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Abstract

A method to generate geometric pseudo-spectral spatial discretization schemes for hyperbolic or parabolic partial dif-
ferential equations is presented. It applies to the spatial discretization of systems of conservation laws with boundary
energy flows and/or distributed source terms. The symplecticity of the proposed spatial discretization schemes is defined
with respect to the natural power pairing (form) used to define the port-Hamiltonian formulation for the considered
systems of balance equations. The method is applied to the resistive diffusion model, a parabolic equation describing
the plasma dynamics in tokamaks. A symplectic Galerkin scheme with Bessel conjugated bases is derived from the usual
Galerkin method, using the proposed method. Besides the spectral and energetic properties expected from the symplec-
ticity of the method, it is shown that more accurate approximation of eigenfunctions and reduced numerical oscillations
result from this choice of conjugated approximation bases. Finally, the obtained numerical results are validated against
experimental data from the tokamak Tore Supra facility.

Keywords: symplectic spatial integration, pseudo-spectral methods, balance equations, port-Hamiltonian systems,
resistive diffusion equation

1. Introduction

Hamiltonian operators are classically used to represent
the dynamics of many closed systems of conservation laws.
Recently port-Hamiltonian (PH) extensions have been in-
troduced to model open systems with boundary or dis-
tributed energy flow [29, 20]. This modelling approach
has proven to be fruitful for the modelling, simulation
and control of many hyperbolic systems such as transmis-
sion line models [13], beam equations [18] or shallow water
equations [15]. However, the same approach may as well
be applied to ‘first principle’ parabolic examples such as
transport models for adsorption columns [3], fuel cells [11]
or diffusion in Ionic Polymer-Metal Composites [23]. Both
hyperbolic and parabolic examples make use of a Stokes-
Dirac interconnection structure for the realization of the
balance equations (e.g. mass, entropy, momentum, etc.).

In the spatial discretization of distributed parameters
systems as well as in geometric time integration for ordi-
nary differential equations, pseudo-spectral methods are
often chosen because they lead to low order approximate
models, with accurate spectral properties (in the linear
case, see for instance [10]). Accurate spectral proper-
ties and low order models are obviously important fea-
tures for the design, supervision and control engineering
problems. However it is known that key system theoretic
properties (both internal or input-output) may be lost in
the spatial discretization of distributed parameters sys-
tems, when using these pseudo-spectral methods without
any additional considerations (as it is also the case for

finite-difference schemes). One way of avoiding such prob-
lems in the numerical integration of closed Hamiltonian
models is to consider geometric methods, i.e. methods
which preserve some conserved quantities and/or the geo-
metric interconnection structure of the original model [14].
The latter are usually referred to as symplectic integration
methods. The symplecticity is then defined with respect
to some Poisson structure. However, these methods usu-
ally apply only to the time-integration of closed Hamilto-
nian systems and not to the spatial discretization of open
port-Hamiltonian systems. It must be noticed however
that multi-symplectic methods have been developed for
the simultaneous space and time integration (i.e. total
discretization) of infinite dimensional closed Hamiltonian
models [26].

In this paper we define how to systematically build
a symplectic spatial discretization scheme for open port-
Hamiltonian systems, starting from any given non sym-
plectic pseudo-spectral discretization method (see for in-
stance [9] for a general presentation of classical pseudo-
spectral methods). Generalizing previous ideas from [6]
(mixed finite elements methods) or [22] (mixed orthogonal
collocation) we define several approximation bases for the
thermodynamical variables, according to their geometric
nature (i.e. the degrees of the corresponding differential
forms). Then the balance (or conservation) equations and
the constitutive (closure) equations are projected into the
chosen approximation spaces in order to preserve a power
pairing form. The symplecticity of the built mixed pseudo-
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spectral method is thus defined wit respect to this power
pairing form, which acts on the distributed and boundary
port variables (i.e. the input-output variables).

A second contribution of the paper is related to the
choice of approximation spaces. In the proposed construc-
tion of mixed symplectic pseudo-spectral spatial discretiza-
tion methods, the chosen approximation spaces have to be
compatible (conjugated) to guarantee the preservation of
the power pairing form. Otherwise they could theoretically
be chosen quite freely. Classical choices for the approxi-
mation spaces are for instance those spanned by Fourier,
wavelets or polynomial bases. Not much has been written
however about how to choose practically the approxima-
tion space among these many possibilities, in the general
case. In this work we suggest the use of approximation
spaces spanned by conjugated bases of eigenfunctions as-
sociated to a simplified problem, this problem being de-
rived by linearization of the original distributed parame-
ters system and spatial uniformization of its parameters.
Besides accurate eigenvalues approximations, such choices
also provide accurate accurate eigenfunctions approxima-
tions. We show on the considered resistive diffusion exam-
ple how this choice may solve some numerical oscillation
problem encountered with distributed actuation or sharp
initial conditions.

To illustrate the approach we have chosen to apply
these ideas on the example of the port-Hamiltonian for-
mulation for the 1D resistive diffusion equation [5]. It is
a simple plasma control model for the radial diffusion of
the poloidal magnetic flux in a tokamak facility. It is a
parabolic problem which still may be written in the port-
Hamiltonian formalism using a skew symmetric intercon-
nection structure and toric magnetic coordinates with a
homogeneous boundary condition at the center (for sym-
metry) and a non autonomous (controlled) boundary con-
dition at the outer radius. In this example classical (non
symplectic) finite difference or collocation spatial discretiza-
tion schemes give rise to unwanted numerical oscillating
(or even unstable) modes. Simulation results obtained
with the proposed symplectic reduction scheme have been
validated and compared with experimental data obtained
from a discharge of the tokamak Tore Supra discharge (this
device is described in [21]).

The paper is organized as follows. In section 2 we re-
call existing results on the port-Hamiltonian formulation
for open distributed parameter systems. In section 2.1
we present the proposed methodology to build mixed sym-
plectic spatial discretization schemes, starting from clas-
sical pseudo-spectral methods. In section 4, we de-
rive a mixed Galerkin method for the resistive diffusion
problem, using conjugated approximation bases spanned
by Bessel’s functions. In section 5.1, we analyze numerical
results obtained for the resistive diffusion equation with
non-uniform resistivity and distributed non inductive cur-
rent. These numerical results are also compared against
against experimental data.

2. Port-based modelling for systems of balance equa-
tions with boundary energy flows

Quite recently, an intrinsic formulation of port-based
models for distributed parameter systems (described by
partial differential state space equations) with boundary
energy flow have been proposed [29]. It is based on the def-
inition of the state variables as the densities of some ther-
modynamical extensive variables. The time derivatives of
these variables and their conjugated intensive variables1

form together the pairs of variables which are used to de-
fine a power pairing form and a port-Hamiltonian formu-
lation for systems of conservation laws. Using these vari-
ables the usual port Hamiltonian formulation is extended
to the infinite-dimensional systems using a canonical geo-
metric interconnection structure called Stokes-Dirac struc-
ture [29]. We shall now briefly recall the definitions of these
Stokes-Dirac structures and port-Hamiltonian extensions
for distributed parameter systems in the 1D case, with a
spatial domain Ω = [0, L].

2.1. Hamiltonian formulation for systems of conservation
laws

We shall define the conserved quantities as 1-forms on
the interval Ω = [0, L], whose space will be denoted Λ1(Ω).
Once a coordinate x (i.e. a measure dx) has been chosen
on the interval Ω, the 1-form α ∈ Λ1(Ω) may be written,
using this coordinate, α = α (x) dx where α (.) denotes
a smooth function. The state space of a system of two
conservation laws is the product space Λ1(Ω)×Λ1(Ω). The
space of 0-forms, that is smooth functions on the interval
Ω, is denoted by Λ0(Ω).

The symbol ∧ will denote the exterior product of k-
forms and d the exterior derivative2. We shall make use
the Hodge star ? operator associated with the measure dx
of the real interval Ω. In the coordinate x, the Hodge star
product of the 1-form α (x) dx is simply the 0-form: α (x).

Between 0-form Λ0(Ω) 3 β and 1-form Λ1(Ω) 3 α, one
may define a bilinear form

< β|α >:=

ˆ
Ω

β ∧ α (∈ R) (2.1)

which is simply expressed in coordinates as < β|α >:=´
Ω
β (x) α (x) dx. The bilinear form (2.1), also referred in

this paper as the natural power-pairing, is non-degenerate
in the sense that if< β|α >= 0 for all α (respectively for all

1Such pairs of conjugated variables are, for instance, the entropy
density flow and the temperature in the thermal domain, the mo-
mentum density and the velocity in the kinetic domain, the pressure
and the volumetric flow in the hydraulic domain, etc.

2Actually in the case of a 1D domain these operations become
quite trivial. The wedge product of 0-forms, i.e. functions, is simply
their product and the wedge product of a 0-form with a 1-form is
again simply the usual product of the 1-form by the 0-form. The
only non-trivial exterior derivation acts on 0-forms and is written
with the coordinate x: dβ(x) = ∂β

∂x
(x) dx.
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β), then β = 0 (respectively α = 0). For real-valued func-
tions γi ∈ Λ0(∂Ω), i = 1, 2 associated the spatial domain
boundary ∂Ω = {0, L}, we define the non-degenerated bi-
linear form:

〈γ1, γ2〉∂ =

ˆ
∂Ω

γ1 ∧ γ2 = γ1 (L) γ2 (L)− γ1 (0) γ2 (0)

Consider an energy density 1-form H : Λ1(Ω) × Ω →
Λ1(Ω) and denote by H :=

´
Ω
H ∈ R the associated Hamil-

tonian function. Then for any 1-form ω ∈ Λ1(Ω) and any
variation ∆ω ∈ Λ1(Ω) with compact support strictly in-
cluded in Ω and any κ ∈ R, it may be proven that [29] :

H(ω + κ∆ω) =

ˆ
Ω

H (ω + κ∆ω)

=

ˆ
Ω

H (ω) + κ

ˆ
Ω

[
δH

δω
∧∆ω

]
+ O

(
κ2
)

for a uniquely defined 0-form which will be denoted δH
δω ∈

Λ0(Ω) and which is called the variational derivative of H
with respect to α ∈ Λ1(Ω). It should be noticed that
when H only depends on ω (and not on its derivatives)
and when the integration domain is fixed, then δH

δω = ∂H
∂ω .

We will now define open systems of two conservation laws
in canonical interaction.

Definition 2.1. Consider the two conserved quantities as
being two 1-forms: q ∈ Λ1(Ω) and p ∈ Λ1(Ω). Consider
also the system of conservation laws, with flux variables βq
and βp for each conserved quantity, defined by the Hamil-
tonian density function H : Λ1(Ω) × Λ1(Ω) × Ω → Λ1(Ω)
resulting in the total Hamiltonian H :=

´
Ω
H (q, p) ∈ R.

The associated system of two canonically interacting con-
servation laws is then defined by:

∂

∂t

(
q
p

)
+ d

(
βq
βp

)
= 0 (2.2)

and (
βq
βp

)
= ε

(
0 1
1 0

)( δH
δq
δH
δp

)
where ε ∈ {−1,+1} depends on the fluxes sign convention
on the physical domain.

This system of two conservation laws may be also writ-
ten as follows:

∂

∂t

(
q
p

)
= ε

(
0 d
d 0

)( δH
δq
δH
δp

)
(2.3)

that is as an infinite-dimensional Hamiltonian system de-
fined with respect to the matrix differential operator :

J = ε

(
0 d
d 0

)
(2.4)

and generated by the Hamiltonian function H [24].3

In order to generate a Hamiltonian systems, the matrix
differential operator J defined in (2.4) should satisfy the
properties of a Hamiltonian operator, that is it should be
skew-symmetric and satisfies the Jacobi identities. Jacobi
identities are trivially satisfied for constant differential op-
erators. A short calculus shows that the skew-symmetry
holds only for functions with compact support in the spatial
domain Ω or satisfying Dirichlet or Neumann homogeneous
boundary conditions.

2.2. Port Hamiltonian formulation for systems of conser-
vation laws with boundary energy flows

Interested in observation and control problems, one
must consider more general (dynamic) boundary condi-
tions where some energy is exchanged through the bound-
ary of the spatial domain. Therefore the matrix differential
operator J must be extended to a Dirac structure, called
Stokes-Dirac structure [29, 19, 17]. Dirac structures [7, 8]
are a geometric perspective to skew-symmetric tensors, ac-
tually corresponding to their graph, which generalize the
tensors associated with Poisson brackets or pre-symplectic
forms. They have been introduced in classical mechan-
ics to represent systems with constraints. Then they have
been used to include input-output port variables in finite
dimensional port-Hamiltonian models [28]. Finally an infi-
nite dimensional extension, called Stokes-Dirac structures,
has been defined to represent distributed parameters sys-
tems of conservation laws with boundary energy flows [29].
Proposition 2.2. [29] Consider the spaces of flows and
efforts respectively defined as the product of k-forms spaces:

F = Λ1(Ω)× Λ1(Ω)× Λ0(∂Ω) 3 (fp, fq, fb)

E = Λ0(Ω)× Λ0(Ω)× Λ0(∂Ω) 3 (ep, eq, eb)
(2.5)

where the subscript b stands for the boundary variables
while the subscripts p and q refer to the corresponding con-
served quantities or energy domains. Consider the linear
subspace D of the bond space B = F × E defined as:

D = {(fp, fq, fb, ep, eq, eb) ∈ F × E|[
fp
fq

]
= ε

[
0 d
d 0

] [
ep
eq

]
,[

fb
eb

]
=

[
ε 0
0 −1

] [
ep|∂Ω

eq|∂Ω

]} (2.6)

where ε ∈ {−1,+1} and |∂Ω denotes restriction to the
boundary ∂Ω. Then D is a Dirac structure with respect
to the non degenerated bilinear form:

〈(ep, eq, eb) | (fp, fq, fb)〉
=
´

Ω
[ep ∧ fp + eq ∧ fq] + 〈eb, fb〉∂Ω

(2.7)

3In the coordinates x, the Hamiltonian system (2.4) may be writ-
ten using functions as:

∂

∂t

(
q (x)
p (x)

)
= ε

(
0 ∂

∂x
∂
∂x

0

)( δH
δq

(x)
δH
δp

(x)

)
In this case the functional spaces may be defined as Hilbert spaces:
some more general cases have been studied in [16].
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For the proof of the condition of co-isotropy: D⊥ ⊂ D ,
the reader is referred to [29] and in the 1D case to [17].

Remark 2.3. A linear subspace D satisfying only the isotropy
condition D ⊂ D⊥ (which is therefore not maximal) is
called a Tellegen structure. Indeed, it is easily seen that
every pair (f, e) in such a D satisfies

〈e| f〉 =

ˆ
Ω

[ep ∧ fp + eq ∧ fq] + 〈eb, fb〉∂Ω = 0 (2.8)

that is instantaneous power conservation in the structure.
The Dirac structure (hence the Stokes-Dirac structure) is
a generalization of complex interconnection structure from
circuit theory. The maximality condition guarantees the
uniqueness of this structure associated to the canonical
Hamiltonian operator.

As a consequence of proposition 2.2 one may define a
Hamiltonian system associated with a Stokes-Dirac struc-
ture as follows.

Definition 2.4. The boundary port-Hamiltonian system
of two conservation laws with state space Λ1(Ω)×Λ1(Ω)3
(q, p) and boundary port variables spaces Λ0(∂Ω)×Λ0(∂Ω)3
(fb, eb), is the Hamiltonian system defined with respect to
the Stokes-Dirac structure D given in proposition 2.2 and
generated by the Hamiltonian functional H (q, p), as fol-
lows:(((

−∂p
∂t
,−∂q

∂t

)
, fb

)
,

((
δH

δp
,
δH

δq

)
, eb

))
∈ D

An appropriate choice of supplementary boundary con-
ditions has to be made to complete this boundary port-
Hamiltonian system in order to obtain a well-posed Cauchy
problem (see for instance [16] for a necessary and sufficient
characterization of such admissible choices in the linear
case). Furthermore, for any solution, the isotropy condi-
tion of the Dirac structure implies the balance equation on
the Hamiltonian:

dH

dt
= 〈eb, fb〉∂ (2.9)

Remark 2.5. One may also define port variables with sup-
port in the spatial domain by considering higher dimen-
sional Hamiltonian operators and the associated Dirac struc-
ture [29, 18].

2.3. A parabolic example: the radial resistive diffusion of
the magnetic flux in tokamak plasma

The parabolic resistive diffusion equation describes the
diffusion of the poloidal magnetic flux in a plasma fusion
facility called Tokamak. In this section we will show, using
this example, that Stokes-Dirac structure may be used as
well for the formulation of parabolic problems, which may
seem quite unusual for the port Hamiltonian approach. In
the sequel, the same resistive diffusion equation will be
used to illustrate the usefulness of the family of geomet-
ric discretization schemes we propose. For this example

some other numerical schemes (finite differences, orthogo-
nal collocation, Galerkin), although sometimes used by the
plasma control community, are not symplectic (in a sense
to be defined later) and therefore lead to known unsatis-
factorily dynamical properties of the reduced continuous
time model (numerical instabilities and unwanted oscillat-
ing modes, for instance).

Using axisymmetry and quasi-static equilibrium (for
the pressure) assumptions, it may be proved that mag-
netic surfaces inside the tokamak chamber are diffeomor-
phic to nested tori (see Figure 1). In this case, the 3D
magnetohydrodynamics equations may be reduced to the
1D resistive diffusion equation for the poloidal magnetic
flux, frequently used to handle the plasma current density
profile control problem (see [33] and references therein),
which reads:

∂ψ

∂t
= η

1

C3

∂

∂x

(
1

µ
C2
∂ψ

∂x

)
+

1

C3

(
ηJni

)
(2.10)

where the normalized “spatial” coordinate x := ρ
ρmax

∈
Π = [0, 1] denotes the nested surface index (see Figure
1 hereafter). The poloidal magnetic flux, ψ (t, x) is de-
fined as ∂xψ = −R0Bθ where R0 denotes the Tokamak
major radius and Bθ the poloidal magnetic flow inten-
sity. η is the plasma resistivity, µ is the void permeabil-
ity, C2, C3 are the coordinate coefficients defined in [5],
and jni = jbs + jext is the distributed non inductive cur-
rent deposit (inside the spatial domain) which includes
the bootstrap current jbs described in [32] (a magnetohy-
drodynamic coupling effect which produces an extra cur-
rent density) and some external current source terms jext
controlled through external system heating. Therefore we
may consider that jni is in fact a distributed control or a
distributed external source term in the balance equation
(2.10).

The boundary conditions will be chosen as:
∂ψ
∂x |x=0 = 0

∂ψ
∂t |x=1 = Vloop

(2.11)

The first one expresses the smoothness and symmetry with
respect to the central circular axis (magnetic axis) of the
tokamak torus. The second boundary condition defines a
boundary control action. Indeed the central solenoid coil
of the tokamak produces an equivalent loop voltage Vloop
at the exterior boundary of the plasma (at x = 1). This
loop voltage will be considered as one of the controlled
inputs (see subsection 3.5).

Using the axisymmetry and quasi-static assumptions,
the Maxwell-Ampère and Maxwell-Faraday equations may
be written in toric magnetic coordinates in the form of a
system where all variables depend only on the magnetic
radius ρ. Moreover in this reduced 1D system all field vari-
ables have only two non trivial components in the poloidal
(θ) and toroidal (φ) directions since the component in the
radial direction vanishes with the quasistatic equilibrium
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Figure 1: Magnetic toric coordinates. Bθ and Bφ are the two
magnetic field components (Bρ = 0). R0 denotes the toka-
mak major radius and Ip the total plasma current. With
the axi-symmetry and quasi-static equilibrium assumptions,
the state variables only depend on the magnetic surface index
ρ ∈ [0, ρmax] and time t ≥ 0

assumption [5]. Finally, the electromagnetic equations re-
duce then to the 1D port-Hamiltonian model [30, 31]:

(
felφ
fmgθ

)
=

 0 − ∂

∂ρ

− ∂

∂ρ
0

( eelφ
emgθ

)
+

(
1
0

)
fdφ

(2.12)
In (2.12) we used the notations f and e for the flow and
effort conjugated variables (i.e. their product is a power)
with the subscripts el, mg an d for the electric, magnetic
and dissipation variables, where felφ = −∂t (ρDφ), fmgθ =
−∂t (R0Bθ), eelφ = R0Eφ, emgθ = ρHθ and fdφ = ρJφ. We
adopted quite usual notaions where B, D and J denote
respectively the magnetic flux, the electric flux and the
current density while E and H denote respectively the
electric and magnetic fields intensities

In the resistive diffusion model, the displacement cur-
rent felφ is considered as negligible when compared to the
inductive current. This assumption will result in a system
of only one conservation law (related to the magnetic field
intensity storage) which can be written as an algebraic-
differential4 system using the same 1D Stokes-Dirac struc-
ture as previously defined:

(
0

fmgθ

)
=

 0 − ∂

∂ρ

− ∂

∂ρ
0

( eelφ
emgθ

)
+

(
1
0

)
fdφ

(2.13)
There is no flows source term at x = 0 (center of the
tokamak) and there is a control action at x = 1 where the
loop voltage Vloop is imposed to the plasma by the external
coils, that is:

eelφ(1, t) = −∂tψ|x=1 = −Vloop(t)

emgθ (0, t) =
xa

µR0
Bθ

∣∣∣∣
x=0

= 0

(2.14)

4In this context, “algebraic-differential” is an improper term since
the dissipation equation also makes use of an exterior derivatives. It
only means that the dissipation equation contains no time derivative.

The magnetic constitutive equation and the Ohm’s law are
used as closure equations:

eelφ = ηR0

ρ JΩ Ohm’s law

emgθ = ρ
µR0

Bθ magnetic constitutive equation

(2.15)
with the ohmic current being defined as:

JΩ = fdφ − Jni and Jni = ρjni (2.16)

The port-Hamiltonian boundary control model model equiv-
alent to the usual resistive diffusion equation is then de-
fined using the balance equations (2.13) together with the
closure equations (2.15) and the non homogeneous bound-
ary conditions (2.14). This example will be used through-
out the paper to illustrate the proposed geometric dis-
cretization scheme.
Remark 2.6. Note that the proposed model (2.13) for the
plasma resistive diffusion makes use of the usual Stoke-
Dirac skew-symmetric structure. This seemingly unusual
feature is in fact a characteristic of all diffusion-like mod-
els and relies on a fundamental assumption from ther-
modynamics: flows are generated by generalized forces
which may be written as gradients of generalized poten-
tials. Once this assumption holds, then a similar transfor-
mation into port-Hamiltonian model may be successfully
operated with the two formally adjoint operator div (used
for the conservation law) and grad used for the flux law.
This approach has already been applied for the modelling
of transport phenomena [3] and leads to very nice prop-
erties of reduction schemes for parabolic equations using
spatially symplectic reduction schemes [4].

3. Discrete Stokes-Dirac structures and structure
preserving spatial discretization

In order to get a spatial finite-dimensional approxima-
tion for the original distributed parameters system written
in port Hamiltonian form, we will define different specific
approximation spaces for the flows and efforts variables
which are respectively differentials forms of order 0 and 1.

This allows to guarantee that the reduced (finite di-
mensional approximation) variables also satisfy the Stokes-
Dirac interconnection relations by performing exact spatial
differentiation in the conjugated approximation spaces.

Therefore, the original (spectral, Galerkin, collocation
or any other pseudo-spectral) approximation scheme will
be transformed into a symplectic one in the sense that the
bilinear power pairing form used to define the Stokes-Dirac
structure is preserved. Symplecticity with respect to this
form ensures that balance equations (and thus conserva-
tiveness, dissipativeness and qualitative properties of the
spectrum, in the linear case) are satisfied by the finite di-
mensional approximation even in the case of systems with
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boundary energy flow5 which is not the case with classi-
cal symplecticity (used for instance for closed Hamiltonian
systems).

In this section the presented methodology will be ap-
plied on the example of the Tokamak system (2.12) to
illustrate how the closure relations may be projected into
the approximation bases once they have been chosen (in
order to preserve the power bilinear form). Except for the
projections of these closure relations, the results of the
section are general.
3.1. Approximation bases for flows and efforts

The flows (fel, fmg, fd) and efforts (eel, emg, ed) are
approximated in the 1D Π domain using a classical expan-
sion:

f (t, x) =
∑N−1
k=1 (f (t))k w

f
k (x)

e (t, x) =
∑N
i=1 (e (t))i w

e
i (x)

(3.1)

in which f(t) ∈ RN−1, e(t) ∈ RN are the flow and effort

time dependent coefficients; wfk (x) and wei (x) are the base
functions satisfying the exact differentiation condition:

E = span (wei (x))

F = span
(
wfk (x)

)
d
(
E
)

= F
(3.2)

where d is the spatial exterior derivative for the corre-
sponding differential form (here it is simply the usual deriva-
tive with respect to the reduced spatial coordinate x and
applies to effort variables which are 0-forms or functions).
From (3.1) and (3.2), we get:

N−1∑
k=1

wfk (x)fk (t) =

N∑
i=1

∂x (wei (x)) ei (t) (3.3)

Since the approximation bases have been chosen to satisfy
the exact differentiation condition, the quantities ∂xw

e
i (x)

may be expanded in the flow basis. This results in a finite-
dimensional derivative operator represented by the differ-
entiation matrix D ∈ R(N−1)×N such that:

f (t) = De (t) (3.4)

3.2. Bilinear power product and discrete Stokes’ theorem

On the 1D domain Π with boundary ∂Π, canonical
Stokes-Dirac structure may be defined as self-orthogonal
subspace D of the bond space B = F × E with respect to
the inner product defined by symmetrization of the non
degenerated bilinear form (or power pairing, see proposi-
tion 2.2):

〈.|.〉 : F × E −→ R
(f, e) 7−→ 〈e|f〉 (3.5)

5This case is fundamental for control engineering systems where
interactions with the environment through measurements and actu-
ations are necessary

with

〈e|f〉 =
〈(
ep, eq, e

∂
)
|
(
fp, fq, f

∂
)〉

:=
´

Π
[ep ∧ fp + eq ∧ fq]−

´
∂Π
e∂ ∧ f∂ (3.6)

This inner product is then defined as the symmetric posi-
tive definite bilinear form:

〈〈., .〉〉 : B × B −→ R
((f1, e1), (f2, e2)) 7−→ 〈〈(f1, e1) , (f2, e2)〉〉

:= 〈e1|f2〉+ 〈e2|f1〉
(3.7)

It has been noted in section 2.3 that every pairs (f, e)
belonging to the Stokes-Dirac structure (thus satisfying
the balance equations) also satisfy 〈e|f〉 = 0. As a con-
sequence, balance equations (and conservations laws) will
be satisfied also in the finite dimensional approximation
spaces if the bilinear form (3.6) is preserved by the dis-
cretization. If this happens, we will call the reduction
scheme symplectic with respect to the power pairing by
analogy with symplecticity of time integrators for Hamil-
tonian (finite dimensional) systems. The relation 〈e|f〉 =
0 (and the resulting symplecticity) will be satisfied for
pairs of approximated flow and effort variables defined in
the previous section provided that the boundary variables
(e∂ , f∂) are correctly defined. We will obtain this result for
the considered schemes because they perform exact spatial
derivation in the chosen compatible conjugated approxi-
mation spaces.

In our example of Tokamak electromagnetic system, we
can identify:

(e, f) =
((
ep, eq, e

∂
)
,
(
fp, fq, f

∂
))

:=
((
eel, emg, e

∂
el

)
,
(
fel, fmg, e

∂
mg

)) (3.8)

Note that each of the efforts and flows have both poloidal
θ and toroidal φ components.

To perform an exact integration of the power pair-
ing integral (and thus preservation of the inner product
in the Bond space) we define the (integral) matrix M ∈
RN×(N−1) as:

Mik =

ˆ
Π

wei (x)wfk (x)dx (3.9)

and the (trace) matrices Tk ∈ RN×N as:

(Tk)ij = wei (x = k)wej (x = k) where k ∈ {0, 1} (3.10)

We replace the effort and flow variables by their ap-
proximation (3.1) in the chosen conjugated approxima-
tion spaces and force the reduced variables to satisfy the
Stokes-Dirac equations (2.6) (by exact spatial differenti-
ation). Then we may apply the Stokes theorem (on the
power pairing integral) to prove that the bilinear power
product computed with the reduced variables coordinates
is indeed zero. Therefore, one gets for every pairs of re-
duced variables (e1, f1), (e2, f2) in the Stokes-Dirac struc-
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ture:

e1T
p

(
0 MD +DTMT − T1 + T0

−DTMT −MD + T1 − T0 0

)
e2
q

−e1T
q

(
0 MD +DTMT − T1 + T0

−DTMT −MD + T1 − T0 0

)
e2
p

= 0
(3.11)

where ep = (epθ, epφ) and eq = (eqθ, eqφ) are any real vec-
tor valued coordinates of the poloidal and toroidal com-
ponents of the effort variables in the finite dimensional
approximation spaces. We have proven that, for any con-
jugated approximation spaces for reduced efforts and flows
which satisfy the compatibility condition (3.2):

MD +DTMT − T1 + T0 = 0 (3.12)

Theorem 3.1 (Discrete Stokes theorem). Let wfk (x) (k ∈
{1, . . . , N − 1}) and wei (x) (k ∈ {1, . . . , N}) denote con-
jugated approximation bases functions for flow and effort
variables which satsify the compatibility condition (3.2).
Let D denote the (exterior) differentation matrix as de-
fined in (3.4), M the integration matrix as defined in (3.9)
and Tk (k ∈ {0, 1}) the trace matrix as defined in (3.10),
Then

MD +DTMT − T1 + T0 = 0

Remark 3.2. Note that for homogeneous boundary condi-
tions, the efforts are zero at the boundary and therefore
the trace matrices may be selected as T1 = T0 = 0. In
this case, there’s no energy exchange through the bound-
ary and the discrete Stokes theorem reduces to MD +
DTMT = 0. In this case the matrixMD is skew-symmetric
and defines a Poisson tensor. The condition (3.12) may
thus be viewed as the extension of a skew-symmetry prop-
erty characterizing finite dimensional reduced Dirac struc-
tures.

Remark 3.3. The discrete Stokes theorem (3.12) is the key
property of the proposed family of pseudo-spectral reduc-
tion schemes that we propose in this paper. It ensures the
symplecticity of every scheme in this family with respect to
the “natural” power pairing of the considered system (e.g.
(3.6) in our running plasma example). For the considered
family of pseudo-spectral schemes, another interpretation
may be provided. Indeed in the selected “effort” basis,
one may assert that the infinite dimensional spatial deriva-
tion operator reduces to the finite dimensional realization
(3.4). On the other hand, the exact integration formula
and the resulting discrete Stokes theorem ensure that the
residual is zero in the approximation space (spanned by
the same “effort” basis). Therefore, the proposed mixed
pseudo-spectral methods may be also viewed as symplectic
Galerkin-type methods realizing the projection of the actual
dynamics in the approximation space spanned by the effort
basis.

3.3. Spatial discretization of Stokes-Dirac structure and
reduced finite dimensional Dirac structure

In the case of the resistive diffusion model (2.13), it is
possible to study only the poloidal subsystem describing

the dynamics of the variables6:

(e, f) =
((
ep, eq, e

∂
)
,
(
fp, fq, f

∂
))

:=
((
eelφ, emgθ, e

∂
elφ

)
,
(
felφ, fmgθ, e

∂
mgθ

))
Indeed the poloidal and toroidal subsystems are totally
decoupled and the finite dimensional approximation of the
poloidal subsystem may be written independently from the
toroidal variables in the form:



(
felφ
fmgθ

)
=

(
0 −D
−D 0

)(
eelφ
emgθ

)
+

(
1

0

)
fdφ


f1φ
f0φ
e1θ
e0θ

 =


we(1) 0

we(0) 0

0 we(1)

0 we(0)


(

eelφ
emgθ

) (3.13)

Therefore, for the sake of simplicity, we will consider
throughout the rest of this paper only the poloidal sub-
system (3.13). Since the flow variables are obtained from
the effort variables through a spatial derivation, the two
approximation spaces do not have the same dimension and
system (3.13) is not in minimal form. This minimal form
is of prime importance because it is required to provide a
“causality free” reduced Dirac structure and finite dimen-
sional model, that is a model which may be connected to
any other compatible port-controlled Hamiltonian system
where any of the flow or effort variables may be freely cho-
sen as an input. To obtain such a minimal form for the
system system (3.13) - corresponding to an invertible rep-
resentation of the reduced Dirac structure - it will be neces-
sary to project the reduced effort variables with a projector
which cancels the kernel of the exterior derivative (in the
space of reduced effort coordinates) but without affecting
the power pairing value and the resulting symplecticity of
the reduction scheme. Such a projector is built hereafter.
It is based on the exact integration of the power product
and is used to pull the system back to a square invertible
one.

Using the {wei , w
f
k} bases integration matrix M define

in (3.9), the power balance equation for the poloidal elec-
tromagnetic energy may be exactly evaluated (in the cho-
sen approximation spaces) with the expression:

∂Hpol
∂t

=

ˆ
Π

eelφ ∧ felφ + emgθ ∧ fmgθ

= eTelφM felφ + eTmgθM fmgθ

(3.14)

where Hpol stands for the total “poloidal” Hamiltonian,
that is the part of the electromagnetic energy stored in
the poloidal subsystem. As mentioned above, the bilinear
power product in (3.14) is degenerated and admits the
kernel ker

(
MT

)
. Therefore a projection:

ẽ = MTe (3.15)

6Remember that the resistive diffusion equation is obtained by
neglecting the displacement current fp = felφ = 0. The parabolic
resistive diffusion model results from the magnetic balance equation
and the closure (diffusion) constitutive equation relating the diffusive
flow −d

(
emgθ

)
and the magnetic field intensity emgθ
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allows to obtain an invertible system in the new Bond
space of reduced effort and flow variables RN−1×RN−1 3
(ẽ, f). The degenerated bilinear product (3.14) becomes
non degenerated in this new Bond space and the power
balance becomes

∂H
∂t

=

ˆ
Π

e ∧ f = eTM f = ẽT f (3.16)

The symmetrization of this power pairing results in a bi-
linear form in the Bond space which is symmetric positive
definite, that is defines an inner product. It may be ob-
served that the reduced (invertible) Dirac structure corre-
sponding to this inner product may be written using its
image representation, in the form

felφ
fmgθ
f1
∂φ

f0
∂φ

 =


0 −D
−D 0
we(1) 0
we(0) 0


︸ ︷︷ ︸

ET

(
eq

ep

)


ẽelφ

ẽmgθ

e1∂θ
e0∂θ

 =


MT 0

0 MT

0 we(1)
0 we(0)


︸ ︷︷ ︸

FT

(
eelφ

emgθ

) (3.17)

The discrete Stokes theorem proven here above allows to
prove that [E : F ] is full rank and that EFT + FET = 0.
These are necessary and sufficient conditions to prove that
(3.17) indeed defines a well-posed Dirac structure [8]. The
relations (3.17) defining the Dirac structure may also be
written in explicit (“input-output”) form:


(

felφ
e1∂θ

)
(

fmgθ

− f0∂φ

)
 = J


(

ẽelφ
f1∂φ

)
(

ẽmgθ
e0∂θ

)
 (3.18)

J =

 0

(
−D
we(1)

)(
MT

we (0)

)−1

(
−D
−we(0)

)(
MT

we (1)

)−1

0


is a skew matrix as J + J T = 0 thanks to (3.12).
3.4. Constitutive relations

Relations between efforts and flows variables coming from
the balance equations and realized with the Dirac inter-
connection structure have to be completed with closure
relations. These come from the constitutive equations con-
sidered in each specific example. Usually they are stor-
age and dissipation phenomenological laws. They may be
projected in the finite-dimensional approximation spaces
which have been previously chosen to guarantee symplec-
ticity of the spatial reduction scheme. This means that the
energy stored and dissipated in the actual dynamics will
be equally stored and dissipated in the reduced dynamics
although the value of these energies will only be approx-
imated ones. Energy storage and dissipation reductions
are illustrated hereafter on the plasma model example.

3.4.1. Energy storage element

From (3.14), the poloidal magnetic power may be writ-
ten:

dHmg
dt

=
´

Π
emgθ ∧ fmgθ = ẽTmgθfmgθ (3.19)

On the other hand, the quadratic form for the magnetic
energy results in a linear constitutive equation with the
magnetic effort variable defined as: emgθ = ax

µR0
Bθ. Hence

the poloidal magnetic power may be projected in the cho-
sen flow basis according to:

dHmgθ
dt

=
´

Π
emgθ ∧ fmgθ =

´
Π

C2 (x)

µ
Bθ ∧

∂Bθ
∂t

' bTGfmgθ
(3.20)

with Gij =

ˆ
Π

C2 (x)

µ
wfi (x)wfj (x) G = GT > 0

(3.21)

and Bθ (t, x) =
N−1∑
k=1

(b (t))k w
f
k (x) (3.22)

This results in the finite dimensional magnetic constitutive
equation:

ẽmgθ = Gb (3.23)

3.4.2. Energy dissipative element

The dissipated poloidal power is defined as:

Pdφ =
´

Π
edφ ∧ fdφ = ẽTelφfdφ (3.24)

using for instance Ohm’s law for the electrical diffusion:

edφ =
η

C3 (x)
JΩ =

η

C3 (x)
(fdφ − Jni), this poloidal dissi-

pation may be approximated in the same flow basis:

Pdφ =
´

Π
edφ ∧ fdφ =

´
Π

η

C3 (x)
(fdφ − Jni) ∧ fdφ

' (fdφ − Jni)
T
Rfdφ

(3.25)
with the dissipation matrix R is defined as

Rij =

ˆ
Π

η

C3 (x)
wfi (x)wfj (x) R = RT > 0 (3.26)

Hence the dissipative constitutive equation may be writ-
ten:

ẽelφ = R (fdφ − Jni) (3.27)

3.5. Boundary conditions

When dealing with boundary control systems, two kinds
of boundary conditions have to be distinguished: homoge-
neous and time varying boundary conditions. Most often
homogeneous boundary conditions are used for symme-
try considerations or permanent physical interconnection
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(contact condition, isolated systems, etc.). On the con-
trary, time varying boundary conditions are used to repre-
sent external control actions on the system. This boundary
control actions correspond to a boundary energy flow and
are realized by forcing time varying efforts and/or flows
values at the system boundary.

In our approach, the homogeneous boundary condi-
tions (with no power exchange with the environment) will
be integrated in the approximation bases choice: all ho-
mogeneous boundary conditions on the effort or flow val-
ues (and their spatial derivatives) will be satisfied by all
functions in the corresponding approximation bases. This
common choice very often allows to get better results in
terms of accuracy, minimizing of the boundary effects in-
troduced by the boundary conditions. Besides, it leads to
some symplectic reduction schemes for homogeneous prob-
lems as it may be seen from results in the next section or
in [22].

On the contrary, non homogeneous boundary condi-
tions - since they are time varying - have to be considered
as additional relations in the finite dimensional state space
model. Usually they break symmetries in this model and
lead to a lack of symplecticity in the considered spatial
discretization scheme [22]. In our approach these bound-
ary conditions are time varying values either for the effort
or flow boundary values. The proposed family of schemes
remain symplectic because symplecticity is defined with
respect to a bilinear form which “embed” the boundary
variables (this is precisely the aim of the extension from
the Poisson to the Dirac structure).

These ideas are illustrated hereafter on the plasma ex-
ample, both for homogeneous boundary conditions and for
boundary control actions.

3.5.1. Homogeneous boundary conditions

We consider that there is no flow source inside the
domain at x = 0 (the central magnetic axis inside the
toroidal plasma chamber). Therefore the following sym-
metry boundary conditions apply

fdφ (0) = fmgθ (0) = 0 (3.28)

since fdφ =
1

C3
Jφ and fmgθ = ∂tBθ = −∂t

∂ψ

∂x
with

∂ψ

∂x
|x=0 = 0. On another hand, the constitutive relation

emgθ =
C2

µ
Bθ and C2 (0) = 0 leads to:

e0θ = emgθ (0) = 0 (3.29)

3.5.2. Non-homogeneous boundary conditions

The loop voltage will be considered as the controlled
boundary input. Therefore we will consider non homoge-
neous boundary conditions at the boundary x = 1:

f1φ = eelφ(1) = −∂tψ|1 = −Vloop(t) (3.30)

Taking into account the quasi-static assumption felφ =
0, the interconnection equations (3.18), together with the
energy storage constitutive equation (3.23), the energy dis-
sipation constitutive equation (3.27) and the boundary
conditions here above, we may the complete reduced state
space in the following PCH form:

(
−fdφ
e1θ

)
(

−ḃ
− f0φ

)
 = J


(

R
(
fdφ − Jniφ

)
−Vloop

)
(

Gb
0

)

(3.31)

The model (3.31) will be used in the sequel to compute the
approximated eigenvalues of the finite dimensional approx-
imations obtained by the geometric discretization schemes
proposed in this paper.

4. A mixed symplectic Galerkin scheme

In this section we investigate the problem of the selec-
tion of conjugated approximation bases for the efforts and
flows. This problem of choosing the approximation space
is common to any pseudo-spectral method (whatever it
is symplectic or not). Its solution is usually dependent
both of the the properties of the actual system and the
expected properties for the reduced one. It is quite usual
in control problems to choose a polynomial approxima-
tion space. Such a space could be generated by any poly-
nomial basis. For instance, using Lagrange interpolation
polynomials will lead to define the approximation coordi-
nates simply as the values of the variables spatial profiles
at the collocation points. It is quite usual to choose col-
location points as zeros of orthogonal polynomials since
this choice maximizes the order of accuracy of the cor-
responding interpolation methods. With such a choice,
the resulting symplectic collocation scheme which is de-
rived, using the method proposed in this paper, should
produce a finite dimensional PCH model easy to manage
for subsequent control problems since it is low order, its
state space variables have a physical meaning and its spec-
tral properties should be close to the actual ones (this is
a common feature from pseudo-spectral schemes). It is
indeed the case. This resulting symplectic collocation spa-
tial discretization method is presented with some details
in Appendix B. However, as it is shown in Appendix B,
this choice do not allow - in the considered plasma control
problem - to handle the distributed control action (non in-
ductive current deposit). This will be explained by a poor
approximation of the eigenfunctions of the considered op-
erators although the approximation of its eigenvalues is
indeed quite accurate (see Appendix C for details).

Therefore we will choose another approximation basis
for the efforts. It is suggested by the observation that, with
an uniform resistivity η, the eigenvalues problem for the
plasma resistive diffusion equation gives rise to a Bessel
equation. Hence eigenfunctions for this simplified uniform
problem are Bessel functions and the eigenvalues can be
explicitly evaluated from the zeros of Bessel functions (de-
tails of these computations are in Appendix A). We will
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thus select the effort approximation basis as spanned by
these Bessel functions and its power-conjugated flow ap-
proximation basis (compatible with the exact derivation
condition) to propose a new spectral symplectic reduction
scheme. This choice will of course result in an accurate ap-
proximation of the homogeneous problem eigenfunctions.
It will also give rise to accurate approximations for the so-
lution in the case of non uniform resistivity and distributed
control actions where the eigenfunctions of this problem
are not Bessel functions anymore. Since the approxima-
tion bases are no longer eigenfunctions in the non uniform
case, the method is then called a Galerkin scheme (rather
than a spectral method). Since this spatial discretization
scheme preserves the power product form, we call it sym-
plectic (with respect to the power pairing). Finally, be-
cause the discretization scheme uses different bases for the
effort and flow spaces, we call it mixed. We will now derive
this mixed symplectic Galerkin scheme.

4.1. Choice of the conjugated bases of eigenfunctions

Computing the eigenfunctions of the operator appear-
ing in the right hand side of the resistive diffusion equa-
tion (2.10) - in the constant and uniform resistivity case
- is equivalent to solve Bessel equation (see Appendix A).
Eigenvalues λk may be computed from the zeros sk, k =
1...N −1 of the first kind of Bessel functions of order 0, J0

and eigenfunctions may be written in terms of first kind
of Bessel functions of order 1, J1 as:

wfk (x) = J1 (λkx) , with λk =

√
sk
η

µ
(4.1)

Therefore we will choose for the effort base functions:

wei (x) =

−
1

λi
J0 (λix) , i = 1..N − 1

1 i = N
(4.2)

in such a way that the exact differentiation (compatibility)
condition is satisfied, that is in this case:{

∂xw
e
k (x) = wfk (x) , ∀k = 1..N − 1

∂xw
e
N (x) = 0

(4.3)

With this choice the derivation matrix D in equation f =
De reduces to to [IN−1| 0] ∈M(N−1)×N where IN−1 is the
identity matrix of order N − 1, since

f = ∂xe

⇒
∑N−1
k=1 wfk (x)fk =

∑N
i=1 [∂xw

e
i (x)] (e)i

=
∑N−1
i=1 wfi (x) (e)i

⇒ f = [IN−1| 0] e

(4.4)

4.2. Projections of the constitutive equations

The integration matrix, used in the power pairing (3.9)
and needed to get the finite-dimensional representation of
the Dirac interconnection structure, have to be computed.
Elements in the diagonal and in the last row in this inte-
gration matrix may be computed exactly:

MNk =
´ 1

0
wfk(x)dx

= wek (x) |10 =
1

λk

Mkk =
´ 1

0
wek(x)∂xw

e
k (x) dx

=
1

2
(wek (x))2 |10 = −1

2

(
1

λk

)2

(4.5)

For the other elements (when j 6= i, hereafter) the Gauss
quadrature formula with Chebyshev points will be used:

Mij =
´ 1

0
fij (x) dx

=
1

2

´ 1
−1
f (x) d (1− 2x)

=
1

2

π

n

∑m
k=1

√
1− (1− 2xk)2f (xk)

(4.6)

where f (x) = wei (x)wfk (x) and xk =
1− cos

(
(2k−1)π
2(m−1)

)
2

. In-

deed, unlike in the polynomial case, it is not possible to
perform exact integration for a product of Bessel functions
of different orders. Chebyshev quadrature points have
been chosen to get a finite dimensional PCH model which
may be easily compared to the previous ones (obtained
from FD or symplectic collocation at the same points).
The quadrature formula (4.6) is also used to determine
the matrices G andR used in the finite dimensional stor-
age and dissipation constitutive equations:

Gij =
´ 1

0

C2

µ
wfi (x)wfj (x)

Rij =
´ 1

0

η

C3
wfi (x)wfj (x)

(4.7)

This previous choice of conjugated bases functions ob-
viously guarantees accurate eigenfunctions approximation
for the problem with homogeneous boundary conditions
and uniform resistivity since the approximation functions
are the eigenfunctions. As it may be expected, it gives
also still more accurate results for the eigenvalues approx-
imations as illustrated in table 1 for the case η = 5.10−7.

5. Numerical results

5.1. Non uniform resistivity

In the previous section, when defining the approxima-
tion bases as spanned by the eigenfunctions of a simplified
resistive diffusion equation, we neglected the dependence
of the electrical resistivity η with the time t and the spa-
tial radial coordinate x. However in real tokamaks, this
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Theoretical Numerical eigenvalues

eigenvalues N=5 N=8 N=10

-2.301056852 -2.305253100 -2.301848126 -2.301466232

-12.12413006 -12.25659915 -12.14481967 -12.13359575

-29.79659326 -30.92406956 -29.93017370 -29.85455494

-55.32237139 -81.24868031 -55.84563052 -55.53473267

-88.70194524 -90.35712887 -89.30413565

-129.9354296 -135.0263099 -131.4267729

-179.0228628 -297.6242993 -182.5230680

-235.9642604 -244.5957644

-300.7596298 -530.5090590

Table 1: Eigenvalues with Bessel basis approximation functions for
the case η = 5.10−7

resistivity is a function of the plasma state (noticeably
of the plasma electronic temperature Te(x, t) and den-
sity ne(x, t), see [33] for details). Rather than including
a multi-physics plasma model including the energy and
mass material balance equations we will rather make use
of an empirical expression for η (t, x) (from [27]) which has
been experimentally fitted for the Tore Supra tokamak dis-
charge TS#47673.

In this case, the chosen Bessel basis functions are no
longer the eigenfunctions of the system. In fact, the the-
oretical eigenfunctions and eigenvalues are no more ana-
lytically solvable. The discretization method will be then
called a symplectic Galerkin scheme since both the projec-
tion of the resistive diffusion equation and the cancellation
of the corresponding residual are performed in the same
approximation space generated by the Bessel functions.

The dissipation matrix R now has to be computed on-
line due to the time variations of the resistivity η (t, x). In
fact, the resistivity values supplied from the experimental
data may be used to set the values of ηk(t) of the resistivity
at the discrete quadrature points xk used in the finite di-
mensional model. The dissipation R matrix is computed
by the online Gauss quadrature formula (4.6) according
to:

Rij (t) =
´ 1
0
η (t, x)

R0

x
wfi (x)wfj (x)dx

=
π

2n

∑n
k=1 η (t, xk)

R0

xk
wfi (xk)wfj (xk)

√
1− (2xk − 1)2

(5.1)

The eigenvalues of the corresponding finite dimensional
PCH model obtained with the proposed symplectic Galerkin
method may now only be computed numerically. However
one may check that the finite dimensional model still has
purely dissipative eigenvalues (as expected from a diffu-
sion equation!) and that these ones converge when N in-
creased. The results are in table 2. where the eigenvalues
are computed at time t = 11s for the Tore Supra discharge
TS#47673.

5.2. Test case definition

Accuracy of the time response for the selected scenario
(Tore Supra discharge TS#47673, where plasma current

Numerical eigenvalues

N=5 N=8 N=10 N=20

-0.316349428 -0.315983205 -0.315877522 -0.315856805

-2.673789607 -2.372985846 -2.372985846 -2.371577391

-14.74424065 -6.357688599 -6.278320313 -6.267211833

-359.7443273 -14.08116991 -12.01718458 -11.87022206

-36.20739521 -21.66293021 -19.46289366

-129.9270811 -43.38740206 -30.44782740

-1724.357267 -102.0884225 -50.82178655

-309.9311502 -84.68730014

-3355.769434 -138.8389938

Table 2: Eigenvalues with Bessel base-functions and experimental
η (x, t = 11s) ∈ [2.10−8, 2.10−6], discharge TS#47673

steps are performed) may not be evaluated only by sim-
ulation since experimental values have been used for the
plasma resistivity. Therefore, in this section, we wish to
present a validation of the global port Hamiltonian model-
ing and symplectic reduction approach, by comparing the
simulation results against experimental data. The effort
base functions size is chosen equal to N = 5, m = 10
Chebyshev points are used in the Gauss quadrature for-
mula (4.6). The system input is the boundary condition
Vloop and the output is the plasma current Ip determined
as:

Ip = − x

µR0

∂ψ

∂x
|x=1 =

xBθ
µR0
|x=1 =

1

µR0

N−1∑
k=1

wfk (1)bk

(5.2)
The safety factor q-profile, which yields the ratio of the
number of toroidal and poloidal field line turns (cf. [32]),
is really important for MHD-stability and recent works on
advanced tokamak control are based on its control, such
as [1, 12]. In first approximation, the q-profile is given by
the expression presented in [5]:

q = − 1

2π

∂Φ

∂ψ
= − 1

2π

∂xΦ

∂xψ
(5.3)

Φ is the toroidal magnetic flux equal to ∂xΦ = Bφ0a
2x.

Bφ0 denotes the constant toroidal magnetic field at the
center of the plasma (x = 0).

In the test case, the non-inductive current source jni is
equal to the bootstrap current jbs (external non-inductive
sources are set to zero), created by the plasma flux it-
self due to the charged particles bouncing back and forth
along their banana orbit. This current source and the
plasma resistivity are computed using experimental data
and expressions based on the work of [27].

Furthermore, in a tokamak, the loop voltage Vloop can’t
be set directly but is generated using central solenoid coil
voltage. Thus on Tore Supra, a simple proportional con-
troller is implemented between the plasma current and the
coil voltage. On the proposed model, this controller is re-
placed by a proportional controller between Ip and Vloop.
The gain of the controller is tuned to get the same steady
state error as on the real plant, cf. figures 2.a and 2.c.

11



5.3. Results

The figure 2 shows the simulation results compared
with experimental data. The coherence between our model
and the experimental facility leads to the comparability in
the result of Input-Output signals. The simulated loop
voltage Vloop is very closed to the real one, except on the
begin of the pulse during the ramp-up phase when the
shape of the plasma is not stable and so the minor and ma-
jor radius of the plasma are time-dependent. This depen-
dance is not taken into account in the port-Hamiltonian
model and leads to the small observed difference in figure
2.b before t < 3s. A zoom of the plasma current Ip and
loop voltage Vloop presents the step response of the system
in figure 2.c. A small delay appears between the experi-
mental plasma current and the simulated one. This delay
is coming from the actuator simplification done on the
model: that the central solenoid dynamics are not mod-
eled explains why the step response of the model is faster
than the one of the real plant.
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Figure 2: In-Output comparison

a) Plasma current Ip; b) Loop voltage Vloop;
c) (Ip, Vloop) zoom at t ∈ [7.4s, 8.2s]

In figure 3, the q-profiles are given at some sampling
times and compared with the ones provided by the METIS
code, a tokamak simulator developed for plasma scenario
design and analysis (cf. [2]) in CEA Cadarache. This
METIS code is a (complex) simulation code which uses
the finite element method together with ‘scale laws’ and
empirical formulas for constitutive physical closure equa-
tions.

From the previous comparisons, we may conclude that
the finite dimensional model obtained with the proposed
symplectic spatial discretization scheme may be used sat-
isfactorily as a control model, at least for current density

(or security factor) profiles regulation problems. It is a low
order, with a low condition number and any usual explicit
time integration scheme may be used. The simulation in
the paper have been performed using ode45 solver from
Matlab.
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Figure 3: Safety factor q comparison

6. Conclusion

In this paper we have suggested how classical pseudo-
spectral methods for the spatial discretization of distributed
parameters systems could be adapted in order to build
structure preserving reduction schemes for a class systems
of balance equations with boundary and/or distributed
source terms. These balance equations have been repre-
sented using Stokes-Dirac interconnection structures. The
spatial discretization schemes presented in this paper are
then designed to preserve this structure. The basic idea
to preserve the Stokes-Dirac interconnection structure is
to choose different approximation bases for the thermody-
namical variables, according to their geometric nature (the
degree of the differential forms used to represent them).
Then it becomes possible to get enough degrees of free-
dom and use them to make these bases compatible with
the Stokes-Dirac underlying power pairing. Doing so, both
the exterior derivative and the boundary operator may be
discretized exactly and consequently the ‘mixed’ schemes
developed with the proposed methodology are symplectic
(or geometric) while the methods used to generate these
mixed schemes are not.

Another point of interest in the paper is the discussion
about the selection of the approximation bases. This is
a general problem for pseudo-spectral models. However
in the case of ‘mixed’ schemes, where several compatible
approximation bases have to be selected, it was not ob-
vious that interesting choices could happen. We claim
that choosing, for one of the conjugated approximation
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bases, the set of eigenfunctions of a simplified problem may
be an interesting choice. To illustrate the approximation
bases choice methodology, we selected the Galerkin scheme
among the possible pseudo-spectral methods. Then we
showed that the skew-symmetry of the Stokes-Dirac struc-
ture gives rise to a set of eigenfunctions (Bessel functions
in our example) for which a conjugated compatible base
can easily be found. Finally, in the resistive diffusion equa-
tion example, we showed that this approach may reduce
numerical oscillations in the presence of non homogeneous
initial conditions or sharp distributed control.

Our geometric discretization approach, based on the
port Hamiltonian formulation for open distributed param-
eters systems, has been used to generate a finite-dimensional
approximation for a 1D control model for plasma dynam-
ics in tokamaks. This confirmed the effectiveness of the
approach in preserving some desired physical properties
of the actual 1D model, namely spectral (eigenvalues and
eigenfunctions) and energetic (conservativeness and pas-
sivity) properties. Moreover, although large simplification
assumptions are made on the plasma geometry and prop-
erties to obtain the resistive diffusion equation, simula-
tion results show good agreement with the experimental
data and exhibit accuracy and qualitative behavior simi-
lar to the ones obtained from the complex reference code
(METIS) for such plasma simulations.

Time discretization schemes for the obtained finite di-
mensional port-Hamiltonian models could be one of the
next steps of this work. Indeed, discrete time control sys-
tems are used to operate tokamak devices and real time
constraints still prevent the use of some non linear control
laws. Structure preserving time discretization [14] would
allow the development of passivity (or entropy) based con-
trol laws directly in discrete time.

Appendix A. Theoretical eigenvalues for the resis-
tive diffusion operator

In this appendix we present the calculations needed
to obtain eigenvalues and eigenfunctions of the simplified
resistive diffusion equation (with homogeneous boundary
condition and uniform resistivity). These eigenvalues are
compared, in the core of the paper, with the numerical
ones in order to prove the symplecticity of the proposed
discretization schemes and their “spectral” accuracy. The
corresponding eigenfunctions are used in the paper to gen-
erate conjugate compatible bases for the developed sym-
plectic Galerkin method.

From the reduced sub-system in (2.12), the diffusion
model is figured out as:(

felφ
fmgθ

)
=

 0 − ∂

∂ρ

− ∂

∂ρ
0

( eelφ
emgθ

)
+

(
1
0

)
fdφ

(A.1)

where fmgθ = −∂t (R0Bθ) = −∂tB̃θ. For the considered
case felφ = 0, jni = 0, using the constitutive relation

(2.15), we get:

(
fdφ

−
∂

∂t
B̃θ

)
=

 0
∂

∂ρ

−
∂

∂ρ
0

( eelφ
emgθ

)

=

 0
∂

∂ρ

−
∂

∂ρ
0


 η

R0

ρ
0

0
1

µ

ρ

R0

( fdφ
B̃θ

)
(A.2)

The eigenvalues −s of the resistive diffusion equation
are those complex values such that the second order equa-
tion

−sB̃θ =
1

a2

∂

∂x

η

x

∂
1

µ
xB̃θ

∂x


= LB̃θ where x :=

ρ

a

(A.3)
has a non trivial solution (see the boundary conditions
hereafter). In the case of constant coefficients (uniform
permittivity and resistivity), the differential operator L is
the classical Laplace operator in toric coordinates:

1

a2

∂

∂x

η

x

∂
1

µ
x.

∂x


 (A.4)

In this case, one can prove using Green formula (on a disc
coordinate cross section of the tokamak) that −s is real
and negative. These eigenvalues are calculated hereafter.
For the case η and µ constant, equation (A.3) becomes:

x2 ∂
2

∂x2
B̃θ + x

∂

∂x
B̃θ + B̃θ

(
µs

η
x2 − 1

)
= 0 (A.5)

Let z2 =
µs

η
x2 (where s > 0). Then the equation has the

standard form of a Bessel equation:

z2 ∂
2

∂z2
β + z

∂

∂z
β + β

(
z2 − 1

)
= 0 (A.6)

whose general solution is:

a0J1(z) + a1Y1 (z) (A.7)

where J1(z) and Y1 (z) are 1st order Bessel functions of the
first and second kind. In particular, J1 (z) can be written:

J1 (z) =
1

π

´ π
0
cos (τ − zsinτ) dτ

=
1

2π

´ π
−π e

−i(τ−zsinτ)dτ

=
∑∞
m=0

(−1)
m

22m+1m! (m+ 1)!
z2m+1

(A.8)

The boundary conditions help us to determine the coef-
ficient a0 and a1. The condition at x = 0 forces a1 = 0
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as Y1(z) is unbounded when z → 0. The other boundary
condition ∂x (xβ) |1 = 0 implies:

∂ (zJ1 (z))

∂z
|
z=

√sµ
η

= zJ0 (z) |
z=

√sµ
η

= 0 (A.9)

Since Bessel functions satisfy

∂ (zJ1)

∂z
= zJ0 (A.10)

the eigenvalues may be calculated explicitly from the
roots of the Bessel function J0(z). These zeros are repre-
sented on figure A.4 hereafter.
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Figure A.4: The Bessel function J0 (z) and its first zeros values

Appendix B. A symplectic orthogonal collocation
method for the spatial discretization
of the resistive diffusion equation

We develop in this appendix the symplectic colloca-
tion scheme generated with the proposed method applied
to polynomial approximation bases for the effort and flow
spatial profiles. These polynomial bases will be built from
We analyze the accuracy of the resulting spectrum approx-
imation and show that numerical oscillations occur when
a distributed perturbation or sharp initial profiles are con-
sidered.

Let’s ξj ( j = 1..N − 1) be the N−1 chosen collocation
points for the flows and ζi (i = 1..N) the N collocation
points chosen for the efforts. In the sequel to improve the
order of the interpolation formulas and minimize the os-
cillations of the interpolation errors, zeros of respectively
(N − 1)th and N th orders Chebyshev polynomials will be
chosen. Both notations f ∈ RN−1 and e ∈ RN will be
used to denote respectively the coordinates’ vectors of the
approximated flows and efforts in the corresponding ap-
proximation spaces. with the chosen orthogonal colloca-
tion method, the approximation basis for the flows is made
with Lagrange interpolation polynomials at the colloca-
tion points ξj ( j = 1..N − 1) which satisfy the interpola-
tion conditions

wfk (ξj) =

{
1 if j = k

0 else
(B.1)

Most often, it is necessary to include boundary condi-
tions in the approximation bases definitions to get satisfy-
ing results for the spectrum approximation. In the plasma
resistive diffusion example, the boundary condition states
that there is no flows source term at the center x = 0 of
the tokamak. The efforts at x = 0 however may be non
zero (and in fact usually is). Therefore we will consider
the following additional conditions on the flow and effort
bases:

wfk (0) = 0

∂wei (x)

∂x
|x=0 = 0

wek(0) 6= 0

(B.2)

These conditions may be fulfilled with the choice of effort
and flow approximations bases presented hereafter. Let
lN−1
i denotes the (n − 1)th order Lagrange interpolation

polynomial defined with:

lN−1
i (x) :=

N∏
j=1, j 6=i

x− ζj
ζi − ζj

(B.3)

on the effort values at the boundary x = 0 are satisfied by
the functions

wei (x) = 1− x2ζ2
i l
N−1
i (B.4)

which may be used to generate the effort approximation
space. The components of the derivation matrix are then:

Dji =
∂

∂x
(wei ) |ξj =

(
−2xζ2

i l
N−1
i − x2ζ2

i

∂

∂x

(
lN−1
i

))
|ξj

(B.5)
Using this derivation matrix, a basis function for the flows
which satisfies the exact derivation condition in (3.2) is:

wf (x) =

(
∂

∂x
we (x)

)
D+ (B.6)

where D+ is the pseudo-inverse of D.
As we (x) and wf (x) are both polynomial bases, the

integral matrix M

Mik =

ˆ 1

0

wei (x)wfk (x)dx (B.7)

may be easily exactly evaluated. Therefore, the projec-
tions of the storage and dissipation relations which results
in the matrices G (see subsection 3.4.1) and R (see sub-
section 3.4.2) whose elements are:

Gij =
´ 1

0

1

µ

x

R0
wfi (x)wfj (x)

Rij =
´ 1

0
η
R0

x
wfi (x)wfj (x)

(B.8)

may be as well explicitly computed. The complete input-
output model (3.31) has been computed for the case with
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uniform resistivity η and homogeneous boundary condi-
tions (both at x = 0 and x = 1). Then, eigenvalues of this
model have been computed and compared with the the-
oretical ones (eigenvalues of the resistive diffusion opera-
tor with homogeneous boundary conditions, see appendix
Appendix A) and with the ones obtained with a finite dif-
ference formula (see appendix Appendix D). Results are
shown on tables B.4 and B.3 hereafter. The symplectic
orthogonal collocation method is, from this spectrum ap-
proximation point of view, clearly more accurate, as it was
expected.

Theoretical Numerical eigenvalues

eigenvalues N=5 N=8 N=10

-2.301056852 -3,965414997 -3,885480574 -3,860185392

-12.12413006 -19,18940482 -18,95845463 -19,00658467

-29.79659326 -40,14692865 -38,34709614 -39,98776146

-55.32237139 -53,82013956 -58,53622826 -61,19522543

-88.70194524 -85,81642985 -82,15362798

-129.9354296 -120,7439326 -112,9192769

-179.0228628 -127,9196240 -155,4380422

-235.9642604 -180,4468519

-300.7596298 -215,9294060

Table B.3: Eigenvalues using a finite difference scheme and Cheby-
shev discretization points and η = 5.10−7

Theoretical Numerical eigenvalues

eigenvalues N=5 N=8 N=10

-2.301056852 -2.350753323 -2.310110425 -2.304769649

-12.12413006 -12.63581394 -12.22630390 -12.23545753

-29.79659326 -33.62142541 -30.15754539 -30.39891094

-55.32237139 -227.3150319 -56.03293217 -56.51610868

-88.70194524 -92.85175835 -88.81543981

-129.9354296 -159.9060543 -127.9699944

-179.0228628 -1170.918746 -176.7315844

-235.9642604 -317.0613604

-300.7596298 -2547.963503

Table B.4: Eigenvalues using the symplectic orthogonal collocation
scheme with Lagrangian polynomial base-functions, Chebyshev col-
location points and η = 5.10−7

Only the first eigenvalues approximations are reported
in table B.4. The accuracy of higher frequencies eigen-
values quickly deteriorates which is quite usual when ap-
proximating infinite dimensional transfer functions with
finite-dimensional models. Hopefully, in most closed loop
control applications, these high frequencies eigenvalues of
the control model are filtered and do not play any signifi-
cant role.

Let us now consider an open system with a scenario
where stationary values are chosen for the loop voltage
Vloop control action and a non zero distributed source term
jni is considered. The obtained radial profiles of the mag-
netic field component Bθ are illustrated on figure B.5, left
(simulation case without distributed source term jni = 0)

and B.5, right (with jni 6= 0) and compared with the pro-
files supplied by the Finite Different (FD) method.
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Figure B.5: Bθ profile with constant η = 5.10−7 controlled by Vloop
without jni (a) and with jni (b)

It may be observed that the magnetic profile Bθ has
a saw-teeth (figure B.5, right) in the case of a non zero
distributed control action, when using the symplectic col-
location scheme. In fact, this is also the case - for the first
time steps - when a sharp initial profile is chosen for the
state variables. These numerical oscillations are not found
in FD scheme. As it is shown in appendix Appendix C,
these numerical oscillations come from a poor approxima-
tion of the eigenfunctions in the chosen Lagrange polyno-
mials approximation bases (see figure C.6). These large os-
cillations results then from the boundary conditions (B.2)
imposed to these ‘rigid” Lagrange polynomials in equation
(B.4). Indeed, these oscillations disappear when classi-
cal Lagrangian polynomials are used rather than those in
(B.4). But in this case, the problem boundary conditions
are no longer satisfied!

Appendix C. Error analysis for the symplectic col-
location method

Appendix C.1. Influence of the location of collocation points

Various locations of the collocation points lead to dif-
ferent precisions in the algorithm. In the sequel we com-
pute the eigenvalues obtained with uniform, Legendre and
Chebyshev collocation points. Thanks to the comparison
table C.5, we may observe that the Chebyshev points leads
to more accurate results than the two others choices. Fur-
thermore, the choice of the effort collocation points re-
veals to have more influence than the one for the flux.
This seems quite logical since the whole computations are
based on the effort basis functions wei (x) , (i = 1..N).

The location of the collocation point does affect the
precision but is not the explanation for the unwanted nu-
merical oscillations in the reduced model. Therefore, we
investigate hereafter another possible cause which is re-
lated to the basis functions choice itself.

Appendix C.2. Influence of the basis functions choice

We try now to indicate the approximation precision in
eigenfunctions aspect. The error computation is referred
to [25]. The theoretical eigenfunctions are calculated from
the Bessel function of order 1 J1 like in equation (4.1):

yk (x) = J1 (λkx) (C.1)
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Theoretical Numerical eigenvalues

eigenvalues Uniform points Legendre points Chebyshev points

-2.301056852 -2,4122190 -2,3034030 -2.304769649

-12.12413006 -18,6087633 -11,8201217 -12.23545753

-29.79659326 -44,4229304 -27,9562188 -30.39891094

-55.32237139 -92,0432864 -52,8780494 -56.51610868

-88.70194524 -160,4467269 -86,8450446 -88.81543981

-129.9354296 -323,5578853 -131,9484170 -127.9699944

-179.0228628 354,1681743 -208,9253302 -176.7315844

-235.9642604 -627,2508525 -330,3620033 -317.0613604

-300.7596298 -2863,2871125 -2453,3789667 -2547.963503

Table C.5: Comparison the precision of the different collocation point
choice amount the points uniform, Legendre, Chebyshev η = 5.10−7

where λk =

√
sk
η

µ
, k = 1, ...N − 1. The approximating

function is indicated by the Lagrange method:

ŷk (x) =

N−1∑
j=1

yk (ξj)w
f
j (x) (C.2)

with ξj , j = 1...N−1 are the flux collocation points, wfj (x)
are the flux base functions.Approximating error is:

Ek (x) = yk (x)− ŷk (x) (C.3)

Then Ek (ξj) = 0, ∀j if wf are orthogonal function:

wfk (ξj) =

{
1 if j = k

0 else
(C.4)

Appendix C.2.1. Symplectic collocation with boundary con-
straints

The chosen bases functions case are presented in Ap-
pendix B:

wei = 1− x2ζ2
i li, li =

N∏
j=16=i

x− ζj
ζi − ζj

(C.5)

where ζi, i = 1..N are the collocation points for efforts,
then deg (we) = N + 1.

The flux base functions are indicated from the effort
ones as:

wf = (∂xw
e)D+ (C.6)

with pseudo inverse D+ = D′(DD′)−1, then deg (ŷ) = deg
(
wf
)

= N , and remind to the orthogonality of flux base func-
tions wfj (0) = 0, ∀j .

Let’s takeN degree polynomials p (x) = x
∏N−1
j=1 (x− ξj)

, so p (x) vanishes at 0 and N − 1 flux collocation points
ξj : p (0, ξj) = 0. Then define a function F (z) which is:

F (z) = y (z)− ŷk (z)− [yk (x)− ŷk (x)]
p (z)

p (x)
(C.7)

We have {0, ξj} and x are N + 1 roots of F (z). It’s
possible thus to apply N times the Rolle’s theorem on
F (z) , we get:

F (z)(N) = y (z)
N − ŷ (z)

N − [y (x)− ŷ (x)]
N !

p (x)
(C.8)

then there’s at least a ζ ∈ [0, ξN−1] satisfies F (ζ) = 0. In
orders words:

E (x) = y (x)− ŷk (x) =
[
y (ζ)

N − ŷ (ζ)
N
] p (x)

N !
(C.9)

However, as deg (ŷ) = N the constant y (ζ)
N − ŷ (ζ)

N

also has an important effect on E (x).The figure C.6 shows
the very significant error in eigenfunction approximation,
this polynomials base function choice just sticks at the col-
location points, such as with the first and the fifth eigen-
values.
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Figure C.6: The first (a) and fifth (b) calculated eigenfunctions with
boundary conditions wei = 1−x2ζ2i li vs theoretical Bessel eigenfunc-
tions

Appendix C.2.2. Symplectic collocation without boundary
constraints

Once realizing that the constant error left in the pre-
vious base function choice, consider now the case with-
out boundary conditions, we simply take effort base func-
tion equal to the Lagrange polynomials of degree N − 1,
deg (we) = N − 1:

wei = li, li =

N∏
j=16=i

x− ζj
ζi − ζj

(C.10)

Similar to the previous case, flux base functions wf has
the degree of N − 2:

deg (ŷ) = deg
(
wf
)

= N − 2 (C.11)

This time the polynomials p (x) is taken as:

p (x) =

N−1∏
j=1

(x− ξj) (C.12)

where deg (p) = N − 1 and of course p (ξj) = 0.
With the same function F (z) as before:

F (z) = y (z)− ŷk (z)− [yk (x)− ŷk (x)]
p (z)

p (x)
(C.13)
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We have now N roots (ξi and x ) of F (z), then N − 1
times the Rolle’s theorem is applied:

F (z)N−1 = y (z)
N−1 − ŷ (z)

N−1 − [y (x)− ŷ (x)]
(N − 1)!

p (x)
(C.14)

then there’s at least a ζ ∈ [ξ1, ξN−1] satisfies F (ζ) = 0. In
orders words

E (x) = y (x)− ŷk (x) =
[
y (ζ)

N−1 − ŷ (ζ)
N−1

] p (x)

(N − 1)!
(C.15)

In this case ŷ (z)
N−1

= 0 since deg (ŷ) = N − 2, the
approximation error is thus of order of yN = JN1 , and it
has the order of 10−5 with N = 10. In the figure C.7, the
eigenfunction is better approached with the first eigen-
value, and has the same order with the fifth eigenvalue.
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Figure C.7: Simulation for the case of wei = lei with constant
η = 5.10−7, without boundary conditions: a) 1st eigenfunction ap-
proximation; b) 5th eigenfunction approximation

It turns out that, although giving a very accurate eigen-
value approximation, this symplectic mixed orthogonal col-
location discretization scheme poorly approximates the orig-
inal (resistive diffusion) problem eigenfunctions. This gives
rise to unwanted numerical oscillations in the simulation
when a distributed source term or sharp initial profiles are
considered.

Appendix D. The finite difference scheme used as
a reference

In section 4, a finite-difference scheme is used for the
spatial discretization of the resistive diffusion equation writ-
ten in the port-Hamiltonian form (2.13). The accuracy of
the spectrum approximation obtained with this scheme is
then compared with the accuracy obtained with the pro-
posed symplectic collocation and Galerkin schemes. To
achieve a fair comparison, a very special case has to be
considered. First, the grid points for the finite difference
scheme are zeros of Chebyshev polynomials. Indeed, the
finite difference scheme is not symplectic anymore (in the
classical sense for closed Hamiltonian systems) for uni-
formly spaced grid points. Besides, the spectrum accu-
racy is maximal with Chebyshev points. Then, homoge-
neous boundary conditions have to be considered. Indeed,
whatever the choice of discretization points is, the finite
difference scheme is not symplectic anymore (with respect
to the bilinear power product used to defined the Stokes-
Dirac structure) for open systems (with non autonomous

boundary conditions). This will result in unstable and os-
cillating modes (and meaningless values for the spectrum)
in the finite difference approximated model while the re-
sistive diffusion model itself is of course purely dissipative.
The finite difference scheme used to solve the resistive dif-
fusion equation (for the unknown function B̃θ = R0Bθ)
with these assumptions is presented hereafter. We start
from the resistive diffusion equation:

∂B̃θ
∂t

=
η

µa2
∂

∂x

(
1

x

∂

∂x

(
xB̃θ

))
− η ∂

∂x
jni

=
η

µa2

(
1

x2
B̃θ +

(
1

x
+ 1

)
∂

∂x
B̃θ + x

∂2

∂x2
B̃θ

)
− η ∂

∂x
jni

(D.1)

By denoting bi, (i = 1..N) the approximated values of B̃θ
at the discretization points xi (zeros of the (N−2)th order
Chebyshev polynomial, completed with the two boundary
values, in our case), one gets:

∂bi

∂t
=

η

µa2
[−

1

x2
i

bi +

(
1

xi
+ 1

)
bi+1 − bi−1

δi+1 + δi

+2xi
bi+1 − 2bi + bi−1

δ2i+1 + δ2i
] ∀i = 2.. (N − 1)

(D.2)

where {
δi+1 = xi+1 − xi
δi = xi − xi−1

The boundary conditions give the missing values for b1

and bN :


B̃|x1=0 = 0 ⇒ b1 = 0

∂x
(
xB̃
)
|xN=1 = 0 ⇒ bN =

bN−1

2− xN−1

(D.3)

Written in matrix form (convenient for instance for
eigenvalues computations) the diffusion equation becomes:

∂b

∂t
=

η

µa2



β2 γ2 0

.
.
.

.
.
.

.
.
.

αi βi γi

.
.
.

.
.
.

.
.
.

0 αN−1

βN−1 +
1

2 − xN−1

γN−1




︸ ︷︷ ︸

A

b

(D.4)

with b := (b2, . . . ,bN−1)T and where:



αi =

−
1

xi
+ 1

δi+1 + δi
+ 2

xi

δ2i+1 + δ2i



βi =

(
−

1

x2
i

−
4xi

δ2i+1 + δ2i

)

γi =


1

xi
+ 1

δi+1 + δi
+ 2

xi

δ2i+1 + δ2i



∀i = 2.. (N − 1) (D.5)

As it has been noticed, this finite difference scheme with
over N = 200 points has spectral properties (see table
B.3) which are comparable to those obtained with the col-
location method with about N = 10 discretization points
(see table B.4). Basically, the eigenvalues calculated from
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the characteristic matrix A in the equation D.4 (which
is however a tridiagonal matrix) converge to the theoreti-
cal values as 1

N , while those obtained with the collocation
method (and its full matrix) as 1

N2 .
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[22] R. Moulla, L. Lefèvre, and B. Maschke. Pseudo-spectral meth-
ods for the spatial symplectic reduction of open systems of con-
servation laws. Journal of Computational Physics, 231(4):1972–
1992, December 2012.

[23] G. Nishida, K. Takagi, and B. Maschke. Multiscale distributed
port-hamiltonian representation of ionic polymer-metal com-
posite (ipmc). In Proc. IFAC World Congress (2008) 2300–
2305.

[24] P.J. Olver. Applications of Lie Groups to Differential Equa-
tions, volume 107 of Graduate texts in mathematics. Springer,
New-York, ii edition, 1993.

[25] A. Ralston and P. Rabinowitz. A first course in numerical
analysis. Dover Publication,Inc, Mineola, Newyork, 2nd edition,
2001.

[26] S. Reich. Multi-symplectic Runge-Kutta collocation methods
for Hamiltonian wave equations. Journal of Computational
Physics, 157:473–499, 2000.

[27] O. Sauter, C. Angioni, and Y.R. Lin-Liu. Neoclassical conduc-
tivity and bootstrap current formulas for general axisymmetric
equilibria and arbitrary collisionality regime. Physic of Plasma,
6(7):2835–2839, July 1999.

[28] A.J. van der Schaft and B.M. Maschke. The Hamiltonian for-
mulation of energy conserving physical systems with external
ports. Archiv für Elektronik und Übertragungstechnik, 49(5/6):
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