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Abstract. With the ability to process many real-world problems, multi-
label classification has received a large attention in recent years and the
instance-based ML-kNN classifier is today considered as one of the most
efficient. But it is sensitive to noisy and redundant features and its perfor-
mances decrease with increasing data dimensionality. To overcome these
problems, dimensionality reduction is an alternative but current meth-
ods optimize reduction objectives which ignore the impact on the ML-
kNN classification. We here propose ML-ARP, a novel dimensionality
reduction algorithm which, using a variable neighborhood search meta-
heuristic, learns a linear projection of the feature space which specifically
optimizes the ML-kNN classification loss. Numerical comparisons have
confirmed that ML-ARP outperforms ML-kNN without data processing
and four standard multi-label dimensionality reduction algorithms.

Keywords: multi-label classification · k-nearest neighbors · dimension-
ality reduction

1 Introduction

In the traditional single-label classification paradigm, the objective is to associate
each instance to one label only. However, in various real-world applications (e.g.
music annotation, image categorization, text mining), objects are intrinsically
describable with multiple labels. Consequently, multi-label classification has re-
ceived a large attention in recent years and many algorithms have been proposed
[19, 10, 14]. Among them, the multi-label adaptation of the well-known k-nearest
neighbor algorithm (ML-kNN [18]) is probably one of the most successful. Based
on the maximum a posteriori principle, ML-kNN operates instance-based learn-
ing. Numerical comparisons with many model-based methods have confirmed
the high quality of its results.

However, instance-based algorithms such as ML-kNN have two major short-
comings [2]. First, as they rely on a distance function, they are very sensitive to
noisy, redundant and irrelevant features. Second, they encounter the explosion of
their computational complexity when dealing with high-dimensional data where



2

numerous instances are described by numerous variables. In practice these seri-
ous issues are brought to the fore today with the expansion of online labeling
services which produce massive raw data of varying quality.

By appearing as a promising lever for these problems, dimensionality reduc-
tion encounters a renewed interest. Roughly speaking, the reduction approaches
used in multi-label classification can be divided into two families: (i) the un-
supervised methods that reduce the feature space independently of any label
information [1] and (ii) supervised methods that benefit from the labeling infor-
mation with an objective that is either independent [12, 13, 20] or dependent on
the classifier [7, 9]. The last type of method seems more promising as the final
objective is to optimize the classification quality. However, the joint problem
between classification and dimensionality reduction is generally set in the form
of a multi-objective optimization which is hard to solve even heuristically.

In this article, we skirt the explicit multi-objective formulation with a novel
linear reduction method for optimizing the ML-kNN classification performances.
Our approach, called Multi-Label Adaptative Random Projection (ML-ARP),
initializes a random linear projection and iteratively adapts it with a reduced
variable neighborhood search in order to increase the ML-kNN performances on
the projected feature space. Numerical comparisons on twelve classical multi-
label datasets have confirmed that, while reducing the dimensionality of data
and the neighborhood search complexity up to 90 percent, ML-ARP is not only
better on average than ML-kNN without data processing but it also outperforms
a simple random projection technique and four standard multi-label dimensional-
ity reduction algorithms from the literature (Principal Component Analysis [1],
Canonical Correlation Analysis [13], Multi-label Dimensionality reduction via
Dependence Maximization [20] and the Orthonormal version of Partial Least
Squares [12]).

The remainder of this paper is organized as follows. Section 2 reviews pre-
vious approaches for multi-label dimensionality redution. We describe our new
algorithm ML-ARP in Section 3 and present the experimental comparisons in
Section 4.

2 Multi-Label Feature Space Dimensionality Reduction

We here present the two main families of dimensionality reduction methods: the
unsupervised methods which do not take label information into account and the
supervised methods which use it to guide the reduction.

2.1 Unsupervised Dimensionality Reduction

The unsupervised methods can themselves be organized into two classes: meth-
ods based on random projection and methods based on feature information. The
first type has been investigated in multi-label classification to reduce both la-
bel [16] and feature space [11]. In the classical context, it is known to be the
fastest way to reduce the dimensionality and the Johnson-Lindenstrauss lemma
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[6] has proved that it accurately preserves the pairwise l2 distances between the
instances in the projected space. However, the result quality declines with the
reduced space dimensionality.

The second type usually tends to reduce the feature space while keeping a
maximum of its structural information (e.g. feature covariance or co-occurence).
It has a long history dating back to the inception of data analysis. The most
popular method still remains the Principal Component Analysis [1] but several
variants have been proposed [4]. However, these approaches do not consider some
useful information contained in the links between the features and the labels.

2.2 Supervised Dimensionality Reduction

Supervised approaches guide the reduction with constraints or label informa-
tion. The reduction can be done independently or dependently of the classifier
criterion.

The most prevalent methods ignore the classifier objective and usually aim at
strengthening the link between the projected features and the labels (e.g. with a
dependence or covariance criterion). In the multi-label context, among the most
popular are the Canonical Correlation Analysis (CCA) [13, 8], the Partial Least
Square (PLS) [3] and the Multi-label Dimensionality reduction via Dependence
Maximization (MDDM) [20]. CCA seeks the directions in both label and feature
spaces which maximize the correlations between each other. PLS seeks the di-
rections in the feature space that maximize the covariance with the label space.
A variant of PLS (Orthonormal PLS [12]) introduces orthogonality constraints
between the computed directions. MDDM computes a projection of the feature
space that minimizes the Hilbert-Schmidt independence criterion between the
projected data features and the labels. In studies previously published, all these
approaches have been applied at a pre-processing stage before the ML-kNN clas-
sifier. The experimental results are promising but, by only optimizing their own
criteria (covariance, dependence and co-occurrence), these methods can degrade
the performances of the classifier.

Recent researches have confirmed that the best dimensionality reduction
method can vary with the choice of the classifier [20]. These results stimulate
the development of approaches which integrate a coupling between dimensional-
ity reduction and classification in a global optimization problem. They usually
resort to an SVM classifier [9] or a large margin classifier [7]. However, in both
cases the optimization process tries to combine explicitly two different objec-
tives. In [7] the expressed loss function is a sum of two reconstruction errors:
dimensionality reduction and classification. In [9] the combination of the two
formulations leads to a two-parameter optimization problem where each param-
eter is computed alternatively. This multi-objective strategy may converge to a
poor quality solution for the classifier. Moreover, these previous approaches do
not consider a coupling with the ML-kNN classifier which is, with its intrinsic
multi-label nature, its powerful classification rules and its potential for an online
adaptation, the center of our attention in this study.
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To overcome these limits, we here propose a novel approach where the pro-
jection of the reduced space is the unique parameter and the optimization of the
ML-kNN performance is the unique objective.

3 Description of the ML-ARP Algorithm

In the following we consider a dx - dimensional feature space X and a dy -
dimensional label space Y. Each instance (xi, yi) is represented by a feature
vector xi and its associated binary label vector yi where the jth component
(yi)

j is equal to 1 if the instance is described by the jth label and 0 otherwise.
In the learning scenario, data are partitioned in two sets: the training set L =
{(xi, yi) ∈ X × Y | i ∈ {1, ..., NL}} of cardinality NL used to train the model
and the testing set T = {(xi, yi) ∈ X × Y | i ∈ {1, ..., NT }} of cardinality NT
used to compute the performances of the model.

3.1 The Algorithm ML-kNN

Let us recall that ML-kNN [18] combines the principle of the k-nearest neigh-
bor algorithm with a powerful multi-label decision rule. More precisely, for a
given feature vector x ∈ X it first determines its neighborhood in L using the
Euclidean l2 distance. Next, it predicts a real-valued output ŷint ∈ Rdy by sum-
ming the labels of the k-nearest neighbors. Then, it converts its prediction into
classification with a maximum a posteriori rule; this rule benefits from the la-
beling pattern embodied in the instance neighborhood. This operation requires
a training phase where two quantities are computed for each label l: (i) the
prior probability of the presence (resp. the absence) of the label l which is its
frequency (resp. the complementary) in L and (ii) the likelihood in L that an
instance associated with the label l has exactly j neighbors with the label l, for j
in {0, ..., k}. With these two pieces of information and ŷint, ML-kNN determines
the posterior probability for the presence/absence of each label with a Bayes
rule. If the presence probability is higher than the absence probability, the label
is set to 1 in the final predicted label vector ŷ ∈ Y.

In the original ML-kNN, a Laplace smoothing is optionnally applied to pre-
vent events which do not occur in the training set L from having a likelihood or a
prior probability equal to zero. In our experiments, without any prior knowledge
about the data, we prefer to avoid using this smoothing. Moreover, as ML-kNN
is here applied for each method of our benchmark, the smoothing parameter
would only affect absolute performances and not relative comparisons.

3.2 ML-ARP: Multi-Label Adaptative Random Projection

Our objective is to build a projection which explicitly optimizes the ML-kNN
performances Θ in the reduced feature space (of dimensionality r). This is likely
to correct the two previously-cited shortcomings by (i) implicitely filter the fea-
tures that are irrelevant for classification and (ii) reducing the complexity of
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distance evaluation from dx operations to r operations. The performances are
here measured with the Hamming Loss (HL) which is a global reconstruction
error widely used in the multi-label context. The minimization problem over the
objective Θ(P ) is then defined by:

min
P∈Rdx×r

Θ(P ) = min
P∈Rdx×r

NL∑
i=1

HL(yi, ŷi = ML-kNN(LP , xi)) (1)

where ML-kNN(LP , xi) denotes the prediction for xi of ML-kNN applied in
the P -projected training set.

As the variation of ML-kNN(LP , xi) in function of P is hard to express,
standard optimization approaches are impracticable and we resort to a Reduced
Variable Neighorhood Search (RVNS) heuristic [17] to compute a solution to the
problem (1). Our implementation of the RVNS changes the projection parameter
P iteratively and randomly and selects the changes which improve the objective
Θ. More precisely, the different steps of the algorithm are the following:

1. Initialize P with a random projection drawn from a zero-mean, unit-variance
Gaussian distribution.

2. Make a slight modification of the solution P into a new solution P ′ using a
speed matrix ∆P : P ′ = P +∆P .

3. Evaluate the loss Θ(P ′) of the new parameter P ′.

4. If Θ(P ′) is lower than Θ(P ), then consider P ′ as the new current solution;
otherwise keep P .

5. If the new solution is P ′, repeat the steps 2., 3. and 4 with the same speed
matrix ∆P ; otherwise, repeat these steps with a new sparse speed matrix
(The speed matrix is chosen to be sparse so that only a few parameters are
changed at each RVNS iteration) generated with the following process:
Randomly select a mutation rate α in [0, 1]. Then, for each term of the matrix
∆P , run a coin toss with a probability of α. If the result is negative, the
term is set to 0; otherwise, the term is randomly generated from a zero-mean
Gaussian distribution.

The process stops after a fixed number of iterations or a maximum com-
putation time. Let us remark that the conditions of the Johnson-Lindenstrauss
lemma are not valid here: by selecting specific modifications, the ML-ARP al-
gorithm produces a final solution P which is no longer a random projection.
Consequently, the initial distances in the original space X are not preserved;
they are modified in order to improve the ML-kNN performances.

Let us remark that a non linear reducing mapping could also be a candidate.
However, without any further information on the search spaces, we have here
favoured the simplest choice of a linear mapping. The non linearity is indirectly
tackled by the combination of the mapping with the non linear classifier ML-
kNN.
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4 Experiments

We first describe the experimental protocol and then present the comparisons
obtained with six different approaches on twelve data sets of various sizes.

4.1 Experimental Settings

Datasets We have conducted our experimental comparisons on twelve real-world
datasets from various domains: music annotation (Emotions), image annota-
tion (Scene, Corel5k), video (Mediamill), text mining (Enron, Bibtex, Delicious,
Bookmarks, Reuters) and medical mining (Yeast). Their main statistical prop-
erties are described in Table 1 and we refer to Mulan [15] for details.

Table 1. Description of the twelve datasets: application domain, training set cardinal-
ity (NL), testing set cardinality (NT ), feature space dimensionality (dx), label space
dimensionality (dx), label space density (ry).

Domain # instances NL NT dx dy ry

Yeast genetic 2417 2173 244 103 14 0.3
Emotions audio 593 533 60 72 6 0.31
Mediamill video 43907 39516 4391 120 101 0.043
Scene images 2407 2166 241 294 6 0.18
Corel5k images 5000 4500 500 499 374 0.0094
Delicious text(tags) 16105 14495 1610 500 983 0.019
Enron text 1702 1531 171 1001 53 0.064
Genbase biology 662 595 67 1186 27 0.05
Medical health 978 880 98 1449 45 0.0027
Bibtex text 7395 6656 739 1836 159 0.015
Bookmarks text 87856 79070 8786 2150 208 0.0098
Reuters text 6000 5400 600 47229 101 0.026

Algorithms The new algorithm ML-ARP has been compared to four other di-
mensionality reduction approaches from the state-of-the-art (PCA [1], CCA [13],
MDDM [20], OPLS [12]) coupled to ML-kNN. We have added two other compar-
isons which play the role of yardsticks: one with a normalized random projection
(RP) drawn from a zero-mean, unit-variance Gaussian distribution and another
with the original ML-kNN classifier without dimensionality reduction. In our
experiments, the dimensionality r of the reduced feature space is of the same
order of magnitude as those classically used in the literature: 128 or 64 if the
dimensionality of the original feature space is smaller than 128. The higher the
reduced space dimensionality r, the more expressive the projection. Fixing the
same value for every method therefore allows an equal comparison. The chosen
baseline systematically predicts the labels frequencies computed on L, for any
x ∈ T . The real values of the frequency vector are binarized with a threshold



7

of 0.5. As we here restrict ourselves to the comparison of the different approach
performances, we have not explored the impact of the neighbor number. We
have followed the recommandation of [18] and fixed k = 5. As well as for the
smoothing parameter, changing k would mostly affect absolute performances.
The maximal computation time was fixed to two hours to meet our operational
constraints.

Quality evaluation To evaluate the performances of the algorithms on each
dataset, we have performed a 10-fold evaluation and computed the mean per-
formance and standard deviation of 11 different measures [19, 10, 14] evaluating
ranking performances, classification accuracies and global reconstruction errors:
Ranking Loss, One Error, Coverage, Jaccard Loss, Hamming Loss, Accuracy,
Recall, Precision, Subset Accuracy, Average Precision, F1-Score.

Further analysis with statistical tests on Hamming Loss have been carried out
to evaluate the significative differences and similarities between the algorithms.
Using the R scmamp package [5], we have applied the Friedman test with α = 0.1
(90% confidence) and completed it with the Nemenyi post-hoc test.

4.2 Results

The results obtained with the Hamming Loss for the different approaches are
summarized in Table 2. Firstly, they show that ML-ARP outperforms the other
dimensionality reduction approaches (MDDM, PCA, OPLS, CCA) for three
datasets (Yeast, Emotions, Delicious) and that it is very close to the best values
for the other datasets. Secondly, they suggest that ML-ARP is better than ML-
kNN, RP and the baseline but the statistical significance of the dominance is
only confirmed against the baseline by the Nemenyi test (Figure 1). Thirdly, the
performances of the original ML-kNN are always improved by at least one dimen-
sionality reduction approach. But, for some datasets, the independent dimen-
sionality reduction may lead to degraded results (e.g. MDDM for Emotions and
CCA for Scene). MDDM, CCA, OPLS, PCA are not applied on some datasets
(N/A values) either because their complexity (spatial and temporal) is too high
or because they require an inversion of a non invertible matrix.

1 2 3 4

CD

ML.ARP

ML.kNN

RP

Baseline

Fig. 1. Results of the Nemenyi test for ML-ARP, RP, ML-kNN and the baseline on all
the datasets.
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Table 2. Hamming Loss performances (with N/A for unavailable values)

ML-ARP Baseline ML-kNN RP MDDM PCA OPLS CCA

Yeast r = 64 0.191 0.232 0.195 0.202 0.227 0.194 0.203 0.204
Emotions r = 64 0.226 0.313 0.262 0.261 0.31 0.262 0.256 0.252
Scene r = 128 0.091 0.179 0.088 0.108 0.089 0.097 0.166 0.162
Enron r = 128 0.05 0.062 0.051 0.053 0.049 0.049 0.067 0.064
Genbase r = 128 0.047 0.047 0.047 0.047 0.047 0.047 0.047 N/A
Corel5k r = 128 0.009 0.009 0.009 0.009 0.009 0.009 0.009 N/A
Delicious r = 128 0.014 0.019 0.014 0.020 0.018 0.018 N/A N/A
Medical r = 128 0.017 0.028 0.015 0.018 0.013 0.015 N/A N/A
Bibtex r = 128 0.014 0.015 0.014 0.014 0.012 0.013 N/A N/A
Mediamill r = 64 0.027 0.035 0.027 0.028 N/A N/A 0.025 N/A
Bookmarks r = 128 0.008 0.009 0.008 0.008 N/A N/A N/A N/A
Rcv1 r = 4000 0.026 0.028 0.026 0.026 N/A N/A N/A N/A

Table 3. Ranks regarding all performance measures on four datasets (Emotions, Scene,
Enron and Yeast).

ML.ARP Baseline ML-kNN RP MDDM PCA OPLS CCA

Accuracy 2.00 8.00 3.25 4.75 4.00 3.00 6.5 4.5
Average Precision 2.00 7.75 3.375 5.00 4.25 2.875 6.125 4.625
Coverage 3.25 6.75 2.375 4.375 4.00 3.00 6.5 5.75
F1 2.5 8.00 3.00 5.25 4.00 2.625 6.125 4.5
Hamming Loss 2.00 7.5 3.375 4.5 4.375 3.25 5.75 5.25
Jaccard Loss 2.5 8.00 3.00 4.75 4.00 2.75 6.5 4.5
One Error 2.75 8.00 2.625 5.00 5.00 2.625 5.75 5.25
Precision 3.375 5.75 4.375 4.625 3.75 3.125 6.00 5.00
Ranking Loss 3.00 8.00 2.75 4.25 4.00 2.75 6.5 4.75
Recall 2.625 8.00 3.875 5.25 4.00 3.00 5.5 3.75
Subset Accuracy 2.00 8.00 3.25 4.25 4.00 3.5 6.00 5.00

Mean 2.55 7.52 3.2 4.73 4.13 2.95 6.11 4.81
Global rank 1.64 7.91 2.64 5.41 4.05 1.91 7.09 5.36

2 3 4 5 6 7 8

CD

ML.ARP
PCA

ML.kNN
MDDM

RP
CCA
OPLS
Baseline

Fig. 2. Results of the Nemenyi test for all the algorithms on four datasets (Yeast,
Emotions, Scene, Enron).
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Fig. 3. Evolution of Hamming loss training error for ML-ARP on Emotions (mean
curve for 10 runs)

For the four datasets where all the algorithms have been applied (Emotions,
Scene, Enron and Yeast) ML-ARP obtains the highest mean rank for a majority
of performance measures (Table 3). For the global reconstruction error mea-
sures (Hamming Loss, Jaccard Loss, Accuracy), it is always the best. For some
ranking sensitive measures (Coverage, One Error, Precision, Ranking Loss), it
is slightly surpassed by ML-kNN and PCA with very close performances but
the differences are not statistically significant (Figure 2). Moreover, if a closer
examination of the convergence time goes beyond the objective of this paper,
we have observed that, on average, ML-ARP optimization converges fast enough
after several hundreds of iterations (Figure 3).

5 Conclusions and Future Works

Whatever the dataset, it has been observed that there exists a reduced space for
which ML-kNN performances are improved or maintained. Thus, dimensionality
reduction approaches not only have the advantage of reducing the number of
features and speeding up the neighborhood search but also have the potential of
improving the ML-kNN classification. However, in practice, classical reduction
approaches have obtained poor performances for some datasets and have dete-
riorated the classification on average because their independent objective does
not guarantee an effective neighborhood for ML-kNN.

In contrast, ML-ARP presents two advantages. From a statistical point of
view, it is more stable than the other methods: as a wrapper designed to specif-
ically target the ML-kNN objective, it presents the most regular performances
and the best mean rank when facing a wide variety of problems. From a techno-
logical point of view, it is easily implementable, anytime and more scalable.

To accelerate the algorithm in the big data scenario we plan in the next
future to explore a sampling strategy (random, clustering, condension) and a
GPU implementation for the nearest neighbor search.
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