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Abstract: Cascaded conical diffraction where optical elements modifying the local polariza-
tion state are intercalated between the aligned biaxial crystals is analyzed theoretically in the
framework of paraxial diffraction theory. The obtained expressions are verified and confirmed
experimentally for the case of a two-crystal cascade intercalated by a polarizer or a wave plate.
The present approach can be used to realize a variety of vector beams with complex beam
shapes composed of concentric rings with strongly modulated azimuthal intensity distribution. A
potentially very fast switching of the overall beam shape is possible if the intercalated elements
are electro-optically tunable retarders.
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1. Introduction

When a light beam enters a biaxial birefringent crystal along one of its two optical axes it
experiences a phenomenon known under the name of internal conical refraction (or internal
conical diffraction). The beam propagates as a hollow cone inside the crystal and emerges
as a diffracting hollow cylinder. When the proper observation plane is chosen (focal image
plane) the transverse intensity distribution associated to this effect exhibits a double circular
ring separated by a narrow dark region known as the Poggendorff dark ring. Even though
this phenomenon was predicted by Hamilton [1] already in 1832 and was first observed by
Lloyd [2] just one year later, investigations of conical diffraction experience presently a second
life and a strong renewed interest both theoretically and experimentally [3–24], as recently
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reviewed by Turpin et al. [25]. This is due on the one hand to an improved understanding
of the effect following its paraxial diffraction theory by Belskii and Khapalyuk [3] and its
elegant reformulation by Berry in 2004 [4]. On the other hand the strong potential of this
peculiar phenomenon for several modern photonics applications has been recognized. These
include optical tweezers or bottle-type beams for trapping of particles [7–9], optical trapping
of Bose-Einstein condensates [10], polarization metrology [11–13], polarization multiplexing
for free-space optical communication [14] , super-resolution microscopy [15, 16], lasers with
specific polarization properties or spatial profiles [17–21], applications in the field of singular
optics [22–24], and several other.

One of the major recent advances in the field of conical diffraction has been the extension
of the effect to a cascade of two or more biaxial crystals with all their optical axes aligned.
This approach adds versatility to the effect and leads in general to several concentric conical
diffraction rings, with their relative intensities being governed by the angles of orientation of the
crystals around the fixed direction of the optical axis. The general paraxial theory of cascaded
conical diffraction was developed by Berry in 2010 [26]. An alternative approach based on
the splitting and propagation of a bunch of classical rays was given by Turpin et al. [27, 28]
and several experimental and application oriented investigations of cascaded configurations
were recently performed [8, 14, 23, 24, 29–33]. In general the cascade of N crystals leads to
2N−1 conical diffraction rings [26, 28], for a circularly polarized or unpolarized input beam the
intensity is azimuthally homogeneous on each of the rings. Notably, the local polarization on the
rings is always linear with two radially opposite points exhibiting orthogonal polarizations, so
that the conical diffraction process can be considered as a natural infinite channel polarization
demultiplexer. These polarization properties suggest that the scrambling or filtering of the
polarization between the crystals put in cascade should lead to a dramatic change of the overall
observed conical diffraction pattern with respect to the case where the polarization is transferred
without change. While the intercalation of polarization transforming elements in cascaded
configurations was used in few experimental studies [8, 24, 29, 32], a detailed theoretically
description of this situation is still lacking.

In the present work we treat theoretically and experimentally cascaded conical diffraction
where polarization transforming elements, such as wave-plates or polarizers, are intercalated
between each pair of crystals. It is shown that the usual angular homogeneity of the intensity
along the conical diffraction rings for unpolarized or circularly polarized input is lost. This
leads to the possibility to realize complex vector-type light structures with highly localized
distributions along the azimuthal direction. The involved intercalated optical elements are simple,
spatially homogeneous and can be potentially switched very fast if realized with electro-optical
devices. Therefore, intercalated cascaded conical diffraction can represent a valid and faster
alternative to techniques based on pixellated phase elements (spatial light modulators, SLM) or
liquid-crystal based q-plates to generate various classes of complex beam shapes [34,35]. Section
2 describes the terms of the problem and gives the theoretical treatment based on Berry’s paraxial
diffraction theory [26] extended to include the role of the intercalated elements. With the help of
modified complex Belskii-Khapalyuk integrals we give explicit analytic solutions of the basic
Fourier-type integral in the special case of a cascade of two crystals intercalated either by a λ/4-,
a λ/2-plate or a polarizer. In Section 3 we give few specific examples and verify experimentally
the theoretical predictions for the case of a cascade of two crystals of different length. Finally,
the appendix gives some details on the method of solution of the basic Fourier integral that leads
to the expressions given in Section 2 and defines the modified Belskii-Khapalyuk integrals.

2. Theory

We consider a series of N biaxial crystals arranged with a common optical axis oriented along
the z direction so that each crystal, individually, gives rise to internal conical diffraction. As
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shown in Fig. 1, the crystals can be rotated with respect to each other around the common
optical axis. The rotation of each crystal is expressed by the angle γn between the x-axis and its
direction ~γn of displacement of the conical diffraction cone. Formally this direction is given by
~γn ∝ ~k × (~k × ~S∗), where ~S∗ is the specific Poynting vector on the cone that gives the maximum
walk-off angle with the wavevector ~k | |z (see right-hand inset in Fig. 1). Without loss of generality
one can orient the first crystal parallel to the horizontal x-axis of the laboratory frame, so that
γ1 = 0. The orientation of the indicatrix (index ellipsoid) for this first crystal is indicated in the
top left inset in Fig. 1. For the case γ1 = 0 the longest and the shortest main axis of the indicatrix
are in the laboratory xz-plane while the middle main axis is along the y-axis. For the following
crystals the same projection of the indicatrix seen in Fig. 1 is found, however in a plane x′z,
where the axis x′ is rotated by an angle γn around z with respect to the x-axis. Each crystal may
be of a different length ln , also the crystals may be composed of different materials and thus be
associated to different cone semi-angles αn . As done in [4, 5, 26] we consider a beam with an
intensity 1/e radius w (measured in the focal plane of a lens placed before the crystals) and we
normalize all transverse dimensions in real space with respect to this quantity w. In this way
each crystal is characterized by a normalized strength parameter ρn ≡ αn ln/w, which is the
radius of the emerging ring in unit of the beam width. Between each pair of crystal we allow the
presence of an optical element controlling the polarization state of the light, which is assumed to
be oriented at an angle θm with respect to the x-axis. These elements may be polarizers, quarter-
or half-wave plates, general wave retarders or combinations of any of these elements, they are
characterized by a Jones matrix Jm , where m extends to N − 1.

x

z

ρ2

ρΝ

J1

J2

ρ1

JN-1
γΝ

γ2

γ1 = 0

~S⇤

~S

x
~�1~k

~S

~S

y

x

z

First crystal

Indicatrix

Fig. 1. Arrangement for cascaded conical diffraction of N crystals with strength parameter
ρn intercalated by N − 1 polarization transforming elements with Jones matrices Jm . The
inset on the right shows the situation for the first crystal. The Poynting vector directions ~S
associated to the common wave-vector ~k parallel to the optical axis lie on a cone containing
the vector ~k. The direction ~γ1 of displacement of the conical diffraction cone points towards
the Poynting vector ~S∗ that has a maximum walk-off angle with ~k. The inset on top left
shows the orientation of the projection of the index ellipsoid (indicatrix) on the xz-plane for
the first crystal.

In order to fully account for diffraction we follow closely the Fourier optics approach reformu-
lated by Berry [4] and include the effect of the polarization transforming elements. The optical
beam entering the cascaded crystals is described as a sum of paraxial plane waves with wave-
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vector directions very close to the optical axis of the crystal. In Fourier space each wave-vector
~k = (kx , ky , kz ) can be represented in normalized cylindrical coordinates with the transverse
components (κ, φ) such that kx ∝ κ cos φ and ky ∝ κ sin φ , where κ is normalized to 1/w, that is
κ ≡ (k2

x + k2
y )1/2w. Finally, we also use a normalized longitudinal spatial coordinate ζ [4, 5, 26]

such that the position ζ = 0 corresponds to the plane where the rings are the sharpest. This is the
"focal image plane" [4, 5] of the incoming beam under the presence of all the crystals and all the
polarization transforming elements. The normalization factor is given by the Rayleigh length
zR = k0w2, that is ζ ↔ z/(k0w2) with k0 = 2π/λ and λ the light vacuum wavelength.

Let us place ourselves in the framework of the paraxial approximation and consider an input
field for which the transverse distribution of the electric displacement vector is given in wave-
vector space by ~D0(κ, φ). The output distribution in real space ~D(ρ, ϕ, ζ ) can be obtained by
Fourier transformation in polar transverse coordinates of this field, after being propagated through
the whole optical system [26], that is

~D(ρ, ϕ, ζ ) =
1

2π

∫ 2π

0

∫ ∞

0
eiκρ cos(φ−ϕ) e−i

κ2
2 ζ Utot · ~D0(κ, φ)κ dκ dφ . (1)

In the common case where the input beam is homogeneously polarized and of circular symmetry
the input field ~D0 is expressed as

~D0(κ, φ) = a(κ) ~d0 , (2)

where the function a(κ) gives the amplitude distribution as a function of the transverse wave-
vector and ~d0 is a unit polarization vector. The matrix Utot in Eq. (1) gives the transfer function
through the optical arrangement. In the case of a cascade of N conical diffraction crystals its
expression was given in [26],

Utot(κ, φ) = UN (κ, φ, γN )UN−1(κ, φ, γN−1) . . .U2(κ, φ, γ2)U1(κ, φ, 0) , (3)

where the Un (κ, φ, γn ) are unitary matrices associated to the individual crystals and are expressed
as

Un (κ, φ, γn ) = exp
[
−iρn κ

(
cos(φ − γn ) sin(φ − γn )
sin(φ − γn ) − cos(φ − γn )

)]
=

(
cos(κρn ) − i sin(κρn ) cos(φ − γn ) −i sin(κρn ) sin(φ − γn )

−i sin(κρn ) sin(φ − γn ) cos(κρn ) + i sin(κρn ) cos(φ − γn )

)
. (4)

In the case addressed in the present work, where the crystals are intercalated by polarization
transforming elements, the matrix Utot should contain the effect of these elements, Eq. (3) should
then be replaced by

Utot(κ, φ) = UN (κ, φ, γN )JN−1(θN−1) . . . J2(θ2)U2(κ, φ, γ2)J1(θ1)U1(κ, φ, 0) , (5)

where the Jones matrices Jm (θm ) are not necessarily unitary. Obviously, in the absence of one
or more of the polarization transforming elements the corresponding Jones matrices have to be
replaced by the unit matrix.

The intensity distribution is finally obtained up to an unimportant multiplicative constant from
(1) and (5) as

I (ρ, ϕ, ζ ) = ~D · ~D∗ = | ~D |2. (6)

While the complex integral (1) can be determined by a rather lengthy brute-force numerical
calculation, it is more convenient to perform the azimuthal integration analytically. Appendix A
describes the method for the integration of the Fourier integral (1) and introduces the modified
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Belskii-Khapalyuk integrals Bm (ρ, ρ̃, ζ ). In the following we treat explicitly the specific cases
where N = 2 and the intermediate element is either a quarter-wave plate, a half-wave plate
or a polarizer. We limit ourselves to the case of a circularly polarized input wave, for which,
in absence of intercalated elements, conical diffraction always leads to rings with azimuthally
homogeneous intensity.

2.1. Two crystals intercalated by a λ/4-plate

We start by considering the special case where a λ/4-plate is placed between two crystals with
parallel optical axes. The wave-plate is oriented under an angle θ with respect to the x-axis and
the input polarization to the first crystal is homogeneous and circular so that ~d0 = 1/

√
2(1, i)T.

In absence of the intermediate wave-plate this situation leads to two conical diffraction rings,
each with a homogeneous intensity along the azimuthal coordinate. The intensity associated to
each ring depends on the value of the orientation angle γ2 of the second crystal with respect
to the first [26, 28]. The radii of the two rings in our normalized units are | ρ̃+ | and | ρ̃− |, with
ρ̃+ ≡ ρ1 + ρ2 and ρ̃− ≡ ρ1 − ρ2.

The output light distribution in the presence of the λ/4-plate is calculated from (1) using the
Jones matrix

Jλ/4(θ) =
1
√

2

(
cos(2θ) + i sin(2θ)

sin(2θ) − cos(2θ) + i

)
(7)

associated to the wave-plate. Using the modified Belskii-Khapalyuk integrals (21) defined in
the Appendix A the two complex components Dx and Dy of the electric displacement vector
~D(ρ, ϕ, ζ ) in (1) become then

Dx (ρ, ϕ, ζ ) =
[
B0( ρ̃+) + B0(− ρ̃+) + B0( ρ̃− ) + B0(− ρ̃− )

]
(ei2θ + i) +[

B0( ρ̃+) + B0(− ρ̃+) − B0( ρ̃− ) − B0(− ρ̃− )
]

ieiγ2 −[
B1( ρ̃+) − B1(− ρ̃+) − B1( ρ̃− ) + B1(− ρ̃− )

]
(ei (γ2−ϕ+2θ ) + iei (ϕ−γ2)) −[

B1( ρ̃+) − B1(− ρ̃+) + B1( ρ̃− ) − B1(− ρ̃− )
]

(ei (ϕ−2θ ) + ieiϕ ) +[
B2( ρ̃+) + B2(− ρ̃+) − B2( ρ̃− ) − B2(− ρ̃− )

]
ei (2ϕ−2θ−γ2) , (8)

and

Dy (ρ, ϕ, ζ ) = −
[
B0( ρ̃+) + B0(− ρ̃+) + B0( ρ̃− ) + B0(− ρ̃− )

]
(iei2θ + 1) −[

B0( ρ̃+) + B0(− ρ̃+) − B0( ρ̃− ) − B0(− ρ̃− )
]

eiγ2 −[
B1( ρ̃+) − B1(− ρ̃+) − B1( ρ̃− ) + B1(− ρ̃− )

]
(iei (γ2−ϕ+2θ ) + ei (ϕ−γ2)) −[

B1( ρ̃+) − B1(− ρ̃+) + B1( ρ̃− ) − B1(− ρ̃− )
]

(iei (ϕ−2θ ) + eiϕ ) −[
B2( ρ̃+) + B2(− ρ̃+) − B2( ρ̃− ) − B2(− ρ̃− )

]
iei (2ϕ−2θ−γ2) , (9)

where we have used the abbreviation Bm ( ρ̃) ≡ Bm (ρ, ρ̃, ζ ). It can be easily seen from (8) and (9)
that the resulting intensity distribution (6) is no longer independent from the real-space azimuthal
angle ϕ, as will be discussed with the concrete examples in Sect. 3.

2.2. Two crystals intercalated by a λ/2-plate

In this case the relevant Jones matrix is

Jλ/2(θ) =

(
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
(10)

and the procedure to calculate the output ~D-vector is similar as above. For homogeneously
circularly polarized input one obtains instead of (8) and (9),

Dx (ρ, ϕ, ζ ) =
[
B0( ρ̃+) + B0(− ρ̃+) + B0( ρ̃− ) + B0(− ρ̃− )

]
ei2θ −
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[
B1( ρ̃+) − B1(− ρ̃+) − B1( ρ̃− ) + B1(− ρ̃− )

]
ei (γ2−ϕ+2θ ) −[

B1( ρ̃+) − B1(− ρ̃+) + B1( ρ̃− ) − B1(− ρ̃− )
]

ei (ϕ−2θ ) +[
B2( ρ̃+) + B2(− ρ̃+) − B2( ρ̃− ) − B2(− ρ̃− )

]
ei (2ϕ−2θ−γ2) , (11)

and

Dy (ρ, ϕ, ζ ) = −
[
B0( ρ̃+) + B0(− ρ̃+) + B0( ρ̃− ) + B0(− ρ̃− )

]
iei2θ −[

B1( ρ̃+) − B1(− ρ̃+) − B1( ρ̃− ) + B1(− ρ̃− )
]

iei (γ2−ϕ+2θ ) −[
B1( ρ̃+) − B1(− ρ̃+) + B1( ρ̃− ) − B1(− ρ̃− )

]
iei (ϕ−2θ ) −[

B2( ρ̃+) + B2(− ρ̃+) − B2( ρ̃− ) − B2(− ρ̃− )
]

iei (2ϕ−2θ−γ2) . (12)

2.3. Two crystals intercalated by a polarizer

Finally we consider the case where the intermediate element is a polarizer described by the
non-unitary Jones matrix

Jpol (θ) =

(
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

)
. (13)

The components of the output ~D-vector are then

Dx (ρ, ϕ, ζ ) =
[
B0( ρ̃+) + B0(− ρ̃+) + B0( ρ̃− ) + B0(− ρ̃− )

]
(ei2θ + 1) +[

B0( ρ̃+) + B0(− ρ̃+) − B0( ρ̃− ) − B0(− ρ̃− )
]

eiγ2 −[
B1( ρ̃+) − B1(− ρ̃+) − B1( ρ̃− ) + B1(− ρ̃− )

]
(ei (γ2−ϕ+2θ ) + ei (ϕ−γ2)) −[

B1( ρ̃+) − B1(− ρ̃+) + B1( ρ̃− ) − B1(− ρ̃− )
]

(ei (ϕ−2θ ) + eiϕ ) +[
B2( ρ̃+) + B2(− ρ̃+) − B2( ρ̃− ) − B2(− ρ̃− )

]
ei (2ϕ−2θ−γ2) , (14)

and

Dy (ρ, ϕ, ζ ) = −
[
B0( ρ̃+) + B0(− ρ̃+) + B0( ρ̃− ) + B0(− ρ̃− )

]
(iei2θ − i) +[

B0( ρ̃+) + B0(− ρ̃+) − B0( ρ̃− ) − B0(− ρ̃− )
]

ieiγ2 −[
B1( ρ̃+) − B1(− ρ̃+) − B1( ρ̃− ) + B1(− ρ̃− )

]
(iei (γ2−ϕ+2θ ) − iei (ϕ−γ2)) −[

B1( ρ̃+) − B1(− ρ̃+) + B1( ρ̃− ) − B1(− ρ̃− )
]

(iei (ϕ−2θ ) − ieiϕ ) −[
B2( ρ̃+) + B2(− ρ̃+) − B2( ρ̃− ) − B2(− ρ̃− )

]
iei (2ϕ−2θ−γ2) . (15)

3. Examples

In order to visualize the effects we give in this section some specific examples and compare them
with corresponding experimental tests in the case of a two-crystal cascade. The experiments
were performed at the wavelength of 633 nm using circularly polarized input light to the
first crystal, which we chose to be the longest one. We used two crystals of KGd(WO4)2
(KGW) with lengths of 22.6 and 17.6 mm, respectively. By using the principal refractive
indices ng , nm and np of KGW determined by Pujol et al. [36], the cone aperture semi-angle
α � 1/(2ngnp )[(n2

g − n2
m )(n2

m − n2
p )]1/2 is α � 19.6 mrad for this crystal. For our focusing

conditions with a f =100 mm spherical lens the beam 1/e half-width at the waist position is w �
4.5 µm and the corresponding normalized strength parameters are ρ1 � 98.6 and ρ2 � 76.8.

3.1. Crossed crystals

Let us consider the case where the crystals are crossed with a relative angle γ2 = π/2. In absence
of any polarization transforming elements between them, this situation leads to two azimuthally
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Fig. 2. Cascaded conical diffraction for two crossed crystals (γ2 = π/2) and circular polar-
ized input as obtained in the focal image plane ζ = 0. Panel (a) shows the calculated circular
symmetric intensity distribution in absence of any intercalated polarization transforming
element. ρx and ρy are the projections of the normalized radius ρ into the x and y axis,
respectively. Panel (b) shows the experimental observation for the case where a λ/4-plate
under the angle θ = 0 is introduced between the KGW crystals and panel (c) shows the
corresponding theoretical intensity distribution. Panel (d) is the same as panel (c) but for
the modulus of the ~D vector instead of the intensity. Panel (e) gives the theoretical angular
dependence of the intensity distribution along the internal ring (blue solid line) and the
external ring (red dotted line), and panel (f) gives the corresponding experimental angular
dependence. The value ϕ = 0 correspond to the points on the horizontal axis in (b) and (c).

homogeneous rings (in fact two double rings), as shown in Fig. 2(a), obtained by integration
of Eq. (1) for ζ = 0 in the case where the Jones matrix J1 in (5) is identified to the unit matrix.
As pointed out earlier [26, 28], in this specific case the power is equally split among the two
rings. Nevertheless the local intensity on the internal ring is larger due to the smaller area it
occupies [28]. The latter is proportional to each ring radius and in our specific case the intensity
ratio is roughly a factor of 8.

We consider first the intercalation of a quarter-wave plate oriented parallel to the first crystal
(θ = 0). Figure 2(b) shows the experimentally observed intensity distribution in the two rings as
obtained by imaging the focal image plane to a far away CCD camera by means of an imaging
lens placed behind the crystal cascade. Figure 2(c) gives the corresponding expected intensity
distribution calculated with Eqs. (8), (9) and (6) and with a(κ) = exp (−κ2/2) in Eq. (2) and the
integrals (21). This distribution a(κ) corresponds to the Fourier spectrum of the input Gaussian
beam associated to the 1/e half-width w. Figures 2(b) and 2(c) clearly show that the introduction
of the λ/4-plate breaks the angular degeneracy and leads to an azimuthal dependence of the
intensity in the two rings. In addition to the intensity distribution we plot in Fig. 2(d) also the
distribution of the absolute value of the output displacement vector | ~D | (proportional to the square
root of the intensity). Since this choice permits a better visualization of the weaker ring, we will
keep this representation in the further examples. Figures 2(b), 2(c) and 2(d) clearly indicate that
the intensity maxima and minima of the internal ring are in anti-phase with those of the external
one. To look at this aspect in more detail we plot in Fig. 2(e) the expected intensities on the two
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rings as a function of the output angle ϕ. The blue solid line corresponds to the radius at which
the internal ring has its maximum and the red dotted line is at the corresponding radius for the
external ring. The corresponding experimental data are given in Fig. 2(f). The latter are obtained
by evaluating the angular dependence of the average intensity within equally wide narrow rings
that contain the internal and the external double rings, respectively. Figures 2(e) and 2(f) show a
good agreement and confirm that the intercalated wave plate leads to two maxima and two minima
for each ring, mutually in opposition of phase. The intensity modulation in the outer ring follows
approximately a dependence in sin 2ϕ, while the one in the inner ring goes with − sin 2ϕ, this
means that here the azimuthal intensity modulation is double as fast as in the case where linearly
polarized light is used as input to the conical diffraction process [28]. In the case of a quarter wave
plate the azimuthal intensity modulation contrast is approximately 1/2 for both the outer and the
inner ring. With some little algebra one can show that this modulation contrast is roughly given
by the ratio: 2

{
(Re[B1])2 + Re[B0]Re[B2]

}
/
{
3 (Re[B0])2 + 4 (Re[B1])2 + (Re[B2])2

}
, where

for each modified Belskii-Khapalyuk integral Bm one should take Bm (ρ, ρ+ , 0) for the outer
ring and Bm (ρ, ρ− , 0) for the inner ring (see Appendix A). The above discussion holds for
our example for which the λ/4-plate was oriented at the angle θ = 0. However, the choice of
another angle θ leads solely to a rotation of the whole output intensity distribution by the double
angle 2θ and all the conclusions remain therefore valid. We note also that, despite the use of the
quarter wave plate, the light on the two rings is locally linearly polarized with a polarization
direction depending on the angle ϕ. In the present case the output wave of the internal ring is
horizontally polarized for ϕ = −90 deg, vertically polarized for ϕ = 90 deg and is polarized
at +45 deg and -45 deg for ϕ = 0 and ϕ = 180 deg, respectively. Therefore, as is the case for
conical diffraction in a single crystal, the local polarization direction angle is a linear function of
ϕ/2 so that two opposite points on the same ring possess orthogonal polarizations. Also, for the
same azimuthal angle the polarizations on the two rings are mutually orthogonal, which means
that the polarization on the external ring for a given ϕ corresponds to the one on the internal ring
for ϕ+ 180 deg. We remark that the above polarization distribution is exactly the same as the one
obtained for crossed crystals in absence of an intercalated element, i.e. the case of Fig. 2(a) for
which the intensity is azimuthally homogeneous. Therefore, the intercalation of the quarter-wave
plate does not modify the local polarization on the rings, this statement remains true also if the
λ/4-plate is replaced by another polarization transforming element. The polarization distribution
on the two rings depends only on the orientation of the two crystals.

It is worth noting that the intercalation of a half-wave plate according to Section 2.2 does
not change dramatically the picture with respect to the above case of a quarter-wave plate and
thus we discuss the differences only briefly. One gets also double peaked maxima and minima
for each of the rings and, for a same orientation of the wave plates the intensity distribution
keeps the same overall orientation. However, for the case of a half-wave plate the modulation
is complete for both the inner and the outer ring. For example, if θ = 0 one gets zero intensity
points for the internal ring at ϕ = π/4 and 5π/4 and zero intensity points for the external ring
at ϕ = −π/4 and 3π/4. Therefore the use of a variable retardation wave plate permits to tune
the azimuthal intensity modulation from zero to full contrast going from zero retardation to
half-wave retardation, and back to zero if the retardation ranges between λ/2 and a full wave.

As a next example we consider the case where a polarizer under the angle θ = π/2 is inserted
between the crossed crystals. As shown in Fig. 3 this leads to a richer and more complex azimuthal
intensity redistribution within each of the two rings. Figure 3(a) shows the expected distribution
of the modulus of the ~D vector as obtained from Eqs. (14) and (15). It clearly shows that the
intensities in each of the two rings exhibit a well identified maximum at a certain angle and that
the mutual positions of these maxima are angularly shifted by ∆ϕ = π/2. This is clearly seen
also in the experimental observation of Fig. 3(b) and in the theoretical and experimental intensity
distribution along the two rings depicted in Fig. 3(c). Each ring possesses two zero-intensity
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Fig. 3. Cascaded conical diffraction for two crossed crystals as in Fig. 2 but for an intercalated
polarizer under the angle θ = π/2. (a) Theoretical distribution of the modulus of the ~D vector
in the plane ζ = 0; (b) Experimental intensity distribution; (c) Theoretical and experimental
angular dependence of the intensity distribution along the internal ring (blue solid line) and
the external ring (red dotted line). The inset in the lower graph in (c) gives a zoom for the
weak signal in the external ring for ϕ between 0 and 90 degrees.

points with a weak secondary intensity maximum between them, as seen for instance in the inset
in Fig. 3(c). The zero-intensity points form a right angle with the center of the cone projection,
in our specific case they are found at ϕ = −π/2 and ϕ = 0 for the internal ring, and at ϕ = 0 and
ϕ = +π/2 for the external one. The 90 degrees out-of-phase relative orientation of the internal
and external rings may be interpreted as the manifestation of some kind of "pseudo-chirality"
associated with the two-crystal structure. In the case discussed here, for which γ2 = +π/2, this
chirality is positive as defined by the fact that the external ring is oriented 90 degrees clockwise
with respect to the internal one. The reverse would be true if the direction of the second crystal is
inverted and γ2 = −π/2. Interestingly, such an inversion of chirality is obtained also if the order
of the crystals is reversed and the shorter crystal would be put before the longer one. This is in
contrast to the above case where the intercalated element is a wave plate, for which the overall
orientation of the rings is independent of the order in which the birefringent crystals are put into
the set-up. This difference is associated to the fact that in the case of a polarizer the total energy
in the beam is not conserved and the corresponding Jones matrix (13) is not unitary. Finally,
as was the case for the intercalated wave plates, it is worth noting that rotating clockwise the
polarizer by an additional angle ∆θ leads to a clockwise rotation of the whole light distribution
structure by the double angle 2∆θ. For instance, the structure for a polarizer under the angle
θ = 0 is obtained by central point symmetry from the one depicted in Fig. 3.

3.2. Parallel crystals

We consider now the interesting situation where the two crystals are parallel with the vectors ~γ1
and ~γ2 oriented in the same direction, so that the relative angle is γ2 = 0. In this case, in absence
of intercalated elements one obtains a single double ring at ρ ≈ ρ1 + ρ2 [26, 28]. This radius
corresponds to the one of the external ring in Fig. 2(a). The system behaves like there was only a
single crystal having a length corresponding to the sum of the lengths of the individual crystals.

We first consider the case where the intermediate local polarization is scrambled by a quarter-
wave plate. As seen in Fig. 4 clearly the presence of the wave plate "reactivates" the otherwise
non existing internal ring. As for the case of the crossed crystals given in Fig. 2 the intensities
are azimuthally modulated along each of the rings with a two-fold symmetry. The maxima and
minima of each ring are again mutually out-of-phase. However, here the modulation depth of
the internal ring is complete, while the one of the external ring is only partial like in the case of
the crossed crystals. Again, as in the previous cases, any further rotation ∆θ of the wave plate
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Fig. 4. Cascaded conical diffraction for two cascaded parallel crystals (γ2 = 0) intercalated
by a λ/4-plate under the angle θ = π/4. (a) Theoretical distribution of the modulus of the
~D vector in the plane ζ = 0; (b) Experimental intensity distribution; (c) Theoretical and
experimental angular dependence of the intensity distribution along the internal ring (blue
solid line) and the external ring (red dotted line).

leads to a rotation of the whole light distribution structure by 2∆θ. It should also be noted that
the use of a half-wave plate instead of a quarter-wave plate leads to a qualitatively similar and
equally oriented picture, the only major change being that not only the internal, but also the
external ring has a full modulation contrast. The fact that the internal ring can be activated by the
presence of the wave plate has potentially very interesting applications. For instance, the use of
an electro-optically tunable retarder shall allow to switch on and off very rapidly the internal ring
structure without the need for any moving parts. The same is true for the switching on and off of
the external ring in the case where the two crystals are oriented in antiparallel direction (γ2 = π).
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Fig. 5. Cascaded conical diffraction for two cascaded parallel crystals (γ2 = 0) intercalated
by a polarizer under the angle θ = π/2. (a) Theoretical distribution of the modulus of the
~D vector in the plane ζ = 0; (b) Experimental intensity distribution; (c) Theoretical and
experimental angular dependence of the intensity distribution along the internal ring (blue
solid line) and the external ring (red dotted line).

As a final experimental example we discuss briefly the case where a polarizer is inserted
between the parallel crystals. As seen in Fig. 5 also here the internal ring is reactivated with the
same two-fold symmetry as for the case of Fig. 4. However, in contrast to all previous cases, the
overall rotational symmetry associated to the intensity in the external ring differs from the one of
the internal one and is only one-fold.

3.3. More than two crystals

Finally we give briefly two examples for the more complex cases where three or four crystals are
put in cascade in the way shown in Fig. 1. In principle also for N > 2 a semi-analytical treatment
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like the one in Sections 2.1 to 2.3 can be done, however the related expressions become quite
lengthy. It can be easily shown that for a number N of crystals put in cascade and intercalated by
various polarization transforming elements the maximum order for the integrals Bm involved in
such expressions is m = N . Therefore for three crystals the integrals B3(ρ, ρ̃, ζ ) are needed in
addition to B0, B1 and B2, while for four crystals also the B4(ρ, ρ̃, ζ ) are required. Here, instead
of using the semi-analytical approach, we show in Fig. 6 the expected intensity distributions
obtained by a direct numerical integration of Eq. (1) in the focal image plane ζ = 0 and for a
circularly polarized input wave.
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Fig. 6. Expected intensity distribution in the plane ζ = 0 for the cascaded conical diffraction
of more than two crystals and intercalation of polarizing elements. (a) Three crystals with
normalized strength parameters ρ1 = 40, ρ2 = 15, ρ3 = 5 and orientations γ1 = 0 and
γ2 = γ3 = 90 deg. A λ/4-plate is placed between the first and the second crystal under
the angle θ1 = 45 deg, and a λ/2-plate under the angle θ2 = 90 deg is placed between the
second and the third crystal. (b) Four crystals with ρ1 = 40, ρ2 = 15, ρ3 = 5, ρ4 = 70 and
orientations γ1 = 0, γ2 = γ3 = 90 deg, and γ4 = 135 deg. The polarization transforming
elements are a polarizer followed by a λ/2-plate and another polarizer, their orientations are
θ1 = 0 deg, θ2 = 45 deg and θ3 = 135 deg.

Panel (a) in Fig. 6 is for the case of three cascaded crystals with the first two crossed to each
other and the last two parallel to each other. A quarter-wave plate oriented at 45 deg is placed
between the first two crystals and a half-wave plate oriented at θ2 = 90 is placed between the last
two crystals. The chosen normalized strength parameters of ρ1 = 40, ρ2 = 15, ρ3 = 5 lead to
four conical diffraction rings for which the normalized radii are roughly ρ ≈ (20; 30; 50; 60),
which can be easily recognized in Fig. 6(a). The azimuthal intensity distribution on each of the
rings exhibits two nodes which are aligned horizontally for the most internal (ring 1) and the
most external ring (ring 4), and vertically for the two intermediate rings. Remarkably, in the
present configuration the azimuthal intensity profile between these nodes is not symmetric, so
that the intensity center of mass shifts clockwise for the rings 1 and 3, and counterclockwise for
the rings 2 and 4.

For the case of Fig. 6(b) a fourth crystal with ρ4 = 70 and γ4 = 135 deg is added to the
previous three. Here we consider the case where polarizers are inserted between the outer crystal
pairs (θ1 = 0 and θ3 = 135 deg) and a half-wave plate is put between the second and third crystal
(θ2 = 45 deg). The expected radial positions of the eight resulting conical diffraction rings are
ρ ≈ (10; 20; 40; 50; 90; 100; 120; 130). All these rings can be recognized in Fig. 6(b), however
the ring at ρ ≈ 90 is only hardly visible due to a very weak associated intensity. As was the case
for instance in Fig. 3, the polarizers lead to a quite complex angular dependence of the intensity
on each of the eight rings and the angle ϕ associated to the maximum intensity differs for each
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of them. Also, the increase of the number of crystals and intercalated elements leads to a sharper
confinement of the intensity on a rather narrow angular region for the main lobe of each ring.

4. Conclusions

We have described theoretically and verified experimentally the effect of intercalating polar-
ization transforming optical elements between the biaxial crystals forming cascaded conical
diffraction. The additional elements break the usual azimuthal intensity homogeneity expected
for unpolarized or circular polarized input beams. Complex vector-type beams are obtained with
their shapes governed by the crystals conical diffraction strength parameters ρn , their angular
orientations γn and the nature and orientation of the polarization transforming elements. A
particularly interesting case is the one where otherwise silent rings are "re-activated" by the
presence of the intercalated elements, which occurs if two or more crystals are arranged parallel
or anti-parallel to each other. Since variable retarders can be realized by means of electro-optical
devices, this opens the possibility to switch on and off individual conical diffraction rings at
speeds exceeding several MHz. We have given explicit analytic expressions only for the case
of a two-crystal cascade with intercalation of a λ/4-plate, a λ/2-plate or a polarizer. However,
the general formalism remains valid also for other polarization transformations between the
crystals, as may be obtained for instance by a combination of optical elements described by
an appropriate Jones matrix. Our few examples have shown that a variety of complex beam
shapes with strong (and different) azimuthal localization of the light intensity on each ring can
be obtained. Obviously this localization could be improved even further by post-filtering the
polarization state after the last crystal by means of a polarizer. The richness and versatility
of the vector beam shaping features resulting from the present approach open up interesting
perspectives for virtually every application that has been proposed in connection with conical
diffraction and complex beam shaping, including fast switchable optical trapping, singular optics,
material processing, polarization metrology, and super-resolution microscopy.

Appendix A: Integration of the Fourier integral (1)

When evaluating the form of the 2×2 complex matrix Utot (5) or of the product Utot · ~d0 inside the
integral (1) one gets a complicated sum over sine and cosine functions containing as arguments
various linear combinations of the angles φ, θn , γn as well as the products κρn . It is convenient
to express this trigonometric sum as a sum of exponential functions of the same arguments. The
general form of an individual term may then be expressed as

e±imφeiβeiκ ρ̃ , (16)

where m is a positive integer and β is a linear combination of the angles θn and γn . The quantity
ρ̃ is composed of simple sum or differences of the normalized strength parameters ρn . For
instance in the case where we have only two crystals (N = 2) the possible values of ρ̃ are ρ1 + ρ2,
ρ1 − ρ2, ρ2 − ρ1 and −ρ1 − ρ2. The values of ρ̃ are associated to a specific conical diffraction
ring. However, since ρ̃ and − ρ̃ belong to the same ring, the total number of concentric rings
observed in cascaded conical refraction is only 2N−1 and not 2N , as pointed out earlier [26, 28].
Considering only the azimuthal φ-integral in (1) for the specific term (16) we get

p ≡ eiκ ρ̃eiβ
1

2π

∫ 2π

0
eiκρ cos(φ−ϕ)e±imφdφ . (17)

The above integral is a special form of an integral of the following class for which a general
solution was given by Massidda [37],

1
2π

∫ 2π

0
eimφea cos(φ−α1)e2b cos2 (φ−α2)dφ = ebeimα1

∑
k

e2ik (α1−α2) I2k+m (a)Ik (b) , (18)
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where Ik (x) is the modified Bessel function of the first kind of order k, which is related to the
Bessel function of the first kind Jk (x) by Ik (x) = (1/ik )Jk (ix). Since in (17) b = 0, only the
term k = 0 contributes to the sum on the right-hand side of (18). With a = iκρ, α1 = ϕ and using
Jm (−x) = (−1)m Jm (x) as well as J−m (x) = (−1)m Jm (x) one obtains easily

p = eiκ ρ̃ eiβ e±imϕ (i)m Jm (κρ) . (19)

Therefore, upon integration the azimuthal phase e±imφ in Fourier space leads to a corresponding
phase e±imϕ containing the azimuthal angle ϕ in real space. One can now use the integral p to
evaluate the contribution q of the term (16) to the integral (1), one obtains,

e±imφeiβeiκ ρ̃ ⇒ q = eiβ e±imϕBm (ρ, ρ̃, ζ ) . (20)

The quantities Bm (ρ, ρ̃, ζ ) in the above expression are modified Belskii-Khapalyuk integrals
that we define as

Bm (ρ, ρ̃, ζ ) ≡ (i)m
∫ ∞

0
e−i

κ2
2 ζ eiκ ρ̃ Jm (κρ) a(κ) κ dκ . (21)

Note that, unlike for the standard Belskii-Khapalyuk integrals [5,38], the above modified integrals
are complex even in the focal image plane ζ = 0. However, it follows directly from the above
definition that for this plane the following symmetries hold

Re[Bm (ρ, ρ̃, 0)] = (−1)m Re[Bm (ρ, − ρ̃, 0)] , (22)

Im[Bm (ρ, ρ̃, 0)] = (−1)m+1 Im[Bm (ρ, − ρ̃, 0)] . (23)

Fig. 7 visualizes the real and imaginary parts of the modified Belskii-Khapalyuk integrals B0,
B1 and B2 for the case ζ = 0. It can be easily recognized that in this case the integrals assume
significant values only in the neighborhood of the normalized radius ρ = | ρ̃|, which is indicated
by the vertical lines in Fig. 7. The radii ρ = | ρ̃| with ρ̃ = ρ1 + ρ2 or ρ̃ = ρ1 − ρ2 correspond
roughly to the radii of the Poggendorff dark rings of the two-crystal cascaded conical diffraction.
Note that the rather sharp curves for B0, B1 and B2 in Fig. 7 are due to the choice ζ = 0. If we
leave the focal image plane (ζ , 0) the curves become much broader and can assume significant
values even for ρ being far from the characteristic values ρ̃, reflecting the fact that the conical
diffraction rings get defocused. Note also that in the specific example shown here, which is
associated to large values of ρ̃, the curves for B0, B1 and B2 appear very similar, even though
they are not identical. The differences between the curves become much more pronounced for
smaller values of ρ̃ (not shown in Fig. 7), as obtained for a less focused input beam, for shorter
crystals or for materials with a smaller aperture angle of the conical diffraction.

Finally we remark that in the analytic expression for the output components of the electric
displacement vector given in sections 2.1 to 2.3 one always finds sums (or differences) of the
modified Belskii-Khapalyuk integrals for values of ρ̃ of opposite sign. Specifically these are
B0( ρ̃±) + B0(− ρ̃±), B1( ρ̃±) − B1(− ρ̃±) and B2( ρ̃±) + B2(− ρ̃±) (see Eqs. (8) and (9) as well
as the corresponding equations in sections 2.2 and 2.3). In combination with the symmetries
expressed by Eqs. (22) and (23) this implies that only the real parts of the integrals B0, B1 and
B2 play a role for the intensity distribution in the plane ζ = 0, what is no longer true if one leaves
this plane. Also, even though we prefer to stick to the general form of the modified integrals (21),
it is worth mentioning that the above sum (or differences) are directly proportional to the standard
form of the Belskii-Khapalyuk integrals. In the latter, instead of the complex term exp(iκ ρ̃), the
integrand contains a term cos(κ ρ̃) for m = 0 and for its generalization to all even values of m,
and contains a term sin(κ ρ̃) for m = 1 and for the generalization to all odd values of m.
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Fig. 7. Modified Belskii-Khapalyuk integrals B0, B1 and B2 in (21) as a function of the
normalized radius ρ for the case ζ = 0 and a(κ) = exp(−κ2/2). The panels in the left
column give the real part and the panels in the right column give the imaginary part of
the integrals. The top panels are for B0( ρ̃+) (solid lines) and B0( ρ̃− ) (dotted lines). The
corresponding functions for B1( ρ̃±) and B2( ρ̃±) are in the middle panels and bottom panels,
respectively. Here ρ̃+ ≡ ρ1 + ρ2 and ρ̃− ≡ ρ1 − ρ2, with ρ1 = 98.6 and ρ2 = 76.8. The
vertical lines correspond to the conditions ρ = ρ̃− and ρ = ρ̃+.
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