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Abstract

We study the inverse problem of obstacle detection for Laplace’s equation with
partial Cauchy data. The strategy used is to reduce the inverse problem into the min-
imization of a cost-type functional: the Kohn-Vogelius functional. Since the boundary
conditions are unknown on an inaccessible part of the boundary, the variables of the
functional are the shape of the inclusion but also the Cauchy data on the inaccessi-
ble part. Hence we first focus on recovering these boundary conditions, i.e. on the
data completion problem. Due to the ill-posedness of this problem, we regularize
the functional through a Tikhonov regularization. Then we obtain several theoretical
properties for this data completion problem, as convergence properties, in particular
when data are corrupted by noise. Finally, we propose an algorithm to solve the in-
verse obstacle problem with partial Cauchy data by minimizing the Kohn-Vogelius
functional. Thus we obtain the gradient of the functional computing both the deriva-
tives with respect to the missing data and to the shape. Several numerical experiences
are shown to discuss the performance of the algorithm.

Keywords: Geometric inverse problem, Cauchy problem, Data completion problem,
Shape optimization problem, Inverse obstacle problem, Laplace’s equation, Kohn-Vogelius
functional.

AMS Classification: 35R30, 49Q10, 35N25, 35R25

1 Introduction and problem setting

The inverse obstacle problem with partial Cauchy data. In this work we deal
with the inverse problem of obstacle detection defined as follows. Let Ω be a bounded
connected Lipschitz open set of Rd (with d = 2 or d = 3) with a boundary ∂Ω divided into
two components, the nonempty (relatively) open sets Γobs and Γi, such that Γobs∪Γi = ∂Ω.
For some nontrivial data (gN , gD) ∈ H−1/2(Γobs) × H1/2(Γobs), we consider the following
obstacle problem:
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Find a set ω∗ ∈ D and a solution u ∈ H1
(
Ω\ω∗

)
∩ C0

(
Ω\ω∗

)
of the following overdetermined boundary values problem:

−∆u = 0 in Ω\ω∗
u = gD on Γobs

∂νu = gN on Γobs
u = 0 on ω∗.

(1.1)

Here

D :=
{
ω ⊂⊂ Ω : ω is a simply connected open set, ∂ω is of class W2,∞,

d(x, ∂Ω) > d0 for all x ∈ ω, Ω\ω is connected} , (1.2)

with d0 a fixed (small) parameter. In other words, the problem is to reconstruct an inclu-
sion ω∗ characterized by a Dirichlet condition from the knowledge of some data (gN , gD)
on the accessible part Γobs of the frontier of the domain of study, no data at all being
provided on the inaccessible part of the boundary Γi (see Figure 1 for an illustration of the
notations).

Γi

Γobs

ω∗

Ω\ω

Figure 1: A possible configuration for the obstacle problem.

It is known for a long time now that Problem (1.1) admits at most one solution, as
claimed by the following identifiability result1 (see for example [15, Theorem 1.1], [24,
Theorem 5.1] or [26, Proposition 4.4, page 87]):

Theorem 1.1. The domain ω and the function u that satisfy (1.1) are uniquely defined
by the nontrivial Cauchy data (gN , gD).

It is also well-known that Problem (1.1) is severely ill-posed: the problem may fail to
have a solution and, even when a solution exists, the problem is highly unstable. More
precisely, the best one can expect is a logarithmic stability for problem (1.1) (see e.g. [4, 28]).
In this work we focus on the reconstruction problem: our aim is to propose and test
a numerical method to reconstruct (an approximation of ) ω∗ from the (possibly noisy)
data (gN , gD).

Numerous methods have been proposed to solve this problem : sampling methods [43],
methods based on conformal mappings [35], on integral equations [40, 44], level-set method
coupled with quasi-reversibility in the exterior approach [15], among others. Among all
of them, shape optimization methods (see e.g. [3, 18, 32]) present interesting features: in
particular, they are easily adaptable to problem governed by a different partial differen-
tial equation, such as Stokes system (see e.g. [5, 20, 22, 33]), and obstacle characterized

1Actually, Theorem 1.1 is true only assuming that ω∗ has a continuous boundary (see [15, Theorem 1.1]).
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by different limit conditions, such as Neumann or generalized boundary conditions (see
e.g. [8, 21]). However, since such methods rely on the minimization of a (shape) cost-type
functional which in turn needs the resolution of several well-posed direct problems, they
need in particular some boundary data on the whole boundary of the domain of study, and
therefore cannot be directly used for Problem (1.1).

Remark 1.2. To the best of our knowledge, among all the methods cited above, only the ex-
terior approach deals with the inverse obstacle problem with partial Cauchy data. However,
the exterior approach has been specifically developed to deal with obstacles characterized by
a Dirichlet-type boundary condition, and its adaptation to a Neumann-type condition is
still an open question.

One aim of the method presented in this paper is to overcome this boundary conditions
limitation. Indeed, the proposed method could be naturally adapted to Neumann boundary
conditions for example and is then an effective alternative method to deal with partial
Cauchy data.

Our main objective is to adapt shape optimization methods for the inverse obstacle
problem to the case where data are not available on the whole boundary of the domain
of study. To do so, our strategy is to solve the inverse obstacle problem and a data
completion problem in order to reconstruct the obstacle and the missing data at once. We
do so through the minimization of a Kohn-Vogelius functional, which will have both the
shape of ω∗ and the unknown data as variable, since such type of functional has already
been used successfully to solve obstacle problems and data completion problem separately
(see e.g. [6, 3]).

The data completion problem. Let us assume for a while that the obstacle ω∗ is
known. The data completion problem consists in recovering data on the whole boundary,
specifically on the inaccessible part Γi, from the overdetermined data (gN , gD) on Γobs,
that is:

find u ∈ H1(Ω\ω∗,∆) such that
−∆u = 0 in Ω\ω∗

u = gD on Γobs
∂νu = gN on Γobs
u = 0 on ∂ω∗.

(1.3)

The data completion problem is known to be severely ill-posed, see for example [9] where
the exponential ill-posedness is clearly highlighted. In particular, it has at most one solution
but it may have no solution and, when a solution exists, it does not depend continuously
on the given data (and therefore the same is true for the missing data); the well-known
example of Hadamard [34] is an example of this behavior.

Definition 1.3. A pair (gN , gD) ∈ H−1/2(Γobs) × H1/2(Γobs) will be called compatible
if there exists (a necessarily unique) u ∈ H1(Ω\ω∗,∆) harmonic such that u|Γobs = gD
and ∂νu|Γobs = gN .

If a given pair (gN , gD) is not compatible, we may approximate it by a sequence of com-
patible data, as the following result asserts (see Fursikov [30, Chapter 3] or Andrieux [6]):

Lemma 1.4. We have the two following density results.

1. For a fixed gD ∈ H1/2(Γobs), the set of data gN for which there exists a function
u ∈ H1(Ω\ω∗,∆) satisfying the Cauchy problem (1.3) is dense in H−1/2(Γobs).
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2. For a fixed gN ∈ H−1/2(Γobs), the set of data gD for which there exists a function
u ∈ H1(Ω\ω∗,∆) satisfying the Cauchy problem (1.3) is dense in H1/2(Γobs).

Due to the ill-posedness, regularization techniques are mandatory to solve the problem
numerically. Several approaches have been proposed: among others, we recall the work
of Cimetière et al. [23] who consider a fixed point scheme for an appropriate operator.
In [10, 7, 11], Ben Belgacem et al. propose a complete study of the problem based on
the Steklov-Poincaré operator and a Lavrentiev regularization. We also mention the works
of Bourgeois et al. [13, 14] based on the quasi-reversibility method and a generalization
to a wider family of systems is presented by Dardé in [27]. Burman in [19] proposes a
regularization through discretization : in particular, he obtains an optimal convergence
result of the discretized solution to the exact one. In the particular case of a 2d problem,
Leblond et al. in [41] use a complex-analytic approach to recover the solution of the Cauchy
problem respecting furthermore additional pointwise constraints in the domain. Let us
also mention the work of Kozlov et al. [39] which presents the classical KMF algorithm
used widely for numerical simulations. Several works consider modifications of the KMF
algorithm in order to improve their speed of convergence as the work of Abouchabaka
et al. [1]. The work of Andrieux et al. [6] presents another approach considering the
minimization of an energy-like functional and presents an algorithm which is equivalent
to the KMF algorithm formulation. The work of Aboulaich et al. [2] considers a control
type method for the numerical resolution of the Cauchy problem for Stokes system and, as
an example of regularization techniques employed in this problem, we mention the work
of Han et al. [36] in which a regularization of an energy functional is considered for an
annular domain.

In this work, we follow the idea developed for example in [10, 7, 11, 6]: we study the
data completion problem through the minimization of a Kohn-Vogelius type cost functional
which admits the solution of Problem (1.3) as minimizer, if such a solution exists. In order
to deal with the ill-posedness previously mentioned, we consider a Tikhonov regularization
of the functional which ensures the existence of a minimizer even for not compatible data
thanks to the gained of coerciveness and, in case of compatible data, the convergence
towards the exact solution. In case of noisy data, we propose a strategy to choose the
regularization parameter in order to preserve convergence to the unpolluted solution.

The Kohn-Vogelius functional. As mentioned, the two previous problems, that is the
inverse obstacle problem and the data completion problem, can be studied through the
minimization of a cost functional. Thus our idea is to define a well-appropriated Kohn-
Vogelius functional, which depends both on the shape ω and on the missing data on Γi, to
solve Problem (1.1).

More precisely, we focus on the following optimization problem:

(ω∗, ϕ∗, ψ∗) ∈ argmin
(ω,ϕ,ψ)∈D×H−1/2(Γi)×H1/2(Γi)

K(ω, ϕ, ψ) (1.4)

where K is the nonnegative Kohn-Vogelius cost functional defined by

K(ω, ϕ, ψ) =
1

2

∫
Ω\ω
|∇ugDϕ (ω)−∇ugNψ (ω)|2, (1.5)

where ugDϕ (ω) ∈ H1(Ω\ω) and ugNψ (ω) ∈ H1(Ω\ω) are the respective solutions of the fol-
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lowing problems
−∆ugDϕ (ω) = 0 in Ω\ω

ugDϕ (ω) = gD on Γobs
∂νu

gD
ϕ (ω) = ϕ on Γi
ugDϕ (ω) = 0 on ∂ω

and


−∆ugNψ (ω) = 0 in Ω\ω
∂νu

gN
ψ (ω) = gN on Γobs
ugNψ (ω) = ψ on Γi
ugNψ (ω) = 0 on ∂ω.

(1.6)

If the inverse problem (1.1) has a solution, then the identifiability result 1.1 ensures
that K(ω, ϕ, ψ) = 0 if and only if (ω, ϕ, ψ) = (ω∗, ϕ∗, ψ∗) (and in this case ugDϕ∗ = ugNψ∗ = u

where u is the solution of the Cauchy problem in Ω\ω∗).
In the rest of the paper, to simplify notations, we denote ugDϕ (ω) and ugNψ (ω) by re-

spectively uϕ and uψ, and only precise the dependance with respect to gD and gN when
it is necessary. Moreover we introduce the functions vϕ := u0

ϕ and vψ := u0
ψ (which also

depend on ω) which play an important role in the following study. We precise that they
satisfy respectively

−∆vϕ = 0 in Ω\ω
vϕ = 0 on Γobs

∂νvϕ = ϕ on Γi
vϕ = 0 on ∂ω

and


−∆vψ = 0 in Ω\ω
∂νvψ = 0 on Γobs
vψ = ψ on Γi
vψ = 0 on ∂ω.

(1.7)

Remark 1.5. Note that the two problems appearing in (1.6) are well-posed for any (ϕ,ψ) ∈
H−1/2(Γi) × H1/2(Γi), without additional compatibility conditions between gD and ϕ for
the first problem and between gN and ψ for the second. This is of particular interest
for numerical implementations, as the considered setting allows to consider the classical
Sobolev spaces and therefore the implementations can be done with classical finite element
method softwares without any additional adjustments. The same remark obviously holds
for the problems appearing in (1.7).

Then we propose a method in order to solve the obstacle problem with partial boundary
data. The use of a regularized extended functional is suggested in order to deal with
the ill-posedness of the data completion part. We implement a gradient algorithm which
uses the derivatives of K with respect to the unknown boundary data and with respect
to the shape in order to reconstruct the unknown obstacle only from partial boundary
measurements. The main novelty of this work is composed in first place by providing a
method in order to solve numerically the obstacle problem with partial boundary data by
means of an easy-to-implement strategy in order to solve this problem. The division in two
well-posed problems allows to implement an algorithm with any finite element library (such
as FreeFEM++ [37] for example) and the consideration of a Kohn-Vogelius approach allows
to implement optimization tools such as gradient methods. On the other hand, we have
proposed a natural strategy to solve the data completion problem, presenting a rigorous
analysis regularizing the associated functional via a Tikhonov regularization, which allows
to deal with corrupted data.

Organization of the paper The paper is organized as follows. First, we introduce
below the adopted notations. Then, in Section 2, we study the data completion problem
as the minimization of an energy-like error/cost functional. To deal with noisy data, we
propose and study a regularized version of the functional, considering in particular the
problem of choosing the parameter of regularization with respect to a priori knowledge
on the noise amplitude (see Subsection 2.3). Finally, in Section 3, we come back to the
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inverse obstacle problem using the previously analyzed data completion problem and using
geometrical shape optimization methods. We then propose an algorithm and provides
several numerical examples of reconstruction.

Introduction of the general notations. For a bounded open set Ω of Rd (d ∈ N∗) with
a (piecewise) Lipschitz boundary ∂Ω, we precise that the notation

∫
Ω
u means

∫
Ω
u(x)dx

which is the classical Lebesgue integral. Moreover, we use the notation
∫
∂Ω
u to denote

the boundary integral
∫
∂Ω
u(x)ds(x), where ds represents the surface Lebesgue measure

on the boundary. We also introduce the exterior unit normal ν of the domain Ω and ∂νu
will denote the normal derivative of u.

For s ≥ 0 we denote by L2(Ω), L2(∂Ω), Hs(Ω), Hs(∂Ω), Hs
0(Ω), the usual Lebesgue and

Sobolev spaces of scalar functions in Ω or on ∂Ω. The classical scalar product, norm and
semi-norm on Hs(Ω) are respectively denoted by (·, ·)Hs(Ω), ‖·‖Hs(Ω) and |·|Hs(Ω). Moreover,
we introduce the space H1(Ω,∆) given by

H1(Ω,∆) :=
{
u ∈ H1(Ω) : ∆u ∈ L2(Ω)

}
.

This space endowed with the scalar product

(u, v)H1(Ω,∆) := (u, v)H1(Ω) + (∆u,∆v)L2(Ω)

is an Hilbert space, and each element of this space admits a normal derivative on ∂Ω which
belongs to H−1/2(∂Ω). In particular, for each u ∈ H1(Ω,∆) and v ∈ H1(Ω), the well-known
Green formula is valid:∫

Ω
(∆u v +∇u · ∇v) dx =

〈
∂u

∂n
, v

〉
−1/2,1/2,∂Ω

.

2 On the data completion problem

In this section we prove some theoretical results concerning the data completion problem,
that is the case where the object is known. Then, in order to simplify the notations,
we will consider here the case ω = ∅ but all the presented results can be easily adapted
to the case ω 6= ∅. Hence, the previous Kohn-Vogelius functional (1.5) is now defined,
for (ϕ,ψ) ∈ H−1/2(Γi)×H1/2(Γi), by

K(ϕ,ψ) =
1

2

∫
Ω
|∇uϕ −∇uψ|2 (2.1)

and the previous problems (1.6) and (1.7) become
−∆uϕ = 0 in Ω

uϕ = gD on Γobs
∂νuϕ = ϕ on Γi

and


−∆uψ = 0 in Ω
∂νuψ = gN on Γobs
uψ = ψ on Γi,

(2.2)

and 
−∆vϕ = 0 in Ω\ω

vϕ = 0 on Γobs
∂νvϕ = ϕ on Γi

and


−∆vψ = 0 in Ω\ω
∂νvψ = 0 on Γobs
vψ = ψ on Γi,

(2.3)

where (gN , gD) ∈ H−1/2(Γobs)×H1/2(Γobs) is a given Cauchy pair which may be compatible
or not (see Definition 1.3).
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Remark 2.1. We can notice that (assuming enough regularity, if not we obtain a similar
expression with duality products), after integration by parts, we get:

K(ϕ,ψ) =
1

2

∫
Γobs

(∂νuϕ − gN ) (gD − uψ) +
1

2

∫
Γi

(ϕ− ∂νuψ) (uϕ − ψ).

This expression shows that the cost functional K measures the error between uϕ and uψ as
integrals only involving the boundary of the domain Ω.

2.1 The Kohn-Vogelius functional

We first explore the properties of the Kohn-Vogelius functional K given by (2.1).

Proposition 2.2. The functional K satisfies the following properties.

1. K is continuous, convex, positive and its infimum is zero.

2. When K(ϕ,ψ) reaches its minimum with (ϕ∗, ψ∗) = argmin(ϕ,ψ)K(ϕ,ψ) we have
uϕ∗ = uψ∗ + C = uψ∗+C where C is any constant in R. Therefore (ϕ∗, ψ∗ + C) is
also a minimizer of K. Moreover, in this case, uϕ∗ solves the Cauchy problem.

3. If we restrict K to the space H−1/2(Γi)×H1/2(Γi)/R then a minimizer of K is unique.

4. The first order optimality condition for (ϕ∗, ψ∗) ∈ H−1/2(Γi) × H1/2(Γi) to be a
minimizer is, for all (ϕ̃, ψ̃) ∈ H−1/2(Γi)×H1/2(Γi),∫

Ω
∇(vϕ∗ − vψ∗) · ∇(vϕ̃ − vψ̃) =

∫
Ω

(
∇ugD0 · ∇vψ̃ +∇ugN0 · ∇vϕ̃

)
. (2.4)

Proof. We prove each statement.

1. Continuity, convexity and positiveness are obvious. To prove that inf(ϕ,ψ)K(ϕ,ψ) =
0, we have to consider two cases. If the pair (gN , gD) is compatible, we consider
ϕ∗ := ∂νuex|Γi and ψ∗ := uex|Γi and then obtain K(ϕ∗, ψ∗) = 0. Let us now focus on
the non-compatible case. Thanks to the density lemma 1.4, we can approximate gD
by a sequence (gnD)n in a way that the pairs (gN , g

n
D)n are compatibles for all n ∈ N.

For each n, consider (ϕ∗n, ψ
∗
n) the minimizer of the Kohn-Vogelius function for the

data (gN , g
n
D) which implies that ∇ug

n
D
ϕ∗n

= ∇ugNψ∗n . Then we have

K(ϕ∗n, ψ
∗
n) = 1

2

∣∣∣ugDϕ∗n − ugNψ∗n ∣∣∣2H1(Ω)
= 1

2

∣∣∣ugDϕ∗n − ugnDϕ∗n∣∣∣2H1(Ω)
= 1

2

∣∣∣ugD−gnD0

∣∣∣2
H1(Ω)

≤ C‖gD − gnD‖2H1/2(Γi)
−→
n→∞

0,

which concludes the proof.

2. The first and second assertions are obvious from the definition of the functional K.
Moreover, since uϕ∗ is equal to uψ∗ up to a constant, it solves the Cauchy prob-
lem (1.3).

3. This comes from the definition of quotient space.

4. Standard computations give the result noticing that∫
Ω
∇ugD0 · ∇vϕ̃ = 0 and

∫
Ω
∇ugN0 · ∇vψ̃ = 0.
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Remark 2.3. Actually, point 2. is an “if and only if statement”, as if the Cauchy problem
admits a solution uex, then ϕex = ∂νuex and ψex = uex satisfy K(ϕex, ψex) = 0 and
therefore minimize K.

Let us introduce the bilinear form a :
(
H−1/2(Γi)×H1/2(Γi)

)2 → R and the linear
form ` : H−1/2(Γi) × H1/2(Γi) → R defined, for all (ϕ,ψ), (ϕ̃, ψ̃) ∈ H−1/2(Γi) × H1/2(Γi),
by

a
(

(ϕ,ψ), (ϕ̃, ψ̃)
)

:=

∫
Ω
∇(vϕ − vψ) · ∇(vϕ̃ − vψ̃)

`(ϕ,ψ) :=

∫
Ω
∇(ugN0 − ugD0 ) · ∇(vϕ − vψ) =

∫
Ω

(∇ugD0 · ∇vψ +∇ugN0 · ∇vϕ) .

(2.5)
Then the optimality condition (2.4) writes

a((ϕ∗, ψ∗), (ϕ̃, ψ̃)) = `(ϕ̃, ψ̃) , ∀(ϕ̃, ψ̃) ∈ H−1/2(Γi)×H1/2(Γi). (2.6)

By the fact that K is not coercive, we cannot assume that K reaches its minimum in
general. The following proposition states a condition for minimizing sequences in order to
assure the existence of minimizers for the functional and, at the same time, a solution of
our inverse problem.

Proposition 2.4. Let (ϕ∗n, ψ
∗
n)n ⊂ H−1/2(Γi) × H1/2(Γi) a minimizing sequence of K.

(ϕ∗n, ψ
∗
n)n is bounded if and only if the Cauchy problem (1.3) admits a solution uex. In

this case we have uϕ∗n ⇀
n→∞

uex weakly in H1(Ω) and all the minimizing sequences of K are
bounded.

Proof. Consider the sequence (ϕ∗n, ψ
∗
n) bounded in H−1/2(Γi) × H1/2(Γi). Then there ex-

ists (ϕ∗, ψ∗) ∈ H−1/2(Γi) × H1/2(Γi) such that, up to a subsequence, we have (ϕ∗n, ψ
∗
n) ⇀

(ϕ∗, ψ∗) in H−1/2(Γi)×H1/2(Γi). As K is convex and continuous in H−1/2(Γi)×H1/2(Γi),
it is weakly lower semi-continuous. Then, since the sequence (ϕ∗n, ψ

∗
n) is a minimizing

sequence of K,
K(ϕ∗, ψ∗) ≤ lim inf

k
K(ϕ∗nk , ψ

∗
nk

) = inf
(ϕ,ψ)

K(ϕ,ψ) = 0.

Hence K(ϕ∗, ψ∗) = 0. This implies uϕ∗ = uψ∗+C for some C ∈ R. Then, since ∂νuϕ∗ |Γobs =
∂νuψ∗ |Γobs = gN , the function uϕ∗ satisfies

−∆uϕ∗ = 0 in Ω
uϕ∗ = gD on Γobs

∂νuϕ∗ = gN on Γobs.

Thus uϕ∗ = uex is the solution of the Cauchy problem and uψ∗ = uex +C for some C ∈ R.
Now, in order to prove the weak convergence of uϕ∗n to uex, note that boundedness

of (ϕ∗n, ψ
∗
n) implies, due to well-posedness of the involved problems, the boundedness of

the sequences (uϕ∗n)n and (uψ∗n)n in H1(Ω). Therefore there exist u1, u2 ∈ H1(Ω) such
that, up to a subsequence, (uϕ∗n)n ⇀ u1 and (uψ∗n)n ⇀ u2 weakly in H1(Ω). Finally,
thanks to the weak-continuity of normal derivative and trace operators, u1|Γobs = gD and
∂νu2|Γobs = gN , and, by the uniqueness of the weak limit, ∂νu1|Γi = ϕ∗ and u2|Γi = ψ∗.
Therefore u1 = uϕ∗ = uex and u2 = uψ∗ = uex + C for some C ∈ R.

The converse statement is immediate, as if the Cauchy problem admits a solution uex,
then K admits a minimizer (see Remark 2.3) and, as it is a strictly convex function, it is
therefore necessary coercive, which implies in particular that all the minimizing sequences
are bounded.
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2.2 Regularization of the Kohn-Vogelius functional

As mentioned above, when the data completion problem has no solution, the minimization
problem for K fails to have one. Additionally, as recalled in the introduction, the data
completion problem is ill-posed in the sense that, in case of the existence of solution, there
is not a continuous dependence on the given data.

In order to overcome these difficulties, we consider a Tikhonov regularization of the
Kohn-Vogelius functional, which, roughly speaking, allows us to get coerciveness and a
better behavior with respect to noisy data. There is an extensive literature related to this
type of regularization: we recommend in particular the book of Engl et al. [29] which
describes in detail and in full generality the considered regularization.

From now on, for ε > 0, we introduce the regularized Kohn-Vogelius functional Kε :
H−1/2(Γi)×H1/2(Γi)→ R given by

Kε(ϕ,ψ) := K(ϕ,ψ) +
ε

2

(
‖vϕ‖2H1(Ω) + ‖vψ‖2H1(Ω)

)
= K(ϕ,ψ) +

ε

2
‖(vϕ, vψ)‖2(H1(Ω))2 , (2.7)

where K is the previous Kohn-Vogelius functional given by (2.1). Kε is a regularization of
the standard K functional, as it always admits a minimizer, regardless of the compatibility
of the Cauchy data:

Proposition 2.5. Given ε > 0, the functional Kε satisfies the following properties.

1. Kε(ϕ,ψ) is continuous, strictly convex and coercive in H−1/2(Γi)×H1/2(Γi). There-
fore there exists

(ϕ∗ε, ψ
∗
ε) := argmin

(ϕ,ψ)
Kε(ϕ,ψ).

2. The optimality condition for (ϕ∗ε, ψ
∗
ε) to be a minimizer of Kε is: for all (ϕ̃, ψ̃) ∈

H−1/2(Γi)×H1/2(Γi),

a((ϕ∗ε, ψ
∗
ε), (ϕ̃, ψ̃)) + ε · b((ϕ∗ε, ψ∗ε), (ϕ̃, ψ̃)) = `(ϕ̃, ψ̃) (2.8)

where a(·, ·) and `(·) are previously defined by (2.5) and b(·, ·) is defined for all
(ϕ,ψ), (ϕ̃, ψ̃) ∈ H−1/2(Γi)×H1/2(Γi) by

b((ϕ,ψ), (ϕ̃, ψ̃)) = ((vϕ, vψ), (vϕ̃, vψ̃))H1(Ω)×H1(Ω). (2.9)

3. The bilinear form b defines an inner product on H−1/2(Γi)× H1/2(Γi) and the asso-
ciated norm ‖·‖b is equivalent to the standard one in that space.

Proof. We prove each statement.

1. The continuity and convexity are obvious. Assume that Kε is not coercive. Then
there exists a sequence (ϕn, ψn)n and a constant C > 0 such that

lim
n→∞

‖(ϕn, ψn)‖H−1/2(Γi)×H1/2(Γi)
= +∞ and Kε(ϕn, ψn) < C.

This implies ‖vϕn‖H1(Ω) < C and ‖vψn‖H1(Ω) < C for all n which, by the continuity
of trace and normal derivative operators, implies ‖(ϕn, ψn)‖H−1/2(Γi)×H1/2(Γi)

< C
which is in contradiction with the original assumption.

The existence of minimizers comes from the continuity, convexity and coerciveness
of Kε (see, e.g., [16, Chapter 3]).
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2. As in the proof of Proposition 2.2, the result comes from a standard computation.

3. The fact that b defines an inner product is immediate from its bilinearity and the well-
posedness of the problems solved by vϕ and vψ. The equivalence of norms comes from
the continuity of the trace and normal derivative operators and the well-posedness
of the problems solved by vϕ and vψ.

In the following, for ε > 0, we use the following notation (introduced in the previous
proposition)

(ϕ∗ε, ψ
∗
ε) := argmin

(ϕ,ψ)∈H−1/2(Γi)×H1/2(Γi)

Kε(ϕ,ψ)

which always exists due to Proposition 2.5. The following theorem relates the set of mini-
mizers (ϕ∗ε, ψ

∗
ε) of Kε with the functional K and states a condition to assure the existence

of solution for the Cauchy problem (1.3).

Theorem 2.6. The sequence (ϕ∗ε, ψ
∗
ε)ε (ε → 0) is a minimizing sequence of K . There-

fore, it is a bounded sequence if and only the Cauchy problem has a (necessarily unique)
solution uex. In that case

1. (ϕ∗ε, ψ
∗
ε) converges when ε goes to 0 to (ϕ∗, ψ∗), a minimizer of K, strongly in

H−1/2(Γi)×H1/2(Γi);

2. uϕ∗ε converges strongly in H1(Ω) to the solution uex of the Cauchy problem (1.3)
when ε→ 0.

Proof. For all ε > 0, by definition of (ϕ∗ε, ψ
∗
ε) = argmin

(ϕ,ψ)
Kε(ϕ,ψ),

0 ≤ K(ϕ∗ε, ψ
∗
ε) ≤ Kε(ϕ∗ε, ψ∗ε) ≤ Kε(ϕ,ψ), ∀(ϕ,ψ) ∈ H−1/2(Γi)×H1/2(Γi).

Moreover, by definition of infimum, for η > 0, there exists (ϕη, ψη) ∈ H−1/2(Γi)×H1/2(Γi)
such that K(ϕη, ψη) ≤ η

2 . Inserting this pair in the first inequality, we obtain

0 ≤ K(ϕ∗ε, ψ
∗
ε) ≤ Kε(ϕ∗ε, ψ∗ε) ≤ Kε(ϕη, ψη) ≤

ε

2
‖(vϕη , vψη)‖2H1(Ω)×H1(Ω) +

η

2
.

Taking ε∗ > 0 sufficiently small such that ε
2‖(vϕη , vψη)‖2H1(Ω)×H1(Ω) ≤

η
2 for all ε ∈ (0, ε∗),

we have
0 ≤ K(ϕ∗ε, ψ

∗
ε) ≤ Kε(ϕ∗ε, ψ∗ε) ≤ η, ∀ε ∈ (0, ε∗).

Hence K(ϕ∗ε, ψ
∗
ε) −→

ε→0
0 (and Kε(ϕ∗ε, ψ∗ε) −→

ε→0
0). Proposition 2.4 implies then that (ϕ∗ε, ψ

∗
ε)ε

is a bounded sequence if and only the Cauchy problem admits a solution uex.
The same Proposition gives the following weak convergences: (ϕ∗εn , ψ

∗
εn) ⇀ (ϕ∗, ψ∗)

weakly in H−1/2(Γi) × H1/2(Γi) and (uϕ∗εn , uψ∗εn ) ⇀ (uϕ∗ , uψ∗) = (uex, uex + C) weakly in
H1(Ω)×H1(Ω). In order to obtain strong convergence, notice that

0 ≤ εn
2
‖(ϕ∗εn , ψ∗εn)‖2b ≤ Kεn(ϕ∗εn , ψ

∗
εn) ≤ Kεn(ϕ∗, ψ∗) =

εn
2
‖(ϕ∗, ψ∗)‖2b .

Then, passing to the lim sup,

lim sup
n
‖(ϕ∗εn , ψ∗εn)‖b ≤ ‖(ϕ∗, ψ∗)‖b,
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which proves the strong convergence for the data in Γi.
For the other strong convergence, it is enough to prove the strong convergence of vϕ∗εn

to vϕex = vϕ∗ = uϕ∗ − ugD0 = uex − ugD0 . To this, notice that

Kεn(ϕ∗εn , ψ
∗
εn) ≤ Kεn(ϕex, ψex + C) =

εn
2
‖(vϕex , vψex+C)‖2H1(Ω)×H1(Ω).

Hence
lim sup

n
‖(vϕ∗εn , vψ∗εn )‖H1(Ω)×H1(Ω) ≤ ‖(vϕex , vψex + C)‖H1(Ω)×H1(Ω),

which proves the strong convergence.

Remark 2.7. We also have, for some C ∈ R,

uψ∗ε → uex + C in H1(Ω).

We now prove several properties which are useful in the next subsection where we define
a regularizing parameter ε such that we can obtain convergence properties even then the
data (gN , gD) is polluted with noise.

Proposition 2.8. Let (ϕ∗ε, ψ
∗
ε) ∈ H−1/2(Γi) × H1/2(Γi) be the minimizer of Kε. We have

the following statements.

1. The application F : ε →
(
uϕ∗ε , uψ∗ε

)
∈ H1(Ω) × H1(Ω) is continuous for ε > 0

and, if the data (gN , gD) is compatible, it could be continuously extended to 0 with
F (0) = (uϕex , uψex).

2. The application F is (at least) C1
(
(0,∞),H1(Ω)×H1(Ω)

)
. Its derivative is given

by F ′(ε) = (vϕ′ε , vψ′ε) where the pair (ϕ′ε, ψ
′
ε) ∈ H−1/2(Γi) × H1/2(Γi) is the unique

solution of

a((ϕ′ε, ψ
′
ε), (ϕ,ψ)) + εb((ϕ′ε, ψ

′
ε), (ϕ,ψ)) = −b((ϕε, ψε), (ϕ,ψ)),

∀(ϕ,ψ) ∈ H−1/2(Γi)×H1/2(Γi). (2.10)

3. The map ε 7→ 1
2 |uϕ∗ε − uψ∗ε |2H1(Ω) ∈ R is strictly increasing for ε > 0.

Proof. We prove each statement. We first recall that vϕ and vψ solve Problems (2.3).

1. Let h ∈ R such that ε+ h > 0. Let us prove that

‖uϕ∗ε+h − uϕ∗ε , uψ∗ε+h − uψ∗ε‖(H1(Ω))2 −→
h→0

0.

Then let us consider the optimal pairs (ϕ∗ε+h, ψ
∗
ε+h) and (ϕ∗ε, ψ

∗
ε). Subtracting the

optimality conditions of both pairs, we obtain, for all (ϕ,ψ) ∈ H−1/2(Γi)×H1/2(Γi),

a((ϕ∗ε+h − ϕ∗ε, ψ∗ε+h − ψ∗ε), (ϕ,ψ)) + ε · b((ϕ∗ε+h − ϕ∗ε, ψ∗ε+h − ψ∗ε), (ϕ,ψ))

= −h · b((ϕ∗ε+h − ϕ∗ε, ψ∗ε+h − ψ∗ε), (ϕ,ψ)).

Choosing ϕ := ϕ∗ε+h − ϕ∗ε and ψ := ψ∗ε+h − ψ∗ε , we get

|vϕ∗ε+h − vϕ∗ε − (vψ∗ε+h − vψ∗ε )|2H1(Ω) + ε‖(vϕ∗ε+h − vϕ∗ε , vψ∗ε+h − vψ∗ε‖
2
(H1(Ω))2

= −h · ((vϕ∗ε+h , vψ∗ε+h), (vϕ∗ε+h−ϕ∗ε , vψ
∗
ε+h−ψ∗ε ))(H1(Ω))2 .
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Now, notice we have

|((vϕ∗ε+h , vψ∗ε+h), (vϕ∗ε+h−ϕ∗ε , vψ
∗
ε+h−ψ∗ε ))|(H1(Ω))2

≤ ‖(vϕ∗ε+h , vψ∗ε+h)‖(H1(Ω))2 ‖(vϕ∗ε+h−ϕ∗ε , vψ∗ε+h−ψ∗ε )‖(H1(Ω))2

which gives

‖(vϕ∗ε+h − vϕ∗ε , vψ∗ε+h − vψ∗ε )‖2(H1(Ω))2

≤ |h|
ε
‖(vϕ∗ε+h , vψ∗ε+h)‖(H1(Ω))2 ‖(vϕ∗ε+h − vϕ∗ε , vψ∗ε+h − vψ∗ε )‖(H1(Ω))2

and then

‖(vϕ∗ε+h − vϕ∗ε , vψ∗ε+h − vψ∗ε )‖(H1(Ω))2 ≤
|h|
ε
‖(vϕ∗ε+h , vψ∗ε+h)‖(H1(Ω))2 .

Moreover, by definition of Kε+h,

(ε+ h)‖(vϕ∗ε+h , vψ∗ε+h)‖2H1(Ω) ≤ Kε+h(ϕ∗ε+h, ψ
∗
ε+h) ≤ Kε+h(0, 0).

Noticing that

Kε+h(0, 0) =
1

2
|ugD0 − ugN0 |2H1(Ω) ≤ C

(
‖gD‖2H1/2(Γobs)

+ ‖gN‖2H−1/2(Γobs)

)
,

we obtain

‖(vϕ∗ε+h − vϕ∗ε , vψ∗ε+h − vψ∗ε )‖(H1(Ω))2 ≤
|h|
ε
‖(vϕ∗ε+h , vψ∗ε+h)‖(H1(Ω))2

≤
(
‖gD‖2H1/2(Γobs)

+ ‖gN‖2H−1/2(Γobs)

) |h|
ε
√
ε+ h

−→
h→0

0, (2.11)

which concludes the proof.

2. First, the existence and uniqueness of the solution (ϕ′ε, ψ
′
ε) ∈ H−1/2(Γi)×H1/2(Γi) of

Problem (2.10) is due to Lax-Milgram theorem. Indeed, the continuity of the bilinear
form a(·, ·) + εb(·, ·) and of the linear form −b ((ϕ∗ε, ψ

∗
ε), (·, ·)) are due to the well-

posedness of the problems solved by vϕ and vψ and the continuity of a(·, ·) + εb(·, ·)
is due to the continuity of trace operator and normal derivative operators.

Now, let us prove that the derivative of the function F is F ′(ε) = (vϕ′ε , vψ′ε). For
this, let h ∈ R such that ε+ h > 0. From the optimality conditions for (ϕ∗ε, ψ

∗
ε) and

(ϕ∗ε+h, ψ
∗
ε+h) and the condition satisfied from (ϕ′ε, ψ

′
ε), we obtain

a((ϕ∗ε+h − ϕ∗ε − hϕ′ε, ψ∗ε+h − ψ∗ε − hψ′ε), (ϕ,ψ))

+ ε · b((ϕ∗ε+h − ϕ∗ε − hϕ′ε, ψ∗ε+h − ψ∗ε − hψ′ε), (ϕ,ψ))

= h · b((ϕ∗ε − ϕ∗ε+h, ψ∗ε − ψ∗ε+h), (ϕ,ψ)).

Taking ϕ := ϕ∗ε+h − ϕ∗ε − hϕ′ε and ψ := ψ∗ε+h − ψ∗ε − hψ′ε, we use Hölder’s inequality
on the right side to get

|uϕ∗ε+h−ϕ∗ε−hϕ′ε − uψ∗ε+h−ψ∗ε−hψ′ε |
2
H1(Ω) + ε · ‖(vϕ∗ε+h−ϕ∗ε−hϕ′ε , vψ∗ε+h−ψ∗ε−hψ′ε)‖

2
(H1(Ω))2

≤ |h|‖(vϕ∗ε−ϕ∗ε+h , vψ∗ε−ψ∗ε+h)‖(H1(Ω))2 ‖(vϕ∗ε+h−ϕ∗ε−hϕ′ε , vψ∗ε+h−ψ∗ε−hψ′ε)‖(H1(Ω))2
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and then,

‖vϕ∗ε+h−ϕ∗ε−hϕ′ε , vψ∗ε+h−ψ∗ε−hψ′ε‖(H1(Ω))2 ≤
|h|
ε
‖vϕ∗ε−ϕ∗ε+h , vψ∗ε−ψ∗ε+h‖(H1(Ω))2 .

Hence, using the previous bound (2.11), we obtain

‖uϕ∗ε+h − uϕ∗ε − h vϕ′ε , uψ∗ε+h − uψ∗ε − h vψ′ε‖(H1(Ω))2

≤ |h|
ε
C

|h|
ε
√
ε+ h

= C
h2

ε2
√
ε+ h

−→
h→0

0.

To conclude, the continuity of the application F ′ follows from an identical proof of
the continuity of F .

3. Let us define g(ε) := 1
2 |uϕ∗ε − uψ∗ε |2H1(Ω) = 1

2‖∇(uϕ∗ε − uψ∗ε )‖2
(L2(Ω))d

. We have, thanks
to the optimality condition for (ϕ∗ε, ψ

∗
ε) and the system solved by (ϕ′ε, ψ

′
ε),

g′(ε) = (∇(uϕ∗ε − uψ∗ε ),∇(vϕ′ε − vψ′ε))(L2(Ω))d

= a((ϕ∗ε, ψ
∗
ε), (ϕ

′
ε, ψ
′
ε))− `(ϕ′ε, ψ′ε)

= −ε · b((ϕ∗ε, ψ∗ε), (ϕ′ε, ψ′ε))
= ε · a((ϕ′ε, ψ

′
ε), (ϕ

′
ε, ψ
′
ε)) + ε2 · b((ϕ′ε, ψ′ε), (ϕ′ε, ψ′ε))

= ε

∫
Ω
|∇vϕ′ε −∇vψ′ε |2 + ε2‖(vϕ′ε , vψ′ε)‖2(H1(Ω))2 .

Hence g′(ε) > 0 if ε > 0 and we conclude.

2.3 The case of noisy data: choosing the parameter of regularization
with respect to the noise level

As one can expect, in real situations, the data (gN , gD) cannot be measured with com-
plete precision: noise is intrinsically attached with any measurement method. Hence we
consider (gδN , g

δ
D) as a measured data which is assumed to satisfy the following condition

‖gD − gδD‖H1/2(Γobs)
+ ‖gN − gδN‖H−1/2(Γobs)

≤ δ, (2.12)

where δ > 0 is the amplitude of noise on the data. Notice that we do not know if the noisy
data (gδN , g

δ
D) is compatible or not.

In the following we explore the convergence of minimizers of the regularized Kohn-
Vogelius functional Kε associated to noisy data (gδN , g

δ
D) to the minimum of the Kohn-

Vogelius functional without noise, this is, to the solution of the Cauchy problem (1.3).
For this we consider the following Kohn-Vogelius functional associated to the noisy data
(gδN , g

δ
D):

Kδ(ϕ,ψ) =
1

2

∫
Ω
|∇ug

δ
D
ϕ −∇ug

δ
N
ψ |2.

We also consider its regularization (noticing that the regularization term remains un-
changed)

Kδε(ϕ,ψ) = Kδ(ϕ,ψ) +
ε

2
‖(vϕ, vψ)‖2

(H1(Ω))2

and the associated minimizers (ϕ∗ε,δ, ψ
∗
ε,δ). We also consider the linear form `δ associated

to the optimality condition for (ϕ∗ε,δ, ψ
∗
ε,δ) and we introduce d`δ := `δ−` which is the linear

form associated to (dgN , dgD) := (gδN − gN , gδD − gD). We finally recall that (ϕ∗ε, ψ
∗
ε) :=

argmin
(ϕ,ψ)

Kε(ϕ,ψ). Moreover, if (gN , gD) is compatible, we note (ϕ∗, ψ∗) := argmin
(ϕ,ψ)

K(ϕ,ψ).
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2.3.1 A convergence result

The key result, in order to obtain the desired convergence from noisy data to the solution
of our problem, is the following:

Proposition 2.9. We have

‖(ϕ∗ε, ψ∗ε)− (ϕ∗ε,δ, ψ
∗
ε,δ)‖H−1/2(Γi)×H1/2(Γi)

≤ C δ√
ε
. (2.13)

Proof. First, notice that

d`δ(ϕ,ψ) = (`δ − `)(ϕ,ψ) =

(∫
Ω
∇
(
ugD−g

δ
D − ugN−gδN

)
· ∇ (vϕ − vψ)

)
≤ |ugD−gδD − ugN−gδN |H1(Ω) |vϕ − vψ|H1(Ω) ≤ C δ |vϕ − vψ|H1(Ω).

Using ϕ̃ := ϕ∗ε,δ−ϕ∗ε and ψ̃ := ψ∗ε,δ−ψ∗ε in the optimality conditions associated to (gN , gD)

and (gδN , g
δ
D) and subtract the obtained equations, we get

a((ϕ̃, ψ̃), (ϕ̃, ψ̃)) + ε · b((ϕ̃, ψ̃), (ϕ̃, ψ̃)) = d`(ϕ̃, ψ̃).

Hence
|vϕ̃ − vψ̃|

2
H1(Ω) + ε‖ϕ̃, ψ̃‖2b ≤ C · δ · |vϕ̃ − vψ̃|H1(Ω)

and, since a2 + b2 ≥ 2ab,

|vϕ̃ − vψ̃|
2
H1(Ω) + ε‖ϕ̃, ψ̃‖2b ≥ 2

√
ε |vϕ̃ − vψ̃|H1(Ω) ‖ϕ̃, ψ̃‖b.

Joining the previous results, we obtain

‖ϕ̃, ψ̃‖b = ‖ϕ∗ε,δ − ϕ∗ε, ψ∗ε,δ − ψ∗ε‖b ≤ C ·
δ√
ε
,

which gives the result by the equivalence of norms ‖ · ‖b and ‖ · ‖H−1/2(Γi)×H1/2(Γi)
.

As a corollary, we can deduce in a very general way some conditions on the regulariza-
tion parameter ε in order to have convergence in the noisy case.

Corollary 2.10. Given (gN , gD) compatible data associated to the Kohn-Vogelius func-
tional minimizer (ϕ∗, ψ∗). Let us consider ε = ε(δ) such that

lim
δ→0

ε(δ) = 0 and lim
δ→0

δ√
ε

= 0. (2.14)

Then we have
lim
δ→0
‖(ϕ∗ε,δ, ψ∗ε,δ)− (ϕ∗, ψ∗)‖H−1/2(Γi)×H1/2(Γi)

= 0.

Proof. This result is direct from the triangle inequality and Theorems 2.6 and 2.9.
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2.3.2 Strategy to choose ε

The last result gives us a guide on how the regularization parameter ε should be chosen in
order to have convergence to the real solution (when it exists) in the noisy case. However,
these conditions are general and do not respond to any precise objective. In this section
we explore a well-known criterion for choosing the regularization parameter ε based on the
definition of a discrepancy measure: the so-called Morozov discrepancy principle (see [29]
for more details in the general regularization of inverse problems context). We follow the
same strategy as Ben Belgacem et al. in [12] (which is in fact natural with our strategy of
considering the Kohn-Vogelius functional).

Remark 2.11. Notice that the choice of our parameter will depend on the noise level δ
and on the noisy data (gδN , g

δ
D), this is ε = ε(δ, (gδN , g

δ
D)): it is an a-posteriori choice

parameter rule. One may consider an a-priori choice parameter rule which is only based
on the noise, that is ε = ε(δ). However, in order to obtain optimal order of convergence,
one must have some abstract smoothness conditions on the real solution which is, in our
opinion, unrealistic in our setting (see [29] for more details on those strategies).

First, let us assume that our problem has a solution, i.e. the Kohn-Vogelius functionalK
associated to the compatible data (gN , gD) has a minimizer (ϕ∗, ψ∗). Let us define the
discrepancy measure as the error in the Kohn-Vogelius functional with noisy data when we
evaluate it on the solution of our problem, this is:

Kδ(ϕ∗, ψ∗) =
1

2

∫
Ω

∣∣∣∇(ugδDϕ∗ − ugδNψ∗)∣∣∣2
= K(ϕ∗, ψ∗) +

1

2

∫
Ω

∣∣∣∇(udgD0 − udgN0

)∣∣∣2
−
∫

Ω
∇
(
ugDϕ∗ − ugNψ∗

)
· ∇
(
udgD0 − udgN0

)
,

where the second equality is obtained by rewriting ug
δ
D
ϕ∗ = u

gδD−gD+gD
ϕ∗ = udgD0 +ugDϕ∗ and an

analogous expression for ug
δ
N
ψ∗ . Now, as (ϕ∗, ψ∗) is the minimizer of K, we have

K(ϕ∗, ψ∗) = 0 and
∫

Ω
∇
(
ugDϕ∗ − ugNψ∗

)
· ∇
(
udgD0 − udgN0

)
= 0.

From the well-posedness of the problems associated to udgD0 and udgN0 and using (2.12), we
obtain

Kδ(ϕ∗, ψ∗) =
1

2

∫
Ω

∣∣∣∇(udgD0 − udgN0

)∣∣∣2 ≤ C δ2. (2.15)

Keeping this in mind, we redefine the noise amount to Kδ(ϕ∗, ψ∗) = δ2 and we consider
the discrepancy principle based on this notion of noise. Notice that this consideration
basically says we consider, for the discrepancy principle, that the noise level is taken in
a sort of H1 × H1 semi-norm in Ω instead of a H1/2 × H−1/2 norm in the inaccessible
boundary Γi.

By Proposition 2.8, the application ε 7→ Kδ(ϕ∗ε,δ, ψ∗ε,δ) is strictly increasing and therefore
injective. Moreover, it is easy to see that if ε ∈ [0,∞) then Kδ(ϕ∗ε,δ, ψ∗ε,δ) ∈ [0,Kδ(0, 0)). Let
us assume that there exists τ > 1 such that τδ2 ∈ [0,Kδ(0, 0)). This is natural as we expect
that the data we have is not of the same order as the noise: otherwise (ϕ∗, ψ∗) = (0, 0)
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would be an admissible approximation of the exact solution. So, the discrepancy principle
consists, in our case, on choosing ε such that

ε = sup
{
ε : Kδ(ϕ∗ε,δ, ψ∗ε,δ) ≤ τδ2

}
. (2.16)

The idea of choosing the sup is based on the fact that a small regularization parameter
involves less stability, so the natural strategy is to choose the biggest regularization param-
eter such that the discrepancy is in the order of the noise. The injectivity and increasing
monotonicity of the application Kδ implies that ε is simply the parameter such that

Kδ(ϕ∗ε,δ, ψ∗ε,δ) = τδ2. (2.17)

Remark 2.12. It is important to notice that the “redefinition” of the noise estimate does
not involve, for real computations, the knowledge of the real solution (ϕ∗, ψ∗). In fact,
we only use the real solution when we evaluate it into the Kohn-Vogelius functional with
noisy data (gδN , g

δ
D) obtaining the estimate (2.15). We can observe that this quantity only

depends on a constant C and the error estimate δ. Hence, by assuming that C ≤ 1 (which is
itself a strong assumption, as C depends on Poincaré inequality constant and trace theorem
constant2), we can consider Kδ(ϕ∗, ψ∗) = δ2 as the error measure between the real and
measured data which leads to the discrepancy principle formulation given by (2.16).

Now we prove that this a posteriori choice parameter rule satisfies the conditions of
Corollary 2.10.

Proposition 2.13. The regularization parameter choice given by the Morozov discrepancy
principle (2.17)satisfies

lim
δ→0

ε(δ) = 0 and lim
δ→0

δ√
ε

= 0.

This implies, in particular, that we have the following convergence

lim
δ→0
‖(ϕ∗ε,δ, ψ∗ε,δ)− (ϕ∗, ψ∗)‖H−1/2(Γi)×H1/2(Γi)

= 0.

Proof. The first condition is obvious from the definition of ε. Given ε computed by the
discrepancy principle (2.17). By definition

Kδε(ϕ∗ε,δ, ψ∗ε,δ) ≤ Kδε(ϕ∗, ψ∗)
⇐⇒ ε

2
‖(ϕ∗ε,δ, ψ∗ε,δ)‖2b +Kδ(ϕ∗ε,δ, ψ∗ε,δ) ≤ ε

2‖(ϕ∗, ψ∗)‖2b +Kδ(ϕ∗, ψ∗)

and then, using (2.15),

ε
2‖(ϕ∗ε,δ, ψ∗ε,δ)‖2b + τδ2 ≤ ε

2‖(ϕ∗, ψ∗)‖2b + δ2.

Rearranging terms, we obtain for all δ > 0

0 < 2(τ − 1)
δ2

ε
≤ ‖(ϕ∗, ψ∗)‖2b − ‖(ϕ∗ε,δ, ψ∗ε,δ)‖2b .

Hence it suffices to prove

lim
δ→0
‖(ϕ∗ε,δ, ψ∗ε,δ)‖b = ‖(ϕ∗, ψ∗)‖b.

2The estimation of the constant C should be analyzed in detail but is beyond the scope of this work
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To this, first notice that for all δ > 0

‖(ϕ∗ε,δ, ψ∗ε,δ)‖b ≤ ‖(ϕ∗, ψ∗)‖b. (2.18)

In particular
lim sup
δ→0

‖(ϕ∗ε,δ, ψ∗ε,δ)‖b ≤ ‖(ϕ∗, ψ∗)‖b. (2.19)

Now, take a sequence (δn)n −→
n→∞

0. By (2.18), (ϕ∗ε,δn , ψ
∗
ε,δn

)n is bounded in (H−1/2(Γi) ×
H1/2(Γi), ‖ · ‖b). Hence, there exists (ϕ̃, ψ̃) ∈ H−1/2(Γi) × H1/2(Γi) such that, up to a
subsequence, (ϕ∗ε,δn , ψ

∗
ε,δn

)n ⇀ (ϕ̃, ψ̃) weakly in H−1/2(Γi)×H1/2(Γi).
Now, let us prove that (ϕ̃, ψ̃) = (ϕ∗, ψ∗). To this, it suffices to prove that (ϕ̃, ψ̃)

satisfies (2.4) (see [31, Proposition 1.7]). Let us consider the optimality condition (2.8)
which is satisfied by the sequence (ϕ∗ε,δn , ψ

∗
ε,δn

)n:

a((ϕ∗ε,δn , ψ
∗
ε,δn), (ϕ,ψ)) + ε · b((ϕ∗ε,δn , ψ∗ε,δn), (ϕ,ψ)) = `(g

δn
N ,gδnD )(ϕ,ψ).

The linear form a((·, ·), (ϕ,ψ)) is continuous, the second term converges to zero and the
right-hand side term converges to `(gN ,gD)(ϕ,ψ) thanks to:

|`(gδnN ,gδnD )(ϕ,ψ)− `(gN ,gD)(ϕ,ψ)| =
∫

Ω
∇(vϕ − vψ) · ∇(u

gδnN −gN
0 − ug

δn
D −gD

0 ) ≤ C‖(ϕ,ψ)‖ · δ.

Hence, passing to the limit,

a((ϕ̃, ψ̃), (ϕ,ψ)) = `(gN ,gD)(ϕ,ψ), ∀(ϕ,ψ) ∈ H−1/2(Γi)×H1/2(Γi)

and we conclude (ϕ̃, ψ̃) = (ϕ∗, ψ∗).
Finally, the strong continuity of the norm implies the weak lower-semicontinuity and

then
‖(ϕ∗, ψ∗)‖b ≤ lim inf

n
‖(ϕ∗ε,δ, ψ∗ε,δ)‖b.

Since the sequence used is arbitrary, we conclude combining this inequality with (2.19).

2.4 Numerical simulations concerning the data completion problem

2.4.1 Computation of the derivatives of Kε
In order to perform the numerical minimization of the regularized functional Kε via a
gradient algorithm we have to compute its derivatives with respect to ϕ and ψ.

Proposition 2.14. For all (ϕ,ψ), (ϕ̃, ψ̃) ∈ H−1/2(Γi)×H1/2(Γi), the partial derivative of
the functional Kε are given by

∂Kε
∂ϕ

(ϕ,ψ) [ϕ̃] =

∫
Γi

ϕ̃ · (uϕ + εvϕ + wD − ψ) (2.20)

and
∂Kε
∂ψ

(ϕ,ψ)
[
ψ̃
]

= 〈(∂νuψ + ε∂νvψ + ∂νwN − ϕ), ψ̃〉−1/2,1/2,Γi (2.21)

where wN , wD ∈ H1(Ω) are the respective solutions of the following adjoint problems:
−∆wN = −εvψ in Ω
∂νwN = ∂νuϕ − gN on Γobs
wN = 0 on Γi

and


−∆wD = εvϕ in Ω

wD = uψ − gD on Γobs
∂νwD = 0 on Γi.

(2.22)
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In particular, the directions
(
ϕ̃, ψ̃

)
∈ H−1/2(Γi)×H1/2(Γi) given by:

ϕ̃ = ψ − uϕ|Γi − εvϕ|Γi − wD|Γi , (2.23)

and
ψ̃ = −vW |Γi , (2.24)

with W := ϕ− ∂νuψ|Γi − ε∂νvψ|Γi − ∂νwN |Γi ∈ H−1/2(Γi), are descent directions.

We recall that vϕ, vψ ∈ H1(Ω) are the solutions of Problems (2.3).

Proof. Let (ϕ,ψ), (ϕ̃, ψ̃) ∈ H−1/2(Γi)×H1/2(Γi). Easy computations gives

∂Kε
∂ϕ

(ϕ,ψ) [ϕ̃] =

∫
Ω
∇vϕ̃ · (∇uϕ + ε∇vϕ −∇uψ) + ε

∫
Ω
vϕ̃ vϕ (2.25)

and
∂Kε
∂ψ

(ϕ,ψ)
[
ψ̃
]

=

∫
Ω
∇v

ψ̃
· (∇uψ + ε∇vψ −∇uϕ) + ε

∫
Ω
v
ψ̃
vψ. (2.26)

Then, using Green formula in the adjoint problem solved by wN (see (2.22)) and in problem
solved by v

ψ̃
(see (2.3)) and in the adjoint problem solved by wD (see (2.22)) and in problem

solved by vϕ̃ (see (2.3)), we get∫
Γi

ψ̃ ∂νwN = ε

∫
Ω
vψvψ̃ +

∫
Γobs

v
ψ̃

(gN − ∂νuϕ)

and ∫
Γi

ϕ̃ wD = ε

∫
Ω
vϕvϕ̃ +

∫
Γobs

∂νvϕ̃ (gD − uψ).

Thus, from the expression (2.25), we get

∂Kε
∂ϕ

(ϕ,ψ) [ϕ̃] =

∫
∂Ω
∂νvϕ̃ (uϕ + εvϕ − uψ) + ε

∫
Ω
vϕ̃ vϕ =

∫
Γi

ϕ̃ (uϕ + εvϕ − uψ + wD).

With an analogous procedure for (2.26) we obtain (2.21).
Is important to remark that the formula for ϕ̃ should be understood as the representa-

tive of the natural linear functional associated to the given expression (which is in H1/2(Γi))
in order to be understood in the proper space. For the descent direction ψ̃, we should notice
that

∂Kε
∂ψ

[ψ̃] = 〈W, ψ̃〉.

However, from the variational formulation of vW , we have, for all u ∈ H1(Ω) such that
u|Γobs = 0, ∫

Ω
∇vW · ∇u = 〈W,u〉.

Hence, taking u = −vW , we obtain

−
∫

Ω
|∇vW |2 = 〈W,−vW 〉 < 0,

and we conclude.
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2.4.2 Framework of the numerical simulations

To make the numerical simulations presented here, we use a P1 finite elements discretiza-
tion to solve the Laplace’s equations (2.2) and (2.3), and Poisson’s equations (2.22) related
to the adjoint states.

The framework is the following: the exterior boundary is assumed to be the border
of the square Ω = [−0.5, 0.5] × [−0.5, 0.5]. Except when mentioned, we consider here
Γobs = ([−0.5, 0.5] × {−0.5}) ∪ ({−0.5} × [−0.5, 0.5]) ∪ ({0.5} × [−0.5, 0.5]) and Γi =
[−0.5, 0.5] × {0.5}. The Cauchy data (gN , gD) is the trace and normal derivative of the
harmonic function u(x, y) = y3−3x2y. The inclusion of noise will depend on the test itself
and will be described below. Finally, we remark that Problems (2.2), (2.3), (2.22) are well
posed in this case, following the results of Savare [45] and noticing that in this case the
angle in which the boundaries meet is π/2 ∈ [0, π).

In order to update the construction of (ϕ,ψ) to approach (ϕ∗ε, ψ
∗
ε), we follow a gradient

algorithm, for which the descent directions are given in detail in Proposition 2.14.

Algorithm

1. Let k = 0. Fix kmax (max. number of iterations) and tol (tolerance), choose (ϕ0, ψ0)
as the initial guess of the missing data.

2. Solve Problems (2.2) with (ϕk, ψk), extract the solutions uϕk , uψk and compute
K(ϕk, ψk).

• If K(ϕk, ψk) < tol: STOP.
• Else: continue to next step.

3. Solve Problems (2.3), (2.22) with (ϕk, ψk), extract the solutions vϕk , vψk , wN (ϕk, ψk)
and wD(ϕk, ψk).

4. Compute the descent directions ϕ̃, ψ̃ using formulas (2.23), (2.24) with (ϕk, ψk) and
the solutions given in steps 2 and 3.

5. Update ϕk ← (ϕk − α1ϕ̃), ψk ←
(
ψk − α2ψ̃

)
.

6. While k ≤ kmax and Kε(ϕk, ψk) − Kε(ϕk−1, ψk−1) < tol, get back to the step 2,
k ← k + 1.

The step lengths α1, α2 are set as fixed parameters in our simulations with α1 = α2 =
0.01, the maximum number of iterations kmax is set to 100 and the tolerance tol for the
functional is set to 0.1. In the case when noise is considered into the measurements, it is
considered in the following way: given a measure g in a region O ⊂ ∂Ω, we introduce the
noisy version of g, denoted gσ, as:

gσ := g + σ
‖g‖L2(O)

‖u‖L2(O)
u,

where u is a random variable given by an uniform distribution in [0, 1) and σ > 0 is a
scaling parameter. Notice that this definition implies that the data g is contaminated by
some relative error of amplitude σ in L2(O). So, the noisy data into Γobs will be (gσN , g

σ
D).

In this work we consider σ = 0.05, which corresponds to a noise of 5% with respect to the
original measurements.

To conclude, we precise that we have used the finite elements library FreeFEM++
(see [37]) to make the simulations. We present several simulations, with or without noise,
in the following subsections and comment these results in Subsection 2.4.5.
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2.4.3 Numerical simulations without noise

Under the considerations given in the previous section we present the results of the above
algorithm in the case where the data (gN , gD) is free from noise. Here we consider (ϕ0, ψ0) =
(∂νuex− 0.1,−x2) and ε is tested for several values. We summarize the obtained results in
Figure 2 and Table 1. The results show that the algorithm is capable to reduce the error

Figure 2: Non noisy case (Left: real solution. Right: obtained solution after 27 iterations.)

Table 1: Non noisy case
initial error (k = 0) ε = 0.1 ε = 0.01 ε = 0.001

L2(Ω) error uD 0.0450 0.0343 0.0272 0.0255
uN 0.1244 0.0857 0.0860 0.0860

L2(Γi) error uD 0.0401 0.0411 0.0390 0.0381
uN 0.1679 0.0975 0.0985 0.0984

from the first guess in order to approximate the real solution. We can also observe that
the regularization parameter ε should be adjusted in order to obtain better results.

2.4.4 Numerical simulations with noise

Now we want to observe if the addition of noise generates dramatic changes in the solution,
as it happens in the non-regularized case due to the ill-posedness of the problem. Under
the same considerations as in the non-noisy case, we obtain the results given in Figure 3
and Table 2. Here again, the reconstruction of the data (and of the solution) is effective.

Table 2: Noisy case (5%).
Case Γobs ∩ Γi 6= ∅ initial error (k = 0) ε = 0.1 ε = 0.01 ε = 0.001

L2(Ω) error uD 0.0798 0.0221 0.0315 0.0096
uN 0.1534 0.0873 0.0856 0.0865

L2(Γi) error uD 0.0541 0.0359 0.0452 0.0340
uN 0.1679 0.1030 0.0971 0.1003
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Figure 3: Noisy case (5%) (Left: real solution. Right: obtained solution after 32 iterations.)

2.4.5 Comments on the simulations

The exposed examples show that our algorithm is effective to improve the guess (ϕ0, ψ0) in
order to approximate the data to the real one. We can also observe that the regularization
parameter ε reveals better results for the values 10−2 and 10−3. This is in concordance with
the results obtained in [7] which also reveals that the regularization is effective in order to
avoid big errors in the obtained solutions when noise is introduced to the accessible data.

3 The inverse obstacle problem with partial Cauchy data

We now focus on the numerical reconstruction of an unknown object ω∗ (i.e. the obstacle),
included into the domain of study Ω, which is characterized by an homogeneous Dirich-
let boundary condition, only from the knowledge of the Cauchy data (gN , gD) measured
into the observable part Γobs of ∂Ω. We recall that in order to study this initial inverse
problem (1.1), we focus on the optimization problem (1.4). However, taking into account
our previous theoretical study of the data completion problem, we have to regularize the
Kohn-Vogelius functional K. Hence, in the following, we consider, instead of (1.4), the
following optimization problem

(ω∗, ϕ∗, ψ∗) ∈ argmin
(ω,ϕ,ψ)∈D×H−1/2(Γi)×H1/2(Γi)

Kε(ω, ϕ, ψ)

where the set of admissible geometries D is given by (1.2) and where Kε is the regularized
nonnegative Kohn-Vogelius cost functional defined by

Kε(ω, ϕ, ψ) := K(ω, ϕ, ψ) +
ε

2
‖(vϕ, vψ)‖2(H1(Ω\ω))2

=
1

2

∫
Ω\ω
|∇uϕ −∇uψ|2 +

ε

2
‖(vϕ, vψ)‖2(H1(Ω\ω))2 ,

where uϕ, uψ ∈ H1(Ω\ω) and vϕ, vψ ∈ H1(Ω\ω) are the respective solutions of Prob-
lems (1.6) and (1.7).

To minimize the functional Kε, we first compute the gradient in order to make a descent
method to reconstruct numerically the solution. The partial derivatives with respect to ϕ
and ψ are given by Proposition 2.14 and we compute the shape gradient in the following
subsection.
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3.1 Shape derivative of the Kohn-Vogelius functional

We also define Ωd0 an open set with a C∞ boundary such that

{x ∈ Ω ; d(x, ∂Ω) > d0/2} ⊂ Ωd0 ⊂ {x ∈ Ω ; d(x, ∂Ω) > d0/3} .
In order to define the shape derivatives, we will use the velocity method introduced by Murat
and Simon in [42]. To this end, we need to introduce the following space of admissible
deformations

U :=
{
V ∈W2,∞(Rd); Supp V ⊂ Ωd0

}
.

In particular we are interested in the shape gradient of Kε defined by

DKε(ω) · V := lim
t→0

Kε ((I + tV )(ω))−Kε(ω)

t
.

For details concerning the differentiation with respect to the domain, we refer to the papers
of Simon [46, 47] and the books of Henrot and Pierre [38] and of Sokołowski and Zolésio [48].
We precise that we omit to precise the dependance with respect to ϕ and ψ in this section,
that is we write Kε(ω) instead of Kε(ω, ϕ, ψ).

We consider a domain ω ∈ D. Then we have the following proposition.

Proposition 3.1 (First order shape derivative of the functional). For V ∈ U , the regu-
larized Kohn-Vogelius cost functional Kε is differentiable at ω in the direction V with

DKε(ω) · V = −
∫
∂ω

(∂νρ
u
N · ∂νuϕ + ∂νρ

v
N · ∂νvϕ)(V · ν) +

1

2

∫
∂ω
|∇w|2 (V · ν)

−
∫
∂ω

(∂νρ
u
D · ∂νuψ + ∂νρ

v
D · ∂νvψ)(V · ν)

+
ε

2

∫
∂ω

(|∇vϕ|2 + |∇vψ|2 + |vϕ|2 + |vψ|2)(V · ν), (3.1)

where w := uϕ − uψ and where ρuD, ρ
u
N , ρ

v
D, ρ

v
N ∈ H1(Ω \ ω) are the respective solutions of

the following adjoint problems
−∆ρuN = 0 in Ω\ω

ρuN = gD − uψ on Γobs
∂νρ

u
N = 0 on Γi
ρuN = 0 on ∂ω,


−∆ρvN = −εvϕ in Ω\ω

ρvN = 0 on Γobs
∂νρ

v
N = 0 on Γi
ρvN = 0 on ∂ω

(3.2)

and 
−∆ρuD = 0 in Ω\ω
∂νρ

u
D = 0 on Γobs
ρuD = ψ − uϕ on Γi
ρuD = 0 on ∂ω,


−∆ρvD = −εvψ in Ω\ω
∂νρ

v
D = 0 on Γobs
ρvD = εψ on Γi
ρvD = 0 on ∂ω.

(3.3)

Proof. First, notice that the existence of the shape derivatives u′ϕ, v′ϕ, u′ψ, v
′
ψ ∈ H1(Ω\ω) is

standard and is based on Implicit function theorem. We refer to [38, Chapter 5] for details
(see also [8] for example). Moreover, these shape derivatives are respectively characterized
as the solution of the following problems (see again [38, Chapter 5]):
−∆u′ϕ = 0 in Ω\ω

u′ϕ = 0 on Γobs
∂νu

′
ϕ = 0 on Γi
u′ϕ = −∂νuϕ(V · ν) on ∂ω,


−∆v′ϕ = 0 in Ω\ω

v′ϕ = 0 on Γobs
∂νv
′
ϕ = 0 on Γi
v′ϕ = −∂νvϕ(V · ν) on ∂ω

(3.4)
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and
−∆u′ψ = 0 in Ω\ω
∂νu

′
ψ = 0 on Γobs
u′ψ = 0 on Γi
u′ψ = −∂νuψ(V · ν) on ∂ω,


−∆v′ψ = 0 in Ω\ω
∂νv
′
ψ = 0 on Γobs
v′ψ = 0 on Γi
v′ψ = −∂νvψ(V · ν) on ∂ω.

(3.5)
Introducing w := uϕ − uψ and w′ := u′ϕ − u′ψ, we use Hadamard formula (see [38,

Theorem 5.2.2]) to get

DKε(Ω\ω) · V =

∫
Ω\ω
∇w′ · ∇w +

1

2

∫
∂ω
|∇w|2 (V · ν)

+ ε

∫
Ω\ω

(
∇v′ϕ · ∇vϕ +∇v′ψ · ∇vψ + v′ϕ vϕ + v′ψ vψ

)
+
ε

2

∫
∂ω

(
|∇vϕ|2 + |∇vψ|2 + |vϕ|2 + |vψ|2

)
(V · ν).

Using Green formula into the variational formulation of (3.2) and (3.4) and of (3.3)
and (3.7) respectively, we obtain:∫

Ω\ω
∇w · ∇u′ϕ + ε

∫
Ω\ω

(
∇v′ϕ · ∇vϕ + v′ϕ · vϕ

)
= −

∫
∂ω
∂νρ

u
N · ∂νuϕ(V · ν)

−
∫
∂ω
∂νρ

v
N · ∂νvϕ(V · ν)

and

−
∫

Ω\ω
∇w · ∇u′ψ + ε

∫
Ω\ω

(
∇v′ψ · ∇vψ + v′ψ · vψ

)
= −

∫
∂ω
∂νρ

u
D · ∂νuψ(V · ν)

−
∫
∂ω
∂νρ

v
D · ∂νvψ(V · ν),

which concludes the proof.

3.2 Framework for the numerical simulations

Theorem 2 in [3] explains the difficulties encountered to solve numerically the reconstruc-
tion of ω. Indeed, the shape gradient has not an uniform sensitivity with respect to the
deformation direction. Hence, since the inverse obstacle problem is severely ill-posed, we
need some regularization methods to solve it numerically, for example by adding to the
functional a penalization in terms of the perimeter (see [17] or [25]). Here, we choose to
make a regularization by parametrization using a parametric model of shape variations.

As before, all the involved systems are discretized using P1 finite elements. The frame-
work is the same as in Section 2.4.2 for the domain Ω, the boundaries Γobs and Γi and the
initial guess (ϕ0, ψ0). The real object ω∗ is detailed on each simulation, as well as their
initial guess ω0. In order to have a suitable pair of Cauchy data and real domain ω∗, we
use synthetic data: we fix a shape ω∗, we solve the Laplace’s equation in Ω\ω∗ with an
explicit data gD (or gN ) over ∂Ω and homogeneous Dirichlet boundary condition over ∂ω
by means of another finite element method (here a P2 finite element discretization) from
where we extract the corresponding data gN (or gD) by computing the value ∂νu (or u)
on Γobs.
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For the obstacle numerical reconstruction, we follow the same strategy than in [3] or
in [22] that we recall for readers convenience. We restrict ourselves to star-shaped domains
and use polar coordinates for parametrization: the boundary ∂ω of the object can be then
parametrized by

∂ω =

{(
x0

y0

)
+ r(θ)

(
cos θ
sin θ

)
, θ ∈ [0, 2π)

}
,

where x0, y0 ∈ R and where r is a C1,1 function, 2π-periodic and without double point.
Taking into account of the ill-posedness of the problem, we approximate the polar radius r
by its truncated Fourier series

rN (θ) := aN0 +

N∑
k=1

aNk cos(kθ) + bNk sin(kθ),

for the numerical simulations. Indeed this regularization by projection permits to remove
high frequencies generated by cos(kθ) and sin(kθ) for k >> 1, for which the functional is
degenerated. Then the unknown shape is entirely defined by the coefficients (ai, bi). Hence,
for k = 1, . . . , N , the corresponding deformation directions are respectively,

V 1 := V x0 :=

(
1
0

)
, V 2 := V y0 :=

(
0
1

)
, V 3(θ) := V a0(θ) :=

(
cos θ
sin θ

)
,

V 2k+2(θ) :=V ak(θ) :=cos(kθ)

(
cos θ
sin θ

)
, V 2k+3(θ) :=V bk(θ) :=sin(kθ)

(
cos θ
sin θ

)
,

θ ∈ [0, 2π). The gradient is then computed component by component using its characteri-
zation (see Proposition 3.1, formula (3.1)):(

∇Kε(ω)
)
k

= DKε(ω) · V k, k = 1, . . . , 2N + 3.

3.3 Algorithm

The algorithm in this part is basically the same as the one for the data completion problem:
we follow again a scheme of gradient algorithm but now we include also the modification
of the shape of ω which is updated on each iteration by the value of the shape derivative
of our functional on each direction considered in the parametrization of ω.

Algorithm

1. Let k = 0. Fix kmax (max. number of iterations) and tol (tolerance), choose (ϕ0, ψ0)
as the initial guess of the missing data.

2. Solve problems (1.6) and (1.7) with (ωk, ϕk, ψk), extract the solutions ukD(ωk, ϕk, ψk) :=
uϕk , u

k
N (ωk, ϕk, ψk) := uψk , v

k
D(ωk, ϕk, ψk) := vϕk , v

k
N (ωk, ϕk, ψk) := vψk and com-

pute K(ωk, ϕk, ψk).

• If K(ωk, ϕk, ψk) < tol: STOP.

• Else: continue to next step.

3. Solve problems (2.22) (defined into Ω \ ωk with homogeneous Dirichlet condition
over ∂ω), (3.2) and (3.3) with (ωk, ϕk, ψk), extract the solutions wN (ωk, ϕk, ψk),
wD(ωk, ϕk, ψk), ρ

u
D(ωk, ϕk, ψk), ρ

u
N (ωk, ϕk, ψk), ρ

v
D(ωk, ϕk, ψk) and ρvN (ωk, ϕk, ψk).
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4. Compute the descent directions ϕ̃, ψ̃ using formulas (2.23), (2.24) with (ϕk, ψk) and
the solutions given in steps 2 and 3.

5. Compute ∇Kε(ωk) using formula (3.1).

6. Update ϕk ← (ϕk − α1ϕ̃), ψk ←
(
ψk − α2ψ̃

)
, ωk ← ωk − α3∇Kε(ωk).

7. While k ≤ kmax and Kε(ωk, ϕk, ψk) − Kε(ωk−1, ϕk−1, ψk−1) < tol, get back to the
step 2, k ← k + 1.

As before, the step lengths α1, α2, α3 are set as fixed parameters in our simulations with
α1 = α2 = 0.01, α3 = 0.025, the maximum number of iterations kmax is set to 250 and
the tolerance tol for the functional is set to 0.1. We precise that we here use the adaptive
method described in [22, Section 4.3]. It consists in increasing gradually the number of
parameters during the algorithm to a fixed final number of parameters. For example, if we
want to work with nineteen parameters, we begin by working with two parameters during
five iterations, then with three parameters (we add the radius) during five more iterations,
and then we add two search parameters every fifteen iterations. The algorithm is then the
same than the one described above only replacing step 4. by

ωk(1 : m)← ωk(1 : m)− αi∇Kε(Ω \ ωk)(1 : m),

where ωk(1 : m) represents the m first coefficients parametrizing the shape ωk (the same
notation holds for ∇Kε(Ω \ωk)(1 : m)). The number m grows to the fixed final number of
parameters following the procedure described previously.

To conclude, we precise that we use, as before, the finite elements library FreeFEM++
(see [37]) to make the simulations into this part and the noisy case has the same consider-
ations, in particular the construction of noise, as the ones of the data completion part.

3.4 Numerical simulations

In our first series of simulations (with and without noise), we try to detect a disk cen-
tered in the origin with radius r = 0.25, this is ω∗ = D((0, 0), 0.25). We consider
the initial object ω0 as the disk centered in (−0.1, 0.1) with radius r = 0.20, this is:
ω0 = D((−0.1, 0.1), 0.20). The number of parameters is set to the maximum of 15. The
detection is effective as shown in Figure 4 and Table 3 for the non noisy case and in Figure 5
and Table 4 for the noisy case (5%).

Table 3: Data completion for the object detection problem, non noisy case.
ε = 0.1 ε = 0.01 ε = 0.001

Approximated Center (-0.019,-0.006) (-0.022,-0.003) (-0.023,-0.002)

L2(Γi) error uD 0.0958 0.0902 0.0899
uN 0.0919 0.0927 0.0928

Table 4: Data completion for the object detection problem, noisy case (5%).
ε = 0.1 ε = 0.01 ε = 0.001

Approximated Center (-0.021,-0.017) (-0.021,-0.003) (-0.024,-0.001)

L2(Γi) error uD 0.0998 0.0930 0.1033
uN 0.0946 0.0935 0.0953
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Figure 4: Object detection without noise: Real solution, initial guess and obtained obstacle
(ε = 0.001).
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Figure 5: Object detection with noise (5%): Real solution, initial guess and obtained
obstacle. (ε = 0.01).

In a second series of simulations, we consider now a more complicated obstacle to test
the method: we try to detect a square with relative center C = (0.0,−0.1) and side d = 0.4.
The idea is to study the behavior of the method in the case where a non regular obstacle
is introduced. The initial object ω0 is set to be the disk centered in (0.0, 0.0) with radius
r = 0.2, this is: ω0 = D((0.0, 0.0), 0.2). As before, the number of parameters is set to the
maximum of 15. Here again, we approximate the obstacle as underline in Figure 6 and
Table 5 for the non noisy case and in Figure 7 and Table 6 for the noisy case (5%)

3.5 Comments on the simulations

These simulations show that our algorithm permits to correct the guess localization and
shape of the introduced disk in order to obtain a better approximation of the real obstacle.
Note that the algorithm is capable to detect that the number of active parameters could
be wrong. Indeed, in the first series of simulations, the algorithm stops when it tries to
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Figure 6: Object detection without noise: Real solution, initial guess and obtained obstacle
(ε = 0.001)

Table 5: Data completion for the object detection problem, non-noisy case.
ε = 0.1 ε = 0.01 ε = 0.001

Relative Center (-0.000,-0.071) (-0.000,-0.082) (-0.000,-0.086)

L2(Γi) error uD 0.0758 0.0688 0.0666
uN 0.0901 0.0878 0.0869
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Figure 7: Object detection without noise: Real solution, initial guess and obtained obstacle
(ε = 0.001).

Table 6: Data completion for the object detection problem, noisy case (5%).
ε = 0.1 ε = 0.01 ε = 0.001

Relative Center (0.010,-0.067) (-0.001,-0.083) (-0.002,-0.088)

L2(Γi) error uD 0.0888 0.0720 0.0641
uN 0.0916 0.0895 0.0878
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include more parameters than the real ones (only 3, as we are approximating a circle). In
the second series of examples the algorithm continues until the inclusion of 9 parameters,
which approximates better the corners and the relative area covered by the square.

3.6 Comparison with the case of complete boundary data

In this section, we compare descriptively our method against the case where we have full
boundary data, this is, using the shape gradient algorithm with full boundary data. The
idea is to compare the obtained results in order to have a better understanding of the
capabilities of our proposed algorithm and their limitations.

In the case of full boundary data (gD, gN ) ∈ H1/2(∂Ω) × H−1/2(∂Ω), we consider the
following Kohn-Vogelius functional:

KV (ω) =
1

2

∫
Ω\ω
|∇(uD(ω)− uN (ω))|2 , (3.6)

where uD, uN ∈ H1(Ω \ ω) satisfy
−∆uD = 0 in Ω\ω

uD = gD on ∂Ω
uD = 0 on ∂ω,

and


−∆uN = 0 in Ω\ω
∂νuN = gN on ∂Ω
uN = 0 on ∂ω.

(3.7)

Moreover, the shape derivative of the Kohn-Vogelius functional KV for the shape ω in the
direction V ∈ U is given by:

DKV (ω) · V =

∫
∂ω

(
∂ν(uD − uN ) · ∂νuD +

1

2
|∇(uD − uN )|2

)
(V · ν). (3.8)

Then we follow the same considerations as in Section 3.2, this is, we consider a polar
coordinate parametrization of the boundary ∂ω by means of a truncated Fourier series
expansion of the polar radius and use the same perturbation directions V proposed there.
Hence we consider the following algorithm for the full boundary data case.

Algorithm

1. Let k = 0. Fix kmax (max. number of iterations), tol (tolerance) and ω0.

2. Solve problems (3.7) with ωk, extract the solutions
ukD(ωk), u

k
N (ωk) and compute KV (ωk).

• If KV (ωk) < tol: STOP.

• Else: continue to next step.

3. Compute ∇KV (ωk) using formula (3.8),

4. Update ωk ← ωk − α∇KV (ωk).

5. While k ≤ kmax and KV (ωk)−KV (ωk−1) < tol, get back to the step 2, k ← k + 1.

Finally, it is important to notice that in this case there is no regularization term since there
is no completion data problem. However, the truncated Fourier series approximation for
the unknown object boundary ∂ω acts as a regularization method for this ill-posed inverse
obstacle problem.
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In this section, we consider the following example. Inside the exterior domain Ω =
[−1.0, 1.0]× [−1.0, 1.0], we want to detect the obstacle ω∗ such that their boundary ∂ω∗ is
given by:

∂ω∗ =

{(
0.05
−0.20

)
+ (0.40− 0.05 cos(θ) + 0.05 sin(θ)− 0.20 sin(2θ))

(
cos θ
sin θ

)
, θ ∈ [0, 2π)

}
.

The real solution satisfies the overdetermined system:
−∆uex = 0 in Ω \ ω∗

uex = gD on ∂Ω
∂νuex = gN on ∂Ω
uex = 0 on ∂ω∗,

(3.9)

where gN = 1 and gD is constructed following the considerations given in Section 3.2. In
the partial data case, we consider Γobs and Γi as defined in the previous examples and we
set (ϕ0, ψ0) = (0.9, 1.0) and ε = 0.001.

In Figure 8, we can observe the behavior of both algorithms starting from the same
guess ω0 = D((0.05,−0.50), 0.40). The shape gradient with full boundary data provides
very accurate results for this problem, this has been pointed out in several works and
contexts (see for example [22]). On the other hand our algorithm provides interesting
results in this case, the obtained shape is similar in the regions close to the boundary
where Cauchy data is available Γobs however it tends to be of lower quality in the border
which is closer to the upper boundary of the square, this is, in the inaccessible region Γi.
However, we have similar defects as the full boundary data algorithm in the regions close
to the observable boundary.
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Figure 8: Comparison between algorithms in the non noisy case.

The noisy case shows (see Figure 9), as we have seen in the previous examples, that
our algorithm is robust and permits to obtain similar results even when the data (gN , gD)
is polluted with a moderated amount of noise (σ = 5%).

4 Conclusion

Using a Kohn-Vogelius approach, we have performed the detection of an obstacle immersed
in a two dimensional domain governed by Laplace’s equation by means of partial bound-
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Figure 9: Comparison between algorithms in the noisy case (5%).

ary measurements (gN , gD) on an accessible part of the boundary Γobs  ∂Ω. We have
proposed a functional which consider several unknowns: the obstacle ω and the inacces-
sible data (ϕ,ψ) on the inaccessible part of the boundary Γi. The minimization of this
functional is then equivalent to solve two ill-posed problems: the data completion prob-
lem and the obstacle detection problem. Concerning the data completion problem, we
have obtained several results such as the existence of a solution and we have introduced a
Tikhonov regularization in order to deal with the ill-posedness of the problem, obtaining
several convergence properties to the real solution even when only noisy data is available.
Finally we have proposed an algorithm to solve the inverse obstacle problem with partial
boundary data which combines the data completion part and a shape optimization part
using gradient algorithms. We obtain good reconstructions and compare these results with
the full boundary data case.
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