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Abstract This paper presents a study of the ability to

build an observer for a complex system using a decen-

tralized multi-agent system for the coordination of mo-

bile sensors. The environment is modeled using a CA

model representing forest fire spread. The initial dis-

tribution for the different species in the vegetation is

generated using a Perlin algorithm. Implementation is

realized on GPGPU. A coherence measure for the obser-

vation error is defined. The observation itself is realized

with mobile sensors and a decentralized coordination

of the trajectories. We analyze the balance between in-

dividual and collective behaviours of agents which is

required to achieve the best performance with respect

to the chosen coherence measure. Two kinds of agent’

behaviour are studied: reactive and cognitive.

Keywords Mobile sensors ·multi agent systems · state

estimation · distributed parameters system · forest fire

spread · cellular automata · reactive/cognitive agents

1 Introduction

In this paper, we present our work on quantifying the

ability of a multi-agent system (MAS) to observe a dy-

namic 2D complex system. This study is a continuation

to a paper which present an decentralized estimator of

fire forest propagation with reactive multi-agents sys-

tem (Schlotterbeck et al, 2016). By observing a complex

system, we mean building a representation of its inter-

nal state based on partial and local measures of it. A

multi-agent system (MAS) is a set of artificial entities
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(agents) which interact with each other. These entities’

action selection is autonomous and based on a partial

representation of their environment, on internal states,

and on the interactions that occur between them. In the

observation case, the agents have the sole task to gather

information about their environment and can thus be

seen as mobile sensors.

Observation of complex system is an interesting prob-

lem because understanding and control of this kind of

systems critically depends on a dynamic representation

of their states as precise as possible.

Sensors’ placement is a crucial point of the 2D com-

plex systems observation problem. Existing work tack-

ling this point focus on methods to maximize an ob-

servability measure. For example, Waldraff et al (1998)

use an observability matrix singular value based mea-

sure, an observability grammian singular value based

measure or the Popov-Belevitch Hautus rank test. Em-

pirical approaches based on genetic algorithms are also

presented in Liu et al (2008). The main differences with

our approach is that they are off-line and only consider

static sensors.

To evaluate the ability of a MAS to observe a com-

plex two dimensional system, we chose to explore differ-

ent mobile sensors placement strategies in a simulated

forest where a fire is propagating. To simulate this com-

plex system, we used Cellular Automata (CA). CA are

particularly suitable for modelling dynamic systems at

a mesoscopic1level, especially to represent the spread-

ing phenomenon (see El Yacoubi and El Jai, 2002). This

approach to use CA to simulate a system to study es-

timation strategies was also used for traffic flow sys-

tems (Barbieri et al, 2013; Sartoretti et al, 2012). They

1 In terms of behavioural rules mimicking the physical in-
teractions and translating them into a fully discrete uni-
verse (Chopard, 2012)
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proposed methods to estimate it with decentralized ap-

proach. The CA they defined allowed them to analyse

theoretically the efficiency of their approach.

Our main objective is both to determine and max-

imize the ability of a group of agents to build an es-

timation of the state of a complex dynamical system

as close as possible to its actual state. To do so, we

study the relationship between the collective behaviour

of a group of autonomous mobile sensors and the differ-

ence between the estimate they build of a system and

its actual state. In our simulations, the agents move in

the simulated forest while it is burning and collectively

build a virtual map of its state according to their local

observations. This map is the estimate they build and

changes only when the agents update it with their ob-

servations. Agents have a write-only access to this map

and it is thus a omniscient tool, only used for evalua-

tion purpose. As we are using the MAS approach, the

behaviour of the agents is decentralized: each agent has

its own local perceptions of the forest and acts accord-

ingly. The challenge is thus to find a local behaviour

that allows the group to reach its global goal to build

an estimation as precise as possible.

We explored two main strategies to coordinate the

agents’ behaviour and compared them with two refer-

ence, pseudo-random behaviours. Agents using the first

strategy have a ”purely reactive” behaviour (Ferber,

1999; Franklin and Graesser, 1996). They only take

into account their current perceptions to decide their

next action. Neither communication nor internal rep-

resentation were used. Their next action is a weighted

combination of influences similar to the one used in

boids (Reynolds, 1987). This strategy is described in

Section 4.4.

Agents using the second strategy have three more

capabilities compared to the previous ones. First they

have an internal representation of the state of the en-

vironment. Second they are able to communicate with

each other when they get close enough. Third, they have

a model of the fire propagation which is the same as the

one used in the simulated environment. Due to these

abilities, these agents are considered as ”cognitive” or

”deliberative” (Franklin and Graesser, 1996).

The main contribution of this paper is to quantita-

tively compare decentralized mobile sensors coordina-

tion strategies in terms of estimation quality.

In Section 2, we present a formal definition of the

CA used to simulate the environment. Then we present

in Section 3 the observability measure we used to eval-

uate the different coordination strategies of the MAS

which are described in Section 4. In Section 5, we de-

scribe the implementation of the whole system and the

results obtained through simulations. Finally we anal-

yse those results and draw some conclusion about our

approach in Section 5.3.

2 Forest fire front propagation simulation using

CA

The environment we defined is a 2D domain. Geomet-

rically, it is a rectangular surface. The width of the

environment is noted W and its heigh H.

2.1 Cellular Automaton Definition

Cellular Automata (CA) may be defined by a quintu-

ple (L, S,N, a, C) based on the definition presented in

Yacoubi (2008) where:

– L is a 2-dimensional lattice of cells c. L = {0, 1, ...,W−
1}×{0, 1, ...,H−1}. So a point c on this space have

two components noted cw and ch. The total number

of cells in the environment is defined as Nc = W.H.

We denote ci ∈ [0;W.H − 1] the index of the cell.

We have ci = cw + ch.W .

– S denotes a discrete composite state set: S = N4.

The different sub-states are:

– xT ∈ N: The quantity of remaining combustible.

– xI ∈ N: The fire intensity (heat).

– xF ∈ N: The necessary of neighbour’s heat (in-

tensity) to ignite the cell.

– xR ∈ N: The neighbourhood’s radius.

Sub-states xF and xR are constant. They are similar

to parameter linked to a cell.

We note x(c, t) ∈ S the state of the cell c ∈ L at the

time t ∈ N.

The global state at time t is noted X(t) ∈ SW.H .

The ith element of X(t) is x(ci, t). To simplify no-

tation, we denote :

– x(c) = x(c, t) for the local state.

– xT (c) = xT (c, t) for sub-states.

– X0 = X(0) for initial condition .

– X = X(t) for global state.

– X+ = X(t+ 1) for next global state.

– N is a mapping which defines the cell’s neighbour-

hood set2. It is given by:

N(c) = {c′ ∈ L | ‖c′ − c‖ ≤ xR(c)}

2 Computational efficiency considerations led us to include
the neighbourhood radius as a part of the state of a cell. In-
deed, it varies with the type of vegetation. An alternative (and
more usual) approach would be to define directly the neigh-
bourhood of the largest possible one for all possible types of
vegetation and the evolution rule accordingly.



Multi-agent estimation of forest fire propagation 3

– a is a transition function which allows us to calculate

the cell’s state at time t+ 1. This function depends

on the cell’s neighbourhood state.

It can be defined by x(c, t+ 1) = a(x(N(c), t)) and

is described below.

So, the global definition is X+ = A(X).

– C is the output operator. It allow us to construct a

measurement vector noted Y from the state of the

system.

We have Y (t) = Y = C ·X
Finally, we give the global definition of the cellular

automaton :{
X+ = A(X)

Y = C ·X (1)

The algorithm of the function a(·) is as follow: when

a plant ignites, its heat intensity (xI) is incremented

at each time step and its remaining combustible (xT )

is decremented. To ignite, a plant has to be in a hot

enough neighbourhood, i.e. when the sum of cells in-

tensities (xI) in its neighborhood (N) in range (xR)

is greater or equal to its flammability (xF ). When all

combustible in a cell has burned, the fire is finished and

the heat intensity falls to 0.

Our aim wasn’t to design and test a realistic for-

est fire propagation model. The presented model is de-

signed to be as simple as possible while displaying com-

plex enough behaviours; making it interesting, not triv-

ial, to observe.

The next section presents our approach to generate

initial condition of the environment.

2.2 Initial condition

To evaluate the ability of a MAS to build a precise

estimate, the observed system has to be sufficiently

complex. To generate rich dynamics in a CA, the envi-

ronment is required to exhibit local differences (Green,

1989). We therefore chose to use three virtual plants

with specific dynamics and a probabilistic initial dis-

tribution of these plants in the environment based on

Perlin Noise3.

The three kinds of plant we defined are :

– Tree: Has the biggest starting amount of combustible

(xT = 200, i.e. a tree burns during 200 iterations).

Has a flammability of 70 (xF = 70) and a range

of 2 (xR = 2). i.e. A tree ignites if the sum of fire

intensities within a range of 2 cells is at least 70.

3 Perlin noise is an algorithm able to randomly generate
coherent and continuous noise in N dimensions. For instance,
it has been used to generate realistic heights for mountains
in video games worlds (Parberry, 2014).

Fig. 1: Example of initial condition of the cellular au-

tomata

– Shrub: xT = 70. It has a range of 1 and a flamma-

bility of 2.

– Grass: xT = 1. xR = 1 and xF = 1.

Figure 1 shows an example of initial condition. White,

black and gray pixels represent grass, trees, and shrub,

respectively.

2.3 Implementation

In our CA implementation, all cells are synchronously

updated using the same algorithm. The computation of

this kind of SIMD (Single instruction Multiple Data) al-

gorithm benefits greatly from GPGPU (General-purpose

processing on graphics processing units) (see LAVILLE,

2013). Figure 2 shows six successive states of the fire

front propagation. We can see in these snapshots that

the shape of the fire front is chaotic and sufficiently

complex to be interesting. The next section presents

the observability problem we try to tackle and math-

ematical tools we use to evaluate the quality of our

solution.

3 Observation quality evaluation

System observation consists in building a representa-

tion of the internal state of a system. Since the infor-

mation available on a system is fundamentally incom-

plete and uncertain, the built representation is always

an estimation.

To compensate this lack of information, control the-

ory offer many mathematical methods based on a dy-

namic model of the system. These methods make it

possible, for example and under some constraints, to

determine some unmeasurable states and to predict the

short-term evolution of the system’s state. The estima-

tion built from measures and mathematical methods

from control theory are useful to control, stabilize, and

identify systems.
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Fig. 2: Forest fire front propagation. Black pixels represent burned cells (ashes), white ones burning cells and gray

ones plants. Among those, darkest pixels represent trees, and lightest ones grass.

One critical question in all these tasks is the place-

ment of the sensors (see Waldraff et al, 1998).

Once again, control theory scientists have proposed

mathematical methods which can determine the opti-

mal positions of sensors in term of estimation quality.

However, these methods only apply on some classes of

problems and some of their applicability constraints are

strong. Many real systems do not satisfy these con-

straints and in these cases there is not yet systematic

methods to find optimal sensor placement. These sys-

tems are said unobservable and it is no possible to get

a precise estimation of their states. The same problem

appears when systems are too complex or too large.

Fire forest propagation, as we are modeling it, is

of this kind and there is no applicable control theory

method to get a precise estimate of it. Propagation and

evolution rules are strongly non-linear because of the ig-

nition thresholds (xF ). Further, the CA is constituted

of hundreds of thousands of cells, giving huge dimen-

sions to the global system’s state vector. Each cell is

directly or indirectly linked to all the others due to the

neighbourhood propagation rule, making the system’s

evolution even more complicated to model.

While approaches based on genetic algorithms try

to tackle this problem (Liu et al, 2008), they can not

yet guarantee that the found solution is optimal.

Next section formally defines state estimation and

describe a method to quantify the difference between

an estimation and the actual state of a system.

3.1 Estimation definition

An estimate – estimation of a system’s state – is a vec-

tor of the same dimension as the system’s state vector

X and is denoted X̂. It is defined on SW ·H .

An estimator or state observer is the set of processes

used to determine X̂ values over time. Estimators com-

pute the state estimate from current and past measures

and from a dynamic model of the system.

Given the CA’s recursive evolution equation 1, the

global definition of the observer is :

X̂+ = Ao(X̂, Y ) (2)

To maximize the estimator quality, the main objec-

tive is to find Ao such as X̂ is the closet to X over

time. To find this Ao, it is therefore required to have a

measure of the difference between X and X̂. The next

part presents our approach to get this difference.

3.2 Evaluation of the difference between state and

estimation

To get a measure of the difference between the simu-

lated state and the agent-built estimation, we chose to

average the difference over all environment cells at time

t. This choice render the measured difference indepen-

dent from the environment size and do not give any

priority to any particular cells.

We denote this difference by D(t).

The difference between the estimate and the ”real”

simulated state for a particular cell, also called the error

on this cell, is denoted d(·, ·).
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D(t) is therefore defined as:

D(t) =
1

Nc

Nc−1∑
i=0

d (x(ci, t), x̂(ci, t) ) (3)

There are several ways to define d(·, ·) depending

on what is to be measured. To get the ratio of cells

on which there are at least one difference between the

values of the estimate and the state, the following def-

inition should be used:

d(x, x̂) =

{
1 if xT 6= x̂T or xI 6= x̂I
0 else

(4)

This measure is the more frequently used in CA-

related work (Yacoubi, 2008) and is the one we are us-

ing.

3.3 Estimation quality measure

In order to quantify the accuracy of an observer, we

used an empirical approach since there is no analyti-

cal tools to do so. Our empirical approach is based on

an offline evaluation of the average difference D(t) be-

tween a simulated environment and an estimation of it,

collectively built by a MAS.

The estimation quality q of a particular MAS be-

haviour is calculated according to the following equa-

tion:

q =
1

tf + 1

tf∑
t=0

D(t) (5)

where tf is the time at which we consider the simula-
tion as completed, when there is no burning cell in the

environment anymore, in our case.

The next section describes the MAS implementation

we used as an estimator of the simulated fire front.

4 Distributed estimation using a multi-agent

system

4.1 Definition

We define an agent as an entity moving in the envi-

ronment simulated by the CA described earlier. The

agents’ curvilinear speed v0 is constant and the same

for all agents. This hypothesis put aside the problem of

the agents’ linear speed regulation. These agents may

be seen as small unmanned planes, flying at constant

speed. The position vector p of agent i at time t is :

pi(t) =

(
piw(t)

pih(t)

)

and is defined on [0;W [×[0;H[.

At each time step, only the agent’s direction vector,

vi(t), can change and is defined as a unit vector:

vi(t) =

(
viw(t)

vih(t)

)
The complete definition of vi(t) is given by equa-

tion 6.

Accordingly, at each time step the new agent’s po-

sition is given by :

pi(t+ 1) = pi(t) + v0.vi(t)

Agents’ behaviour is inspired by the work of Reynolds

(1987) on flocking behaviours which is based on the

combination of simple rules. In our case, agents’ direc-

tion vi(t) is thus computed from a linear combination

of several vik(t), each determined according to a simple

rule. We used a weighted average to compute vi(t) ac-

cording to the vik(t) The weights are denoted αk and

are the same for all agents. The following equation de-

fine vi(t):

vi(t) = normalize

( ∑
k∈Sr

αk.vik(t)

)
(6)

where Sr is the set of used rules. A particular MAS

behaviour being a combination of specific rules among

all the developed rules, with associated weights.

We supposed that agents can move through burning

cells, we can consider that they are either immune to

fire or flying over the environment. We made this hy-

pothesis to avoid introducing behaviours specific to the

fire front propagation use case.

Agents have a circular field of view with radius ra.

Only cells inside the circle (pi(t), ra) are sensed by agent

i at the time t. We also define the measure operator

Ci of agent i as a diagonal matrix. Diagonal elements

relative to a measured cell are equal to 1, 0 otherwise.

We then define C as the measure operator of the MAS

as a whole:

C(t) =

Na⋃
i=1

Ci(t) (7)

where Na is the number of agents and
⋃

the inclusive

OR operator applied on each components of each Ci(t).

Finally, we define the global measure as :

Y (t) = C(t) ·X(t) (8)

In the remaining of the text, we will use C for C(t)

and Ci for Ci(t).
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In the following, we will define four different MASs,

two used as references, and two other, used to study

the ability of a MAS to be used as a distributed esti-

mator of a 2D dynamical system. The MAS types are

the following:

– Reference agents: these agents have a random be-

haviour, their moving direction is smoothly and ran-

domly varied over time. These agents have no mem-

ory ability and do not take their perception of the

environment into account.

– Reference agents (zoned): these agents are sim-

ilar to previous one except that they can only move

in restricted sub-division (zones) of the environment.

– Reactive agents: these agents’ direction is based

solely on their instantaneous perceptions, they do

not have a model of their environment and do not

exchange information with each other. The observer

constituted by these agents is said static because

the information they add to the estimator is not

automatically updated over time by any predicting

rules.

– Cognitive agents: the behaviour of these agents

depends on their current perceptions, on an inter-

nal, dynamic model of their environment, and on the

information they exchange with each other. The ob-

server they constitute is said dynamic because they

update the information they put in the estimator

according to the state of their model even without

direct perception of the environment.

4.2 Random agents

To get a meaningful reference behaviour that can be

used to compare the estimation quality of different MAS

behaviours we used two kinds of random, exploratory

behaviours:

– All agents move randomly over the entire environ-

ment. This behaviour is denoted as random.

– All agent moves randomly but their moves are re-

stricted to a particular subdivision of the environ-

ment. This simple division of space can be consid-

ered as a predefined global, centralized coordina-

tion strategy. While it is trivial to implement in the

chosen simulation environment, it is important to

note that not all environments may be easily split

between agents. Furthermore, this strategy has the

drawbacks of centralized approaches such as mak-

ing the system vulnerable to one agent failure. This

behaviour is denoted as random-zoned.

These two behaviours are obtained by combining

two direction-changing rules: inertia and randomness.

Those rules are described in the next two subsections.

4.2.1 Inertia rule

This rule represents the influence of the agent’s moment

of inertia on its direction change. The overall agent’s

trajectory is strongly influenced by this rule since it

determine the maximum curvature radius of their tra-

jectory. The weight of this rule in the combination (cf.

eq.6) which determines the agent’s direction at the next

time step is denoted α1. When α1 is small, agent’s direc-

tion can change easily and its trajectory can get more

curled. This kind of behaviour can be implemented by

quad-copters drones for example. Conversely when α1

is large, agent’s direction tend to stay constant, its tra-

jectory is thus more smooth. This kind of behaviour

looks more like the one of a plane.

The contribution of this rule is simply the direction

(unit) vector of the agent at the previous time step:

vi1(t) = vi(t− 1)

4.2.2 Random rule

This rule gives a uniform random direction vector:

vi2(t) =

(
cos(θr(t))

sin(θr(t))

)
where θr is a uniform random angle within [0; 2π[.

The ”random” reference behaviour results from the

linear combination of this two rules using the definition

of equation 6 with only rules 1 and 2 in Sr. The resulting

behaviour is a smooth random walk of the agents in the

environment.

We used the Nelder Mead method to explore the

parameter space and to find appropriate values for the

weight of these rules (α1 and α2) in the combination.

This optimisation method is described in Section 4.6.

Now that we have defined the rules at play in the ref-

erence behaviours, we will present the way we compute

the static estimate X̂ from the agents’ perceptions.

4.3 Static distributed observer

To quantify the ability of the MAS to build a correct

estimation, we chose to use the global measure Y de-

fined by equation 8. The MAS built estimate is thus

an aggregation of the instantaneous measures made by

the agents. While this kind of estimation is hardly pos-

sible to obtain in real conditions due to communication

and synchronisation problems, we can use it because all

agents are simulated. The agents do not have access to

this estimate because it would have compromised the

decentralized property of our approach.
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The formal definition of the cellular automata ob-

server we defined is as follow:{
X̂+ = Aos(X̂, Y )

Y = C ·X

Since the information used to build the state esti-

mation X̂ is gathered from direct perception and with-

out any information about the dynamic of the system,

the observer constituted by the agents is said static in

automatic control terminology. Furthermore, the global

estimate X̂ is updated with agents’ perceptions only at

currently perceived cells. Estimate of all unperceived

cells is not changed. In this case, the observer evolution

function Aos can be simplified. We obtain the following

expression for X̂+:{
X̂+ = (I − C).X̂ + Y = (I − C).X̂ + (C).X

Y = C ·X

where I the identity matrix with adequate dimensions.

From the definition of C (equations 7), we see that

according to the values of its elements (0 or 1), we select

either an element of X or an element of X̂ to compute

elements of X̂+.

This global estimation is used as a reference to com-

pare the other, more sophisticated, MAS behaviours.

The next section describes the first of these behaviour,

implemented with reactive agents.

4.4 Reactive agents

Unlike random agents, reactive ones use their percep-
tions to determine their direction. They are called reac-

tive because their moves are only determined by their

perceptions and not on an internal model of their en-

vironment. As for the random agents and unlike the

random-zoned ones, there is no predefined global coor-

dination strategy among the reactive agents. The global

estimate X̂ is built in the exact same way as exposed

in the previous section.

We defined 3 rules for this type of agents. The first

one is the inertia rule defined on the part 4.2.1. The

second one allows the agents to move according to the

perception of the environment’s limits. The last rule

modifies the direction of the agents according to the

proximity of the other agents.

4.4.1 Boundary avoidance rule (α3)

This rule makes agents move away from the environ-

ment’s boundaries. This repulsion is inversely propor-

tional to the distance of the agent to the boundary. The

formal definition of the contribution of this rule to the

agent’s direction is:

vi3(t) =

(
1

piw(t)
1

pih(t)

)
−

(
1

W−piw(t)
1

H−pih(t)

)
The weight of this rule in the rule-combining equa-

tion is α3

Figure 3 shows the agents’ trajectories with inertia

rule’s weight α1 = 1 and varying boundary avoidance

rule’s weight α3. We used Na = 20, W = 512, H = 256,

V0 = 2.

4.4.2 Agents avoidance rule (α4)

This rule makes agents avoid each other in the same

way charged particles repel each others. The closer the

distance, the stronger the repelling force. Formally, the

contribution of this rule to the agents’ direction vector

is defined as:

vi4(t) =

Na−1∑
j=0;j 6=i

pi(t)− pj(t)
‖pi(t)− pj(t)‖3

The intuitive idea behind this rule is to increase

the average distance between agents and to distribute

them evenly on the environment. The figure 5 shows

this rule’s influence on the average distance between

agents. When this rule is disabled (α4 = 0), we measure

an average distance between agents equal to 85 cells

with: Na = 10, W = 512, H = 256, V0 = 2, α1 = 1. We

got the results of figure 5 with the same conditions.

It is clear from Figure 5 that there is a positive cor-

relation between the weight of the agents avoidance rule

and the average distance between agents. We can also

observe that when α4 is large enough (α4 > 104), a sat-

uration of the average distance between agents appears.

The figure 4 shows such configuration (with α4 = 105).

Agents’ positions are stable and depend only on the

environment’s dimensions ratio (1/2 in this case) and

the number of agents (Na = 20). This configuration is

probably the best one to maximize the average distance

in these conditions.

Note that we could have formulated the combina-

tion of these rules as a sum of forces applied to the

agents, as in classical mechanics. However this would

have create trajectory dynamics and associated trajec-

tory tracking control problems. In this work, we rather

considered an ideal control for the drones which make

feasable instantaneous changes in speed and direction.

As for the random behaviours, we used the Nelder

Mead method to find suitable values of the different

weights of the three rules defining the reactive agents’

behaviour. The way we build the global estimate X̂
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Fig. 4: Capture of a simulation with a extreme influence

of the agents avoidance rule.

for the reactive agents is the same as for the reference

behaviour which is exposed in Section 4.3.

4.5 Cognitive Agents – Dynamic Observer

Agents are said cognitive when they can build, update,

and use an internal representation of their environment.

The agents we are presenting in this section are not

purely cognitive, their decision is based on their inter-

nal model and on their current perception. We gave

them the ability to store their perception in an internal

memory, to make prediction on the evolution of their

environment, and to exchange information. Cognitive

agents described in this section have three more abili-

ties than the reactive ones:

– Each agent i has its own global estimation of the

system state, X̂i.

– Agents can send data to agents that are within their

communication range.

– They know the evolution laws of the environment,

so they can predict its evolution.

These abilities are detailed in the next sections.

4.5.1 Internal state estimation

Contrary to reactive agents which share a write-only,

global estimation X̂, each cognitive agent has an in-

ternal one, X̂i, which it can read and modify. So each

agent store an estimate of the system’s state for all the

cells of the environment. Since the estimates are not

shared, they can differ for a given cell.

In addition to the estimated state, each cell c in the

internal model of agent i has an associated confidence

value hi(c, t) within [0; 1]. As a convention, a confidence

of 1 means that the cell’s state is perfectly known. Con-

versely, a confidence of 0 means that the agent has no

information about the cell. Typically, a cell that is cur-

rently being perceived has an associated confidence of 1.

Cells that have never been observed have a confidence

of 0.

At each simulation iteration, cognitive agents be-

haviour has two steps: 1) A perception step and 2) a

transmission step.

In the perception step, agents update their internal

estimate X̂i according to their immediate perceptions.

So for each perceived cell, its estimate value is overwrit-

ten by the perceived one and the confidence value is set

to 1.

During the transmission step, agents that are within

communication range rc will share their estimates for

all the cells. An agent will update its estimate about

a cell according to the value given by another agent

only if the other agent has a greater confidence in its

estimate about this cell. When updating its estimate

value about a cell according to another agent’s value,

an agent will set the confidence of this cell to 90% of the

transmitted value. As an example, considering the sit-

uation where agent i considers cell c42 as burning with

a confidence of 0.2 and that agent j considers this cell

as hashes with a confidence of 0.75. If they come close

enough to each other, they will share their estimation

of all cells. Since agent j has a greater confidence in

its estimate about cell c42 (0.75 > 0.2), agent i will set

its estimate of this cell to ”hash” and associate a confi-

dence value of 0.675 (0.75 · 90%). In this example, after

the transmission step, nothing will have change about

agent j estimate of cell c42, and agent i will have up-

date its estimate and confidence value about this cell.

This updating process is executed on all environment

cells.

Fig. 3: Influence of boundary avoidance weight, α3, on agents’ trajectories. Triangles represent agents and curves

represent trajectories. From left to right, values of α3 are: 1, 16, 64, and 256
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4.5.2 Dynamic observer

The third ability that cognitive agents have over the

reactive ones is to know the evolution laws of the system

they observe. This ability allows them to predict future

state of the system and thus to update their estimation

at places they are not observing. In the work presented

here, we made the hypothesis that agents have a perfect

knowledge of the dynamic of the system. They can use

the CA that is updating the environment to update

their internal estimate X̂i.

Since there is no global shared estimate X̂ that we

can use anymore to compute the estimation quality q

defined in equation 5, we have to define one from the
X̂i. As these estimates vary according to a model of the

evolution laws of the environment, the observer consti-

tuted by the agents is said dynamic.

The formal definition of how agent i internal esti-

mate X̂i is updated is:{
X̂+

i = Aod(X̂i, Yi)

Yi = Ci ·X

To compute the next state of a cell’s estimate, the

same rules are applied as those used for the fire front

CA. These rules are represented by the matrix A de-

fined in Section 2. These rules are applied on the inter-

nal state estimate X̂i, on each cell, except when a direct

or indirect measure is available. Finally, the expression

of the dynamic estimator is:{
X̂+

i = Aod(X̂i, Yi) = A((I − C ′i).X̂i + Yi)

Yi = C ′i ·X

where C ′i is the direct and indirect measure operator.

In addition to update X̂i at each time step, cognitive

agents update the confidence value of their estimate’s

cells. We made the following three hypothesis about the

confidence evolution:

1. If there is no new information about a cell (direct

observation or values from other agents), its asso-

ciated confidence value will slowly decrease, this is

the forgetting factor.

2. The confidence associated with a cell decreases rapidly

if there are adjacent cells with low confidence be-

cause of the uncertainty on these cells’ state. This

is the uncertainty factor.

3. Conversely, the confidence of a cell can grow slowly

if its adjacent cells have a high confidence value.
This correspond to the idea that if an agent knows

one cell with certitude, it will be able to correctly

predict the value of the adjacent cells. This is the

certainty factor.

These hypothesis about the confidence evolution can

be modeled using the principles of heat diffusion and

dissipation on a surface. Confidence being equivalent

to heat, dissipation correspond to the forgetting factor,

and diffusion the other two factors. The heat propa-

gation and dissipation equation in continuous time is:

∂h(c, t)

∂t
= k1 ·

(
∂2h(c, t)

∂cw2
+
∂2h(c, t)

∂ch2

)
− k2 · h(c, t) (9)

where k1 is the diffusion coefficient, k2 the dissipation

one, and cw, ch the components of the cell’s position

vector c.

After choosing appropriate values for k1 and k2 and

transposing the previous equation in discrete time and
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space, we optain:

h(c, t+ 1) = k1 ·
(
h(cup, t) + h(cleft, t)+

h(cdown, t) + h(cright, t)− 4 · h(c, t)
)

−k2 · h(c, t)

(10)

where k1 = 0.2499, k2 = 0.0004, and cup, cleft,

cdown and cright are the upper, left, down, and right

adjacent cells of c.

The following constraints were taken into account

while choosing k1 and k2 values. To ensure that the

equation 10 is numerically stable, it is necessary to have

0 ≤ 4 · k1 + k2 ≤ 1. Also, in order to get the behaviour

associated with the forgetting factor, k2 must be greater

than 0. Finally, we empirically chose the greatest value

for k1 that made cells’ certainty behave coherently with

the uncertainty and certainty factors.

For cell on the environment boundaries, where equa-

tion 10 is not defined4, we set their state at the value

of the closest cell for which the equation is applicable.

In this case, we consider that ∂h(c,t)
∂c = 0.

In Section 3 we exposed a quantitative measure of

the difference D(t) between a stateX and an estimation

X̂ of this state (equation 3). In the dynamic estimator

case, X̂ is not directly available, unlike in the reference

and reactive agents cases. We need to define the way

X̂ is determined from the internal X̂i of the cognitive

agents.

For each cell in X̂ we take the value of the X̂i

that has the highest confidence value. This global esti-

mate is still a ubiquitous tool, used for evaluation pur-

poses only, and not accessible to the agents, to preserve

the decentralized property of our approach. Using this
global estimate, we can compute the estimation quality

criterion q defined by equation 5 in Section 3.3. In both

static and dynamic estimator cases, we build the global

estimate X̂ at each time step.

The next section explains how cognitive agents use

their internal X̂i to improve their trajectories in order

to maximize the quality of their observations.

4.5.3 Confidence improving rule (α5)

The behaviour of the cognitive agents combines the

three rules of the reactive agents (inertia, boundary

avoidance, and agents avoidance) with a new one: the

confidence improving rule. The aim of this rule is to lead

the agent toward the part of the environment where its

confidence in its estimation is the lowest. Three imple-

mentations of this rule have been considered, two taking

4 Cells on the left boundary have no left adjacent cell for
example.

global information from X̂i into account and one taking

only local information into account:

1. The first global approach based on X̂i is to compute

the overall cells positions’ barycentre, weighted by 1

minus the confidence value. We obtain the position

where the confidence is the lowest on average. The

direction of the vector vi5(t) corresponding to this

rule is toward this point.

2. Another global approach is to make the agent go to-

ward the cell with the lowest confidence. Each time

the agent reaches this point, it sets the cell’s con-

fidence to 1 and move on to the next cell with the

lowest confidence.

3. The local approach we considered is to identify the

direction around the agents where the confidence is

the lowest. This approach is similar to the first one

but the barycentre is computed only on the cells

within some neighbourhood of the agent.

We only implemented the third solution for the fol-

lowing reasons: the second solution is problematic when

there are several cells with the minimum confidence

value (which is frequent, especially at the beginning

of the simulation, when almost all cells have not been

measured and have a confidence of 0). The second solu-

tion is also problematic since the barycentre of the low

confidence cells may be a very well explored area. For

example, if the agent is at the center of the rectangu-

lar environment with all cells’ confidence values being 0

(hi(c, t) = 0 for all cells except the perceived ones). In

this case, the average position weighed by (1− hi(c, t))
is the current agent’s position. Let’s suppose that the

agent moves to the left. It will then perceive cells on

its left, making the average uncertain position moves

to the right. This will lead the agent to the right, then

to the left, etc. A not very interesting, oscillating over

already visited cells, exploratory behaviour.

The third solution allows the agent to avoid such

situations. The most uncertain cell in average is looked

for within the neighbourhood of the agent. So it will

always go forward, because cells on its back will always

have a high confidence value since they have just been

perceived. The formal expression of the contribution

vi5(t) of this third implementation of the confidence

improvement rule on the agent direction is:

vi5(t) =

 1

|R5i(t)|
∑

c∈R5i(t)

(1− hi(c, t)) · c

−pi(t) (11)

where R5i(t) = {c ∈ L | ra < ‖c − pi(t)‖ < 2 · ra}: the

cell set on which the barycentre is computed. This set

is a ring around the agent. The ring’s smaller radius ra
is equal to the agent’s field of view. We chose this value
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for the minimal radius because cells within the agent’s

field of view are directly perceived and have therefore

a confidence value of 1, making them useless to include

in a minimum finding process. The ring’s larger radius

has been arbitrarily set to 2ra. The weight (1−hi(c, t))
of each cell is proportional to the uncertainty associ-

ated with it. So vi5(t) points toward the point of low-

est confidence within the agent’s neighbourhood. As for

the other rules, we define α5 as the weight used in the

weighted average which determines the agent’s direc-

tion.

The following section presents the method we used

to find values of αk which maximize our estimation

quality criterion q.

4.6 Rules weights optimization (Nelder-Mead)

In order to find values for the rules’ weights αk that

minimize the criterion q, we used the Nelder-Mead opti-

mization method. It is a generic numeric method which

minimize a scalar continuous function defined on a mul-

tidimensional space.

For example, in the case of the cognitive agents,

we used this method to find the values of α3, α4 and

α5 (α1 being constant and set to 1) that give the best

estimation quality. In this case the parameter space’s

dimension is three.

The Nelder-Mead method is also called ”Downhill

Simplex Method”. Indeed, it makes use of simplexes

which are a generalization of triangles in any dimen-

sion. In a space of dimension 1, a simplex is a seg-

ment, in a 2-dimensional space, it’s a triangle, in a 3-
dimensional space, a tetrahedron. More generally, in an

N -dimensional space, a simplex has N + 1 vertices.

The simplex used by the Nelder-Mead method is

defined in the parameter space. Each of its vertex rep-

resent a specific set of values for the αk. Once an initial

simplex chosen, each vertex of it is associated with the

value of the criterion q obtained after several simula-

tion carried out with the corresponding αk. Then, the

Nelder-Mead method gives rules to move the simplex’s

vertices according to their associated values in order to

make the simplex converge toward a local minimum.

In our case, this minimum is a configuration of rules

combination’s weights that maximize the quality of the

estimate built by the agents.

Figure 6 shows an execution of this algorithm on an

example 2-dimensional parabolic function f centred in

(0.9; 0.6). We note s =
(
α1 α2

)T
, the 2D input of this

function which is defined by:

f(s) =
√

(2α1 − 1, 8)2 + (2α2 − 1, 2)2

Each step of this algorithm requires several simu-

lations with varying initial condition to get a signifi-

cant value for q. Furthermore the complexity of the pa-

rameter space’s exploration increases dramatically with

the number of its dimensions. Consequently, we have

to keep the number of weights, and thus the number

of rules, low to be able to find interesting values for

the αk. We chose this empirical method to evaluate the

quality of the estimation because the analytical rela-

tionship between the rules weights and q is extremely

complex to establish.

5 Results and discussions

This section presents two analyses. First, we study the

effect of the number of agent on the global behaviour.

For each kind of agents (random-zoned, random, reac-

tive, and cognitive), we made experiments for 1, 4, 16

and 64 agents and studied the evolution of our global

criteria q. Second, we analyse the evolution of the es-

timation quality over the duration of a simulation in a

4-agent configuration. Table 1 presents the initial condi-

tion and parameters values used in the results presented

here.

5.1 Influence of the number of agents

This section presents our analysis of the effect of the

number of agents on the estimation quality criterion q

defined by equation 5 in Section 3.3, for each behaviour

we defined.

We did simulations with 1, 4, 16, and 64 agents for
each behaviour (random, random-zoned, reactive, and

cognitive). For each agent number-behaviour combina-

tion, we did eight simulations with different initial con-

ditions to get more robust results. The figure 7 syn-

thesizes these results using a logarithmic scale. Using

this logarithmic scale for the x and y axis allowed us

to detect a linearity between the agents count and the

q criteria when the number of agents is lower or equal

to 16. This case correspond to a low density of agents

in the environment and is more realistic than when this

density is too high. In our case, we fixed the limit at

sixteen agents. When agent density is too high, they

perceive almost all the environment at each time step

and their behaviour has less influence than the range of

their field of view.

5.1.1 Low agent density

According to the observed linearity on the log-log graph,

and in order to find the relationship between the crite-
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Fig. 6: Execution of the Nelder-Mead algorithm to find the minimum of an example function.

Parameter Symbol Value

Iteration count tf ∼ 3700
Environment width W 256
Environment height H 256
Field of view (cells) ra 9
Communication range (cells) rc 64
Speed of agents (cells/iteration) v0 2
Initial position of agents pi(0) (26; 26)

Initial direction of agents vi(0)

(
cos(2πi/Na)
sin(2πi/Na))

)

Table 1: Initial condition and parameters

rion q and the number of agents Na when it is adequate

(not too high), we used the following expression:

log2(q) = k1 · log2(Na) + k2 (12)

where k1 and k2 are the coeficients of the linear rela-

tionship we want to identify.

We used the least squares method to find the k1 and

k2 that made the previous linear relationship match our

experimental points for 1, 4, and 16 agents.

To obtain a direct relationship between q and Na,

without the log, we can transform equation 12 into:

q−1 = k3 ·Nk4
a (13)

where k3 = 2−k2 and k4 = −k2. We introduced the

inverse of q because a high value of it indicates a low

estimation quality.

As the right side of equation 13 is the product of

k3 and Nk4
a , we can interpret k3 as the absolute perfor-

mance of a behaviour because it is independent from Na

and k4 can be seen as the improvement brought by each

additional agent. The values of k3 and k4 we computed

for each MAS behaviour are presented in Table 2.

Agent type Approximation of q

Random-zoned q−1 = 1.27 ·Na
0.59

Random q−1 = 1.31 ·Na
0.57

Reactive q−1 = 1.52 ·Na
0.71

Cognitive q−1 = 2.39 ·Na
0.90

Table 2: Relationship between Na and q when Na < 16

Overall, it is important to note that: 1) Cognitive

agents are basically better than those using a static es-

timator : k3 is the highest for cognitive agents. 2) Each

additional cognitive agent brings more performance to

the observer than other types of agents. These obser-

vations are in line with our hypotheses and confirm the

value of adding cognitives abilities to agents.
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Fig. 7: Relationship between the number of agents and the estimation quality criteria for different MAS behaviours.

Regarding the agents using the static estimator, we

observe that the reactive ones are more efficient than

random ones. This result was expected because they

use avoidance rules (boundary and agents) and con-

firms that a behaviour based on direct perceptions gives

better performances than simple random walks.

5.1.2 High agent density

In our simulation condition, when there are more than

sixteen agents, it becomes difficult to draw conclusions.

It is clear that when the agent density is sufficiently

high, the estimator becomes perfect since the agents

are then able to perceive the entire environment at each

time step. Figure 7 seems to support this hypothesis:

the criteria values are getting closer and seems to con-

verge toward a horizontal asymptote. Additional ex-

periments would be required to support this intuitive

observation.

5.2 Estimation error evolution over the duration of a

simulation

This section presents our observations about the evolu-

tion of the difference between the MAS-built estimate

and the CA-simulated state, D(t), defined by equa-

tion 3, over the duration of a simulation. The evolution

of a fire front propagation is monotonous: the environ-

ment changes slowly at the beginning, when there are

only a few burning cells, the change rate increases dra-

matically when the fire front becomes large and fall

toward zero when only hashes remain. Our simulations

stops when there is no changes anymore in the cells’

state. The criteria q we studied in the previous sections

does not account for the evolution of the difference be-
tween the collective estimate and the simulated state

over the simulation duration since it is based on a cu-

mulative sum of this error over the whole duration of

the simulation.

To get insight into the different dynamics of the er-

ror along the simulation duration, we carried out twelve

simulations with different forest compositions (other

initial parameters staying equal) for each kind of agent

behaviour. There were four agents in these simulations.

Figure 8 presents the average value of D(t) over the

twelve simulations for each behaviour. “Burned cells”

curve shows the ratio of burning cells relative to the

total number of cells.

The most interesting observation is made consider-

ing iterations between 1000 and 2000. During this time

interval, the error of all behaviours but the cognitive

one show a significant increase. This increase is due to

the fast modification of the environment. It is indeed

during this time lapse that there is the greatest number
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Fig. 8: Average value of D(t) over twelve simulations for each MAS behaviour against the ratio of burning cells

to the total number of cells Nc.

of burning cells which quickly turn forest into hashes.

Conversely, the estimation quality of cognitive agents is

always improving. This property is extremely interest-

ing since the improvement brought by cognitive agents

regarding the overall estimation quality q is magnified

if we only consider the time lapse during which the en-

vironment is changing the most. This time lapse being

the one during which it is the most interesting to get

a precise estimate. The constant decrease in the differ-

ence between the simulated state and the estimate built

by the cognitive agents indicates that they are quite re-

silient to the change rate of the environment.

Another interesting observation can be made on the

first two hundred time steps. During this interval, there

is still only a few burning cells, the environment is al-

most not changing. So the main reason of the increase in

estimation quality comes from the initial exploration of

the environment by the MAS, and not from the correc-

tion of estimation mistakes. This gives us information

about the rate at which the various behaviours explore

an unknown environment. Table 3 presents the explo-

ration rate of each behaviour during these first time

steps.

While these results depend on the size of the en-

vironment, we can still draw some partial conclusions.

Cognitive agents have the best exploration rate. This is

Agent Type Exploration rate

Random zoned 0.11%
Random 0.09%
Reactive 0.17%
Cognitive 0.20%

Table 3: Exploration rate, expressed in environment

portion per time step, of the different MAS behaviours

not surprising since they use information about the di-

rection where their estimate is the worse, leading them

toward unexplored areas. Furthermore, as they share

information about explored areas, they tend to avoid

them.

Reactive and cognitive agents have the ability to

avoid each other. This ability prevent them to simulta-

neously explore the same area. That’s why they have

better exploration rates than the random agents.

As expected, random behaviours have lower explo-

ration rates than the others because they don’t use any

information to improve their ability to explore their en-

vironment. The two kind of random behaviours have

similar exploration rates. We can suppose that this is

because this rate depend only on the range of their field

of view.
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All these results support the hypothesis that knowl-

edge and communication improve the ability of a MAS

to build a precise estimate of a dynamical system.

5.3 Conclusion and perspectives

This paper describes tools to evaluate the abilities of

multi-agent systems with different coordination mecha-

nisms to build an estimation of the state of a simulated

2D environment modeling the propagation of a forest

fire front. Those MASs have to coordinate the trajecto-

ries of mobile sensors in order to maximize the quality

of the collectively built estimation. To do so, we used

a completely decentralized approach to the problem of

dynamic complex system observation and that’s what

distinguishes our work from existing approaches which

either use centralized methods or examine static sys-

tems.

Each different MAS behaviour is based on a particu-

lar combination of elementary behaviours. The first one

models the agents’ inertia and ensures smooth trajecto-

ries. The second and third behaviours use agents’ per-

ceptions to make them avoid the environment bound-

aries and each other, respectively. The last one utilizes

cognitive abilities added to the agents: communicating

with each other, building an internal model of their en-

vironment, predict the evolution of this model.

To evaluate and compare the different behaviours

resulting from the possible combinations, we defined a

distance measure D between the CA-simulated state of

the forest fire front and the estimate collectively built

by the agents. We used this distance in two ways: first

we defined a criteria q which is the average value of this

distance over the whole duration of a simulation; sec-

ond we studied the variation of this distance through-

out the duration of a simulation. The q criteria allowed

us to find appropriate values for the different param-

eters of agents’ behaviours and to quantify the ability

of these behaviours to build a correct estimate of the

observed state. The experiments we carried out support

our hypotheses according to which taking more infor-

mation into account in the agents’ behaviour improves

the quality of their estimation. Indeed, reactive agents,

which use only their perceptions to choose their direc-

tion, were able to build better estimate than agents with

random walk-types of behaviour. Furthermore, cogni-

tive agents are even more efficient than reactive one.

When we studied the variation of D throughout the

duration of a simulation, we found that cognitive agents

were far less sensible to the change rate of the envi-

ronment than the reactive and random agents. Indeed

they were able to improve their estimation of the system

state during the whole simulation, even when the envi-

ronment was changing quickly, which is not the case of

the other kinds of agents. All experiments were carried

out using GPGPU, allowing us to carry out many sim-

ulations with varying initial condition and behaviour.

On an Intel i5 CPU ans NVidia 830M GPU, a simula-

tion of ∼ 3000 steps with with 8 agents in a 100000 cells

environment takes ∼ 7 seconds for random and reactive

agents and takes ∼ 13 minutes for cognitive ones.

The main research avenue we plan to explore is to

study the effect of some parameters on the estimation

efficiency. For example the influence of the range of

agents’ field of view, or the link between their com-

munication range and their avoidance behaviour, seem

to be interesting factor to study to get more insight into

the relationships between agents’ behaviour and their

ability to build collectively an estimation of the state

of a dynamical system. Other future works includes the

validation of the observed properties in more complex

(e.g. periodic) systems such as chemical reactions, or

population simulations.
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