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1Univ Lyon, Université Claude Bernard Lyon 1, CNRS,

Institut Lumière Matière, F-69622 Villeurbanne, France

∗ laurent.joly@univ-lyon1.fr

1

mailto:laurent.joly@univ-lyon1.fr


CONTENTS

I. Simulation details 2

A. Lennard-Jones systems 3

1. Mechano-caloric route 3

2. Thermo-osmotic route 5

B. Water-graphene system 6

II. Thermo-osmotic route and uncertainty evaluation 8

III. Choice of interaction cutoff radius for LJ systems 8

IV. Derivation of an expression for the thermo-osmosis coefficient 12

A. Thermo-osmosis configuration 12

B. Mechano-caloric configuration 13

C. Large slip length limit 15

V. Contact angle in LJ systems 16

VI. Contact angle and slip length in water-graphene systems 17

VII. Characteristic length L 20

VIII. Backflow velocity analysis 21

References 21

I. SIMULATION DETAILS

In this work, all simulations were performed with the LAMMPS package [S1]. The initial

configurations were prepared using LAMMPS build-in tools for Lennard-Jones systems, and

Moltemplate [S2] for water/graphene systems. The visualization was realized using VMD

[S3]. In this section, the technical details of simulations on Lennard-Jones systems will be

presented firstly, both through mechano-caloric and thermo-osmotic routes. The second part

will be devoted to water/graphene systems using the mechano-caloric route.
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A. Lennard-Jones systems

Generic liquid/solids (walls and pistons) systems were made of Lennard-Jones (LJ) par-

ticles in this part for both mechano-caloric and thermo-osmotic routes.

LJ reduced units were used with a set of characteristic parameters based on liquid

particles: mass m, distance σ and energy ε in the liquid-liquid LJ interaction potential

V (r) = 4ε[(σ/r)12 − (σ/r)6], with r the distance between the particles. Time and tempera-

ture are expressed in units of τ = (mσ2/ε)1/2 and ε/kB, respectively. A cut-off distance of

4.5σ was carefully chosen (See Section III). Solids were constructed by face-centered cubic

(fcc) unit cells with a LJ reduced density of 1σ−3. A timestep of 0.005τ was used for all the

simulations in this part.

“Einstein solids”, in which particles are bound by harmonic springs to their equilibrium

positions, were used to model the solid walls and pistons. Lindemann criterion of melting

states that crystals melt when the average amplitude of thermal vibrations of atoms is

relatively high compared with interatomic distances, e.g.
√
< a2c > ∼ Lds, where ac is

the critical amplitude of atomic thermal vibration at melting, L ≈ 0.10 is the Lindemann

parameter,and ds is the nearest neighbor distance of solid atoms, which can be estimated

as 21/6σ for a fcc solid with a reduced density of 1σ−3. Since all atoms are linked with

a harmonic spring with spring constant K, their average thermal vibration energy in one

direction can be estimated by:

E =
1

2
Ka2 ∼

1

2
kBT. (S1)

According to Lindemann criterion, to prevent the melting of solid walls, the spring con-

stant K should be larger than a critical value:

K � Kc ∼
kBT

a2c
. (S2)

With an average temperature of 0.85ε/kB, Kc ∼ 70 ε/σ2. We took thus a value of 250ε/σ2

for K in our simulations.

1. Mechano-caloric route

As shown in Fig. S1a, this configuration consists of a simulation box with dimensions

of 25.44 × 25.44 × 38.16σ3. An Einstein solid wall with a thickness of 3.18σ is at the

3



FIG. S1. Illustration of the different configurations used to measure the thermo-osmosis coefficient

with molecular dynamics simulations. (a) Mechano-caloric route, using a slit nano-channel without

reservoirs: a body force per particle fi is applied to the liquid particles to model an external pressure

gradient, and an excess heat flux is generated by the induced Poiseuille flow; (b) Thermo-osmotic

route, where the nanochannel is connected to reservoirs at different temperatures and the thermo-

osmotic velocity is measured.

bottom of the simulation box. A piston is set at the top and a pressure of 0.1ε/σ3 is

applied on it in the −z direction in order to enclose the liquid. The liquid and solids are

thermostatted at 0.85ε/kB with a canonical sampling thermostat that uses global velocity

rescaling with Hamiltonian dynamics [S4]. We impose periodic boundary conditions in the

x and y directions to construct an infinite slit nanochannel.

The system is firstly equilibrated for 50,000 MD steps, then an external particle force fi

is applied on liquid particles in the x direction to generate a Poiseuille flow in the channel.

The pressure gradient can be computed as −∇p = fV = fiN/V where fV is the external

volume force, N is the total number of liquid particles in the slit and V is the slit volume.

After another 50,000 steps, the production run begins and the velocity profile is recorded

and smoothed over 5,000,000 steps. All the hydrodynamic velocity profiles are found to be

parabolic. The viscosity η as well as the slip length b can be thus extracted from the fitting

curves using the following function [S5]:

v(z) =
−∇p

2η
[db+ (z − zs)(d− z + zs)], (S3)

where d is the slit gap; zs is the thickness of immobile layers, which can be measured directly
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from the profiles at the position where the velocity vanishes. The local specific enthalpy was

expressed as

h(z) = (ui(z) + pi(z))ρ(z), (S4)

where ui(z) = 1
2
mv2i +

∑
φij is the internal energy per particle (sum of the kinetic and

potential energies), pi(z) is the atom-based virial expression for pressure, and ρ(z) is the

density profile. In particular, the term pi(z) is computed via:

pi(z) = −(Sxx + Syy + Szz)/3, (S5)

where Sab is the negative of the ab component of the symmetric per-atom stress tensor,

computed directly in LAMMPS via the compute stress/atom command [S6]. Note that it

is indeed a stress per atom × atomic volume formulation, meaning the computed quantity is

in units of pressure × volume (energy). The profiles of enthalpy were recorded to compute

M12 (see main text).

2. Thermo-osmotic route

In the thermo-osmotic configuration, we use a nanochannel (slit gap 17.5 σ) connected

to two reservoirs filled with liquid (see Fig. S1b). The two reservoirs are thermostatted

independently with a canonical sampling thermostat that uses global velocity rescaling with

Hamiltonian dynamics [S4]. The dimension of solid walls is identical to that used in the

mechano-caloric configuration (25.44× 25.44× 3.18σ3). Each reservoir has a length of 31.8σ

in the x direction in the initial state. Two pistons are added at the extremities of the

simulation box, and a pressure of 0.1ε/σ3 is applied on each piston in order to enclose the

liquid. Periodic boundary conditions are imposed in the y and z directions.

Similarly to the mechano-caloric route, the system is firstly equilibrated for 50,000 MD

steps, thermostatting both the liquid and solids at the same temperature Tmiddle. A ramp of

temperature in the reservoirs is then realized by increasing the temperature of thermostat 1

to Thigh and decreasing the temperature of thermostat 2 to Tlow. After another 100,000 steps

for stabilization, the production period begins and the temperatures of the two thermostats

are kept constant. The sets of temperatures for producing temperature gradients in the

nanochannel are presented in table I.
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TABLE I. Sets of temperatures used to produce temperature gradients in the nanochannel (in units

of ε/kB).

Set 1 Set 2 Set 3

Thigh 1.0 0.95 0.9

Tmiddle 0.85 0.85 0.85

Tlow 0.7 0.75 0.8

Besides the enthalpy profiles, the evolution of particle numbers in each reservoir is equally

recorded, which will be used to calculate the flow velocity (see Section II).

B. Water-graphene system

In order to avoid hydrodynamic entrance effects, we performed simulations on a water-

graphene system using the mechano-caloric route. The geometric configuration is very sim-

ilar to that with the LJ model (see Fig.S2a). The simulation box consists of two graphene

sheets and 2304 water molecules in between. The graphene sheet is constructed from rect-

angular unit cells containing 4 carbon atoms. The length of the long side of this rectangular

cell is a1 = 3d and that of the short side is a2 =
√

3d, where d = 1.42 Å is the distance

between carbon atoms. We consider a graphene sheet with ∼ 38 Å in length and ∼ 39 Å in

width at the bottom of the simulation box. The center of this graphene sheet is fixed at

its initial position via a harmonic spring, and the solid is thermostatted at 323 K. Another

graphene piston with the same size is applied at the top of the simulation box and a pressure

of 1 atmosphere is applied homogeneously on it in the −z direction. The movement of the

piston in the other two directions is prohibited. The initial gap width between these sheets

is ∼ 56 Å.

We used the TIP4P/2005 force field for water [S7], the LCBOP one for graphene [S8] and

a recently proposed force field for water-carbon interactions [S9], which has been shown to

reproduce accurately quantum chemistry calculations of interaction energies between water

and carbon nanostructures [S10]. For all simulations with this system, we used a cutoff radius

for LJ interaction of 12 Å and a real-space Coulomb cutoff radius of 10 Å for the purpose

of computational efficiency. Long-range Coulombic interactions were computed using the
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FIG. S2. (a)Illustration of the water-graphene system, using the mechano-caloric route. (b)Excess

specific enthalpy profile for the water-graphene system. The graphene sheet is at the position

z = 0.

particle-particle particle-mesh (PPPM) method, and water molecules were held rigid using

the SHAKE algorithm.

Water molecules were firstly equilibrated at a constant temperature of 323 K for 50 ps.

We then applied an external force Fext on the liquid particles in the x direction, and the

order of magnitude of Fext is discussed below. After a relaxation time of 2 ns, the production

period was held for 7.5 ns for each simulation. We ran five independent simulations from

distinct initial configurations to reduce statistical uncertainties. Fig. S2b shows an example

of the excess enthalpy density profile for this system.

To determine the order of magnitude of Fext, since at 323 K, the average thermal velocity

of water molecules in the x direction is about 380 m/s, the force induced hydrodynamic

velocity should be largely inferior to this value. On the other hand, it is known that the

water-graphene system presents a very weak interfacial friction and the time to attain the

steady state of hydrodynamic flow could be long. The hydrodynamic velocity should also

not be too small otherwise any perturbation at the beginning of simulations can delay

substantially the steady state. We considered that 20 m/s could be a good choice. The

external force Fext was then calculated by Fext = 2λAvx, where λ is the liquid-solid friction

coefficient which is well documented for water-graphene system, and A is the area of the
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graphene sheet. All these result in an external force Fext of about 0.8× 10−11 N.

II. THERMO-OSMOTIC ROUTE AND UNCERTAINTY EVALUATION

In the thermo-osmotic configuration, the unidirectional temperature gradient induced

flow can be described by the following formula:

vs = M12

(
−
∇T
T

)
, (S6)

where vs is the flow velocity, M12 is the thermo-osmotic transport coefficient, ∇T is the

temperature gradient and T is the average temperature. A positive M12 leads to a liquid

flow towards the cold side, whereas a negative M12 drives the liquid towards the hot side.

The thermo-osmotic velocity vs can be deduced from the definition of the volumetric flow

rate:

Q =
∆N/ρ

∆t
= vsS, (S7)

with S = LyLz the surface of the section and ρ the liquid number density. This leads to

vs =
∆N

∆t

Lx

N
, (S8)

where N is the total liquid particle number in the zone of interest.

Since we can accurately measure the temperature in the slit as well as the number density

of liquid, the uncertainty for the thermo-osmosis coefficient estimation comes from the linear

fitting of the curve of vs against −∇T/T . For each value of εls, we perform 6 independent

measurements to plot the curve. The expanded uncertainty is then evaluated by:

∆x = ks = k
σx
√
n
, (S9)

where k is the coverage factor, s is the combined standard uncertainty, σx is the standard

deviation of the slope of fitting line and n is the number of measurements. With a level of

confidence of 95%, k = 2.57 for 6 measurements for each εls.

III. CHOICE OF INTERACTION CUTOFF RADIUS FOR LJ SYSTEMS

In order to estimate the influence of rc on the measurement of M , we performed tests for

εls = 0.3, with the same set of temperature as depicted in Table I. A traditional rc is set
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FIG. S3. Thermo-osmotic transport coefficient (in σ2/τ) vs cutoff radius.

at 2.5σ for a computational efficiency, while larger rc gives more accurate results. We used

different rc from 2.5σ to 5σ.

Figure S3 shows the evolution of M12 against the cutoff radius, measured using the

thermo-osmosis route. Six independent measurements were realized for each point in the

figure and the uncertainty is estimated as described in section II. Taking the error bars into

account, we found that the results converge from rc = 3.0σ.

On the other hand, the transport coefficient relies on the excess specific enthalpy δh,

which is deduced from the excess atomic enthalpy δhi (obtained from the atomic internal

energy and the atom-based virial expression for pressure) and the number density profile

(see Eq. S4). The influence of the cutoff radius on these parameters is consequently studied.

Figure S4 presents the evolution of the excess atomic enthalpy (δhi) at the solid-liquid

interface. We found that from rc = 3.5σ, the curves begin to overlap, and that for rc = 4.5σ

and rc = 5.0σ they are almost identical.

In Figures S5 and S6 the kinetic energy and potential energy profiles are plotted. Kinetic

energy profiles show no difference for these cutoff radii, while the potential energy profiles

for rc = 2.5σ and 3.0σ differ slightly from others.

Another important factor to the enthalpy determination is the stress tensor. In figures

S7 and S8, the product of atomic normal pressure and atomic volume (virial expression

of normal pressure pNV ) as well as that of atomic tangential pressure and atomic volume

(pTV ) are plotted at the solid-liquid interface. Profiles for rc = 2.5, 3.0 and 3.5σ are clearly
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FIG. S4. Excess atomic enthalpy profiles at the solid-liquid interface with different cutoff radii.
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FIG. S5. Atomic kinetic energy profiles with different cutoff radii.
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FIG. S6. Atomic potential energy profiles at the solid-liquid interface with different cutoff radii.

The curves are shifted vertically so that they coincide in the bulk.
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FIG. S7. pNV profiles (see text) at the solid-liquid interface with different cutoff radii.

0.0 1.0 2.0 3.0 4.0

-1.5

-1.0

-0.5

En
er

gy
 (

)

 rc = 2.5 
 rc = 3.0 
 rc = 3.5 
 rc = 4.0 
 rc = 4.5 
 rc = 5.0 

z ( )

PT*V

FIG. S8. pTV profiles (see text) profiles at the solid-liquid interface with different cutoff radii.

distinguished from others with higher rc. Again, results for rc = 4.5σ and rc = 5.0σ are

almost identical.

Another critical parameter which can be influenced by the cutoff radius is the density

profile, which is used to deduce the specific enthalpy from the atomic enthalpy (h = hi× ρ).

Figure S9 presents the density profiles at the interface, from which the cutoff radii of 4.0, 4.5

and 5.0σ give converged results. We can conclude that a cutoff radius of 4.0 σ is satisfying

while using rc = 4.5σ is more reliable. Since the use of rc = 4.5σ is not computationally

much more expensive than that of rc = 4.0σ, we chose to work with rc = 4.5σ for the LJ

model.
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FIG. S9. Number density at the solid-liquid interface with different cutoff radii.

IV. DERIVATION OF AN EXPRESSION FOR THE THERMO-OSMOSIS COEF-

FICIENT

Using both the thermo-osmosis and the mechano-caloric configurations, we will here

derive an expression for the thermo-osmosis coefficient accounting for the details of interfacial

hydrodynamics, Eq. (3) of the main text. Specifically, we will assume a partial slip boundary

condition with a slip length b applying at the shear plane position zs (see velocity profile in

Fig. S10.b):

v(zs) = b
dv

dz

∣∣∣∣
z=zs

, (S10)

with z the direction normal to the interface and v(z) the velocity parallel to the interface.

Note that Eq. (S10) can describe a no-slip boundary condition with a stagnant liquid layer

(b = 0 and zs > zwall), or a slipping interface where there is generally no stagnant layer

(b 6= 0 and zs = zwall).

A. Thermo-osmosis configuration

As discussed in Ref. [S11], the thermo-osmotic flow generated at a solid surface by a

thermal gradient parallel to the interface can be obtained by solving Stokes equation with

a thermodynamic force induced by the thermal gradient.

Indeed, the solid wall modifies the specific chemical potential µ in the liquid within an

interaction length e. In the following we will refer to the layer of liquid affected by the
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solid wall as the boundary layer, whose thickness is therefore e. Under a thermal gradient

∇T , the fluid experiences a thermodynamic force T∇(µ/T ) in the boundary layer. Using

the Gibbs-Helmholtz relation d(µ/T )/dT = −δh/T 2, where δh is the local excess specific

enthalpy in the fluid, one can re-express the thermodynamic force as: δh(∇T/T ). One can

then solve Stokes equation:

− ηd2v

dz2
= δh(z)× ∇T

T
, (S11)

with z the direction normal to the interface, v(z) the velocity along the direction of the

thermal gradient ∇T , η the shear viscosity of the liquid (assumed homogeneous), and δh(z)

the excess specific enthalpy profile in the liquid. Assuming a partial slip boundary condition

with a slip length b applying at the shear plane zs, one can compute the thermo-osmotic

velocity in the bulk liquid vs = v(z � e), and the corresponding response coefficient M :

M =
vs

−∇T/T
=

1

η

∫ z�e

zs

(z − zs + b)δh(z) dz. (S12)

This expression and its derivation are very similar to the ones presented by Huang et al.

[S12, S13] for the electro-osmosis response coefficient, except that the electrical force is

replaced here by the thermodynamic force, and the charge density profile is replaced by the

excess specific enthalpy profile.

Finally, the standard expression originally derived by Derjaguin, Eq. (2) of the main text,

is retrieved for zs = b = 0.

B. Mechano-caloric configuration

One can also derive the expression for the thermo-osmosis coefficient in the reciprocal

mechano-caloric configuration, where a pressure gradient creates a Poiseuille flow, which

transports the interfacial excess enthalpy and thus generates a heat flux. The thermo-

osmosis coefficient M relates the produced heat flux Jh to the applied pressure gradient

∇p:
Jh
A

= M(−∇p), (S13)

with A the cross-section of the channel.

Let’s consider a channel of arbitrary cross-section S (see Fig. S10.a), and assume the

thickness e of the boundary layer (with non-zero excess enthalpy) is much smaller than

the typical size of the channel. The heat flux Jh originates from the convective transport
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FIG. S10. a) Mechano-caloric heat flux in a channel of arbitrary cross-section S, with a thin

boundary layer (where the specific enthalpy differs from its bulk value). The heat flux Jh is the

sum of infinitesimal heat fluxes dJh generated at line elements dy of the contour C of the cross-

section. These infinitesimal heat fluxes are the integrals along the local normal z to the contour,

of the heat flux density jh = δh v, with δh the excess specific enthalpy and v the liquid velocity

along the x direction. b) schematic excess specific enthalpy and velocity profiles at a solid surface

with a partial slip BC (slip length b) applying at the shear plane zs. The velocity profile writes

v = γ̇(z − zs + b) for z > zs, where γ̇ is the local shear rate in the boundary layer.

of the excess enthalpy in the boundary layer, located along the contour C of the channel

cross-section. Defining a local reference frame along the contour, with x the direction of the

flow, y and z the local tangent and normal to the contour, respectively, Jh can therefore be

expressed as the sum of the infinitesimal heat fluxes dJh arising at line elements dy of the

contour (Fig. S10.b):

Jh =

∮
C

dJh, (S14)

with

dJh = dy

∫ z�e

zs

dz δh(z) v(z), (S15)

where z is the local normal to the surface, zs the position of the shear plane, δh the excess

specific enthalpy and v the liquid velocity along the x direction. If e is much smaller than

the channel size, the curved Poiseuille velocity profile can be approximated by a simple

shear velocity profile over the extent of the boundary layer (with a partial slip boundary

condition applying at the shear plane zs): v(z) = (z− zs + b)(dv/dz)|z=zs (Fig. S10.b). The

infinitesimal heat flux can then be written:

dJh = dy
dv

dz

∣∣∣∣
z=zs

×
∫ z�e

zs

dz (z − zs + b) δh(z), (S16)

so that:

Jh =

∮
C

dy
dv

dz

∣∣∣∣
z=zs

×
∫ z�e

zs

dz (z − zs + b) δh(z). (S17)
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The second Green theorem can be used to transform the integral over the contour of the

channel into an integral over the cross-section of the channel of the Laplacian of the velocity:∮
C

dy
dv

dz

∣∣∣∣
z=zs

=

∫∫
S

dS ∇2v. (S18)

One can finally use Stokes equation, ∇2v = −∇p/η (assuming a homogeneous viscosity), to

obtain an expression for the heat flux as a function of the pressure gradient,

Jh = A(−∇p/η)×
∫ z�e

zs

dz (z − zs + b) δh(z), (S19)

and for the corresponding response coefficient:

M =
1

η

∫ z�e

zs

dz (z − zs + b) δh(z). (S20)

This expression is identical to the one derived in the thermo-osmotic configuration, in

line with Onsager reciprocal relations.

C. Large slip length limit

In Eq. (S12), only the region of the boundary layer (where δh(z) 6= 0) contributes to the

integral. In this region z−zs is at most on the order of the thickness e of the boundary layer.

Therefore, if the slip length b is much larger than e, one can neglect z − zs as compared to

b where δh(z) 6= 0, and Eq. (S12) can be simplified:

M12 = M21 =
b

η

∫ z�e

zs

δh(z) dz. (S21)

Here we note that the partial slip boundary condition, Eq. (S10), physically stems from

the identification of the viscous shear stress in the liquid close to the interface, η∂zv, and

an interfacial friction stress proportional to the slip velocity, λ v(zs), defining the interfacial

(fluid) friction coefficient λ [S14]. Accordingly, the slip length, bulk liquid viscosity and

interfacial friction coefficient are related: b = η/λ, and in Eq. (S21) one can rewrite: b/η =

1/λ. Finally, in the large slip length limit there is no stagnant layer, so that the shear plane

position identifies with the position of the solid wall: zs = zwall.

Therefore, when the slip length is large as compared to the thickness of the boundary

layer, Eq. (S21) can be simplified as:

M =
1

λ

∫ z�e

zwall

δh(z) dz. (S22)
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The thermo-osmosis coefficient then depends only on the total interfacial enthalpy excess

and on the liquid-solid friction coefficient.

This result can be retrieved with a simple argument: when b� e, the velocity profile is

almost constant over the extent of the boundary layer, so that there is no shear in the liquid

and the velocity jump is localized at the wall. The thermo-osmotic velocity then results from

a simple force balance between the total thermodynamic force experienced by the boundary

layer, F/A =
∫
δh(∇T/T ), and the interfacial friction force, F ′/A = −λvs. Writing that

F + F ′ = 0 and using the definition of M , one obtains Eq. (S22).

V. CONTACT ANGLE IN LJ SYSTEMS

The wetting behavior of a liquid-solid interface is usually represented by the contact angle

0 ≤ θ ≤ 180◦, which depends on the system temperature and the droplet size. The present

work, however, has no intention to study in detail the influence of temperature nor the

droplet size effects on the contact angle. Instead, we only aim at illustrating the link between

our model fluid and realistic liquids. We applied a constant temperature T = 0.85ε/kB

that we used in the mechano-caloric route, controlled by a Nosé-Hoover thermostat. The

amount of fluid particles is ∼ 12 000, enclosed by two solid walls located in the x, y-plane.

Periodic boundary conditions apply in the directions parallel to the walls. As mentioned

above, the cut-off radius in this work is relatively longer than that used traditionally, and

we have carefully chosen the simulation box size such that the liquid has sufficient space in

all dimensions. We ran firstly an equilibration period of 10 000 time steps, followed by 1

million time steps of production.

The density profile was sampled via binning in a slab system along the normal direction

to the wall. The contact angle of the sessile droplet was estimated by fitting the apparent

density profile with a spherical shape, given by the following equation:

ρapp(z) =
(ρl − ρv)πr(z)2

LxLy
+ ρv, (S23)

where ρapp is the apparent density representing the ratio of liquid molecules number in a slab

and the slab volume, ρl and ρv are the real liquid and vapor densities, respectively, and r is

the radius of the droplet section in the target slab. Since r(z) is a function of the radius R

and the center position z0 of the sphere (r(z)2 = R2−(z−z0)2), by fitting the curve, one can
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FIG. S11. Apparent density profile of a sessile droplet with εls = 0.4 at T = 0.85ε/kB. Fitting the

data with Eq. S23 reveals θ ∼ 112◦.

deduce θ = arccos(−z0/R). An example is shown in fig. S11. Figure S12 shows the evolution

of contact angles θ as a function of interaction energy ε and the corresponding value of cos θ.

The uncertainty for each measurement of θ was estimated to be approximately 2◦, which is

omitted for clarity. For 0.2 ≤ ε ≤ 0.8, the contact angle varies from 156◦ to 25◦. Drying

is observed when ε = 0.1, and the curve of cos θ suggests a continuous drying transition.

This has been discussed in Ref [S15], which elucidates that using a short-ranged interaction

potential can yield a shift of drying transition to a nonzero value of ε. On the other hand,

wetting is found when ε ≥ 0.9.

VI. CONTACT ANGLE AND SLIP LENGTH IN WATER-GRAPHENE SYS-

TEMS

For the purpose of better knowing our water-graphene system, we conducted similar

simulations as described above for the LJ system to measure the contact angle θ. Meanwhile,

another equilibrium molecular simulation was performed to compute the slip length b.

In terms of contact angle measurement, the initial configuration was set as described

by Wang et al.[S16]. The system contains 1000 water molecules, a graphene film with the

dimensions of 115.6 Å in length and 106.5 Å in width. All the force fields are identical to

those we presented in section I B. A Nosé-Hoover thermostat was applied to control the tem-
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FIG. S12. Red full squares: contact angle θ as a function of the interaction energy at temperature

of T = 0.85ε/kB. The incertitude is not shown but is approximately 2◦ for each point. Blue open

circle: the corresponding value of cos θ.

FIG. S13. Apparent density profile of a sessile droplet of water on a graphene film. Fitting the

data with Eq. S23 provides θ ∼ 85◦.

perature at 323 K. Periodic boundary conditions are used in the x and y directions, whereas

a simple non-periodic boundary condition is applied on the z-axis. After an equilibration

period of 500 ps, we ran the production for another 500 ps. The contact angle was evaluated

by fitting the apparent density profile ρapp(z).
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In figure S13 we plot the apparent density profile of the water-graphene system. The

contact angle is revealed to be 85◦± 1◦. In Ref. [S16], Wang et al. reported a contact angle

of 93.9◦ in their MD simulations at the same temperature. Knowing that the real value of

the contact angle of water on an isolated graphene monolayer remains unknown but around

90◦, and the contact angle changes significantly as a function of the water-carbon interaction

energy (indeed we used a different force field than that used by Wang et al.), the results

seem reasonnable.

For the slip length measurement, we used the relation between the slip length b and the

interfacial friction coefficient λ: b = η/λ, as indicated in the main text. The interfacial

friction coefficient was expressed via linear response theory in terms of a Green-Kubo re-

lationship, which relates the friction coefficient λ to equilibrium fluctuations of the friction

force [S17, S18]:

λ = lim
t→∞

λGK(t), (S24)

with

λGK(t) =
1

AkBT

∫ t

0

dt〈Fi(t)Fi(0)〉equ, (S25)

where A is the contact area, Fi(t) is the total tangential force acting along the i = x, y

direction.

In this study, we built a graphene sheet with dimensions of Lx = 25.56 Å and Ly = 24.60

Å, above which 392 water molecules were added. The dimensions of the simulation box are

determined by the graphene sheet in the x and y directions, while the box height in the z

direction was set to be 50 Å, so as to leave a large gap between the periodic images of the

system in the z direction. Periodic boundary conditions apply in all directions. Temperature

was controlled by a Nosé-Hoover thermostat at 323 K. After 100 ps for equilibration, the

production run lasted another 100 ps.

Time autocorrelation of forces in both x and y directions were recorded. Figure S14

plots the evolution of λGK as a function of time. The friction coefficient λ is given by

the plateau value yielding 1.7 × 104 N s/m3 for our system, which is of the same order

of magnitude as that reported by Kannam et al. [S19] (1.25 ± 0.10 104 N s/m3, using

equilibrium molecular simulations). The viscosity of TIP4P/2005 water at 323 K is well

documented in the literature [S20–S22], whose value is estimated to be ∼ 0.55 mPa.s. Using

the relation b = η/λ, we obtain the slip length of water on the graphene surface b ≈ 32 nm.
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FIG. S14. Green-Kubo estimate of the interfacial friction coefficient.The friction coefficient λ is

given by the plateau value of λGK(t) at long times: λ ≈ 1.7× 104 N s/m3.

Ref. [S23] reviews the slip length of water in CNTs of diameter from 0.81 to 10 nm and that

of water on a planar graphene surface. The results range from 1 to ca. 100 nm. Our value

is therefore reasonable in order of magnitude.

VII. CHARACTERISTIC LENGTH L

In order to interpret the massive enhancement of M21 at low εls, we introduce a character-

istic length L representative of the extension of the region where the enthalpy differs from the

bulk. Let’s consider firstly a no-slip hydrodynamic boundary condition, the thermo-osmosis

coefficient is expressed by :

Mno−slip
12 = Mno−slip

21 =
1

η

∫ +∞

zs

(z − zs) δh(z) dz, (S26)

with η the liquid viscosity, zs the shear plane position and δh(z) the excess specific enthalpy.

Now we consider the slip length b at the interface, we have a modified formula:

M12 = M21 =
1

η

∫ +∞

zs

(z − zs + b) δh(z) dz. (S27)

We would like to emphasize the crucial role of the slip length b, so we compare these two

expressions:

M21

Mno−slip
21

=

1
η

∫ +∞
zs

(z − zs + b) δh(z) dz

1
η

∫ +∞
zs

(z − zs) δh(z) dz
= 1 +

b
∫ +∞
zs

δh(z) dz∫ +∞
zs

(z − zs)δh(z) dz
. (S28)
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We can then rewrite the expression for the thermo-osmosis coefficient in the presence of

slip as:

M21 = Mno−slip
21 (1 + b/L), (S29)

with

L =

∫ +∞
zs

(z − zs)δh(z) dz∫ +∞
zs

δh(z) dz
. (S30)

VIII. BACKFLOW VELOCITY ANALYSIS

Viscous dissipation at the entrances of the nanochannel due to the focusing of the stream-

lines generates pressure drops at the entrances. Since the pressure is the same in both reser-

voirs, this induces a pressure gradient along the nanochannel. A Poiseuille backflow is then

be created and one can deduce its velocity profile vbk(z) from the measured curvature of the

velocity profile, using the same method presented in Section I via Eq. S3.

From the pressure gradient generating the backflow, we calculate a characteristic term of

∇P/(η∇T/Tavg), where ∇P is the pressure gradient, η is the liquid viscosity, ∇T and Tavg

are respectively the temperature gradient and the average temperature.

This term depends only on εls. Since we assume that the measured velocity vm is the

result of linear addition of that for thermo-osmotic flow and for pressure induced backflow,

the backflow’s velocity can be determined as vbk = vm−vs. Knowing that vbk has a negative

sign against vm and vs, one can write

vbk = vs − vm = (Mreal −Mm)∇T/Tavg. (S31)

On the other hand, the backflow is induced by entrance effects and its velocity vbk is

proportional to (∇P/η) with a prefactor A, which depends on the geometry of the slit and

on the slip length. Equation S31 can be rewritten as

∇P
η∇T/Tavg

=
Mreal −Mm

A
. (S32)

Using the same geometry for all the simulations in the mechano-caloric configuration,

the right side of Eq. S32 relies only on εls, and the term ∇P/(η∇T/Tavg) can be used for

characterizing the backflow induced by entrance effects.
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