore, the ability to use a particular

type of scrolling area may be influenced by task requirements (e.g., outside zones may be

incompatible with the need to support inter-viewport object movement) or by the layout

of viewports on the display.

3.2.2. Transfer function

Edge-scrolling techniques require a transfer function to determine the mapping from

pointing input actions to scrolling output. Additional parameters may also be used by

the transfer function, such as the length of the document [27] or the time spent in the

scrolling area.

We distinguish three key types of edge-based scrolling transfer functions. In absolute

position control, the vertical position of the pointer in the scrolling area is mapped to the

vertical scrolling position in the document. In relative position control4, vertical pointing

movements are translated into vertical scrolling movements. Scrolling amplitude is either

derived from the amplitude of the pointing movement, or from the vertical distance from

the pointer to the edge (pointer-edge distance). In either case, it is possible that only

movements away from the viewport are taken into account. Finally, in rate control, the

pointer-edge distance is mapped to the velocity of automatic scrolling.

The input domain is the set of possible pointing input values (for instance, pointer-edge

distances), and it is limited by the size of the scrolling area. Correspondingly, the output

domain is the set of possible output values (which can be positions, displacements, or

4In the rest of this paper, we will also refer to relative position control as, simply, position control.
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Figure 6: Edge-scrolling techniques can use visual guidance (a) to provide feedback on control parameters
(the length of the orange line represents scrolling velocity); and (b) to support anticipation, by displaying
parts of the document outside the viewport during edge-scroll.

velocities, depending on the type of mapping) that can be produced by the transfer

function.

3.2.3. Activation conditions

The initiation of edge-scrolling requires fulfilling some activation conditions. The

primary activation condition is that the pointer is inside the scrolling area, and this may

be sufficient to initiate scrolling. Secondary activation conditions may also be used, such

as the expiration of a timeout, a specific button press, or a threshold pointer velocity

being attained.

3.2.4. Visual guidance

Document and scrollbar displacements provide strong visual feedback about changes

in viewport position. However, additional visual guidance can be offered that affect

awareness, feedback, and anticipation. First, awareness of the edge-scroll functionality

can be improved with feedforward. For example, arrows in Figure 1a indicate that edge-

scrolling is available at the menu’s extent. Second, feedback may help users comprehend

the parameters they control, such as scrolling velocity (Figure 6a). Third, the user’s

ability to anticipate the upcoming attainment of the target location may be assisted by

visualisations (e.g., Figure 6b).
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4. Analysis of existing designs

In this section we reverse-engineer the edge-scrolling behaviour of 19 common applica-

tions and GUI toolkits. We do so by monitoring the scrolling output of a viewport in

response to software-simulated pointing input. We then use the design space presented in

the previous section to analyse and report their high-level characteristics.

4.1. Method

Each edge-scrolling technique was examined using the following method: (1) a scrol-

lable viewport implementing the technique was set to an initial configuration (size,

location, position of the slider); (2) the viewport was manipulated using several predefined

interaction patterns; (3) the scrolling response to these manipulations was observed and

measured. This method facilitates exact and replicable findings.

4.1.1. Initial configuration

We used a 400 pixels5 high viewport located at the center of a 1440x900 display,

leaving 250 pixels between the bottom edge of the viewport and the bottom edge of the

display. This viewport contained a large document, the content of which varied depending

on the type of viewport and behaviour tested. Text and list documents used a Lorem

ipsum filler text, typeset in Ubuntu Mono Regular 16px 6. List documents used similar

font and text size. Graphical documents were 100,000 pixels high. Pilot investigations

showed that it was not possible to set a unique document size across all viewports due to

document margins or peculiarities of typesetting algorithms, but fortunately none of the

tested designs depended on the size of the document.

4.1.2. Procedure

We combined human observation and software logging of scrolling response to both

human and computer-generated manipulations of each scrollable viewport. We examined

5In this paper, we consider logical pixels, which might comprise several physical ones in newer operating
systems when using high-density displays. We prefer to use logical pixels instead of millimeters because
edge-scrolling control is dependent on the scale of control objects on the display.

6We ensured that the same font size was used across all the different operating systems by using pixels
instead of points as the font size unit.
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downwards scrolling in response to dragging interactions the bottom edge of the viewport,

but the method can be applied to any edge direction or input mode.

Dragging began at a starting point sp. The type of object lying under the pointer

at that point determined the type of edge-scrolling task performed. For example, in a

text document, dragging from a point containing selected text initiated a move task, but

dragging from a point with no selected text initiated a select task.

We first used ad-hoc dragging interactions, observations, and logging to determine

the following: type of scrolling area, type of transfer function mapping, and attendance

to different input parameters (pointer-edge distance, time, pointer movements, font size,

and viewport height). We also used the same method to determine the availability and

size of the scrolling area after placing the viewport in the hidden edge configuration.

We then simulated a specific mouse input pattern with all behaviours (when possible)

in order to precisely characterise the scrolling area and transfer function. The pattern

(Algorithm 1) describes as many dragging sequences as there are pixels in the scrolling

area. Each dragging action starts from sp, jumps directly to the relevant pixel, and ends

after a ten second dwell. For each dragging action, software logged the scrolling position

each second, allowing us to measure the effect of pointer-edge distance on scrolling velocity

(for rate-based functions) or distance (for position-based ones), as well as the limits of

the output domain.

4.1.3. Apparatus

We built software components to simulate mouse input and log resultant scrolling

displacements for various operating systems and viewport types. To simulate mouse input

on Windows, we developed a tool in C# using the Win32 API. For OS X, we developed

a simulation tool in Objective-C using Quartz Event Services.

To log scrolling output, we used various methods to meet requirements of the tar-

get viewport. For standard widgets in GUI toolkits and web browsers, we wrote pro-

grams that configured the window parameters and content, recorded mouse events, and

logged changes in scrolling position. To log scrolling output in standalone applications
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Data:
p the vertical position of the pointer relative to the bottom edge of the viewport
s the vertical scrolling position of the viewport
sp the vertical position of the starting point of the dragging interaction (task-dependent)
ym the top vertical position of the bottom scrolling area relative to the bottom edge of the

viewport
ssize the height of the bottom scrolling area

Result:
dst[y] the recorded amplitude of total scrolling displacements on time t of a dragging interaction to

point y of the scrolling area

yM ← ym + max{ssize, 250};
foreach y in {ym, . . . , yM} do

s← 0;
p← sp;
mouse down;
p← y;
foreach t in {1, . . . , 10} do

wait 1 sec;
dst[y]← s

mouse up;

Algorithm 1: Simulated mouse input pattern applied to the scrollable viewports. The
pattern describes discrete successive dragging actions, one for every pixel of the scrolling
area.

we used accessiblity APIs when available. On Windows, scrollable viewports imple-

ment the ScrollPattern control pattern using Microsoft’s UI Automation API. The

scrolling position in pixels can be derived using properties VerticalScrollPercent,

BoundingRectangle, and VerticalViewSize. With OS X’s Accessiblity API, scrolling

position is provided by the AXPosition property of scrollable viewports implementing the

AXScrollArea. In some applications, such as Photoshop, only the scrollbar accessibility

object could be observed, not the viewport itself. In this case, the scrolling position y

was approximated based on the normalised scrollbar value v ∈ [0, 1], the height of the

viewport hv, and the height of the document hd: y ≈ v × (hd − hv).

4.2. Results

We examined the edge-scrolling behaviours of 19 common applications and GUI toolkits

spread across three operating system versions (Windows 7, 8, and OS X 10.9.2). Depending

on the application, the inspected viewports displayed web pages, text documents, images,

spreadsheets or lists.
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Figure 7: Overview of the 19 applications and toolkits examined across three operating systems (Windows
7, 8, and OS X 10.9.2). Bars describe scrolling areas and transfer functions of their edge-scrolling response
to select and move tasks. Colour corresponds to rate control (blue) or relative position control (red), and
opacity denotes either the average velocity (rate control) or the average displacement (position control)
for a given pointer-edge distance. A central horizontal line in a scrolling area indicates that pointer
movements generate scrolling displacements. Bars are hatched when transfer function data was not
available due to incomplete or unreliable accessibility implementation in the application.
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Each application was tested for select tasks and move tasks (edit tasks were not

analysed as they were supported by only four applications). The combination of an

application and a particular task type will be referred to as a configuration (e.g., GTKText-

Viewselect). When no task type is specified (e.g., Tinderbox*), we refer to both edge-

scrolling configurations surveyed for that application.

Overall, we surveyed 33 configurations: 19 select and 14 move (Figure 7). The

following analysis focuses on each configuration’s scrolling area and transfer function.

4.2.1. Scrolling area

For select tasks, all applications used a display-bound scrolling area, and for move tasks,

all used an edge-zone area (with the exception of Tinderbox* that uses a display-bound

area).

The 20 display-bound areas, which extend to the display edge, varied in their starting

position. In 15 configurations the area started at the viewport edge or up to 2 pixels

away from it. For the 5 remaining configurations, the area started a few pixels inside

the viewport (4 pixels for Internet Explorerselect, 8 pixels for Notepadselect and Wordselect,

10 pixels for Tinderbox*), becoming the only part of the area that is available when the

viewport is maximised.

There were 13 edge-zone scrolling areas, which use a fixed area near the edge. Among

them, 9 were positioned alongside the viewport edge or 1 pixel inside it. The observed

size of these edge-zones ranged from 8 pixels (JTextAreamove) to 75 pixels (GTKText-

Viewmove), with GTKTextViewmove using a size that is 20% of the viewport height.

Windows Explorermove and Photoshopmove used edge-zones that straddled the viewport

edge. Interestingly, Illustratormove and Excelmove used edge-zones that extended from the

viewport edge to the window edge, overlapping the scrollbar and status bar.

These findings suggest that designers chose to exploit available display space (using

display-bound areas) to maximise the input domain for select tasks, which are unambiguous

in terms of the intended target viewport – inter-viewport selections are not supported.

In contrast, the potential for target viewport ambiguity in move tasks predominantly
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led designers to use fixed area edge-zones, despite the resultant constraints on the input

domain. The only exception is Tinderboxmove, which uses a display-bound area and

discriminates between intra- and inter- move intentions by using a pointer velocity

threshold that is sampled when the pointer enters the scrolling area.

Finally, scrolling areas were typically unavailable in the hidden edge configuration,

except for NSTextViewselect, Previewselect, and Excelselect, which used fixed edge-zones

that started above the display edge (50px for NSTextViewselect and Previewselect; 1px for

Excelselect). Finderselect also supported edge-scrolling in the hidden edge configuration,

but did so by smoothly moving the window upward until the whole viewport was accessible

again, and returning it to its original location once the drag action was complete.

4.2.2. Transfer function

Among the 33 configurations, only 5 used relative position control – GTKText-

Viewselect, JTextAreamove, Notepadmove, and Tinderbox*. The remaining 28 used rate

control. Note that Tinderbox*, Illustrator* and Photoshopmove configurations (shown

hatched in Figure 7) could not be examined due to accessibility API limitations.

Input parameters. As shown in Figure 7, most transfer functions mapped pointer-edge

distance to scrolling velocity. Additional input parameters were also taken into account,

including font size, time, and pointer movements.

Nine configurations used font size in their transfer function: GTKTextView*, JText-

Area*, Notepadselect, Wordpad*, and Excel*. Three configurations used time as an input

parameter, with velocity increasing with time in Findermove and NSTextViewmove, and

decreasing with time in ScrollViewerselect.

Eight configurations used any pointer movement to generate additional scrolling

displacements in their rate control transfer function: Firefoxselect, Internet Explorer*,

NSTextViewmove, Wordpadselect, Illustrator*, and Previewselect. In these configurations,

pointing movements within the scroll area increase the frequency of scrolling output,

giving the effect of faster scrolling. This is likely intended to work around limitations of a

small input domain due to a constrained scrolling area size.
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Figure 8: The transfer functions of 28 configurations of edge-scrolling for which we could successfully
measure scrolling data, organised into four classes, together with approximate models.
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Finally, Windows Explorermove, Wordpadmove, and Internet Explorermove all used

constant transfer functions that took no input (other than activation by entering the

scroll area).

Transfer function output. We arranged the transfer functions in four classes, summarised

in Figure 8, depending on their scrolling output response f(x) (in pixels for position

control functions, in pixels/s for rate control ones) to pointer-edge distance input x (in

pixels).

Constant functions (5 configurations) always produce the same output value a in

response to any pointer-edge distance (f(x) = a), although a changed with font size for

Notepadselect and JTextAreaselect
7. Therefore, their output domain has exactly one value,

offering limited control.

Linear functions map pointer-edge distance linearly to scrolling output (f(x) = a+bx),

with slopes (b) varying from 10 to 56.06. The seven configurations with linear transfer

functions used rate control.

Regular staircase functions (8 configurations) increase scrolling output in progressive

steps of fixed size σ as pointer-edge distance increases – f(x) = a+ b(1 + bx+τ/σc)σ, given

a (y-intercept), b (slope), σ (step size), and τ (x-offset). In the 5 configurations using

a text document and a regular staircase function, step size was equal to the line height

(which depended on font size), causing discrete line-based movement.

Other nonlinear functions (8 configurations) were grouped into the fourth class. In

QTextEdit*, Excelselect, and Wordmove, the transfer function increased stepwise, but step

width and height were not constant. In addition, the transfer function of Excelselect

depended on font size. There were also 3 rate-based configurations where time was

an input parameter (Figure 9). In NSTextViewmove and Findermove, time spent in the

scrolling area had little effect until pointer-edge distance was above 5 pixels. The change

was more continuous over the whole scrolling area in ScrollViewerselect, but pointer-edge

7With these configurations, a was the line height, which differed between applications due to varying
typesetting algorithms.
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Figure 9: Scrolling velocity as a function of time at different pointer-edge distances (line labels, in pixels)
for three edge-scrolling configurations that included the time spent in the scrolling area as an input
parameter.
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Figure 10: Scrolling velocity by pointer-edge distance, for (a) 14 select and (b) 8 move configurations,
with rate-based transfer functions that did not depend on the time spent in the scrolling area.

distance had virtually no effect.

Output domain. The range of system responses that can be attained, and therefore the

fidelity of control opportunity, varied with the class of transfer function: for example,

regular and irregular staircase functions had sparser output domains than linear functions.

We analysed the minimum and maximum scrolling velocities that could be attained with

each of the rate-based transfer functions, with results summarised in Figure 10. No

significant difference in minimum velocity was found (Mann-Whitney U=60, Z=1.382,

p=0.178) between edge-zone (median x̃=112 px/s, IQR 161 px/s) and display-bound (x̃=60

px/s, IQR 167 px/s) scrolling area configurations. However, edge-zone configurations had
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significantly lower maximum velocities (x̃=844 px/s, IQR 644 px/s) than display-bound

approaches (x̃=4975 px/s, IQR 5463 px/s) – (U=166, Z=-3.849, p<0.001).

4.3. Summary of existing designs

The results demonstrate substantial variance in the design approaches to edge-scrolling,

with only two areas of general conformity. First, rate-control methods are much more

common than others. Second, select tasks typically allow larger display-bound scroll areas

than the edge-zone areas typically used for move tasks. This observation can be largely

attributed to the potential for task ambiguity in move tasks – the user’s target may lie

within the current viewport or it may lie within a different one. This ambiguity does not

exist for select tasks, generating a somewhat simpler design space.

Other than these two general trends, the variance in design approaches is substantial,

with markedly different transfer functions and input parameters leading to very different

opportunities for system control. This is likely due to lack of support from the underlying

operating system and toolkits, which seldom provide default behaviours or ways to adapt

them to the task at hand. Reverse-engineering the behaviour of edge-scrolling viewports

has exposed these substantial differences and provides a platform for reliable replication

and empirical comparison.

Our approach to reverse engineering, including reliance on accessibility APIs, is subject

to limitations. In particular, the use of inter-process communication in accessibility APIs,

non-real-time timers for rate-based scrolling implementations, and their non-critical nature

can cause imprecise measurement. Additionally, the input parameters to probe must

be manually determined, and therefore it is possible to overlook a critical parameter.

However, the approach permits replicable analysis without demanding access to underlying

source code that is typically unavailable to researchers.

5. Interactive survey of edge-scrolling

While the previous section shows that edge-scrolling is widely supported, it is possible

for users to achieve their tasks without it. For example, some applications allow mouse-
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wheel, touch gesture, or keyboard scrolling input concurrently with dragging actions, or

users can extend a selection range by shift-clicking. Each of these methods circumvents the

need for edge-scrolling. We therefore ran an interactive online survey to determine whether

users actually use edge-scrolling and to examine their perceptions of the technique.

5.1. Design

The survey focused on select, move, and edit tasks. To avoid priming the user’s

attention on edge-scrolling, the survey was designed to probe and observe text selection

activities prior to introducing specific questions on edge-scrolling. Our intention was to

observe how users would choose to complete tasks that might be completed with edge-

scrolling before exposing our interest in the method. Pilot studies with ten interviewed

participants indicated that our survey method was successful.

The survey featured six main parts (described below), each displayed on a separate

web page. Each part had to be completed before proceeding with the next one.

Part one gave a short introduction describing the survey structure and time require-

ments, and asked general questions about computer use: principal operating system, web

browser, pointing device, dominant hand, and time spent using a computer daily.

Part two involved an interactive guided selection task that was used to determine

which scrolling technique the respondent would chose when completing a text selection

task. The survey page displayed a 15-point 4932-word scrollable text viewport and a

tooltip (Figure 11). The tooltip instructed the user to select the blue-coloured paragraph,

and doing so required substantial vertical scrolling.

Part three asked questions about the text selection task in part two. The notion of

Figure 11: Text selection task for the second part of the online survey. Respondents were free to use any
scrolling technique while selecting the paragraph coloured in blue.
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concurrently pointing and scrolling was introduced, and questions were asked about how

frequently the user encountered this need during select, edit, and move tasks – animations

and text were displayed to clarify each task. Responses were recorded using 5-point

Likert-type items, from never to very often (an ‘I don’t know’ item was also included).

Part four asked Likert-scale questions regarding the frequency with which different

methods (edgescroll, wheel, keyboard, and shiftclick) were used to complete select, edit,

and move tasks. Again, text and animations were used to clarify the questions. The

order of presentation of each technique in the survey was randomized across respondents

to limit bias. An optional free-form text item asked for comments about the techniques.

Part five focused on edge-scrolling. Text and an animation described the technique,

was a Yes/No question asked whether the respondent was aware of the technique before

the survey. Three 7-point Likert-type items then queried perceptions of edge-scroll speed

control, general experience, and frequency that edge-scrolling behaviour differs from her

expectations. Free-form text comments were requested regarding edge-scroll problems,

strategies to counter problems, and expectations for future designs.

Part six requested demographic information on age, gender, nationality, and occupa-

tion.

Respondents were recruited through local university mailing lists and online social

networks (Facebook, Twitter, Google+). No compensation was offered for completing

the survey and respondents were informed that their answers were anonymous. The

survey tool was implemented as a HTML website with Javascript communicating to a

home-made Node.js server using AJAX.

5.2. Results

In two months, 214 volunteers completed the survey. Most respondents were male

(71%) and most reported they used a computer for more than five hours daily (84%).

The median age was 26 (IQR 23-32; 46 preferred not to answer). Of the 155 respondents

who specified their occupation, most were students (65), researchers (36), or engineers

(25). Primary operating systems were reported to be Windows (58%), OS X (29%), and
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Figure 12: Responses to Likert-type items on parts 3, 4, and 5 of the survey.

Linux (13%), and primary web browsers were Chrome (47%), Firefox (34%), and Safari

(13%). Almost all of the respondents operated their pointing device with their right hand

(98%), and 66% were mouse users while the others used a touchpad.

5.2.1. Selection task analysis

Part two of the survey (the selection task) provides the study’s primary insight into

how users choose to complete text selection activities.

The survey web page logged pointing, keyboard, and scrolling events using the DOM

Javascript API, recording time-stamps and high-level event descriptions, such as “the

page scrolled down” or “the pointer went outside the viewport”. This data permits

reconstruction of the method(s) used to complete the task. When more than one method

was used (7%), we retained the method that had the longest duration. We double-checked

this by manually by reading through the event logs for each respondent of these 7%.

Edgescroll was the most used technique (57%). The mouse-wheel or touch gestures

were used by 34%. Shiftclick (8%) and keyboard (1%) were rarely used.

This important finding indicates that edge-scrolling is a widely used method for text

selection.
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5.2.2. Perceived frequencies of methods and perceived limitations edge-scrolling

The third and fourth part of the survey concerned perceived frequency of use of

different scrolling methods for different task types (select, edit, and move). The fifth part

focused on more general perceptions of edge-scrolling. Responses to these survey parts

are summarised in Figure 12. Key observations are that respondents found select and

move tasks much more common than edit tasks, and that edge-scroll was perceived to be

more commonly used than wheel/touchscreen gestures. Keyboard and shiftclick methods

were perceived to be used infrequently.

Likert-scale responses indicated that respondents encountered difficulty controlling the

viewport velocity during edge-scrolling (median response “somewhat hard”, Figure 12).

There is no evidence that the pointing device affects the attitude towards edge-scrolling

control difficulty, as a Mann-Whitney U test showed no significant difference between

mouse and touchpad users (U=4981, Z=.032, p=.975).

The general experience reported for edge-scrolling was almost equally divided between

frustrated (41%) and satisfied (40%) (median response “neutral”). Again, we found no

evidence that this attitude is affected by the preferred pointing device (U=5064.5, Z=.327,

p=.775).

Regarding how often edge-scrolling differs from expectations, 50% of the respondents

answered between “somewhat often” to “very often”, while only 19% answered between

“seldom” and “never”; 31 participants (15%) answered “I don’t know”.

5.3. Thematic analysis

To examine the comments provided by the 74 participants who gave them, we

performed a thematic analysis [48], yielding three main themes concerning the con-

text/experience of use, control/performance issues, and behavioural inconsistencies.

5.3.1. Context and experience of use

The choice of scrolling technique is heavily influenced by context of use, which includes

the following factors:

30



• application: “It depends on the application, operating system and how familiar I

am with the application” (P141)

• object type: “I only use shift click when selecting multiple items in a long list”

(P127)

• input device in use: “I use the wheel only with a mouse” (P222)

• scrolling distance: “for small parts of text, I prefer to use keyboard shortcuts while

when I need to select entire paragraphs, I prefer to use the edge-scroll technique”

(P160)

• knowledge of endpoint location: “[I] edge scroll often when I am not sure when to

stop, and Maj + Click when I know exactly” (P175).

• whether the user is already dragging: “if I find out that I am already selecting I

expect edge-scroll to work” (P196).

Additionally, several respondents commented that edge-scrolling has low activation

requirements compared to other techniques – e.g., “I just click and keep dragging until I

get to the bottom” (P169). However, perceived deficiencies may prompt users to choose

other methods – regarding edge-scroll, P203 commented “the only expectation is that it

will be painful!”. Respondents also reported choosing other methods when edge-scroll

response was too fast (“when it goes too fast I use one of the keyboard based methods

previously mentioned”, P2) and too slow (“wheel when edge-scroll isn’t fast enough”,

P175). Furthermore, several participants noted that repeated inadequacies in edge-scroll

encouraged them to avoid it when possible: “it’s something I often encounter but try

to avoid where possible” (P62); “I stopped using it” (P170); “I try and avoid it, but

sometimes it’s not possible to avoid” (P203).

5.3.2. Control and performance

The lack of control in edge-scrolling received many comments, especially imprecise

velocity control. These limitations can be attributed to three causes: limitations of the
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transfer function, ambiguous activation conditions, and a limited scrolling area.

Transfer function. Several comments identified inappropriate limitations on the maximum

attainable scrolling velocity: “the maximum speed is way too slow when you want to do

large selection” (P82); Others referred to the output domain permitting excessively high

velocities: “Sometimes it scrolls incredibly quickly which is difficult to control” (P66);

“it’s really annoying when it’s too fast” (P4); “there is no way to limit the scrolling

speed” (P186). The failure to support a sufficient transition between scrolling speeds

also indicates limitations in the transfer function: “always a big jump between very slow

motion (before crossing the edge) and hyper fast motion (as early as I cross the edge)”

(P20).

Activation conditions. Respondents referred to problems in activating edge-scroll mode:

“having to wiggle the mouse/pointer to get the application to realise that is what you want

to do” (P141). Furthermore, anticipating activation caused problems: “it often takes

some time for the scrolling to begin, but once it does its speed is too fast to easily control”

(P62).

Limited scrolling area. Respondents directly commented on control limitations inherited

from small scrolling areas: “there isn’t enough room left to use the technique (scrolling is

ridiculously slow)” (P26); “you have to find the edge to start the scrolling in a single pixel

height line, or in a very small area. If you pass that zone, you have to come back” (P197).

Issues of display configuration were also noted as causing further control problems: “when

a window is full-screen, there’s not enough room to use the technique” (P71). This problem

led some respondents to configure window placement specifically to assist edge-scrolling:

“I tend to move the active window” (P62); “reduce the size of the window so that it is as

far as possible from the edge of the screen and enjoy greater speeds” (P15).

The comments above indicate a variety of performance problems. Several respondents

additionally identified problems with overshooting and spatial awareness.
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Overshooting. For example, P92 commented on the frequent need to reverse actions after

overshooting: “I select too large a part, then I have to unselect some parts”. While several

participants noted that overshooting was caused by excessive scrolling velocities (“too

fast, too far”, P102), one mentioned that excessive slowness caused task disengagement

(“I eventually “fall asleep” and overshoot my target”, P81).

Spatial awareness. Problems of spatial awareness were induced by excessive scrolling

speeds (“completely losing myself in the page”, P105), with some respondents adapting

their performance to accommodate the problem (“you have to stop regularly to check

where you are in the document”, P213).

5.3.3. Inconsistency

Many comments were directed at the lack of consistency within and between applica-

tions. Issues with the behaviour of Microsoft Excel were noted by several respondents,

with some commenting it was too fast (“too fast with Excel, I find myself at the end of

the sheet without noticing”, P2) and others stating it was too slow (“in excel, when there

are very long columns, it is often too slow”, P74). This discrepancy might be explained

by a change between versions of Excel, as noted by two respondents: “Excel used to be

very sensitive. It’s not so bad any more.” (P229).

Lack of consistency between applications was also noted (“when I copy-paste between

Word files and HTML pages the speeds are generally different, even null in some editors,

and it becomes frustrating”, P175). The desire for greater consistency was explicitly stated

(e.g., “more consistency, and adapted speed”, P2).

Lack of consistency may also contribute to a general lack of understanding or misun-

derstanding of edge-scrolling behaviour: P170 simply stated “I don’t understand how it

works”, and others echoed the request of P183 for “more intuitive use”.

5.4. Discussion

Two key findings emerge from the survey. First, results of the selection task (Sec-

tion 5.2.1) confirm that most of our survey respondents (57%) chose to complete the task
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using edge-scrolling. While the use of edge-scrolling might be anticipated, it is important

to have empirical confirmation that users actually make use of the technique, rather than

work around it using one of the many available alternative methods. Second, the respond-

ents’ comments emphasise that the reverse-engineered behavioural differences observed

in Section 4 do cause interaction problems for users – respondents made many adverse

comments regarding edge-scrolling control/performance and its inconsistent behaviour.

6. Effect of transfer function on edge-scrolling performance

Previous sections have exposed substantial variance in design approach to edge-

scrolling, and they have confirmed that edge-scrolling is widely used and that it raises

subjective concerns about its behaviour. In this section, we empirically examine and

compare user performance and perceived workload when completing edge-scrolling text

selection tasks using four different transfer functions that are representative of diverse

approaches to edge-scrolling.

6.1. Method

The experimental task involved 1D mouse-based text selections, repeated across a

large range of scrolling distances.

6.1.1. Task and stimulus

The task was to select lines of text from top to bottom, with no accuracy constraint

on the horizontal axis. A document containing 21,480 lines of text typeset with Ubuntu

Mono Regular 13px was presented inside a 400 pixel tall viewport located at the centre

of the screen. The target portion of text to be selected was framed and coloured blue,

starting eight lines from the bottom of the viewport, and varying in size (see Figure 13a).

A shaded gradient was overlaid on the scrollbar to indicate the approximate location

and size of the target selection. Selecting anywhere on a line selected the entire line.

Every selection required edge-scrolling via concurrent dragging and scrolling, with other

scrolling methods and devices disabled (e.g., keyboard shortcuts or scroll wheel could not

be used).
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muttered in agitation—"and that she will begin pulling my 
hair. What does my hair matter! Bother my hair! That's what 
I say! Indeed it will be better if she does begin pulling 
it, that's not what I am afraid of... it's her eyes I am 
afraid of... yes, her eyes... the red on her cheeks, too,

meant to help him. Marmeladov was much unsteadier on his 
legs than in his speech and leaned heavily on the young 
man. They had two or three hundred paces to go. The drunken 
man was more and more overcome by dismay and confusion as 
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Figure 13: (a) Experimental software for the one-dimensional text selection task: participants had to
use edge-scrolling in order to select the text coloured and framed in blue. (b) Scrolling velocity by
pointer-edge distance for the 3 rate-based techniques used in the experiment.

To complete a trial participants had to successfully select the blue framed portion

of text (Figure 13a), with no additional or missing lines. This involved positioning the

pointer at the top of the target portion, pressing the mouse button to trigger the selection

action, moving the pointer beyond the bottom viewport edge to trigger edge-scrolling,

scrolling the viewport until they reached the bottom of the target portion, positioning the

pointer over the last line of the blue portion, and releasing the mouse button to complete

the selection. On completing each selection, a pop-up window prompted participants to

press any key to move on to the next trial. To discourage “racing through” the study

irrespective of errors, trials including an error were repeated.

6.1.2. Techniques

Participants completed the tasks with four edge-scrolling techniques that use display-

bound scrolling areas. Three of the techniques were selected from the reverse-engineering

study: GTKTextViewselect is a position-based method (referred to as PositionAnyDir in the

experiment); NSTextViewselect (RateSlow) and Safariselect (RateFast) are linear rate-based

methods with very different parameter settings (Figure 8).

To study a wider range of behaviours, we also designed and tested a fourth rate-based
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technique with a non-linear transfer function (RateNonLinear) defined as:

f(x) =


10x, x ≤ 100px

0.1x2, x > 100px

(in pixels/s; x is the pointer-edge distance, in pixels)

Informal tests suggested that linear functions with slopes similar to Firefoxselect, Windows

Explorerselect, or Finderselect provided an ample output domain, allowing to quickly scroll

through long distances, but were too sensitive in the correction phase. The transfer

function of the RateNonLinear technique, shown in Figure 13b, is intended to facilitate

precise slow scrolling as well as high velocities (up to 9000 px/s).

All four methods used a 300 pixels high scrolling area.

6.1.3. Procedure

Participants completed 3 blocks of trials with each technique. Each block consisted of

20 selections, comprising 5 selections of each of 4 text sizes, from 13 lines up to 508 lines.

Participants were instructed to complete selections as quickly and accurately as possible.

After each technique, participants completed a NASA-TLX worksheet.

6.1.4. Design

The experiment used a 4×3×4 within-subjects design with factors: Technique

(RateSlow, RateNonLinear, RateFast, PositionAnyDir), Block (levels 1-3) and Size (S13,

S58, S258, S508, depending on the number of lines of text to select). The order of Tech-

nique was counterbalanced across participants. The experiment lasted approximately 40

minutes, with a total of 4×3×4×5 = 240 trials performed per participant.

6.1.5. Participants and apparatus

18 university staff and students participated, with median age 26.5 (IQR 10, 4 female).

The experimental software was written in Objective-C with the Cocoa API and ran

on an Apple laptop computer running Mac OS 10.8.4, using a 22” external monitor

with resolution 1680×1050 pixels, and pixel density 90 pixels per inch (PPI). The input

device was a USB corded Logitech M90 mouse with resolution 1000 CPI, and was used

on a varnished plywood desk. The pointing transfer function of the system was set to
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Figure 14: (a) Selection time, (b) breakdown of selection time for S508 into pre-overshoot and post-
overshoot scrolling times and pointing time, (c) overshoot distance, and (d) maximum pointer-edge
distance, by size and technique. Error bars show 95% confidence intervals.

the fourth tick of the Tracking Speed slider in the mouse preference pane of the System

Preferences application8.

6.2. Results

The dependent variables were selection time, overshoot distance, and maximum

pointer-edge distance. We removed error trials (3.0%) in which the selection did not

contain exactly the blue framed portion of text. The first repetition for each distance was

also removed, as we observed that participants often failed to notice that the condition

had changed. For all subsequent repeated-measures ANOVAs, we corrected the degrees

of freedom using Greenhouse-Geisser estimates of sphericity when the assumption of

sphericity was violated, and we used Bonferroni correction for pairwise comparisons.

8This system pointing transfer function can be replicated [49] using the following libpointing URI:
osx:?setting=0.6875.
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6.2.1. Selection time

Selection time is the main dependent variable and is defined as the time taken to

select the target text, from the first time the pointer moved with the left mouse button

pressed to the moment the left mouse button was released.

A repeated-measures ANOVA revealed a significant effect of Block on selection

time (F2,34=14.5, p<.001, η2p=.46). Pairwise comparisons showed a significant decrease of

selection time between the first block (4.2s) and the two remaining (block 2: 3.8s, p=.004;

block 3: 3.7s, p=.001), indicating a learning effect. We thus removed the first block from

subsequent analyses.

We found a significant main effect of Technique (F1.9,32.8=8.2, p=.001, η2p=.33),

of Size (F1.2,20.0=101.5, p<.001, η2p=.86), and a significant Technique×Size interac-

tion (F3.3,55.7=7.0, p<.001, η2p=.29) on selection time (Figure 14a).

Pairwise comparisons showed no significant difference in selection time between Tech-

nique for S13, S58, and S258. However, for S508, selection time was significantly lower

with RateNonLinear (5.1s) and RateFast (5.3s) than with RateSlow (6.7s; both p<.001) and

PositionAnyDir (6.6s; resp. p=.007 and p=.028).

When selecting short portions of text, all techniques have similar performance.

With long selections, however, RateFast and RateNonLinear were markedly faster than

PositionAnyDir and RateSlow (up to 28% faster).

RateSlow and PositionAnyDir have similar selection time for different reasons. We

broke down the scrolling part of selection time around the moment the user first overshot

the target line, yielding pre-overshoot and post-overshoot scrolling times (Figure 13b).

Therefore, selection time can be expressed as:

Tselection = Tpre−overshoot + Tpost−overshoot + Tpointing

As Figure 13b suggests, with RateSlow, Tpre−overshoot was longer than with other techniques

and Tpost−overshoot was similar, but the converse was true with PositionAnyDir. In other

words, the low performance of RateSlow in long distance selections is likely due to its
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limited maximum velocity (3000 px/s, compared to 6000 px/s with RateFast and 9000

px/s with RateNonLinear, as shown in Figure 13c). However, the low performance of

PositionAnyDir in long distance selections could be best explained by its tendency to

induce overshooting.

6.2.2. Overshoot distance

To better understand overshooting, we measured overshoot distance, the distance

between the end of the target text and the farthest selection endpoint reached by the

participant in a trial.

There was a significant main effect of Technique (F1.2,19.9=7.8, p=.009, η2p=.32),

Size (F1.4,23.4=32.9, p<.001, η2p=.66), and a significant Technique×Size interaction (F2.1,35.7=3.4,

p=.041, η2p=.17) on overshoot distance (Figure 14c).

Pairwise comparisons showed that, for S13, overshoot distance was significantly higher

with PositionAnyDir than with RateFast (208px vs. 156px; p=.043). More importantly, for

S13, S58, and S508, it was significantly higher with PositionAnyDir than with RateSlow (S13:

208px vs. 124px, p<.001; S58: 404px vs. 308px, p=.040; 910px vs. 410px, S508: p=.020).

PositionAnyDir is especially sensitive to overshooting, likely because pointer movements

in any direction generate scrolling movements: when the target line is brought into

view, users move the pointer back to the viewport, generating more scrolling than

necessary. In particular, with the longest sizes, overshoot distance exceeded the height of

the viewport with PositionAnyDir, compelling participants to correct their movement by

scrolling backwards before pointing to the target line.

6.2.3. Maximum pointer-edge distance

To analyse the use of the scrolling area, we measured the maximum pointer-edge

distance reached by the participant in a trial.

We found a significant main effect of Technique (F1.9,31.8=41.5, p<.001, η2p=.71),

Size (F1.4,23.4=307.2, p<.001, η2p=.95), and a significant Technique×Size interaction (F3.4,56.9=11.4,

p<.001, η2p=.40) on maximum pointer-edge distance (Figure 14d).
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Surprisingly, with the rate-based techniques, participants did not maximise their use

of the scrolling area. Participants seldom used the last third of the area, especially with

RateFast, which produces faster scrolling velocities with sub-200px movements.

In addition, participants stayed closer to the viewport edge with PositionAnyDir than

with other techniques. Presumably, staying close to the viewport edge allowed participants

to limit overshooting when going back inside the view. However, despite using only the

first third of the scrolling area, participants still managed to quickly advance scrolling

position by oscillating the pointer horizontally.

6.2.4. Task workload assessments

Friedman tests on the NASA TLX subscale scores showed a significant main effect

of Technique on mental demand (χ2(3)=29.3, p<.001), physical demand (χ2(3)=26.5,

p<.001), performance (χ2(3)=27.1, p<.001), effort (χ2(3)=27.6, p<.001), and frustra-

tion (χ2(3)=25.2, p<.001).

Pairwise comparisons showed that PositionAnyDir was perceived as more mentally and

physically demanding, as well as more effortful, than all other techniques (p<.017). This

is likely due to the need to closely attend the behaviour to reduce overshooting.

6.2.5. Discussion

The main finding of this experiment is that there are substantial performance differ-

ences between edge-scrolling implementations.

Results suggest that mouse-based position control edge-scrolling techniques have high

perceived workload, in line with the findings of Malacria et al. [28] for push-edge and

slide-edge scrolling, two other position control techniques. However, unlike push-edge and

slide-edge, overshooting is exacerbated when pointer movements in any direction generate

scrolling movements.

Results also show that the slope of rate-based transfer functions influences performance.

Of the three rate-based methods, RateFast and RateNonLinear decreased selection time by

up to 28% compared to RateSlow, which has a lower slope constant. Results did not show

a performance difference between RateFast and RateNonLinear, despite RateNonLinear being
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able to produce 50% higher scrolling velocities. Further experiments are necessary to

determine whether higher scrolling velocities give benefits for even longer selections than

the longest examined in our study. However, note that the scrolling area was underused

past 250 pixels, and the range of scrolling velocities that could be produced with the

these rate-based techniques was rarely used fully.

7. General discussion

This analysis of edge-scrolling has exposed important design considerations in the

user’s task and in the behavioural characteristics of its implementation. We demonstrated

that contemporary methods of supporting edge-scrolling vary substantially, and that these

variations raise problems for users particularly in perceived inconsistency and impaired

control. We also experimentally confirmed that substantial differences in performance

and perceived workload are induced by the different behaviours.

This section provides general recommendations for edge-scrolling technique design,

and discusses limitations in the studies and opportunities for further work.

7.1. Design recommendations

Based on the results of the previous reverse-engineering, survey, and experiment

studies, a number of recommendations can be made on control, performance, as well as

consistency.

Analysis of survey comments showed that all behavioural characteristics of edge-

scrolling techniques were involved in users’ perception of control.

R1. A small scrolling area can negatively impact control, both because it does not offer

a large range of controllable values, and because pointing at them is difficult when

their boundaries are not clearly visually delineated.

However, note that participants in the experiment seldom moved further than 250

pixels (70 mm).
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R2. Ensure the transfer function permits an adequate range of output values to be

attained in all possible configurations of the scrolling area.

Highly constrained transfer functions that allow only a small range of output values

to be produced impede user control.

R3. Activation conditions based on a delay can be detrimental to the sense of control

when there is no visual guidance to help anticipate activation.

R4. Always provide visual feedback on the user’s location in the document during edge-

scrolling to mitigate some of the spatial awareness issues reported by survey parti-

cipants.

This could happen when the scrollbar is not visible, for example because it is placed

behind another window or lies outside the display. In the experiment, both the

current scrolling position and the target text were clearly displayed in scrollbars.

Insufficient control may distract users from their task and increase the risks of over-

shooting and disorientation, leading ultimately to suboptimal performance. Performance

is also influenced by the transfer function.

R5. Linear rate control transfer functions with slopes less than 10 (NSTextViewselect)

may not yield optimal performance for long distances.

Experiment results suggest that users are not likely to move the pointer far enough

away from the viewport edge to attain suitably high scrolling velocities. A linear

rate-based transfer function with a slope constant of 20 (Safariselect; RateFast in the

experiment) apparently provides a good compromise between accessibility of high

scrolling velocities and fidelity of control opportunity.

R6. If deploying a position control transfer function, pointer movements towards the

viewport should not produce scrolling displacements.

As seen in the experiment, this behaviour is likely to cause overshooting, decreasing

performance and requiring more user attention. Lateral pointer movements have
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been used by our participants to momentarily accelerate scrolling, but designers

should be wary of diagonal movements towards the viewport, as they may cause the

same problems.

Examination of existing implementations showed marked behavioural inconsistencies

that were sometimes problematic, as commented by survey respondents.

R7. Unfamiliar or inconsistent activation conditions, scrolling area, or transfer function

are noticed by users and can induce general confusion or distrust of edge-scrolling.

Consider using visual guidance to help users understand and control idiosyncratic

behaviours.

R8. Rate-control mechanisms are far more common than position control, so consider

the consistency impact before deploying a position control method.

Based on our current results, for a basic behaviour with acceptable control, perform-

ance, and external consistency, we recommend that developers implement a simple linear

rate control transfer function such as that of Safari, with a slope of 20. In its current

implementation, the viewport is automatically scrolled by x pixels every 50 milliseconds

(x being the pointer-edge distance).

In addition, toolkit developers should provide acceptable default edge-scrolling beha-

viours, together with ways for individual application designers to adapt them to the task

at hand if needed. In most situations, the toolkit has enough information to provide a

sensible behaviour even when using uncommon input parameters (e.g., of the document

length or font size). Ultimately, both users and application developers would benefit from

this way of promoting consistency.

7.2. Future work

The analysis presented in this paper provides a foundation for further work on edge-

scrolling. The design space identified the possibility for many edge-scrolling configurations

and parameters, but the survey and empirical analysis only covered a small proportion
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of these. In particular, our experiment was limited to the unambiguous intra-viewport

select task using a display-bound scroll area.

Edge-scrolling behaviours for move tasks present a more challenging design space

than those of select. This additional complexity stems from ambiguity about the target

viewport – possibly the user intends to drag the object to a new location within the

current viewport, but possibly the target resides in a different viewport. This ambiguity

places constraints on the pragmatic extent of the scrolling area, and it also elevates the

potential for accidental activation of edge-scrolling. Further work is needed to empirically

examine user performance across different solutions for move tasks, and to understand

any conflicts between behaviours for move and select.

While our studies focused on desktop applications using indirect pointing with a

mouse, edge-scrolling behaviours are also used with direct touch-based input, particularly

on mobile devices such as tablets and smartphones. For example, application icons

can be dragged between home-screen pages, and list items can be repositioned using

edge-scrolling. The relative importance of edge-scrolling design factors might well be

very different from desktop applications. For instance, more tasks are expected to be

intra-viewport due to the often single-windowed environment, increasing risk of small

scrolling areas that compete with other interface elements for screen real-estate. Further

work is needed to examine the implications of edge-scrolling in direct interaction contexts.

Finally, edge-scrolling reveals an instance of a more fundamental problem in input

device research. The rate control transfer functions used by most existing designs is

usually best controlled using isometric input devices [50] such as a trackpoint. However,

edge-scrolling is inherently based on the pointing device, which is usually isotonic and lacks

a self-centering effect, thus requiring explicit effort to reach the zero-velocity point [51].

Previous edge-scrolling research [28] already detailed this curious state of affair and showed

that position control alternatives could improve edge-scrolling performance compared

to rate control when using isotonic pointing devices, at the expense of physical effort.

The recent availability of pressure-sensitive pointing devices in consumer hardware might
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steer future research in the opposite direction and encourage the study of rate-based

edge-scrolling using pressure control.

8. Conclusion

We proposed and studied a design space for edge-scrolling, a technique for navigating

a viewport by pointing near its edge that has been widely implemented in desktop

systems. By reverse-engineering these implementations, we exposed substantial variance

in design approaches. Responses to an interactive survey demonstrated that edge-scrolling

is broadly used and that users are aware of problems stemming from lack of control

and perceived inconsistencies. We then reported results of a controlled experiment

comparing four designs in a one-dimensional text selection task, with results showing that

current solutions lead to marked differences in user performance and perceived workload.

Finally, from these combined results we have derived recommendations to support future

edge-scrolling designs.
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