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Abstract

In this short note, we study the behaviour of a product of matrices with a simultaneous
renormalization. Namely, for any sequence (An)n∈N of d × d complex matrices whose mean
A exists and whose norms’ means are bounded, the product

(
Id + 1

n
A0

)
. . .
(
Id + 1

n
An−1

)
converges towards expA. We give a dynamical version of this result as well as an illustration
with an example of "random walk" on horocycles of the hyperbolic disc.

1 Introduction

Products of random matrices — or cocycles — are generally studied and well understood via
ergodic theory, martingales on Markov chains, or spectral theory for instance. For some litera-
ture in this direction, one can look at a book such as [1], the surveys [3, 4]. Indeed, results like
the Osseledec theorem give a precise asymptotic behaviour of a product of random matrices.
It provides informations like the logarithmic growth rate of the norm of the matrices. How-
ever, in [2] we encountered a random product of matrices that did not fit the usually studied
case. Indeed, understanding the limit of the characteristic functions of a renormalized sequence
of probability measures had to be achieved by understanding, for any parameter t, a random
product of matrices of the form

(
AX0

+ t
nBX0

)
. . .
(
AXn

+ t
nBXn

)
where (Xn)n∈N is a binary se-

quences and A0, A1, B0, B1 are fixed 2× 2 matrices. The scale of normalization is different from
the standard one, thus the result is more precise. We obtained a convergence of the matrices
instead of convergence of the logarithm of the norms. Nevertheless, the method involved heav-
ily relied on the properties of the matrices and, as such, was ad hoc for the problem we were
interested in. However, in a an effort to replicate and generalize this type of random product
of matrices (namely by understanding Corollary 3.2), we stumbled upon a surprising general
property of these types of products that we explicit in Theorem 1.1.

Theorem 1.1. Let (An)n∈N be a sequence of d× d complex matrices satisfying

lim
n→+∞

1

n

n−1∑
k=0

Ak = A.

and such that
(
1
n

∑n
k=0 ‖Ak‖

)
n∈N∗ is bounded for a norm ‖ · ‖ by α.

Define, for any t in C and any positive integer n

Πn(t) =

Å
Id +

t

n
A0

ã
. . .

Å
Id +

t

n
An

ã
.

∗Université Paris-Sud, CNRS, LMO, UMR 8628, 91405 Orsay, France. E-mail: jordan.emme@math.u-psud.fr
†Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France. E-mail:

pascal.hubert@univ-amu.fr

1



Then,
∀t ∈ C, lim

n→+∞
Πn(t) = exp(tA).

Remark 1.2. Here is an heuristic explanation of the statement of Theorem 1.1. Consider the
problem at the level of the Lie algebra. The main term is t

n

∑n−1
k=0 Ak and its limit tA. The limit

of Πn is the exponential of the limit in the Lie algebra. In a sense, at this scale, the behavior of
the product is directed by the behavior of the sum

∑n−1
k=0 Ak in the Lie algebra.

An elementary version of Theorem 1.1 for complex numbers is the following classical

Lemma 1.3. Let (un)n∈N be a bounded complex sequence whose mean converges towards l. Then

lim
n→+∞

n−1∏
k=0

(
1 +

uk
n

)
= el.
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2 Proof of Theorem 1.1

Proof. First let us write, for any n and t,

Πn(t) =
n−1∑
k=0

Å
t

n

ãkÑ ∑
0≤i1<...<ik≤n−1

Ai1 ...Aik

é
and notice that for any k,∥∥∥∥∥∥

Å
t

n

ãkÑ ∑
0≤i1<...<ik≤n−1

Ai1 ...Aik

é∥∥∥∥∥∥ ≤ Å tnãk ∑
0≤i1<...<ik≤n−1

‖Ai1‖ ... ‖Aik‖ .

Notice that by commutativity

∑
0≤i1<...<ik≤n−1

‖Ai1‖ ... ‖Aik‖ <
1

k!

(
n∑
k=0

‖Ak‖

)k
so we have ∥∥∥∥∥∥

Å
t

n

ãkÑ ∑
0≤i1<...<ik≤n−1

Ai1 ...Aik

é∥∥∥∥∥∥ ≤ |tkαk|k!
.

Hence, by the dominated convergence theorem, in order to prove the theorem, we only need to
show that, for any k,

lim
n→+∞

1

nk

∑
0≤i1<...<ik≤n−1

Ai1 ...Aik =
1

k!
Ak.

We proceed by induction on k. The case k = 1 is the hypothesis of the theorem. Let us assume
that this property is true for a fixed integer k.

1

nk+1

∑
0≤i1<...<ik<l≤n−1

Ai1 ...AikAl =
1

nk+1

n−1∑
l=k

Ñ ∑
0≤i1<...<ik<≤l−1

Ai1 ...Aik

é
Al
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and by induction hypothesis there is a sequence (εl)l∈N going to zero such that for any l:Ñ ∑
0≤i1<...<ik<≤l−1

Ai1 ...Aik

é
=
lk

k!
Ak + lkεl.

Hence
1

nk+1

∑
0≤i1<...<ik<l≤n−1

Ai1 ...AikAl =
1

nk+1k!

n−1∑
l=k

(
lkAk + lkεl

)
Al

and it follows that

1

nk+1

∑
0≤i1<...<ik<l≤n−1

Ai1 ...AikAl =
1

nk+1k!
Ak

n−1∑
l=k

lkAl +
1

nk+1k!

n−1∑
l=k

lkεlAl

So in order to get the result, we must prove that

lim
n→+∞

1

nk+1

n−1∑
l=k

lkAl =
1

k + 1
A

and

lim
n→+∞

1

nk+1

n−1∑
l=k

lkεlAl = 0.

Since the sequence (εl)n∈N goes to 0 as l goes to +∞, and since the mean of the norms of the
‖Ai‖ are bounded by hypothesis, it is obvious that the first limit implies the second.

Let us write
1

nk+1

n−1∑
l=k

lkAl =
1

n

n−1∑
l=k

Å
l

n

ãk
Al

and state the following.

Lemma 2.1. Let (un)n∈N be a sequence with values inMd(C) whose mean converges towards L and
let g be a function in C1(R). Then,

lim
n→+∞

1

n

n−1∑
l=0

g

Å
l

n

ã
ul = L

∫ 1

0

g(t)dt.

Applying this lemma to (Al)l∈N with g : x 7→ xk yields the result.

Proof of Lemma 2.1. We start with an Abel transform. With the notations of the lemma, let us
denote, for any integer n,

Sn =
n∑
l=0

ul

and S−1 = 0. For any n in N,

1

n

n−1∑
l=0

g

Å
l

n

ã
ul =

1

n

n−1∑
l=0

g

Å
l

n

ã
(Sl − Sl−1)
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and so
1

n

n−1∑
l=0

g

Å
l

n

ã
ul =

1

n

n−1∑
l=0

g

Å
l

n

ã
Sl −

1

n

n−1∑
l=0

g

Å
l

n

ã
Sl−1

which yields

1

n

n−1∑
l=0

g

Å
l

n

ã
ul =

1

n

n−2∑
l=0

Sl

Å
g

Å
l

n

ã
− g
Å
l + 1

n

ãã
+

1

n
Sn−1 · g

Å
n− 1

n

ã
.

Now let us recall that limn→+∞
1
nSn−1 = L hence there exists a sequence (εl)l∈N whose limit is

zero such that for any l
Sl = l(L+ εl).

This, in turn, yields

1

n

n−1∑
l=0

g

Å
l

n

ã
ul =

1

n

n−2∑
l=0

l(L+ εl)

Å
g

Å
l

n

ã
− g
Å
l + 1

n

ãã
+

1

n
(n− 1)(L+ εn−1) · g

Å
n− 1

n

ã
.

Now let us remark that

lim
n→+∞

1

n
(nεn−1 − L− εn−1) · g

Å
n− 1

n

ã
= 0

and that, since g is differentiable, by the mean value theorem, for any couple of integers l < n,
there exists a real x in [ ln ,

l+1
n ] such that g

(
l
n

)
−g
(
l+1
n

)
= g′(x)

n . The function g′ being continuous,
it is bounded on [0, 1], and since liml→+∞ εl = 0, we have

lim
n→+∞

1

n

n−2∑
l=0

lεl

Å
g

Å
l

n

ã
− g
Å
l + 1

n

ãã
= 0.

So, in order to complete the proof of this lemma, we must understand the asymptotic behaviour
of

L

n

n−2∑
l=0

l

Å
g

Å
l

n

ã
− g
Å
l + 1

n

ãã
+ L · g

Å
n− 1

n

ã
.

First we write

L

n

n−2∑
l=0

l

Å
g

Å
l

n

ã
− g
Å
l + 1

n

ãã
+L·g

Å
n− 1

n

ã
=
L

n

n−2∑
l=1

g

Å
l

n

ã
− (n− 2)

n
L·g
Å
n− 1

n

ã
+L·g

Å
n− 1

n

ã
.

From here on, noticing that 1
n

∑n−2
l=1 g

(
l
n

)
is a Riemann sum yields the result, we indeed have

lim
n→+∞

1

n

n−1∑
l=0

g

Å
l

n

ã
ul = L

∫ 1

0

g(t)dt.

4



3 Applications to dynamics

Corollary 3.1. Let (X,B, µ, T ) be a measured dynamical system, µ being an ergodic T -invariant proba-
bility measure. Let A be function from X toMd(C) such that each Ai,j is in L1(X,µ). Then, for almost
every x in X ,

lim
n→+∞

Å
Id +

t

n
A(x)

ã
. . .

Å
Id +

t

n
A ◦ Tn−1(x)

ã
= exp

Å
t

∫
X

A(x)dµ(x)

ã
.

Proof. This is just a matter of writing Theorem 1.1 using Birkhoff’s pointwise ergodic theorem.

The fact that this theorem applies to generic points of ergodic probability measures is useful
to understand some dynamical systems as we illustrate with the following corollary which gives
the asymptotic law of a "random walk" on horocycles of the hyperbolic disc.

Corollary 3.2. Let A1 =

Å
0 1
0 0

ã
and A2 =

Å
0 0
1 0

ã
. Let µ be a shift-invariant ergodic probability

measure on {1, 2}N. Then, for µ almost every x in {1, 2}N, and every t in R,Å
I2 +

t

n
Ax0

ã
. . .

Å
I2 +

t

n
Axn−1

ã
=

Ö
cosh

Å
t√

µ([1])µ([2])

ã √
µ([2])
µ([1]) sinh

Å
t√

µ([1])µ([2])

ã
√

µ([0])
µ([2]) sinh

Å
t√

µ([1])µ([2])

ã
cosh

Å
t√

µ([1])µ([2])

ã è
.

Proof. One easily computes exp

Å
0 tµ([1])

tµ([2]) 0

ã
to get the desired result.

Figure 1: An illustration of a random hyperbolic walk
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Remark 3.3. Remark that Corollary 3.2 can be interpreted in a geometric way given that I2 +A1

and I2 + A2 are generators of SL2(Z). Notice that taking, for instance, µ to be the symmetric

Bernoulli measure on {1, 2}N, one gets ΠX(t) =

Å
cosh

(
t
2

)
sinh

(
t
2

)
sinh

(
t
2

)
cosh

(
t
2

)ã which is conjugated toÇ
e

t
2 0

0 e−
t
2

å
by a rotation of angle π/4. Hence almost every "random walk" (with simultaneous

renormalization) on two horocycles of the hyperbolic disc converges towards a unique point on
the geodesic represented by the vertical diameter of the disc as illustrated on Figure 11.
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