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In the setting of finite type invariants for null-homologous knots in rational homology 3-spheres with respect to null Lagrangian-preserving surgeries, there are two candidates to be universal invariants, defined respectively by Kricker and Lescop. In a previous paper, the second author defined maps between spaces of Jacobi diagrams. Injectivity for these maps would imply that Kricker and Lescop invariants are indeed universal invariants; this would prove in particular that these two invariants are equivalent. In the present paper, we investigate the injectivity status of these maps for degree 2 invariants, in the case of knots whose Blanchfield modules are direct sums of isomorphic Blanchfield modules of Q-dimension two. We prove that they are always injective except in one case, for which we determine explicitly the kernel.
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Introduction

The work presented here has its source in the notion of finite type invariants. This notion first appeared in independent works of Goussarov and Vassiliev involving invariants of knots in the 3-dimensional sphere S 3 ; in this case, finite type invariants are also called Vassiliev invariants. Finite type invariants of knots in S 3 are defined by their polynomial behaviour with respect to crossing changes. The discovery of the Kontsevich integral, which is a universal invariant among all finite type invariants of knots in S 3 , revealed that this class of invariants is very prolific. It is known, for instance, that it dominates all Witten-Reshetikhin-Turaev's quantum invariants. A theory of finite type invariants can be defined for any kind of topological objects provided that an elementary move on the set of these objects is fixed; the finite type invariants are defined by their polynomial behaviour with respect to this elementary move. For 3-dimensional manifolds, the notion of finite type invariants was introduced by Ohtsuki [START_REF] Ohtsuki | Finite type invariants of integral homology 3-spheres[END_REF], who constructed the first examples for integral homology 3-spheres, and it has been widely developed and generalized since then. In particular, Goussarov and Habiro independently developed a theory which involves any 3-dimensional manifolds-and their knots-and which contains the Ohtsuki theory for Z-spheres [START_REF] Garoufalidis | Calculus of clovers and finite type invariants of 3-manifolds[END_REF][START_REF] Habiro | Claspers and finite type invariants of links[END_REF]. In this case, the elementary move is the so-called Borromean surgery.

Garoufalidis and Rozansky introduced in [GR04] a theory of finite type invariants for knots in integral homology 3-spheres with respect to null-moves, which are Borromean surgeries satisfying a homological condition with respect to the knot. This theory was adapted to the "rational homology setting" by Lescop [Les13] who defined a theory of finite type invariants for nullhomologous knots in rational homology 3-spheres with respect to null Lagrangian-preserving surgeries. In these theories, the degree 0 and 1 invariants are well understood and, up to them, there are two candidates to be universal finite type invariants, namely the Kricker rational lift of the Kontsevich integral [START_REF] Kricker | The lines of the Kontsevich integral and Rozansky's rationality conjecture[END_REF][START_REF] Garoufalidis | A rational noncommutative invariant of boundary links[END_REF] and the Lescop equivariant invariant built from integrals over configuration spaces [START_REF] Lescop | Invariants of knots and 3-manifolds derived from the equivariant linking pairing[END_REF]. Both of them are known to be universal finite type invariants in two situations yet: for knots in integral homology 3-spheres with trivial Alexander polynomial, with respect to null-moves [START_REF] Garoufalidis | The loop expansion of the Kontsevich integral, the null-move and S-equivalence[END_REF], and for null-homologous knots in rational homology 3-spheres with trivial Alexander polynomial, with respect to null Lagrangian-preserving surgeries [START_REF]Finite type invariants of knots in homology 3-spheres with respect to null LPsurgeries[END_REF]. In particular, the Kricker invariant and the Lescop invariant are equivalent for such knots-in the sense that they separate the same pairs of knots. Lescop conjectured in [START_REF]A universal equivariant finite type knot invariant defined from configuration space integrals[END_REF] that this equivalence holds in general.

Universal finite type invariants are known in other settings: the Kontsevich integral for links in S 3 [START_REF] Bar-Natan | On the Vassiliev knot invariants[END_REF], the Le-Murakami-Ohtsuki invariant and the Kontsevich-Kuperberg-Thurston invariant for integral homology 3-spheres [START_REF] Le | An invariant of integral homology 3-spheres which is universal for all finite type invariants[END_REF] and for rational homology 3-spheres [START_REF] Moussard | Finite type invariants of rational homology 3-spheres[END_REF]. To establish universality of these invariants, the general idea is to give a combinatorial description of the graded space associated with the theory by identifying it with a graded space of diagrams. Such a project is developed in [START_REF]Finite type invariants of knots in homology 3-spheres with respect to null LPsurgeries[END_REF] to study the universality of the Kricker and the Lescop invariants as finite type invariants of QSK-pairs, which are pairs made of a rational homology 3-sphere and a null-homologous knot in it.

Null Lagrangian-preserving surgeries preserve the Blanchfield module (defined over Q), so one can reduce the study of finite type invariants of QSK-pairs to the set of QSK-pairs with a fixed Blanchfield module. In order to describe the graded space G(A, b) associated with finite type invariants of QSK-pairs with Blanchfield module (A, b), a graded space of diagrams A aug (A, b) is constructed in [START_REF]Finite type invariants of knots in homology 3-spheres with respect to null LPsurgeries[END_REF], together with a surjective map ϕ : A n (δ)

A aug (A, b) → G(A,
A n (A, b) ϕ n ψ n Z n .
Note that the injectivity of ψ n implies the injectivity of ϕ n . When (A, b) is a direct sum of N isomorphic Blanchfield modules, it has been established in [START_REF]Finite type invariants of knots in homology 3-spheres with respect to null LPsurgeries[END_REF] that ψ n is an isomorphism when n ≤ 2 3 N . In particular, this applies for any n ∈ N when (A, b) is the trivial Blanchfield module.

In this paper, we look into the case n = 2 when (A, b) is a direct sum of N isomorphic Blanchfield modules of Q-dimension two. According to the above-mentioned result, the map ψ 2 is then injective as soon as N ≥ 3. The only remaining cases are hence N = 1 and N = 2. We prove the following (Propositions 4.7, 4.10 and 5.3):

Theorem 1.1. If (A, b) is a Blanchfield module of Q-dimension two, with annihilator δ, then: 1. the map ψ 2 : A 2 (A, b) → A 2 (δ) is injective but not surjective; 2. the map ψ 2 : A 2 (A ⊕ A, b ⊕ b) → A 2 (δ) is injective if and only if δ = t + 1 + t -1 ; in this case, it is an isomorphism.
It follows that, in degree 2, Kricker and Lescop invariants are indeed universal and equivalent for QSK-pairs with a Blanchfield module which is either of Q-dimension two or a direct sum 2 Definitions and strategy

Definitions

Blanchfield modules. A Blanchfield module is a pair (A, b) such that:

(i) A is a finitely generated torsion Q[t ±1 ]-module; (ii) multiplication by (1 -t) defines an isomorphism of A; (iii) b : A × A → Q(t) Q[t ±1 ] is a non-degenerate hermitian form, i.e. b(η, γ)(t) = b(γ, η)(t -1 ), b(P (t)γ, η) = P (t)b(γ, η), and if b(γ, η) = 0 for all η ∈ A, then γ = 0. Since Q[t ±1
] is a principal ideal domain, there is a well-defined (up to multiplication by an invertible element of

Q[t ±1 ]) annihilator δ ∈ Q[t ±1 ] for A. Condition (ii) implies that δ(1) = 0 and Condition (iii) that δ is symmetric, i.e. δ(t -1 ) = υ(t)δ(t) with υ(t) invertible in Q[t ±1 ]; see [Mou12b, Section 3.2] for more details. Moreover, it follows from b being hermitian that b(γ, η) ∈ 1 P Q[t ±1
] if γ has order P . In this paper, we focus on Blanchfield modules of Q-dimension 2. In this case, either A is cyclic, or it is a direct sum of two Q[t ±1 ]-modules with the same order. In this latter case, it follows from δ being symmetric and δ(1) = 0 that δ(t) = t + 1. given with:

• an orientation for each trivalent vertex, that is a cyclic order of the three half-edges that meet at this vertex;

• an orientation and a label in Q[t ±1 ] for each edge;

• a label in A for each univalent vertex;

• a rational fraction f D vv (t) ∈ 1 δ Q[t ±1 ] for each pair (v, v ) of distinct univalent vertices of D, satisfying f D v v (t) = f D vv (t -1 ) and f D vv (t) mod Q[t ±1 ] = b(γ v , γ v )
, where γ v and γ v are the labels of v and v respectively.

In the pictures, the orientation of trivalent vertices is given by . When it does not seem to cause confusion, we write f vv for f D vv . We also call legs the univalent vertices. 

δ Q[t ±1 ].
The degree of a δ-colored diagram is the number of its vertices. For every integer n ≥ 0, set: 

A n (δ) = Q δ-colored diagrams of degree n Q AS,
= - 1 = 1 - 1 AS IHX xP + yQ = x P + y Q P (t) = P (t -1 ) P Q R = tP tQ tR LE OR Hol D • xγ 1 + yγ 2 v = x D 1 • γ 1 v + y D 2 • γ 2 v • v γ P Q D = • v Qγ P D xf D 1 vv + yf D 2 vv = f D vv , ∀v = v f D vv = Qf D vv , ∀v = v LV EV 1 • v 1 γ 1 1 • v 2 γ 2 D = 1 • v 1 γ 1 1 • v 2 γ 2 D + P D f D v 1 v 2 = f D v 1 v 2 + P LD Figure 2: Relations on colored diagrams In these pictures, x, y ∈ Q, P, Q, R ∈ Q[t ±1 ] and γ, γ1, γ2 ∈ A. g f = g tf Figure 3: Relation Hol In this picture, f, g ∈ 1 δ Q[t ±1 ]. • • v v P Q ; P (t)Q(t -1 )f vv (t)
Figure 4: Pairing of two vertices every pair v, p(v) of associated legs-and their adjacent edges-by a colored edge as indicated in Figure 4. Now set:

ψ n (D) = p∈p D p ,
where p is the set of pairings of V . Note that, if D has an odd number of legs, then p is empty and ψ n (D) = 0. One can easily check that it descends into a well-defined Q-linear map

ψ n : A n (A, b) → A n (δ).

Strategy

Getting rid of A n (δ). The map ψ n involves two diagram spaces defined by different kind of diagrams, namely (A, b)-colored diagrams and δ-colored diagrams. The following result will allow us to work with (A, b)-colored diagrams only.

Theorem 2.1 ([Mou17, Theorem 2.11]). Let n and N be non negative integers such that N ≥ 3n 2 . Fix a Blanchfield module (A, b) with annihilator δ and define the Blanchfield module (A, b) ⊕N as the direct sum of N copies of (A, b). Then δ is also the annihilator of (A, b) ⊕N and the map

ψ n : A n (A, b) ⊕N → A n (δ) is an isomorphism.
This result provides a rewritting of the map ψ n in the general case. There is indeed a natural map ι n : A n (A, b) → A n (A, b) ⊕N defined on each diagram by interpreting the labels of its legs as elements of the first copy of (A, b) in (A, b) ⊕N , which makes the following diagram commute:

A n (A, b) ⊕N A n (δ) A n (A, b) ι n ψ n ψ n ∼ = .
In particular, the injectivity of ψ n is equivalent to the injectivity of ι n , what does not involve

A n (δ) anymore. When n = 2, for every N ≥ 3, we have more generally:

A 2 (A, b) A 2 (A, b) ⊕2 A 2 (A, b) ⊕N ι 2 2 ι 1 2 ∼ = ψ 1 2 ψ 2 2 A 2 (δ)
.

We focus on determining whether the maps ι 1 2 and ι 2 2 are injective or not. For that, it is sufficient to consider the case N = 3.

Filtration by the number of legs. The second point in our strategy is to consider the filtration induced by the number of legs. For k = 0, . . . , 3n, let A 

A (k) n (A, b) = Q k ≤ -legs diagrams of degree n Q AS, IHX, LE, OR, Hol, LV, EV, LD, Aut .
Recall that all these diagram spaces are trivial when n is odd. Moreover, in a uni-trivalent graph, the numbers of univalent and trivalent vertices have the same parity, thus

A (2k+1) 2n (A, b) = A (2k) 2n (A, b) and A (2k+1) 2n (A, b) ∼ = A (2k) 2n (A, b). Obviously, A (3n) n (A, b) = A n (A, b) = A (3n) n (A, b).
However, a subtlety of the structure of the spaces A n (A, b) is that the natural surjection

A (k) n (A, b) A (k) n (A, b)
is not, in general, an isomorphism. A counterexample is given in Proposition 4.1 (5.ii.), which underlies the case where ι 2 2 is not injective.

Reduction of the presentations. To study the injectivity status of the map ι 2 , we first study the structure of the space

A 2 (A, b) ⊕3 to determine if A (k) 2 (A, b) ⊕3 is isomorphic to A (k) 2 (A, b) ⊕3 for k = 2, 4.
If we have such isomorphisms, then Corollary 3.6 states that the map ι n is injective. Otherwise, we have to perform a similar study of the structure of A 2 (A, b).

To understand the structures of these diagram spaces, the strategy is to simplify the given presentations by restricting simultaneously the set of generators and the set of relations. This reduction process is initialized in Section 3.2 for a general Blanchfield module and pursued in the next sections for each specific case.

Preliminary results

Distributed diagrams

We define notations that we will use throughout the rest of the paper. Let (A, b) be a Blanchfield module with annihilator δ. For a positive integer

N , set (A, b) ⊕N = N i=1 (A i , b i ), where each (A i , b i ) is an isomorphic copy of (A, b), given with a fixed isomorphism ξ i : A → A i that respects the Blanchfield pairing. Define the permutation automorphisms ξ ij of (A, b) ⊕N as ξ j • ξ -1 i on A i , ξ i • ξ -1 j
on A j and identity on the other A 's. Define Aut ξ as the restriction of the Aut relation to these permutation automorphisms. Also denote by Aut t and Aut -1 the restrictions of the Aut relation to the automorphisms that are the multiplication by t and -1 respectively on one A i and identity on the other A j 's. If (A, b) is cyclic, then define Aut res as the union of Aut ξ , Aut t and Aut -1 . Otherwise, define Aut res as the Aut relation restricted to permutation automorphisms and to automorphisms fixing one A i setwise and the others pointwise.

Finally, for ≥ 0, we say that an (A, b) ⊕ -colored diagram D is distributed if there is a partition of the legs of D into a disjoint union of pairs i∈I {v i , w i } and an injective map σ : I → {1, . . . , } such that the legs v i and w i are labelled in A σ(i) and the linking between vertices in different pairs is trivial.

Proposition 3.1 ([Mou17, Propositions 7.12 & 7.13]). For all non negative integers n, k and such that ≥ k 2 :

A (k) n (A, b) ⊕ ∼ = Q distributed k ≤ -legs diagrams of degree n Q AS, IHX, LE, OR, Hol, LV, EV, LD, Aut res .
In particular, for all integers N ≥ 3n 2 : For positive integers 1 ≤ 2 , let ι n :

A n (A, b) ⊕N ∼ = Q distributed (A, b) ⊕N -colored diagrams of degree n Q AS,
A (k) n (A, b) ⊕ 1 → A (k) n
(A, b) ⊕ 2 be the natural map defined on each diagram by interpreting the labels of its legs as elements of the first 1 copies of (A, b) in (A, b) ⊕ 2 . Corollary 3.2. For all non negative integers n, k, 1 and 2 such that 1 , 2 ≥ k 2 , the map

ι n : A (k) n (A, b) ⊕ 1 → A (k) n (A, b) ⊕ 2 is an isomorphism.
Proof. A distributed k ≤ -legs diagram involves at most 2k copies of A; up to Aut ξ , we can assume that these are copies whithin the first 1 ones. Conclude with Proposition 3.1.

The next lemma will be useful in particular to restrict the study of the map ι 2 to suitable quotients.

Corollary 3.3. Let n, N , k and be non negative integers such that N ≥ 3n 2 and k 2 ≤ ≤ N . If A (k) n (A, b) ⊕N ∼ = A (k) n (A, b) ⊕N , then the map A (k) n (A, b) ⊕ → A (k) n (A, b) ⊕N induced by ι n is an isomorphism. Proof. By Corollary 3.2, the map ι n : A (k) n (A, b) ⊕ → A (k) n (A, b) ⊕N is an isomorphism. A (2k) n (A, b) ⊕N is injective.
In both cases, we get the following commutative diagram:

A (2k) n (A, b) ⊕ A (2k) n (A, b) ⊕ A (2k) n (A, b) ⊕ A (2k) n (A, b) ⊕N ,
which concludes the proof.

First reduction of the presentations

Getting rid of lollipops. We start with a lemma on 0-labelled vertices.

Lemma 3.7. If D is an (A, b)-colored diagram with a 0-labelled vertex v, then D = v vertex of D v =v D vv ,
where D vv is obtained from D by pairing v and v as in Figure 4.

Proof. Since the vertex v is labelled by 0, the linking f vv is a polynomial for any vertex v = v. The conclusion follows using the relations LD and LV. Now, the following lemma reduces the set of generators.

Lemma 3.8. The general presentation of A n (A, b) and the presentations of A 

D = Q(t) • η P (t) D .
Writing δ = q k=p a k t k , we have:

D = 1 δ(1) q k=p a k      t k Q(t) • η P (t) D      = 1 δ(1)      Q(t) • δ(t)η P (t) D      = 1 δ(1)      Q(t) • 0 P (t) D     
, where the first equality holds since each diagram in the sum is equal to D by Hol and the second equality follows from EV and LV. Then, using Lemma 3.7, D can be written as a sum of diagrams with less legs. Check that all the relations involving D can be recovered from relations on diagrams with less legs. Conclude by decreasing induction on the number of legs.

Finally, we state a corollary of Lemma 3.7 which will be useful later.

Corollary 3.9. Let D be an (A, b)-colored diagram and let v be a univalent vertex of D. If the annihilator of A is δ = t + a + t -1 , then

D + = -aD -D -+ v vertex of D v =v D vv ,
where D + and D -are obtained from D by multiplying the label of v and the linkings f vv by t and t -1 respectively, and D vv is obtained from D by pairing v and v as in Figure 4.

Taming 6 and 4-legs generators. We now give two lemmas that initialize the reduction process announced in Section 2.2. For that, define YY-diagrams similarly as (A, b)-colored diagrams with underlying graph

• • • • • •
, except that edges are neither oriented nor labelled.

Thanks to OR, those can be thought of as honest (A, b)-colored diagrams with edges labelled by 1 and oriented arbitrarily. Define also Hol as the relations given in Figure 5; note that Hol is easily deduced from Hol and EV.

• • as generators: H-diagrams and all 2 ≤ -legs diagrams;

η 1 v 1 • η 2 v 2 • η 3 v 3 D • η 4 w 1 • η 5 w 2 • η 6 w 3 = • tη 1 v 1 • tη 2 v 2 • tη 3 v 3 D • η 4 w 1 • η 5 w 2 • η 6 w 3 f D v i w j = tf D v i w j
• as relations: AS, IHX, LV, LD and Aut on all generators and LE, Hol, OR and EV on 2 ≤ -legs generators.

The space A and then proceed as in the previous lemma. Here, the relation Hol is also needed to remove the power of t from the central edge and the obtained decomposition is not anymore canonical. However, two possible decompositions are related by the relation of Aut associated with the automorphism that multiplies the whole Blanchfield module by t.

Taming leg labels. Now, we want to go further in the reduction of the presentations. Fix a In general, if a family of generators is given for the group Aut(A, b), then the Aut relations, as well as the Aut ω relations, can be restricted to the set of relations provided by the automorphisms of this generating family.

Q-basis ω of A. For all γ, η ∈ ω, fix f (γ, η) ∈ Q(t) such that b(γ, η) = f (γ, η) mod Q[t ±1 ]. For ≥ 1, identify (A, b) ⊕ with ⊕ 1≤i≤ (A i , b i )
Lemma 3.12. The space A 2 (A, b) admits the presentation with:

• as generators: ω-admissible YY-diagrams and all 4 ≤ -legs diagrams;

• as relations: AS, Aut For the last assertion, note that the relation Aut ξ never identify an admissible diagram with a non-admissible one and that the relation Aut -1 on admissible distributed diagrams only induces trivial relations.

For the reduction of the 4-legs generators, we focus on the (A, b) ⊕3 case and we introduce a more restrictive notion of admissible diagrams. An ω-admissible H-diagram is strongly ωadmissible, or simply strongly admissible when there is no ambiguity on ω, if its legs are colored in A 1 and A 2 and if two legs adjacent to a same trivalent vertex are labelled in different A i 's.

Lemma 3.13. The space A (4) 2 (A, b) ⊕3 admits the presentation with:

• as generators: strongly ω-admissible H-diagrams and all 2 ≤ -legs diagrams;

• as relations: AS and Aut ω res on 4-legs generators and AS, IHX, LE, Hol, OR, LV, LD, EV and Aut on 2 ≤ -legs generators.

If A is cyclic, Aut ω res can be replaced by the union of Aut ξ and Aut ω t .

Proof. Via at most one Aut ξ relation, any ω-admissible H-diagram is equal to an ω-admissible H-diagram whose legs are labelled by A 1 and A 2 . Moreover, if γ 1 , η 1 ∈ A 1 and γ 2 , η 2 ∈ A 2 , then the IHX relation gives:

• γ 1 • η 1 • γ 2 • η 2 = • γ 1 • γ 2 • η 1 • η 2 - • γ 1 • η 2 • η 1 • γ 2 .
It follows that any H-diagram has a canonical decomposition in terms of strongly ω-admissible H-diagrams. Proceed then as in the proof of Lemma 3.12.

A set For the last assertion, it is sufficient to notice that an AS relation makes either two generators to be equal, or a generator to be trivial, and that an Aut ξ relation always identifies two generators.

E of ω-admissible YY-diagrams (resp. H-diagrams) is essential if any ω-admissible YY-diagram (resp. H-diagram) which is not in E is

Case when A is of Q-dimension two and cyclic

In this section, we assume that A is a cyclic Blanchfield module of Q-dimension two. Let δ = t + a + t -1 be its annihilator; note that a = -2. Let γ be a generator of A. Since the pairing b is hermitian and non degenerate, we can set b(γ, γ) = r δ mod Q[t ±1 ] with r ∈ Q * . Throughout this section, we fix the basis ω to be {γ, tγ} and we set f (t

ε 1 γ, t ε 2 γ) = t ε 1 -ε 2 r
δ , where ε 1 , ε 2 ∈ {0, 1}. Accordingly, set γ i = ξ i (γ) for i = 1, 2, 3. Proof. Thanks to Lemmas 3.12 and 3.14, we only have to check that the relations Hol and Aut t applied to the admissible diagrams of Figures 7 and8 give exactly the new six relations. We begin with the first family. Applying the Aut t relation on A 2 to D 1 , we obtain:

D 1 := • γ 1 • γ 2 • tγ 2 • γ 1 • γ 3 • tγ 3 = • tγ 1 • γ 2 • tγ 2 • tγ 1 • γ 3 • tγ 3 D 2 := • γ 1 • γ 2 • tγ 2 • tγ 1 • γ 3 • tγ 3
G := • γ 1 • γ 2 • γ 3 • γ 1 • γ 2 • γ 3 = • γ 1 • γ 2 • tγ 3 • γ 1 • γ 2 • tγ 3 = • γ 1 • γ 2 • γ 3 • tγ 1 • tγ 2 • tγ 3 = • γ 1 • tγ 2 • tγ 3 • γ 1 • tγ 2 • tγ 3 = • tγ 1 • tγ 2 • tγ 3 • tγ 1 • tγ 2 • tγ 3 G := • γ 1 • γ 2 • γ 3 • γ 1 • γ 2 • tγ 3 = • γ 1 • γ 2 • γ 3 • γ 1 • tγ 2 • tγ 3 = • γ 1 • γ 2 • tγ 3 • γ 1 • tγ 2 • tγ 3 = • γ 1 • γ 2 • tγ 3 • tγ 1 • tγ 2 • tγ 3 = • γ 1 • tγ 2 • tγ 3 • tγ 1 • tγ 2 • tγ 3 G := • γ 1 • γ 2 • tγ 3 • γ 1 • tγ 2 • γ 3 = • γ 1 • tγ 2 • tγ 3 • tγ 1 • γ 2 • tγ 3 G := • γ 1 • γ 2 • tγ 3 • tγ 1 • tγ 2 • γ 3
H 1 := • γ 1 • γ 2 • γ 1 • γ 2 = • γ 1 • tγ 2 • γ 1 • tγ 2 = • tγ 1 • tγ 2 • tγ 1 • tγ 2 H 2 := • γ 1 • γ 2 • γ 1 • tγ 2 = • γ 1 • tγ 2 • tγ 1 • tγ 2 H 3 := • γ 1 • γ 2 • tγ 1 • tγ 2 H 4 := • γ 1 • tγ 2 • tγ 1 • γ 2
• γ 1 • γ 2 • tγ 2 • γ 1 • γ 3 • tγ 3 = • γ 1 • tγ 2 • t 2 γ 2 • γ 1 • γ 3 • tγ 3
.

By Corollary 3.9, we have:

• γ 1 • tγ 2 • t 2 γ 2 • γ 1 • γ 3 • tγ 3 = -a • γ 1 • tγ 2 • tγ 2 • γ 1 • γ 3 • tγ 3 - • γ 1 • tγ 2 • γ 2 • γ 1 • γ 3 • tγ 3 + r • γ 1 • γ 1 • γ 3 • tγ 3 .
In this equality, the second and fourth diagrams are trivial by AS and we get D 1 = D 1 . Application of Aut t on A 3 to D 1 is similar and gives the same result. Now, applying the Hol relation to D 1 , we obtain:

• γ 1 • γ 2 • tγ 2 • γ 1 • γ 3 • tγ 3 = • tγ 1 • tγ 2 • t 2 γ 2 • γ 1 • γ 3 • tγ 3
.

Developing as previously, we get D 1 = D 2 . One can check that applying Hol and Aut t to the second form of D 1 does not give any additional relation. We now have to apply the same relations to D 2 . Applying Aut t on A 1 to D 2 gives:

• γ 1 • γ 2 • tγ 2 • tγ 1 • γ 3 • tγ 3 = • tγ 1 • γ 2 • tγ 2 • t 2 γ 1 • γ 3 • tγ 3
.

Once again we use Corollary 3.9 to get:

• tγ 1 • γ 2 • tγ 2 • t 2 γ 1 • γ 3 • tγ 3 = -a • tγ 1 • γ 2 • tγ 2 • tγ 1 • γ 3 • tγ 3 - • tγ 1 • γ 2 • tγ 2 • γ 1 • γ 3 • tγ 3 +r • γ 2 • tγ 2 • γ 3 • tγ 3
, and finally:

D 1 = r a + 2 • γ 2 • tγ 2 • γ 3 • tγ 3 .
One can check that applying the other Aut t or the Hol relations to D 2 does not give any additional relation. We turn to the second family of 6-legs generators. Applying Aut t on A 3 to G 2 gives:

• γ 1 • γ 2 • γ 3 • γ 1 • γ 2 • tγ 3 = • γ 1 • γ 2 • tγ 3 • γ 1 • γ 2 • t 2 γ 3 ,
and by Corollary 3.9, we have:

• γ 1 • γ 2 • tγ 3 • γ 1 • γ 2 • t 2 γ 3 = -a • γ 1 • γ 2 • tγ 3 • γ 1 • γ 2 • tγ 3 - • γ 1 • γ 2 • tγ 3 • γ 1 • γ 2 • γ 3 + r • γ 1 • γ 2 • γ 1 • γ 2 ,
so we get the relation:

aG 1 + 2G 2 = r • γ 1 • γ 2 • γ 1 • γ 2 .
Application of Hol gives:

• γ 1 • γ 2 • tγ 3 • γ 1 • γ 2 • tγ 3 = • γ 1 • γ 2 • tγ 3 • tγ 1 • tγ 2 • t 2 γ 3
, which, developed with Corollary 3.9, gives:

G 1 + aG 2 + G 4 = r • γ 1 • γ 2 • tγ 1 • tγ 2 .
By Aut t on A 1 and A 2 respectively, we get:

• γ 1 • γ 2 • tγ 3 • tγ 1 • tγ 2 • γ 3 = • tγ 1 • γ 2 • tγ 3 • t 2 γ 1 • tγ 2 • γ 3 20 and • γ 1 • γ 2 • tγ 3 • γ 1 • tγ 2 • γ 3 = • γ 1 • tγ 2 • tγ 3 • γ 1 • t 2 γ 2 • γ 3
, which, using Corollary 3.9, provides respectively:

aG 3 + 2G 4 = r • γ 1 • tγ 2 • tγ 1 • γ 2 and (a + 1)G 2 + G 3 = r • tγ 1 • γ 2 • γ 1 • γ 2 .
Applying IHX, AS and Aut t relations, it can be reformulated into:

ι 1 2 (G) = • γ 1 • γ 2 • γ 1 • γ 2 + • γ 1 • γ 2 • tγ 1 • tγ 2 -2 • γ 1 • tγ 2 • tγ 1 • γ 2 .
Using Relation (R 6 ) and the relations of Lemma 4.4, we finally obtain:

ι 1 2 (G) = 1 2 (1 -a)(a + 2) 2 G 1 + 1 2 (a + 1)(a + 2)H 1 ,
up to 2 ≤ -legs diagrams. It follows by the second point of Proposition 4.1 that ι 1 2 is injective but not surjective.

We now deal with the map ι 2 2 . For that, we have to study the structure of A 2 (A, b) ⊕2 . The next lemma describes the elements of Aut (A, b) ⊕2 for a cyclic Blanchfield module (A, b) with irreducible annihilator. For P ∈ Q[t ±1 ], set P (t) = P (t -1 ).

Lemma 4.8. If δ is irreducible in Q[t ±1 ], then the group Aut (A, b) ⊕2 is generated by the automorphisms

χ P : γ 1 → P γ 1 γ 2 → γ 2 for P ∈ Q[t ±1
] such that P P = 1 mod δ and λ P,Q :

γ 1 → P γ 1 + Qγ 2 γ 2 → Qγ 1 -P γ 2 for P, Q ∈ Q[t ±1 ] such that P P + Q Q = 1 mod δ.
Proof. In the whole proof, polynomials are considered in Q[t ±1 ] (δ) . For P ∈ Q[t ±1 ] such that P P = 1, define

χ P : γ 1 → γ 1 γ 2 → P γ 2 ,
and note that χ P = λ 0,1

• χ P • λ 0,1 . Let ζ ∈ Aut (A, b) ⊕2 and write ζ : γ 1 → P γ 1 + Qγ 2 γ 2 → Rγ 1 + Sγ 2 .
Since ζ must preserve b, we have

P P + Q Q = 1, R R + S S = 1 and P R + Q S = 0. If Q = 0, then P R = 0, so that R = 0 and ζ = χ P • χ S . If Q = 0, then S = -Q-1 P R, so that 1 = R R + S S = R R(Q Q) -1 (Q Q + P P ) = R R(Q Q) -1 . Finally Q-1 R Q-1 R = 1 and ζ = λ P,Q • χ Q-1 R .
We denote by Aut χ and Aut λ the subfamilies of Aut relations obtained by the action of the automorphisms χ P and λ P,Q respectively. 

Γ 1 = • γ 1 • γ 2 • tγ 2 • γ 1 • γ 2 • tγ 2 Γ 2 = • γ 1 • γ 2 • tγ 2 • tγ 1 • γ 2 • tγ 2 Γ 3 = • tγ 1 • γ 2 • tγ 2 • tγ 1 • γ 2 • tγ 2
1. A (2) 2 (A, b) ⊕3 ∼ = A (2) 2 (A, b) ⊕3 ; 2. A 2 (A, b) ⊕3 = A (4) 2 (A, b) ⊕3 ∼ = A (4) 2 (A, b) ⊕3 ; 3. A 2 (A, b) ⊕3 A (2) 2 (A, b) ⊕3 is freely generated by the admissible H-diagram • γ 1 • γ 2 • η 1 • η 2 .
Proof. We start with the presentation given by Lemma 3.12 to deal with 6-legs generators. Let t+1 . Hence we can remove from the generators the admissible YY-diagrams with a common label on two distinct legs without adding any relation. Then, using Lemma 3.14, it is easily seen that one can restrict the 6-legs generators to the admissible YY-diagrams:

Y 1 = • γ 1 • γ 2 • η 2 • η 1 • γ 3 • η 3 and Y 2 = • γ 1 • γ 2 • γ 3 • η 1 • η 2 • η 3
.

On these generators, Aut µ and Aut ξ act trivially, so we are left with checking the relations coming from Hol and Aut ν relations. Applications of Aut ν on A 1 and Hol to Y 1 both give

2Y 1 = • γ 2 • η 2 • γ 3 • η 3 ,
and applications of Aut ν on A 2 and A 3 give trivial relations. On Y 2 , the only relations that do act non trivially are Hol and Aut ν applied simultaneously on the three A i ; both give:

2Y 2 = 3 • γ 1 • γ 2 • η 1 • η 2 + • γ 1 • η 1 + .
Finally, we can remove all 6-legs generators without adding any relation. This proves the second assertion.

We turn to the study of the 4-legs generators. Thanks to Lemmas 3.13 and 3.14 and removing as previously generators with a common label on two distinct legs, we are led to the diagrams:

X 1 = • γ 1 • γ 2 • η 1 • η 2 and X 2 = • γ 1 • η 2 • η 1 • γ 2
on which we have to check the effect of the Aut ν relations. Applying Aut ν on A 1 or A 2 to X 1 or X 2 always gives:

X 1 + X 2 = - • γ 1 • η 1 .
Since no more relation arises from the 4-legs generators, this proves the first and third assertions.

Proposition 5.3. Let (A, b) be a non cyclic Blanchfield module of Q-dimension two. Then the maps ι1 

2 : A 2 (A, b) → A 2 (A, b) ⊕3 and ι 2 2 : A 2 (A, b) ⊕2 → A 2 (A, b) ⊕3 are injective. Moreover, ι 2 2 is surjective, while ι 1 2 is not. Proof. It is easily seen that A 2 (A,

A Programs

Let (A, b) be a cyclic Blanchfield module with annihilator δ = t + 1 + t -1 . Let γ be a generator of A. As recalled at the beginning of Section 4.1, b(γ, γ) = r δ mod Q[t ±1 ] with r ∈ Q * . We set γ i = ξ i (γ) for i = 1, 2. A Q-basis of A ⊕2 is given by the t ε γ i with ε = 0, 1 and i = 1, 2.

This appendix aims at determining the relations induced on A 2 (A, b) ⊕2 A

(2) 2

(A, b) ⊕2 by applying the Aut λ relations to the diagrams Γ i of Figure 10. Set λ a,b,c,d :

γ 1 → (at + b)γ 1 + (ct + d)γ 2 γ 2 → (ct -1 + d)γ 1 -(at -1 + b)γ 2 for a, b, c, d ∈ Q such that a 2 + b 2 + c 2 + d 2 = 1 + ab + cd.
We wrote three programs in OCaml 1 which compute the reductions of λ a,b,c,d .Γ 1 , λ a,b,c,d .Γ 2 and λ a,b,c,d .Γ 3 . Here, a, b, c and d are considered as parameters and all the computations are made in

Q a,b,c,d := Q[a, b, c, d] a 2 + b 2 + c 2 + d 2 -ab -cd -1 . Note that every element in Q a,b,c,d has a unique representative in Q[a, b, c, d] that involves no a k with k ≥ 2.
A.1 Implementation of the variables Check if e i = 1 for i ∈ {2, 3, 5, 6} (that is if the two A 1 -labelled legs are not both at the top), if so then send reduc6 (k 1 , e 1 ), (k 2 , e 2 ), (k 3 , e 3 ), (k 4 , e 4 ), (k 5 , e 5 ), (k 6 , e 6 ) where (k 1 , e 1 ), (k 2 , e 2 ), (k 3 , e 3 ) and (k 4 , e 4 ), (k 5 , e 5 ), (k 6 , e 6 ) are respectively the cyclic permutations of (k 1 , e 1 ), (k 2 , e 2 ), (k 3 , e 3 ) and (k 4 , e 4 ), (k 5 , e 5 ), (k 6 , e 6 ) such that e 1 = e 4 = 1. -→ At this point, the two legs at the top are A 1 -labelled and the four other are A 2 -labelled, with, on each connected component of Γ, one occurence of γ 2 and one occurence of tγ 2 .

Elements of Q a,b,c,d are implemented as lists of vectors (α, k a , k b , k c , k d ) ∈ Q × {0, 1} × N 3 ⊂ Q × N 4 , corresponding to the sum of the αa ka b k b c kc d k d . Addition and multiplication in Q a,b,c,d Γ 2 = • (at + b)γ 1 +(ct + d)γ 2 • (ct -1 + d)γ 1 -(at -1 + b)γ 2 • (dt + c)γ 1 -(bt + a)γ 2 • (at 2 + bt)γ 1 +(ct 2 + dt)γ 2 • (ct -1 + d)γ 1 -(at -1 + b)γ 2 • (dt + c)γ 1 -(bt + a)γ 2 -r(ab + cd)          • (dt + c)γ 1 -(bt + a)γ 2 • (dt 2 + ct)γ 1 -(bt 2 + at)γ 2 • (ct -1 + d)γ 1 -(at -1 + b)γ 2 • (dt + c)γ 1 -(bt + a)γ 2 + • (dt + c)γ 1 -(bt + a)γ 2 • (at + b)γ 1 +(ct + d)γ 2 • (dt + c)γ 1 -(bt + a)γ 2 • (at 2 + bt)γ 1 +(ct 2 + dt)γ 2 + • (at + b)γ 1 +(ct + d)γ 2 • (ct -1 + d)γ 1 -(at -1 + b)γ 2 • (at 2 + bt)γ 1 +(ct 2 + dt)γ 2 • (ct -1 + d)γ 1 -(at -1 + b)γ 2 + • (at + b)γ 1 +(ct + d)γ 2 • (ct -1 + d)γ 1 -(at -1 + b)γ 2 • (dt 2 + ct)γ 1 -(bt 2 + at)γ 2 • (at 3 + bt 2 )γ 1 +(ct 3 + dt 2 )γ 2 + • (dt 2 + ct)γ 1 -(bt 2 + at)γ 2 • (at 2 + bt)γ 1 +(ct 2 + dt)γ 2 • (at 2 + bt)γ 1 +(ct 2 + dt)γ 2 • (ct -1 + d)γ 1 -(at -1 + b)γ 2         
Use k 3 + k 5 -k 2 -k 6 and the parity of k 1 + k 4 to determine to which element, among ±Γ 1 or ±Γ 2 , Γ is equal to, and send the corresponding output. 

A.3 Computations and results

As the computation for Γ 2 is slightly more complicated than for Γ 1 and Γ 3 , we start with Γ 2 . The action of λ a,b,c,d on Γ 2 produces:

• (at + b)γ 1 +(ct + d)γ 2 • (ct -1 + d)γ 1 -(at -1 + b)γ 2 • (dt + c)γ 1 -(bt + a)γ 2 • (at 2 + bt)γ 1 +(ct 2 + dt)γ 2 • (ct -1 + d)γ 1 -(at -1 + b)γ 2 • (dt + c)γ 1 -(bt + a)γ 2
, with the same linkings as in Γ 2 . However, in our implementation of the diagrams as linear combinations of the generators described in Section A.1, the convention gives, for two legs v and w labelled by P γ 1 + Qγ 2 and Rγ 1 + Sγ 2 respectively, a linking equal to f vw = (P R + Q S) r δ . For instance, numbering the vertices as 

• (ct -1 + d)γ 1 -(at -1 + b)γ 2 • (at 2 + bt)γ 1 +(ct 2 + dt)γ 2 • (ct -1 + d)γ 1 -(at -1 + b)γ 2 + • (at 2 + bt)γ 1 +(ct 2 + dt)γ 2 • (ct -1 + d)γ 1 -(at -1 + b)γ 2 • (dt 2 + ct)γ 1 -(bt 2 + at)γ 2 • (at 3 + bt 2 )γ 1 +(ct 3 + dt 2 )γ 2 + • (dt 2 + ct)γ 1 -(bt 2 + at)γ 2 • (at 3 + bt 2 )γ 1 +(ct 3 + dt 2 )γ 2 • (at 2 + bt)γ 1 +(ct 2 + dt)γ 2 • (ct -1 + d)γ 1 -(at -1 + b)γ 2         
f 14 = r ( 
at+b)(at -2 +bt -1 )+(ct+d)(ct -2 +dt -1 ) δ = r (ab+cd)+(a 2 +b 2 +c 2 +d 2 )t -1 +(ab+cd)t -2 δ = r (a 2 +b 2 +c 2 +d 2 -ab-cd)t -1 +(ab+cd)t -1 δ δ = rt -1 δ + r(ab + cd)t -1 .

This can be fixed, thanks to LV, by adding a term -r(ab + cd)

         • (dt + c)γ 1 -(bt + a)γ 2 • (dt 2 + ct)γ 1 -(bt 2 + at)γ 2 • (ct -1 + d)γ -(at -1 + b)γ • (dt + c)γ 1 -(bt + a)γ 2          .
Likewise, the linking f Γ 2 25 , f Γ 2 36 , f Γ 2 35 and f Γ 2 26 can be fixed by adding similar 4-legs terms. All

  b). Injectivity of this map would imply universality of the Kricker invariant and the Lescop invariant for QSKpairs with Blanchfield module (A, b) and consequently equivalence of these two invariants for such QSK-pairs. Let (A, b) be any Blanchfield module with annihilator δ ∈ Q[t ±1 ]. As detailed in [Mou17], we can focus on the subspace G b (A, b) = ⊕ n∈Z G b n (A, b) of G(A, b) associated with Borromean surgeries and study the restricted map ϕ : A(A, b) → G b (A, b) defined on a subspace A(A, b) of A aug (A, b). Both the Lescop and the Kricker invariants are families Z = (Z n ) n∈N of finite type invariants, where Z n has degree n when n is even and Z n is trivial when n is odd. For QSKpairs with Blanchfield module (A, b), Z n takes values in a space A n (δ) of trivalent graphs with edges labelled in 1 δ Q[t ±1 ]. The finiteness properties imply that Z n induces a map on G b n (A, b). The map ϕ : A(A, b) → G b (A, b) decomposes as the direct sum of maps ϕ n : A n (A, b) → G b n (A, b). Composing with Z n , we get a map ψ n : A n (A, b) → A n (δ); this provides the following commutative diagram: G b n (A, b)

(Figure 1 :

 1 Figure 1: A topological realization for a generator of the kernel of ψ 2 Each picture represents the QSK-pair obtained by considering the copy of the thick unknot in the rational homology 3-sphere obtained by 0-surgery on the other two knots. The sum corresponds to the image by ϕ2 of the generator of Ker(ψ2) given in Proposition 4.10. There is indeed a correspondence between the four H-diagrams in the expression of this generator and the four terms in C, which are all of the form (M, K)(T1)(T2) where T1 and T2 denote the two tripod graphs and Y (T ) denotes the result of the borromean surgery along T on Y . More precisely, each H-diagram is sent to (M, K) -(M, K)(T1) -(M, K)(T2) + (M, K)(T1)(T2), but (M, K)(T1) = (M, K)(T2) = (M, K). See[START_REF]On Alexander modules and Blanchfield forms of null-homologous knots in rational homology spheres[END_REF] for the computation of the Alexander module of (M, K), [GGP01, Lemma 2.1] for the explicit action of the tripod graphs and[START_REF]Finite type invariants of knots in homology 3-spheres with respect to null LPsurgeries[END_REF] for other definitions and details.

  For k ∈ N, we call k-legs diagram and k ≤ -legs diagram an (A, b)-colored diagram with, respectively, exactly and at most k legs. The degree of a colored diagram is the number of trivalent vertices of its underlying graph; the unique degree 0 diagram is the empty diagram. The automorphism group Aut(A, b) of the Blanchfield module (A, b) acts on (A, b)-colored diagrams by evaluation of an automorphism on the labels of all the legs of a diagram simultaneously. For n ≥ 0, we set: A n (A, b) = Q (A, b)-colored diagrams of degree n Q AS, IHX, LE, OR, Hol, LV, EV, LD, Aut , where the relations AS (anti-symmetry), IHX, LE (linearity for edges), OR (orientation reversal), Hol (holonomy), LV (linearity for vertices), EV (edge-vertex) and LD (linking difference) are described in Figure 2 and Aut is the set of relations D = ζ.D where D is a (A, b)-colored diagram and ζ ∈ Aut(A, b). Since the opposite of the identity is an automorphism of (A, b), we have A 2n+1 (A, b) = 0 for all n ≥ 0. Spaces of δ-colored diagrams. Let δ ∈ Q[t ±1 ]. A δ-colored diagram is a trivalent graph whose vertices are oriented and whose edges are oriented and labelled by 1

  IHX, LE, OR, Hol, Hol , where the relation Hol is represented in Figure 3 and the relations AS, IHX, LE, OR, Hol are represented in Figure 2 but with edges now labelled in 1 δ Q[t ±1 ]. Note that in the case of A n (A, b), the relation Hol is induced by the relations Hol, EV and LD. To an (A, b)-colored diagram D of degree n, we associate a δ-colored diagram ψ n (D) as follows. Denote by V the set of legs of D. Define a pairing of V as an involution of V with no fixed point. For every such pairing p, define D p as the diagram obtained by replacing, in D,

  (k) n (A, b) be the subspace of A n (A, b) generated by k ≤ -legs diagrams and set:

  IHX, LE, OR, Hol, LV, EV, LD, Aut res .

  b) ⊕ and A n (A, b) ⊕N given in Proposition 3.1 are still valid when removing from the generators the diagrams whose underlying graph contains a connected component • . Proof. Thanks to the OR relation, such a diagram can be written

Figure 5 :

 5 Figure 5: The relation Hol

  b) ⊕3 admits the similar presentation with generators restricted to distributed (A, b) ⊕3 -colored diagrams and the relation Aut restricted to Aut res .Proof. First use Lemma 3.8 to reduce the 4-legs generators to those with underlying graph • • • •

  and let Ω be the union of the ξ i (ω) for i = 1, . . . , . An (A, b) ⊕ -colored diagram (resp. YY-diagram, H-diagram) is called ω-admissible, or simply admissible when there is no ambiguity on ω, if: (i) its legs are colored by elements of Ω, (ii) for two vertices v and w that are respectively colored by ξ i (γ) and ξ j (η),f vw = f (γ, η) if i = j and f vw = 0 otherwise. Every (A, b) ⊕ -colored diagram (resp. YY-diagram, H-diagram) D has a canonical ω-reduction,which is the decomposition as a Q-linear sum of ω-admissible diagrams obtained as follows. Write all the labels of the legs as Q-linear sums of elements of Ω. Then use LV to write D as a Q-linear sum of diagrams with legs labelled by Ω ∪ {0} and the Ω-labelled legs satisfying Condition (ii). Finally, apply repeatedly Lemma 3.7 to remove 0-labelled vertices.In the next step, we will not be able to reduce further the sets of generators and relations without rewriting some of the relations first. Denote by Aut ω the set of relations D = Σ where D is an ω-admissible diagram and Σ is the ω-reduction of ζ.D for ζ ∈ Aut(A, b). Define similarly Aut ω res and Aut ω t . Define Hol ω as the set of relations that identify an ω-admissible diagram D with the ω-reduction of the corresponding diagram D of Figure 3.

  ω and Hol ω on 6-legs generators and AS, IHX, Hol, LE, OR, LV, LD, EV and Aut on 4 ≤ -legs generators. The space A 2 (A, b) ⊕3 admits the similar presentation with generators restricted to distributed (A, b) ⊕3 -colored diagrams and the relations Aut ω restricted to Aut ω res . If A is cyclic, Aut ω res can be replaced by the union of Aut ξ and Aut ω t . Proof. Starting from the presentation given in Lemma 3.10 and using the ω-reduction, one can proceed as in the proof of Lemma 3.10. The only difficulty is to prove that the ω-reduction of all Aut and Hol relations are indeed zero in the new presentation. To see that for Aut, consider a relation D = ζ.D for an (A, b)-colored diagram D and an automorphism ζ ∈ Aut(A, b). Let D = i α i D i be the ω-reduction of D. For each i, write ζ.D i = s β i s D i s the ω-reduction of the diagram ζ.D i . Check that ζ.D = i α i s β i s D i s is the ω-reduction of ζ.D. It follows that the relation D = ζ.D is sent onto a Q-linear combination of the relations D i = s β i s D i s , which are in Aut ω . Relations Hol can be handled similarly.

  either equal to a diagram in E via an AS or Aut ξ relation, or trivial by AS. Denote by Aut E the set of relations D = Σ, where D is an element of E and Σ is the ω-reduction of ζ.D for some ζ ∈ Aut(A, b), rewritten in terms of E. Define similarly Hol E and Aut E * , where Aut * is any subfamily of Aut described as the relations arising from the action of a subset of Aut(A, b)-for instance Aut res or Aut t . Lemma 3.14. If E is an essentiel set of ω-admissible YY-diagrams (resp. H-diagrams), then the YY-diagrams (resp. H-diagrams) in the set of generators of the presentation given in Lemma 3.12 (resp. Lemma 3.13) can be restricted to E and the relations Aut ω , Aut ω res , Aut ω t and Hol ω can be replaced by Aut E , Aut E res , Aut E t and Hol E respectively. Moreover, if E is minimal, then AS and Aut ξ on YY-diagrams (resp. H-diagrams) can be removed from the set of relations. Proof. If an ω-admissible diagram is trivial by AS, then a relation Hol or Aut involving this diagram gives a trivial relation; indeed, the terms in the corresponding decomposition are trivial or cancel by pairs. Similarly, if two ω-admissible diagrams are related by a relation AS, then the relations Hol and Aut applied to these diagrams provide the same relations. If D is an ω-admissible diagram and D = ξ ij .D for some permutation automorphism ξ ij , then any Hol relation involving D is recovered from the action of ξ ij on the corresponding Hol relation involving D, and the relation resulting from the action of some automorphism ζ on D is recovered by the action of ξ ij • ζ • ξ ij on D.

Figure 7 :

 7 Figure 7: First family of 6-legs generators

Figure 8 :

 8 Figure 8: Second family of 6-legs generators

Figure 9 :

 9 Figure 9: Family of 4-legs generators

Figure 10 :

 10 Figure 10: Some admissible YY-diagrams

  D be an admissible YY-diagram with two legs v and w labelled by the same γ i or the same η i . Application of any Aut µ relation shows that the diagram D is trivial. Application of an Aut ν , Aut ξ or Hol relation to D gives a trivial relation in Aut ω ν , Aut ω ξ or Hol ω . Application of an Aut ρ relation to D gives in Aut ω ρ the relation of Aut ω ν obtained by applying Aut ν to the diagram D that is the diagram obtained from D by changing the labels of v and w to γ i and η i respectively and the linking f vw to 1

Figure 12 :

 12 Figure 12: Input for λ a,b,c,d .Γ 2

Figure 13 :

 13 Figure 13: Input for λ a,b,c,d .Γ 1

  f λ a,b,c,d .Γ 2 14 = f Γ 2 14 = rt -1 δ whereas the Γ 1 = • (at 2 + bt)γ 1 +(ct 2 + dt)γ 2 • (ct -1 + d)γ 1 -(at -1 + b)γ 2 • (dt + c)γ 1 -(bt + a)γ 2 • (at 2 + bt)γ 1 +(ct 2 + dt)γ 2 • (ct -1 + d)γ 1 -(at -1 + b)γ 2 • (dt + c)γ 1 -(bt + a)γ -r(ab + cd) -1 + d)γ 1 -(at -1 + b)γ 2 • (dt + c)γ 1 -(bt + a)γ 2 • (ct -1 + d)γ 1 -(at -1 + b)γ 2 • (dt + c)γ 1 -(bt + a)γ 2 + • (dt + c)γ 1 -(bt + a)γ 2 • (at 2 + bt)γ 1 +(ct 2 + dt)γ 2 • (dt + c)γ 1 -(bt + a)γ 2 • (at 2 + bt)γ 1 +(ct 2 + dt)γ 2 + • (at 2 + bt)γ 1 +(ct 2 + dt)γ 2

Figure 14 :

 14 Figure 14: Input for λ a,b,c,d .Γ 3

  b) is generated by admissible diagrams. Such a diagram with at least four legs has necessarily two legs labelled by γ or two legs labelled by η; the relation Aut µ implies that it is trivial. It follows that A 2 (A, b) = A

	(2) 2 (A, b). Hence, by Proposition 5.2 (A, b) ⊕2 and it follows from the second point of 2 is injective but not surjective. and Corollary 3.6, ι 1 Similarly, we have A 2 (A, b) ⊕2 = A (4) 2 Proposition 5.2 and Corollary 3.3 that ι 2 2 is an isomorphism.

avalaible at http://www.i2m.univ-amu.fr/ ~audoux/Reduc_Gamma#.ml with # = 1,

2, 3.
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Hence we have the following commutative diagram:

The statement follows.

Lemma 3.4. Let n, k, 1 and 2 be non negative integers such that 1 ≤ 2 and k 2 ≤ 2 . Let

Proof. Let us define a left inverse of ι n . Let D be a distributed (k + 2) ≤ -legs diagram. For each leg colored by η ∈ A i with 1 < i ≤ 2 , replace the label by ξ 1 • ξ -1 i (η). Choose any linkings coherent with these new labels. Thanks to the relation LD, any such choice defines the same class σ n (D) in the quotient

) . This provides a welldefined map σ n :

The following observation will allow to deduce Corollary 3.6 from Corollary 3.3 and Lemma 3.4. Lemma 3.5. Let f : E 1 → E 2 be a morphism between two vector spaces. Let F 1 ⊂ E 1 and F 2 ⊂ E 2 be linear subspaces such that f (F 1 ) ⊂ F 2 and let f : E 1 F 1 → E 2 F 2 be the map induced by f . If f and f |F 1 are injective, then f is injective.

Corollary 3.6. Let n, and N be non negative integers such that n is even, ≤ N and N ≥ 3n 2 . If A Proof. We prove by induction on k that A

Lemmas 3.4 and 3.5 and the induction hypothesis imply that the map ι n :

In these pictures, all edges are labelled by 1 and the linkings are given by fvw = r/δ when v and w are labelled by the same γi and 0 otherwise.

The main results of this section are gathered in the following proposition.

is freely generated by the diagrams H 1 and G 1 of Figure 6;

the natural map

is freely generated by the H-diagrams H 1 and H 3 given in Figure 9;

The proof of this proposition will derive from the next results, which carry on the reduction process initialized in Section 3.2.

Lemma 4.2. The space A 2 (A, b) ⊕3 admits the presentation with:

• as generators: the YY-diagrams D 1 , D 2 of Figure 7 andG 8 and all 4 ≤ -legs diagrams;

• as relations: AS, IHX, LE, Hol, OR, LV, LD, EV and Aut on 4 ≤ -legs generators and the following relations, where H 1 , H 2 , H 3 , H 4 are the H-diagrams given in Figure 9:

One can check that the other relations Aut t and Hol applied to the different given forms of the G i 's do not provide further relations.

Corollary 4.3. The space A 2 (A, b) ⊕3 admits the presentation with:

• as generators: the diagram G 1 given in Figure 6 and 4 ≤ -legs diagrams;

• as relations: AS, IHX, LE, Hol, OR, LV, LD, EV and Aut on 4 ≤ -legs generators and the following relation between G 1 and the H-diagrams given in Figure 9:

Now, we turn our attention to 4-legs generators.

Lemma 4.4. The space A (4) 2

(A, b) ⊕3 admits the presentation with:

• as generators: the H-diagrams H 1 , H 2 , H 3 , H 4 given in Figure 9 and 2 ≤ -legs diagrams;

• as relations: AS, IHX, LE, Hol, OR, LV, LD, EV and Aut on 2 ≤ -legs generators and the following two relations:

Proof. Thanks to Lemmas 3.13 and 3.14, we only have to check that Aut t applied to the diagrams of Figure 9 provides exactly the above two relations. This is straightforward.

Corollary 4.5. The space A (4) 2

(A, b) ⊕3 admits the presentation with:

• as generators: the H-diagrams H 1 and H 3 given in Figure 9 and 2 ≤ -legs diagrams;

• as relations: AS, IHX, LE, Hol, OR, LV, LD, EV and Aut on 2 ≤ -legs generators.

Proof of Proposition 4.1. Thanks to Corollaries 4.3 and 4.5, A 2 (A, b) ⊕3 has a presentation given by the generators G 1 , H 1 , H 3 and all 2 ≤ -legs diagrams, and the relation (R 6 ) and all usual relations on 2 ≤ -legs diagrams. Using (R 6 ) to write H 3 in terms of the other generators, we obtain a presentation with, as generators, G 1 , H 1 and 2 ≤ -legs diagrams and, as relations, the usual relations on 2 ≤ -legs diagrams. This concludes the first two points of the proposition. The third point is given by Corollary 4.5.

given in Corollary 4.3, one can remove the generator G 1 and the relation (R 6 ). This implies the fourth point of the proposition.

If a = 1, in the presentation of A 2 (A, b) ⊕3 given in Corollary 4.3, G 1 is not subject to any relation. On the other hand, compared with Lemma 4.4, (R 6 ) provides then a third relation between the ⊕3 . This new relation can be used to show that H 1 and H 3 are equal up to diagrams with fewer legs. This concludes the fifth point of the proposition.

On the maps ι 2

The main goal of this section is to determine the injectivity and surjectivity status of the maps

It remains to deal with injectivity when δ = t + 1 + t -1 and to determine the surjectivity status of the maps ι 2 . We start with ι 1 2 .

Proposition 4.7. Let (A, b) be a cyclic Blanchfield module of Q-dimension two. Then the map ι 1 2 is injective but not surjective.

Proof. Thanks to the first point of Proposition 4.1 and Corollary 3.3, the map ι 1 2 induces an isomorphism from ⊕3 . Hence we can work with the map ι 1 2 induced by ι 1 2 on the quotients

By [Mou17, Proposition 7.11], ι 1 2 (G) is half the sum of all diagrams obtained from G by replacing two γ's by γ 1 and the other two by γ 2 . Thanks to Aut ξ , this gives:

is generated by the diagrams Γ 1 and Γ 2 of Figure 10. Application of an Hol relation to Γ 1 gives:

and application of Aut t on A 1 to Γ 2 gives:

Since a = -2, it follows that both Γ 1 and Γ 2 can be expressed in term of 4-legs generators.

, that is the first point of the proposition. The second point follows from Proposition 4.1 (1) and Corollaries 3.2 and 3.3. Note that we have:

Hence, to prove the third point, we can work on the quotients A 2 A

(2) 2

and A 2 A

(2) 2

. If a = 1, the third point is given by Corollary 3.6 thanks to the first and fourth points of Proposition 4.1. Assume a = 1. The diagrams Γ i for i = 1, . . . , 6 represented in Figures 10 and 11 form a minimal essential set E of admissible YY-diagrams. Thanks to Lemmas 3.12, 3.14 and 4.8, we only need to consider Hol E , Aut E χ and Aut E λ . The Hol and Aut χ relations applied to Γ i with i > 3 obvioulsy give trivial relations; check that the relations Aut λ applied to these diagrams also give trivial relations thanks to cancellations in the decomposition.

The Hol relation applied to Γ 1 or Γ 2 recovers the above two relations. Up to these two relations, Hol applied to Γ 3 gives a trivial relation up to 2 ≤ -legs diagrams.

It remains to write the Aut E relations corresponding to the Γ i 's with i ≤ 3. A relation Aut χ with an automorphism χ P applied to Γ 3 is recovered from the relation Aut χ with χ tP applied to Γ 1 . The relations Aut χ applied to Γ 1 and Γ 2 can be written by hand. However, the relations Aut λ imply wild computations which required the help of a computer. The program given in Appendix A checks that a relation Aut λ applied on Γ i for i = 1, 2, 3 can be recovered from the above two relations and usual relations on 4 ≤ -legs generators. This concludes the third point of the proposition.

We have seen that

. This gives the isomorphism of the fourth point. The dimension of the quotient is given by the third point of Proposition 4.1. • is an isomorphism if δ = t + 1 + t -1 ;

• has a non trivial kernel generated by the combination of H-diagrams

Proof. First assume δ = t + 1 + t -1 . The fourth point of Proposition 4.1 and Corollary 3.3 imply that ι 2 2 induces an isomorphism from A Now assume that δ = t + 1 + t -1 . The second point of Proposition 4.9 asserts that A (2) 2 9 is clearly in the image of ι 2 2 . Finally, by Proposition 4.1 (5.i.) and Proposition 4.9 (4), the kernel of ι 2 2 has dimension 1. More precisely, thanks to Relation (R 6 ), the image through ι 2 2 of

Case when A is of Q-dimension two and non cyclic

In this section, we assume that (A, b) is a non cyclic Blanchfield module of Q-dimension two. As mentioned at the beginning of Section 3, it implies that A is the direct sum of two Q[t ±1 ]-modules of order t + 1. Hence we can write:

Moreover, it follows from b being hermitian and non-degenerate that, up to rescaling η, b(γ, γ) = b(η, η) = 0 and b(γ, η) = 1 t+1 . Throughout the section, we consider {γ, η} as the basis ω for A and we set f (γ, γ) = f (η, η) = 0, f (γ, η) = 1 t+1 and f (η, γ) = t t+1 . Accordingly, set γ i = ξ i (γ) and η i = ξ i (η), for i = 1, 2, 3.

Lemma 5.1. The automorphism group Aut(A, b) is generated by the following automorphisms:

where x runs over Q \ {0, ±1} and y over Q \ {0}.

Proof. Any automorphism ζ of (A, b) is given by

We denote by Aut µ , Aut ν and Aut ρ the subfamilies of Aut relations obtained by the action of the automorphisms given by µ x , ν and ρ y respectively on one copy of A and identity on the others. are implemented accordingly, using the relation a 2 = 1 + ab + cd -b 2 -c 2 -d 2 to remove terms with powers of a higher than 2.

Generators of A 2 (A, b) ⊕2 A

(2) 2

(A, b) ⊕2 are separated between 6-legs and 4-legs ones. The former are implemented as (k 1 , i 1 ), . . . , (k 6 , i 6 ) ∈ Z × {1, 2}

6 corresponding to

and the latter as (k 1 , i 1 ), . . . , (k 4 , i 4 ) ∈ Z × {1, 2}

4 corresponding to

In both cases, the linking between legs v and w labelled by t k j γ i j and

(A, b) ⊕2 are implemented in two ways:

• for inputs: as linear combinations of the above generators;

• for outputs: as vectors (α 1 , α 2 , α 3 , α 4 , α 5 , α 6 ) ∈ Q 6 a,b,c,d corresponding to the linear combination

where the H i and the Γ i are given in Figures 9 and10.

A.2 Reduction algorithms

The programs are based on two reduction algorithms reduc4 and reduc6, one for 4-legs generators and one for 6-legs generators. Both algorithms take, as input, a diagram Γ implemented as an element of Z × {1, 2}

4 or 6 representing one of the above generators and send, as output, a

The reduc4 algorithm goes as follows.

Take (k 1 , e 1 ), (k 2 , e 2 ), (k 3 , e 3 ), (k 4 , e 4 ) . (Call it Γ.)

Check if e 1 + e 2 + e 3 + e 4 is odd (that is if one of the A i appears an odd number of times), or if (k 1 , e 1 ) = (k 2 , e 2 ) or (k 3 , e 3 ) = (k 4 , e 4 ) (that is if two legs adjacent to a same trivalent vertex share the same label); if so then send (0, 0, 0, 0, 0, 0). -→ At this point, legs sharing an adjacent trivalent vertex have distinct labels, and each A i appears 0, 2 or 4 times in leg labels.

Check if some k i is < 0 or > 1;

if so then send the sum of the results of reduc4 applied to the elements given by Corollary 3.9 to increase or decrease k i . -→ At this point, each leg label is either some γ i or some tγ i .

Check if e 1 = e 2 = e 3 = e 4 (that is if all legs are labelled in the same A i ; if so then Γ is either

if so then send (-1) k 1 +k 3 reduc4 (0, 1), (1, 1), (0, 2), (1, 2) +reduc4 (0, 1), (1, 2), (0, 1), (1, 2) +reduc4 (0, 1), (1, 2), (0, 2), (1, 1) (see [START_REF]Finite type invariants of knots in homology 3-spheres with respect to null LPsurgeries[END_REF]Proposition 7.11]).

-→ At this point, each A i appears exactly twice in leg labels.

Check if e 1 = e 2 (that is if the two A 1 -labelled legs are both on the left or both on the right), if so then send reduc4 (k 1 , e 1 ), (k 3 , e 3 ), (k 2 , e 2 ), (k 4 , e 4 ) -reduc4 (k 1 , e 1 ), (k 4 , e 4 ), (k 2 , e 2 ), (k 3 , e 3 ) (using an IHX move). Check if e 1 = e 4 (that is if the two A 1 -labelled legs are both at the top or both at the bottom), if so then send -reduc4 (k 1 , e 1 ), (k 2 , e 2 ), (k 4 , e 4 ), (k 3 , e 3 ) (using an AS move). -→ At this point, each A i appears simultaneously in labels of opposite legs only. Use S := k 1 +k 2 +k 3 +k 4 and, if S = 2, the parity of k 1 +k 2 and k 1 +k 2 to determine to which element, among H 1 , H 2 , H 3 or H 4 , Γ is equal to, and send the corresponding output.

The reduc6 algorithm goes as follows.

Take (k 1 , e 1 ), (k 2 , e 2 ), (k 3 , e 3 ), (k 4 , e 4 ), (k 5 , e 5 ), (k 6 , e 6 ) . (Call it Γ.)

Check if e 1 + e 2 + e 3 + e 4 + e 5 + e 6 is odd (that is if one of the A i appears an odd number of times), or if (k 1 , e 1 ) = (k 2 , e 2 ) or (k 2 , e 2 ) = (k 3 , e 3 ) or (k 3 , e 3 ) = (k 1 , e 1 ) or (k 4 , e 4 ) = (k 5 , e 5 ) or (k 5 , e 5 ) = (k 6 , e 6 ) or (k 6 , e 6 ) = (k 4 , e 4 ) (that is if two legs adjacent to a same trivalent vertex share the same label); if so then send (0, 0, 0, 0, 0, 0). -→ At this point, legs sharing an adjacent trivalent vertex have distinct labels, and each A i appears an even number of times in leg labels. Check if some k i is < 0 or > 1;

if so then send the sum of the results of reduc6 and reduc4 applied to the elements given by Corollary 3.9 to increase or decrease k i . -→ At this point, each leg label is either some γ i or some tγ i , and each A i appears 2 or 4 times in leg labels-if all legs were A i -labelled, then two legs sharing a same adjacent trivalent vertex would have a same label. Check if e 1 + e 2 + e 3 + e 4 + e 5 + e 6 = 8 (that is if A 1 appears 4 times and A 2 twice in leg labels), if so then send reduc6 (k 1 , 3 -e 1 ), (k 2 , 3 -e 2 ), (k 3 , 3 -e 3 ), (k 4 , 3 -e 4 ), (k 5 , 3 -e 5 ), (k 6 , 3 -e 6 ) (using a Aut ξ move).

the other linkings vanish already as expected. Finally, we get the decomposition of Γ 2 given in Figure 12.

To compute the corresponding relation, we defined six matrices, one for each term in the formula of Figure 12, rows corresponding to legs and columns to the each of the four monomials that appear in the leg labels. The program uses these matrices to develop with LV the six diagrams in order to get a weighted sum of generators, as they are described in Section A.1. Then, by applying either reduc4 or reduc6 to each term in this weighted sum, it expresses it as a linear combination of Γ 1 , Γ 2 and the H i 's. Finally, the program uses the relations H 1 = -2H 2 and H 4 = -H 2 -H 3 from Lemma 4.4-which hold in A 2 (A, b) ⊕2 A

(2) 2

(A, b) ⊕2 by the same computations as in A 2 (A, b) ⊕3 A

(2) 2

(A, b) ⊕3 -to reduce this linear combination in terms of Γ 1 , Γ 2 , H 2 and H 3 only. We end up with Γ 2 = (b 2 + d 2 -ab -cd -1)Γ 1 + (2b 2 + 2d 2 -2ab -2cd -1)Γ 2 + r(3ab + 3cd -3b 2 -3d 2 + 3)H 3 , that is (a 2 + c 2 )(Γ 1 + 2Γ 2 -3rH 3 ) = 0.

But it was already known that Γ 1 + 2Γ 2 = r

• tγ 1 and the same computation as in the proof of Proposition 4.7 gives

Similarly, the action of λ a,b,c,d on Γ 1 leads to the decomposition given in Figure 13. The program reduces it to Γ 1 = (ab + cd + 1)Γ 1 + 2(ab + cd)Γ 2 -3r(ab + cd)H 3 , that is (ab + cd)(Γ 1 + 2Γ 2 -3rH 3 ) = 0, which recovers once again a previously known formula.

Finally, the action of λ a,b,c,d on Γ 3 leads to the decomposition given in Figure 14. The program reduces it to

which still recovers the same previously known formula.