
HAL Id: hal-01624255
https://hal.science/hal-01624255v1

Submitted on 26 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Safe Sets in Graphs: Graph Classes and Structural
Parameters

Nathann Cohen, Raquel Águeda, Shinya Fujita, Sylvain Legay, Yannis
Manoussakis, Yasuko Matsui, Leandro Montero, Reza Naserasr, Yota Otachi,

Tadashi Sakuma, et al.

To cite this version:
Nathann Cohen, Raquel Águeda, Shinya Fujita, Sylvain Legay, Yannis Manoussakis, et al.. Safe
Sets in Graphs: Graph Classes and Structural Parameters. COCOA 2016 - 10th International Con-
ference Combinatorial Optimization and Applications, Dec 2016, Hong Kong, China. pp.241-253.
�hal-01624255�

https://hal.science/hal-01624255v1
https://hal.archives-ouvertes.fr

Safe Sets in Graphs: Graph Classes and

Structural Parameters

Raquel Águeda1, Nathann Cohen2, Shinya Fujita3, Sylvain Legay2,
Yannis Manoussakis2, Yasuko Matsui4, Leandro Montero2, Reza Naserasr5,

Yota Otachi6, Tadashi Sakuma7, Zsolt Tuza8, and Renyu Xu9

1 Universidad de Castilla-La Mancha, Spain.
2 LRI, University Paris-Sud, France.
3 Yokohama City University, Japan.

4 Tokai University, Japan.
5 LIAFA, University Paris-Diderot, France.

6 Japan Advanced Institute of Science and Technology, Japan.
7 Yamagata University, Japan.

8 MTA Rényi Institute, Budapest, and University of Pannonia, Veszprém, Hungary.
9 Shandong University, China.

Abstract. A safe set of a graph G = (V,E) is a non-empty subset S
of V such that for every component A of G[S] and every component
B of G[V \ S], we have |A| ≥ |B| whenever there exists an edge of G
between A and B. In this paper, we show that a minimum safe set can
be found in polynomial time for trees. We then further extend the result
and present polynomial-time algorithms for graphs of bounded treewidth,
and also for interval graphs. We also study the parameterized complexity
of the problem. We show that the problem is fixed-parameter tractable
when parameterized by the solution size. Furthermore, we show that this
parameter lies between tree-depth and vertex cover number.

Keywords: graph algorithm, safe set, treewidth, interval graph, fixed-
parameter tractability.

1 Introduction

In this paper, we only consider finite and simple graphs. The subgraph of a graph
G induced by S ⊆ V (G) is denoted by G[S]. A component of G is a connected
induced subgraph of G with an inclusionwise maximal vertex set. For vertex-
disjoint subgraphs A and B of G, if there is an edge between A and B, then A
and B are adjacent.

In a graph G = (V,E), a non-empty set S ⊆ V of vertices is a safe set if,
for every component A of G[S] and every component B of G[V \ S] adjacent to
A, it holds that |A| ≥ |B|. If a safe set induces a connected subgraph, then it is
a connected safe set. The safe number s(G) of G is the size of a minimum safe
set of G, and the connected safe number cs(G) of G is the size of a minimum
connected safe set of G. It is known that s(G) ≤ cs(G) ≤ 2 · s(G)− 1 [10].

1

The concept of (connected) safe number was introduced by Fujita et al. [10].
Their motivation came from a variant of facility location problems, where the
goal is to find a “safe” subset of nodes in a network to place facilities. They showed
that the problems of finding a minimum safe set and a minimum connected safe
set are NP-hard in general. They also showed that a minimum connected safe
set in a tree can be found in linear time.

The main contribution of this paper is to give polynomial-time algorithms for
finding a minimum safe set on trees, graphs of bounded treewidth, and interval
graphs. We also show that the problems are fixed-parameter tractable when
parameterized by the solution size.

The rest of the paper is organized as follows. In Section 2, we present an
O(n5)-time algorithm for finding a minimum safe set on trees. In Section 3, we
generalize the algorithm to make it work on graphs of bounded treewidth. In
Section 4, we show that the problem can be solved in O(n8) time for interval
graphs. In Section 5, we show the fixed-parameter tractability of the problem
when the parameter is the solution size. We also discuss the relationship of
safe number to other important and well-studied graph parameters. In the final
section, we conclude the paper with a few open problems.

2 Safe sets in trees

Recall that a tree is a connected graph with no cycles. In this section, we prove
the following theorem.

Theorem 2.1. For an n-vertex tree, a safe set of the minimum size can be found
in time O(n5).

We only show that the size of a minimum safe set can be computed in O(n5)
time. It is straightforward to modify the dynamic program below for computing
an actual safe set in the same running time.

In the following, we assume that a tree T = (V,E) has a root and that the
children of each vertex are ordered. For a vertex u ∈ V , we denote the set of
children of u by CT (u). By Vu we denote the vertex set that consists of u and
its descendants. We define some subtrees induced by special sets of vertices as
follows (see Fig. 1):

– For a vertex u ∈ V , let T (u) = T [Vu].
– For an edge {u, v} ∈ E where v is the parent of u, let T (u→ v) = T [{v}∪Vu].

– For u ∈ V with children w1, . . . , wd, let T (u, i) = T
[

{u} ∪
∪

1≤j≤i Vwj

]

.

Note that T (u, 1) = T (w1 → u) if w1 is the first child of u, T (u) = T (u, |CT (u)|)
if u is not a leaf, and T = T (ρ) if ρ is the root of T .

Fragments: For a subtree T ′ of T and S ⊆ V (T ′), a fragment in T ′ with respect
to S is the vertex set of a component in T ′[S] or T ′[V (T ′)\S]. We denote the set
of fragments in T ′ with respect to S by F(T ′, S). The fragment that contains

2

u v

w x

ρ

T (u)

T (v → w) T (x, 2)

Fig. 1. Subtrees T (u), T (v → w), and T (x, 2).

the root of T ′ is active, and the other fragments are inactive. Two fragments
in F(T ′, S) are adjacent if there is an edge of T ′ between them. A fragment
F ∈ F(T ′, S) is bad if it is inactive, F ⊆ S, and there is another inactive
fragment F ′ ∈ F(T ′, S) adjacent to F with |F | < |F ′|.

(T ′, b, s, a)-feasible sets: For b ∈ {t, f}, s ∈ {0, . . . , n}, and a ∈ {1, . . . , n}, we
say S ⊆ V (T ′) is (T ′, b, s, a)-feasible if |S| = s, the size of the active fragment
in F(T ′, S) is a, there is no bad fragment in F(T ′, S), and b = t if and only if
the root of T ′ is in S.

Intuitively, a (T ′, b, s, a)-feasible set S is “almost safe.” If A is the active
fragment in F(T ′, S), then S \A is a safe set of T ′[V (T ′) \A].

For S ⊆ V (T ′), we set ∂max
T ′ (S) and ∂min

T ′ (S) to be the sizes of maximum and
minimum fragments, respectively, adjacent to the active fragment in F(T ′, S). If
there is no adjacent fragment, then we set ∂max

T ′ (S) = −∞ and ∂min
T ′ (S) = +∞.

DP table: We construct a table with values ps(T ′, b, s, a) ∈ {0, . . . , n}∪{+∞,−∞}
for storing information of partial solutions, where b ∈ {t, f}, s ∈ {0, . . . , n}, and
a ∈ {1, . . . , n}, and T ′ is a subtree of T such that either T ′ = T (u) for some
u ∈ V , T ′ = T (u→ v) for some {u, v} ∈ E, or T ′ = T (u, i) for some u ∈ V and
1 ≤ i ≤ |CT (u)|. The table entries will have the following values:

ps(T ′, t, s, a) =

+∞ if no (T ′, t, s, a)-feasible set exists,

min
(T ′,t,s,a)-feasible S

∂max
T ′ (S) otherwise,

ps(T ′, f, s, a) =

−∞ if no (T ′, f, s, a)-feasible set exists,

max
(T ′,f,s,a)-feasible S

∂min
T ′ (S) otherwise.

The definition of the table ps implies the following fact.

Lemma 2.2. s(T) is the smallest s such that there is a ∈ {1, . . . , n} with
ps(T, t, s, a) ≤ a or ps(T, f, s, a) ≥ a.

3

Proof. Assume that S is a safe set of T such that |S| = s and the root is contained
in S. Let A be the active fragment in F(T, S). Then, S is (T, t, s, |A|)-feasible.
Since A cannot be smaller than any adjacent fragment, we have ∂max

T (S) ≤ |A|.
Hence ps(T, t, s, |A|) ≤ |A| holds. By a similar argument, we can show that if
the root is not in S, then ps(T, f, s, |A|) ≥ |A|.

Conversely, assume that ps(T, t, s, a) ≤ a for some a ∈ {1, . . . , n}. (The proof
for the other case, where ps(T, f, s, a) ≥ a, is similar.) Let S be a (T, t, s, a)-
feasible set with ∂max

T (S) = ps(T, t, s, a). Since there is no bad fragment in
F(T, S) and the active fragment (of size a) is not smaller than the adjacent
fragments (of size at most ∂max

T (S) = ps(T, t, s, a) ≤ a), all fragments included
in S are not smaller than their adjacent fragments. This implies that S is a safe
set of size s. ⊓⊔

By Lemma 2.2, after computing all entries ps(T ′, b, s, a), we can compute
s(T) in time O(n2). There are O(n3) tuples (T ′, b, s, a), and thus to prove the
theorem, it suffices to show that each entry ps(T ′, b, s, a) can be computed in
time O(n2) assuming that the entries for all subtrees of T ′ are already computed.

We compute all entries ps(T ′, b, s, a) in a bottom-up manner: We first com-
pute the entries for T (u) for each leaf u. We then repeat the following steps until
none of them can be applied. (1) For each u such that the entries for T (u) are
already computed, we compute the entries for T (u→ v), where v is the parent of
u. (2) For each u such that the entries for T (u, i− 1) and T (wi → u) are already
computed, where wi is the ith child of u, we compute the entries for T (u, i).

Lemma 2.3. For a leaf u of T , each table entry ps(T (u), b, s, a) can be computed
in constant time.

Proof. The set {u} is the unique (T (u), t, 1, 1)-feasible set. Since F(T (u), {u})
contains no inactive fragment, we set ps(T (u), t, 1, 1) = −∞. Similarly the empty
set is the unique (T (u), f, 0, 1)-feasible set. We set ps(T (u), f, 0, 1) = +∞. For
the other tuples, there are no feasible sets. We set the values accordingly for
them. Clearly, each entry can be computed in constant time. ⊓⊔

Lemma 2.4. For a vertex u and its parent v in T , each table entry ps(T (u →
v), b, s, a) can be computed in O(n) time, using the table entries for the subtree
T (u).

Proof. We separate the proof into two cases: a ≥ 2 and a = 1. If a ≥ 2, then we
can compute the table entry in constant time. If a = 1, we need O(n) time.

Case 1: a ≥ 2. In this case, for every (T (u → v), b, s, a)-feasible set S, u and v
are in the active fragment of F(T (u → v), S) since the root v of T (u → v) has
the unique neighbor u.

Case 1-1: b = t. Let S be a (T (u → v), t, s, a)-feasible set that minimizes
∂max
T (u→v)(S). Observe that S \ {v} is (T (u), t, s − 1, a − 1)-feasible and that
∂max
T (u→v)(S) = ∂max

T (u)(S \ {v}). We claim that ∂max
T (u)(S \ {v}) = ps(T (u), t, s −

1, a− 1), and thus

ps(T (u→ v), t, s, a) = ps(T (u), t, s− 1, a− 1).

4

Suppose that some (T (u), t, s − 1, a − 1)-feasible set Q satisfies ∂max
T (u)(Q) <

∂max
T (u)(S \ {v}). Now Q ∪ {v} is (T (u → v), t, s, a)-feasible. However, it holds

that
∂max
T (u→v)(Q ∪ {v}) = ∂max

T (u)(Q) < ∂max
T (u)(S \ {v}) = ∂max

T (u→v)(S).

This contradicts the optimality of S.
Case 1-2: b = f. Let S be a (T (u → v), f, s, a)-feasible set that maximizes

∂min
T (u→v)(S). The set S is also (T (u), f, s, a−1)-feasible and satisfies ∂min

T (u→v)(S) =

∂min
T (u)(S). We claim that ∂min

T (u)(S) = ps(T (u), t, s, a− 1), and thus

ps(T (u→ v), f, s, a) = ps(T (u), f, s, a− 1).

Suppose that there is a (T (u), t, s, a−1)-feasible set Q with ∂min
T (u)(Q) > ∂min

T (u)(S).
Since Q is also (T (u→ v), f, s, a)-feasible, it holds that

∂min
T (u→v)(Q) = ∂min

T (u)(Q) > ∂min
T (u)(S) = ∂min

T (u→v)(S).

This contradicts the optimality of S.

Case 2: a = 1. For every (T (u → v), b, s, 1)-feasible set S, the set {v} is the
active fragment, and the vertex u is in the unique fragment adjacent to the active
fragment.

Case 2-1: b = t. Let S be a (T (u → v), t, s, 1)-feasible set. Then S \ {v} is a
(T (u), f, s− 1, a′)-feasible set for some a′. Moreover, since F(T (u→ v), S) does
not contain any bad fragment, ∂min

T (u)(S \ {v}) ≥ a′. Thus we can set ps(T (u →

v), t, s, 1) as follows:

ps(T (u→ v), t, s, 1) =

{

min{a′ : ps(T (u), f, s− 1, a′) ≥ a′} if such a′ exists,

+∞ otherwise.

Case 2-2: b = f. Let S be a (T (u → v), f, s, 1)-feasible set. The set S is a
(T (u), t, s, a′)-feasible set for some a′. Since F(T (u → v), S) does not contain
any bad fragment, ∂max

T (u)(S) ≤ a′. Thus we can set ps(T (u→ v), f, s, 1) as follows:

ps(T (u→ v), f, s, 1) =

{

max{a′ : ps(T (u), t, s, a′) ≤ a′} if there is such an a′,

−∞ otherwise.

In both Cases 2-1 and 2-2, we can compute the entry ps(T (u→ v), b, s, 1) in
O(n) time by looking up at most n table entries for the subtree T (u). ⊓⊔

Lemma 2.5. For a non-leaf vertex u with the children w1, . . . , wd and an integer
i with 2 ≤ i ≤ d, each table entry ps(T (u, i), b, s, a) can be computed in O(n2)
time, using the table entries for the subtrees T (u, i− 1) and T (wi → u).

Proof. For the sake of simplicity, let T1 = T (u, i− 1) and T2 = T (wi → u). Let
S be a (T (u, i), b, s, a)-feasible set and A be the active fragment in F(T (u, i), S).
For j ∈ {1, 2}, let Sj = S ∩ V (Tj) and Aj = A ∩ V (Tj). Observe that Sj is a

5

(Tj , b, |Sj |, |Aj |)-feasible set. If b = t, then S1∩S2 = {u}; otherwise S1∩S2 = ∅.
Thus |S1| + |S2| = |S| + 1 if b = t, and |S1| + |S2| = |S| otherwise. Similarly,
since A1 ∩ A2 = {u}, it holds that |A1| + |A2| = |A| + 1. Therefore, we can set
the table entries as follows:

ps(T (u, i), t, s, a) = min
s1+s2=s+1
a1+a2=a+1

max{ps(T1, t, s1, a1), ps(T2, t, s2, a2)},

ps(T (u, i), f, s, a) = max
s1+s2=s

a1+a2=a+1

min{ps(T1, f, s1, a1), ps(T2, f, s2, a2)}.

In both cases, we can compute the entry ps(T (u, i), b, s, a) in O(n2) time since
there are O(n) possibilities for each (s1, s2) and (a1, a2). ⊓⊔

A graph is unicyclic if it can be obtained by adding an edge to a tree. Us-
ing the algorithm for weighted paths presented in [2] as a subroutine, we can
extend the algorithm in this section to find a minimum safe set and a minimum
connected safe set of a unicyclic graph in the same running time.

3 Safe sets in graphs of bounded treewidth

In this section, we show that for any fixed constant k, a minimum safe set and
a minimum connected safe set of a graph of treewidth at most k can be found
in O(n5k+8) time.

Basically, the algorithm in this section is a generalization of the one in the
previous section. The most crucial difference is that here we may have many
active fragments, and each active fragment may have many vertices adjacent to
the “outside.” This makes the algorithm much more complicated and slow.

A tree decomposition of a graph G = (V,E) is a pair ({Xp : p ∈ I}, T) such
that each Xp, called a bag, is a subset of V , and T is a tree with V (T) = I such
that

– for each v ∈ V , there is p ∈ I with v ∈ Xp;
– for each {u, v} ∈ E, there is p ∈ I with u, v ∈ Xp;
– for p, q, r ∈ I, if q is on the p–r path in T , then Xp ∩Xr ⊆ Xq.

The width of a tree decomposition is the size of a largest bag minus 1. The
treewidth of a graph, denoted by tw(G), is the minimum width over all tree
decompositions of G.

A tree decomposition ({Xp : p ∈ I}, T) is nice if

– T is a rooted tree in which every node has at most two children;
– if a node p has two children q, r, then Xp = Xq = Xr (such a node p is a

join node);
– if a node p has only one child q, then either

• Xp = Xq ∪ {v} for some v /∈ Xq (p is a introduce node), or
• Xp = Xq \ {v} for some v ∈ Xq (q is a forget node);

– if a node p is a leaf, then Xp = {v} for some v ∈ V .

6

Theorem 3.1. Let k be a fixed constant. For an n-vertex graph of treewidth at
most k, a (connected) safe set of minimum size can be found in time O(n5k+8).

Proof. We only show that s(G) and cs(G) can be computed in the claimed run-
ning time. It is straightforward to modify the dynamic program below for com-
puting an actual set in the same running time.

Let G = (V,E) be a graph of treewidth at most k. We compute a nice tree
decomposition ({Xp : p ∈ I}, T) with at most 4n nodes. It can be done in O(n)
time [4,12]. For each p ∈ I, let Vp = Xp ∪

∪

qXq, where q runs through all
descendants of p in T .

Fragments: For a node p and a vertex set S ⊆ Vp, a fragment is a component
in G[S] or G[Vp \ S]. We denote the set of fragments with respect to p and S
by F(p, S). A fragment F ∈ F(p, S) is active if F ∩ Xp ̸= ∅, and it is inactive
otherwise. Two fragments in F(p, S) are adjacent if there is an edge of G[Vp]
between them. A fragment F is bad if it is inactive, F ⊆ S, and there is another
inactive fragment F ′ adjacent to F with |F | < |F ′|.

DP table: For storing information of partial solutions, we construct a table with
values ps(p, s,A, β, γ, φ, ψ) ∈ {t, f} with indices p ∈ I, s ∈ {0, . . . , n}, a partition
A of Xp, β : A → {1, . . . , n}, γ : A → {1, . . . , n} ∪ {±∞}, φ : A → {t, f}, and
ψ :

(

A
2

)

→ {t, f}. We set

ps(p, s,A, β, γ, φ, ψ) = t

if and only if there exists a set S ⊆ Vp of size s with the following conditions:

– there is no bad fragment in F(p, S),
– for each active fragment F in F(p, S),

• there is a unique element AF ∈ A such that AF = F ∩Xp,
• β(AF) = |F |,
• φ(AF) = t if and only if F ⊆ S,
• if F ⊆ S, then γ(AF) is the size of a maximum inactive fragment adjacent

to F (if no such fragment exists, we set γ(Ai) = −∞),
• if F ̸⊆ S, then γ(AF) is the size of a minimum inactive fragment adjacent

to F (if no such fragment exists, we set γ(Ai) = +∞),
– for two active fragments F, F ′ in F(p, S), ψ({AF , AF ′}) = t if and only if F

and F ′ are adjacent, where AF = F ∩Xp and AF ′ = F ′ ∩Xp.10

Let ρ be the root of T . The definition of the table ps implies the following
fact.

Observation 3.2 s(G) is the smallest s with ps(ρ, s,A, β, γ, φ, ψ) = t for some
A, β, γ, φ, and ψ such that β(A) ≥ γ(A) for each A ∈ A with φ(A) = t,
β(A) ≤ γ(A) for each A ∈ A with φ(A) = f, and β(A) ≥ β(A′) for any A,A′ ∈ A
with φ(A) = t and ψ(A,A′) = t.

10 In the following, we (ab)use simpler notation ψ(AF , AF ′) instead of ψ({AF , AF ′}).

7

For computing cs(G), we need to compute additional information for each
tuple (p, s,A, β, γ, φ, ψ). For A ∈ A, let β′(A) be the size of the fragment in
F(ρ, S) that is a superset of the fragment FA ⊇ A in F(p, S). If A ⊆ S, then
β′(A) = β(A); otherwise β′(A) = |CA \Xp|+

∑

A′∈A, A′⊆CA
β(A′), where CA is

the component in G[(V \Vp)∪ (Xp \S)] that includes A. We can compute β′(A)
for all A ∈ A in time O(n) by running a breadth-first search from Xp \ S.

Observation 3.3 cs(G) is the smallest s with ps(p, s,A, β, γ, φ, ψ) = t for some
p, A, β, γ, φ, and ψ such that β(A) ≥ γ(A) for each A ∈ A with φ(A) = t,
β(A) ≤ γ(A) for each A ∈ A with φ(A) = f, and β(A) ≥ β′(A′) for any
A,A′ ∈ A with φ(A) = t and ψ(A,A′) = t.

By Observations 3.2 and 3.3, provided that all entries ps(p, s,A, β, γ, φ, ψ) are
computed in advance, we can compute s(G) and cs(G) by spending time O(1) and
O(n), respectively, for each tuple. We compute all entries ps(p, s,A, β, γ, φ, ψ) by
a bottom-up dynamic program. Due to the space limitation, we omit this part
in the conference version. ⊓⊔

For a vertex-weighted graph G = (V,E) with a weight function w : V → Z
+,

a set S ⊆ V is a weighted safe set of weight
∑

s∈S w(s) if for each component C of
G[S] and each component D of G[V \S] with an edge between C and D, it holds
that w(C) ≥ w(D). Bapat et al. [2] show that finding a minimum (connected)
weighted safe set is weakly NP-hard even for stars. Let W =

∑

v∈V w(v). Our
dynamic program above works for the weighted version if we extend the ranges
of parameters s, β, and γ by including {1, . . . ,W}. The running time becomes
polynomial in W .

Theorem 3.4. For a vertex weighted graph of bounded treewidth, a weighted
(connected) safe set of the minimum weight can be found in pseudo-polynomial
time.

4 Safe sets in interval graphs

In this section, we present a polynomial-time algorithm for finding a minimum
safe set and a minimum connected safe set in an interval graph.

A graph is an interval graph if it can be represented as the intersection graph
of intervals on a line. Given a graph, one can determine in linear time whether the
graph is an interval graph, and if so, find a corresponding interval representation
in the same running time [6].

Theorem 4.1. For an n-vertex interval graph, a minimum safe set and a min-
imum connected safe set can be found in time O(n8).

Proof. Let G be a given interval graph. As we can deal with each component
of G separately, we assume that G is connected. The algorithm is a dynamic
programming on an interval representation of G. We assume that its vertices
(i.e. intervals) v1, . . . , vn are ordered increasingly according to their left ends,
and write Xi = {v1, . . . , vi}.

8

At each step i of the algorithm, we want to store all subsets S ⊆ Xi which
can potentially be completed (with vertices from G \ Xi) into a safe set. The
number of such sets can be exponential: we thus define a notion of signature,
and store the signatures of the sets instead of storing the sets themselves. The
cost of this storage is bounded by the number of possible signatures, which is
polynomial in n.

We will then prove that all possible signatures of sets at step i can be deduced
from the set of signatures at step i−1. The cardinality of a minimum safe set (and
a minimum connected safe set) can finally be deduced from the set of signatures
stored during the last step. We can easily modify the algorithm so that it also
outputs a minimum set.

We define the signature of S at step i as the 8-tuple that consists of the
following items (see Fig. 2):

1. The size of S.
2. The vertex vSr of S with the most neighbors in G \Xi.
3. The vertex vS̄r of S̄ := Xi \ S with the most neighbors in G \Xi.
4. The size of Sr (the rightmost component of S).
5. The size of S̄r (the rightmost component of S̄).
6. The largest size of a component of S̄ \ S̄r adjacent with Sr.
7. The smallest size of a component of S \ Sr adjacent with S̄r.
8. A boolean value indicating whether S is connected.

S̄̄S
S

Xi G \Xi

Sr

S̄r

vSr

vS̄r

vi

Fig. 2. The dynamic programming on an interval graph.

Assuming that we know the signature of a set S at step i, we show how to
obtain the signature at step i + 1 of (a) S′ = S and (b) S′ = S ∪ {vi+1}. With
this procedure, all signatures of step i + 1 can be obtained from all signatures
at step i.

1. The size of S′ (at step i: |S|).
(a) |S|.
(b) |S|+ 1.

2. The vertex of S′ with the most neighbors in G \Xi+1 (at step i: vSr).
(a) vSr .
(b) The one of vSr and vi+1 which has the most neighbors in G \Xi+1.

3. The vertex of S̄′ := Xi+1 \ S
′ with the most neighbors in G \Xi+1 (at step

i: vS̄r).

9

(a) The one of vS̄r and vi+1 which has the most neighbors in G \Xi+1.
(b) vS̄r .

4. The size of the rightmost component S′
r of S′ (at step i: |Sr|).

(a) |Sr|.
(b) |Sr|+ 1 if vi+1 and vSr are adjacent, and 1 otherwise (new component).

In the latter case, we discard the signature if |Sr| is strictly smaller than
the largest size of a component of S̄ \ S̄r adjacent with Sr at step i.

5. The size of the rightmost component S̄′
r of S̄′ (at step i: |S̄r|).

(a) 1 if vi+1 and vS̄r are not adjacent (new component), and |S̄r|+1 otherwise.
In the latter case, we discard the signature if |S̄r| is strictly larger than
the smallest size of a component of S \ Sr adjacent with S̄r at step i.

(b) |S̄r|.
6. The largest size of a component of S̄′ \ S̄′

r adjacent with S′
r (at step i: c).

(a) c if no new component of S̄′ was created (see 5.), and max{c, |S̄′
r|} oth-

erwise.
(b) c if no new component of S′ was created (see 4.), and −∞ otherwise.

7. The smallest size of a component of S′ \ S′
r adjacent with S̄′

r (at step i: c).
(a) c if no new component of S̄′ was created (see 5.), and +∞ otherwise.
(b) c if no new component of S′ was created (see 4.), and min{c, |S′

r|} oth-
erwise.

8. A boolean variable indicating whether S′ is connected (at step i: b).
(a) b

(b) t if |S| = 0, b if vi+1 and vSr are adjacent, and f otherwise.

When all signatures at step n have been computed, we use the additional
information that S and S̄ cannot be further extended to discard the remaining
signatures corresponding to non-safe sets. That is, we discard a signature if
|Sr| < |S̄r|, or |Sr| is strictly smaller than the largest size of a component of
S̄ \ S̄r adjacent to it, or |S̄r| + 1 is strictly larger than the smallest size of a
component of S \ Sr adjacent to it.

The minimum sizes of a safe set and a connected safe set can be obtained
from the remaining signatures. For each step i, there are O(n7) signatures. From
a signature for step i, we can compute the corresponding signature for step i+1
in O(1) time. Therefore, the total running time is O(n8) . ⊓⊔

5 Fixed-parameter tractability

In this section, we show that the problems of finding a safe set and a connected
safe set of size at most s is fixed-parameter tractable when the solution size s is
the parameter. For the standard concepts in parameterized complexity, see the
recent textbook [8].

We first show that graphs with small safe sets have small treewidth. We then
show that for any fixed constants s the property of having a (connected) safe set
of size at most s can be expressed in the monadic second-order logic on graphs.
Then we use the well-known theorems by Bodlaender [4] and Courcelle [7] to
obtain an FPT algorithm that depends only linearly on the input size.

10

Lemma 5.1. Let G = (V,E) be a connected graph. If tw(G) ≥ s2 − 1, then
s(G) ≥ s.

Proof. It is known that every graph G has a path of tw(G) + 1 vertices as a
subgraph [3]. Thus tw(G) ≥ s2 − 1 implies that G has a path of s2 vertices as a
subgraph.

Let P be a path of s2 vertices in G, and let S ⊆ V be an arbitrary set of
size less than s. By the pigeon-hole principle, there is a subpath Q of P such
that |Q| ≥ s and S ∩ V (Q) = ∅. Hence there is a component B of G[V \ S] with
V (Q) ⊆ B. Since G is connected there is a component A of G[S] adjacent to
B. Now we have |A| ≤ |S| < s ≤ |Q| ≤ |B|, which implies that S is not a safe
set. ⊓⊔

The syntax of the monadic second-order logic of graphs (MS2) includes (i)
the logical connectives ∨, ∧, ¬, ⇔, ⇒, (ii) variables for vertices, edges, vertex
sets, and edge sets, (iii) the quantifiers ∀ and ∃ applicable to these variables, and
(iv) the following binary relations:

– v ∈ U for a vertex variable v and a vertex set variable U ;
– e ∈ F for an edge variable e and an edge set variable F ;
– inc(e, v) for an edge variable e and a vertex variable v, where the interpre-

tation is that e is incident with v;
– equality of variables.

Now we can show the following.

Lemma 5.2. For a fixed constant s, the property of having a safe set of size at
most s can be expressed in MS2.

Corollary 5.3. For a fixed constant s, the property of having a connected safe
set of size at most s can be expressed in MS2. ⊓⊔

Theorem 5.4. The problems of finding a safe set and a connected safe set of size
at most s is fixed-parameter tractable when the solution size s is the parameter.
Furthermore, the running time depends only linearly on the input size.

Proof. Let G be a given graph. Since we can handle the components separately,
we assume that G is connected. We first check whether tw(G) < (s + 1)2 − 1
in O(n) time by Bodlaender’s algorithm [4]. If not, Lemma 5.1 implies that
s(G) ≥ s + 1. Otherwise, Bodlaender’s algorithm gives us a tree decomposition
of G with width less than (s+1)2−1. Courcelle’s theorem [7] says that it can be
checked in linear time whether a graph satisfies a fixed MS2 formula if the graph
is given with a tree decomposition of constant width (see also [1]). Therefore,
Lemma 5.2 and Corollary 5.3 imply the theorem. ⊓⊔

11

5.1 Relationship to other structural graph parameters

As we showed in Lemma 5.1, the treewidth of a graph is bounded by a constant
if it has constant safe number. Here we further discuss the relationship to other
well-studied graph parameters: tree-depth and vertex cover number. As bounding
these parameters is more restricted than bounding treewidth, more problems
can be solved efficiently when the problems are parameterized by tree-depth or
vertex cover number (see [9,11]). In the following, we show that safe number lies
between these two parameters. This implies that parameterizing a problem by
safe number may give a finer understanding of the parameterized complexity of
the problem.

Tree-depth. The tree-depth [13] (also known as elimination tree height [14] and
vertex ranking number [5]) of a connected graph G is the minimum depth of a
rooted tree T such that T ∗ contains G as a subgraph, where T ∗ is the supergraph
of T with the additional edges connecting all comparable pairs in T . We can easily
see that the tree-depth of a graph is at least its treewidth. It is known that a
graph has constant tree-depth if and only if it has a constant upper bound on
the length of paths in it [13]. Hence the proof of Lemma 5.1 implies the following
relation.

Lemma 5.5. The tree-depth of a connected graph is bounded by a constant if it
has constant safe number.

The converse of the statement above is not true in general. The complete k-ary
tree of depth 2 has tree-depth 2 and safe number k.

Vertex cover number. A set C ⊆ V (G) is a vertex cover of a graph G if each
edge in G has at least one end in C. The vertex cover number of a graph is the
size of a minimum vertex cover in the graph. We can see that C is a vertex cover
if and only if each component of G \ C has size 1. Thus a vertex cover is a safe
set, and the following relation follows.

Lemma 5.6. The safe number of a graph is at most its vertex cover number.

Again the converse is not true. Consider the graph obtained from the star graph
K1,k by subdividing each edge. It has a (connected) safe set of size 2, while its
vertex cover number is k.

Note that Lemma 5.6 and Theorem 5.4 together imply that the problem of
finding a (connected) safe set is fixed-parameter tractable when parameterized
by vertex cover number.

6 Concluding remarks

A graph is chordal if it has no induced cycle of length 4 or more. Trees and inter-
val graphs form the most well-known subclasses of the class of chordal graphs.
A natural question would be the complexity of the problems on chordal graphs.

12

Another question is about planar graphs. As the original motivation of the prob-
lem was from a facility location problem, it would be natural and important to
study the problem on planar graphs.11

Our algorithm for graphs of treewidth at most k runs in nO(k) time. Such an
algorithm is called an XP algorithm, and an FPT algorithm with running time
f(k) ·nc is more preferable, where f is an arbitrary computable function and c is
a fixed constant. It would be interesting if one can show that such an algorithm
exists (or does not exist under some complexity assumption).

References

1. Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-
decomposable graphs. J. Algorithms, 12:308–340, 1991.

2. Ravindra B. Bapat, Shinya Fujita, Sylvain Legay, Yannis Manoussakis, Yasuko
Matsui, Tadashi Sakuma, and Zsolt Tuza. Network majority on tree topological
network. Available at http://www2u.biglobe.ne.jp/∼sfujita/fullpaper.pdf, 2016.

3. Hans L. Bodlaender. On linear time minor tests with depth-first search. J. Algo-

rithms, 14:1–23, 1993.
4. Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of

small treewidth. SIAM J. Comput., 25:1305–1317, 1996.
5. Hans L. Bodlaender, Jitender S. Deogun, Klaus Jansen, Ton Kloks, Dieter Kratsch,

Haiko Müller, and Zsolt Tuza. Rankings of graphs. SIAM J. Discrete Math.,
11:168–181, 1998.

6. Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones property,
interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst.

Sci., 13:335–379, 1976.
7. Bruno Courcelle. The monadic second-order logic of graphs III: tree-

decompositions, minor and complexity issues. Theor. Inform. Appl., 26:257–286,
1992.

8. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015.

9. Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Frances A. Rosamond,
and Saket Saurabh. Graph layout problems parameterized by vertex cover. In
ISAAC 2008, volume 5369 of Lecture Notes in Computer Science, pages 294–305,
2008.

10. Shinya Fujita, Gary MacGillivray, and Tadashi Sakuma. Safe set problem on
graphs. Discrete Appl. Math., to appear.

11. Gregory Gutin, Mark Jones, and Magnus Wahlström. Structural parameterizations
of the mixed chinese postman problem. In ESA 2015, volume 9294 of Lecture Notes

in Computer Science, pages 668–679, 2015.
12. Ton Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture

Notes in Computer Science. Springer, 1994.
13. Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity: Graphs, Structures, and

Algorithms, volume 28 of Algorithms and combinatorics. Springer, 2012.
14. Alex Pothen. The complexity of optimal elimination trees. Technical Report CS-

88-13, Pennsylvania State University, 1988.

11 After the submission of the conference version, together with Hirotaka Ono, we found
that the problem is NP-hard for these graph classes.

13

