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Abstract

Dynamics of the membrane potential in a single neuron can be studied
estimating biophysical parameters from intracellular recordings. Diffusion
processes, given as continuous solutions to stochastic differential equations,
are widely applied as models for the neuronal membrane potential evolution.
One-dimensional models are the stochastic integrate-and-fire neuronal diffu-
sion models. More biophysical neuronal models take into account the dynamics
of ion channels or synaptic activity, leading to multidimensional diffusion mod-
els. Since only the membrane potential can be measured, this complicates the
statistical inference and parameter estimation from these partially observed
detailed models. This paper reviews parameter estimation techniques from
intracellular recordings in these diffusion models.

1 Introduction

Neurons communicate by short and precisely shaped electrical impulses, the so-
called spikes or action potentials. It is therefore of major interest to understand the
principles of the underlying spike generating mechanisms, starting by understanding
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the dynamics of the membrane potential in a single neuron. Intracellular recordings
provide high frequency observations of good precision, typically measured around
every 0.1 ms. There is thus a growing demand for robust methods to estimate
biophysical relevant parameters from such data.
Diffusion processes, given as continuous solutions to stochastic differential equations,
are widely applied as models for the neuronal membrane potential evolution. The
stochastic integrate-and-fire neuronal diffusion models are one-dimensional, though
they have also been extended to include a recovery variable to model memory in
the system. They are probably some of the most common mathematical represen-
tations of single neuron electrical activity, and result from more or less dramatic
simplifications of more involved neuronal models. The simplification implies that
the shape of the action potential is neglected and represented by a point event, typ-
ically represented by the first hitting time to a firing threshold, an upper bound of
the membrane potential. More biophysical neuronal models take into account the
dynamics of ion channels or synaptic activity, leading to multidimensional diffusion
models. Electrical activity in neurons consists of ionic currents through the cell
membranes. Conductance-based models are simple biophysical representations of
excitable cells like neurons, and are based on an electrical circuit model of a cell
membrane. In these models current flows across the membrane due to charging of
the capacitance and movement of ions across ion channels in the membrane. These
models are based on the seminal work by Hodgkin and Huxley (1952), which formu-
lated a mathematical model including dynamics of gating variables in dependence
of the membrane potential, and in turn influencing the evolution of the membrane
potential, creating a feedback system capable of producing oscillatory behavior and
spikes. Since only the membrane potential can be measured, this complicates the
statistical inference and parameter estimation from these partially observed detailed
models.
This paper reviews parameter estimation techniques from intracellular recordings in
models of the type

dXt = b(Xt; θ)dt+ Σ(Xt; θ)dWt

where Xt = (Vt, Yt) is a d-dimensional process with first coordinate Vt represent-
ing the membrane potential, and Yt being unobserved coordinates representing for
example gating variables, proportion of open ion channels of a specific ion or in-
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Figure 1: Observations of the membrane potential in a spinal motoneuron of an adult
red-eared turtle during 600 ms measured every 0.1 ms. Data from Berg Laboratory,
see Berg et al. (2007).

hibitory or excitatory synaptic input. If d = 1 then Xt = Vt. Here, b(x) is the drift
function taking values in Rd, Σ(x) is the diffusion matrix taking values in Rd×m

and Wt is an m-dimensional standard Wiener process. The goal is to estimate the
parameter vector θ ∈ Θ ⊂ Rp. Data are discrete measurements of Vt. Denote
t0 < t1 < · · · < tn the observation times, which we assume equidistant, and denote
the sampling step by ∆ = ti − ti−1. We denote Vi = Vti the observation at time ti,
and V0:n = (V0, V1, . . . , Vn) the vector of all observed data. An example of a sample
trace of the membrane potential in a spinal motoneuron of an adult red-eared turtle
during 600 ms (6000 data points) is shown in Figure 1.

The models and different parameter estimation approaches will be discussed next.
To read more about the derivation of the models and biophysical justifications, we
refer to Tuckwell (1988); Gerstner and Kistler (2002); Izhikevich (2007); Laing and
Lord (2010); Bachar et al. (2013); Gerstner et al. (2014).
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2 Models

The model for the membrane potential is given by an equation of the form

C
dV

dt
= sum of currents + noise

where C is the cell membrane capacitance, and V is the membrane potential evolu-
tion. Sometimes the constant C is not specifically stated and absorbed into other
parameters. The currents are ions, such as sodium, potassium, calcium and chlo-
ride, flowing in and out of the cell through ion channels in the cell membrane, as
well as input currents received from other neurons in the surrounding network, or
injected current controlled by the experimentalist. The noise models the inherent
stochasticity of neural activity. These models fall into two classes, posing different
statistical challenges, namely one-dimensional models (integrate-and-fire models),
where there are no hidden components, and multi-dimensional models with unob-
served coordinates, complicating the statistical analysis considerably.

2.1 Integrate-and-fire models

The integrate-and-fire neuronal models are reviewed in Burkitt (2006), see also ref-
erences therein. We will only treat the subclass of diffusion integrate-and-fire models
given as solutions to the Itô-type stochastic differential equation

dVt = b(Vt; θ) dt+ σ(Vt; θ)dWt , V0 = v0. (1)

For the theory of diffusion processes, see e.g. Kloeden and Platen (1992); Øksendal
(2010). Due to the simplicity of the model, spike generation is not an inherent part
of process (1) as in more complex models, and a firing threshold has to be imposed.
An action potential is produced when the membrane voltage V exceeds a voltage
threshold, Vth, for the first time, and such that Vth > v0. Formally, the spike time is
identified with the first-passage time T of the threshold,

T = inf{t > 0 : Vt ≥ Vth}, (2)

and Vt is then reset to v0. When estimating θ from equation (1), only recordings
of the subthreshold fluctuations between spikes are used, and the parameter esti-
mation problem reduces to estimation in one-dimensional diffusions from discrete
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observations. In this model, the spike is reduced to a point event, whereas in the real
system, a spike takes a couple of miliseconds. If measuring around every 0.1 ms, as is
costumary, many observations during each spike has to be discarded. Furthermore,
it is not clear when the diffusive behavior ends and the more deterministic behavior
of the spike begins, see Figure 1. Different ad-hoc methods have been proposed,
and in most studies it is not even specified how it was done. It is straightforward to
localize the peak of all spikes, and the problem is to decide how large an interval to
cut out around this peak. In Lansky et al. (2006) they defined the beginning of the
spike as the last point with decreasing depolarization before the spike in an interval
from 10.05 ms before the voltage reaches -35.5 mV. Then the data was transformed
by a moving average over 6 values and they then defined the end of a spike as the
minimum in the first valley after the peak. The valley is defined to start when the
membrane potential reaches the value of -65.5 mV for the first time after the spike,
and ends 10.05 ms later. The same approach was adopted in Picchini et al. (2008).
In Jahn et al. (2011) all spikes were aligned according to the peak, and then the
empirical variance was estimated cross-sectionally at each time point backwards in
time from the peak. The spike initiation was then defined to be where the variance
started decreasing, determined to be 4 ms before the peak.
Maximum likelihood estimation can be used in some few cases where the transition
density is available, but in general other approaches are necessary. The methodology
of parameter estimation in one-dimensional diffusions, equation (1), from discrete
observations is well studied, see for example Prakasa Rao (1999); Sørensen (2004);
Forman and Sørensen (2008); Iacus (2008); Sørensen (2012), and references therein.
There is a bias issue with the drift parameters, though, caused by the sampling
conditioned on being below the threshold, see Bibbona et al. (2010); Bibbona and
Ditlevsen (2013). This is more pronounced when the neuron is frequently firing.
The problem is commonly ignored when analysing data, which we will also do in
the sequel. Here we review estimators from maximum likelihood or martingale
estimating functions for a few common integrate-and-fire models.
The simplest integrate-and-fire model is just the Wiener process with constant drift,
the diffusion approximation of the random walk model for the membrane dynamics,
first introduced in Gerstein and Mandelbrot (1964). Here, b(v; θ) = µ and σ(v; θ) =

σ are just constants so that θ = (µ, σ2). It is assumed that µ > 0 such that
the waiting time for a spike is finite. The process is Gaussian, and the maximum
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likelihood estimators are

µ̂ =
Vn − V0

n∆
; σ̂2 =

1

n∆

n∑
i=1

(Vi − Vi−1 −∆µ̂)2

with asymptotic variances Var(µ̂) = σ2/n∆ and Var(σ̂2) = σ4/n. This is one of the
few models where the first passage time distribution is known, which is an inverse
Gaussian distribution, and justifies why this model has been popular.
The Wiener model does not take into account the leakage of the neuronal mem-
brane, namely that current flows through the membrane due to its passive prop-
erties. The most popular leaky integrate-and-fire model is the Ornstein-Uhlenbeck
process, where b(v; θ) = −v/τ + µ and σ(v; θ) = σ. Here, µ characterizes neuronal
input and τ > 0 is the membrane time constant and reflects spontaneous voltage
decay in absence of input. For an input µ > Vth/τ , the neuron fires regularly,
whereas for µ ≤ Vth/τ , the model only fires due to noise. This defines the sub–
and suprathreshold regimes. Parameters Vth, v0 and τ characterize the neuronal
membrane, µ characterizes the input signal, and σ scales the noise.
The maximum likelihood estimators are given as solutions to the equations

α̂ =

∑n
i=1(Vi − Vi−1ρ̂)

n(1− ρ̂)

ρ̂ =

∑n
i=1(Vi − α̂)(Vi−1 − α̂)∑n

i=1(Vi−1 − α̂)2

σ̂2 =
2
∑n

i=1(Vi − α̂− (Vi−1 − α̂)ρ̂)2

n(1− ρ̂2)τ̂

where α̂ = µ̂τ̂ estimates the asymptotic variance, and ρ̂ = − log ∆/τ̂ estimates
the autocorrelation, see Ditlevsen and Samson (2013). The maximum likelihood
estimator exists only if

∑n
i=1(Vi − α̂)(Vi−1 − α̂) > 0. Note that if τ is known, the

likelihood equations become particularly simple, the estimators are explicit and ex-
ist always. The asymptotic variances obtained by inverting the Fisher information
are Var(τ̂) = 2τ 3/n∆, Var(α̂) = σ2τ/n∆ and Var(σ̂2) = 2σ4/n. Using that intra-
cellular recordings are high-frequency, i.e., ∆ � τ , the above likelihood equations
can be simplified using the approximation ρ = e−∆/τ ≈ 1−∆/τ , in which case the
estimators become explicit, see Lansky (1983). The same estimator is derived in
Habib and Thavaneswaran (1990) and extended to allow time varying parameters
such that the drift function is also a function of time; b(v, t; θ) = −β(t)v + µ(t).
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In Picchini et al. (2008) the model is extended to accomodate a slowly fluctuating
signal, by permitting µ to change stochastically between spikes, assuming a normal
distribution. This is a random effects model. The likelihood is no longer tractable,
but is approximated by Gauss-Hermite quadrature.
In Paninski et al. (2005) a more involved model is proposed, based on the ba-
sic integrate-and-fire model, generalizing the spike-response model in Gerstner and
Kistler (2002). The model accomodates memory effects, and thus is a generalization
of the renewal model, now allowing for burstiness, refractoriness or adaptation. The
maximum likelihood estimator is derived for all model parameters, including the
threshold. The threshold value Vth is biased, though, probably caused by assuming
a fixed threshold, when it is more likely not so sharp, see also discussion above. They
propose to solve this by first detecting the spiking times (via automatic threshold-
ings), then fit the parameters except Vth by linear least squares, and finally estimate
Vth using the likelihood depending on Vth only.
The Ornstein-Uhlenbeck leaky integrate-and-fire model is unbounded and does not
take into account non-linearities, for example caused by the inhibitory reversal
potential, VI , a lower limit for the membrane potential. The Feller model (also
called the square-root model, or the Cox-Ingersoll-Ross model in mathematical
finance) has the same drift term as the Ornstein-Uhlenbeck, and diffusion term
σ(v; θ) = σ

√
v − VI . When 2µ+ 2VI/τ ≥ σ2, the process stays above VI if v0 ≥ VI .

In Bibbona et al. (2010) estimation methods for the Feller process are reviewed and
compared in simulations, assuming τ known, thus estimating θ = (µ, σ2). They use
least squares, conditional least squares, martingale estimating functions, a Gauss-
Markov method, optimal estimating functions, and maximum likelihood estimation.
They discuss the bias issue in the estimation of µ arising from the conditional sam-
pling under the threshold, and suggest a bias correction. They recommend to use
martingale estimating functions, or the Gauss-Markov method if only µ is estimated,
with the bias correction. If all parameters should be estimated, we refer to Forman
and Sørensen (2008) for martingale estimating functions, which only treats the case
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of unconditional sampling. Their estimators are

α̂ =
1

n

n∑
j=1

Vj +
ρ̂

n(1− ρ̂)
(Vn − V0)

ρ̂ =

n

n∑
j=1

Vj
Vj−1

−

(
n∑
j=1

Vj

)(
n∑
j=1

1

Vj−1

)

n2−

(
n∑
j=1

Vj−1

)(
n∑
j=1

1

Vj−1

)

σ̂2 =

n∑
j=1

1

Vj−1

(Vj − Vj−1ρ̂− α̂(1− ρ̂))2 β̂

n∑
j=1

1

Vj−1

(
(
α̂

2
− Vj−1)ρ̂2 − (α̂− Vj−1)ρ̂+

α̂

2

)

where, as before, α̂ = µ̂τ̂ and ρ̂ = − log ∆/τ̂ .
In Hoepfner (2007) a kernel estimator is applied to non-parametrically estimate the
drift and the diffusion functions in (1) to data from a pyramidal neuron from a
cortical slice preparation exposed to different levels of potassium. He finds both
Ornstein-Uhlenbeck and Feller behavior in different trials. The same approach is
employed in Jahn et al. (2011) on data from a spinal motoneuron from a red-eared
turtle, where the most suitable model is first determined non-parametrically, and
then fitted parametrically. Here it is found that the neural activity is well described
by a Feller process when the neuron is stimulated, and by an Ornstein-Uhlenbeck
under spontaneous activity with no stimulation.
In Lanska and Lansky (1998) a model of type (1) is derived taking into account both
inhibitory and excitatory reversal potentials. The drift is linear with a leaky term
as in the Ornstein-Uhlenbeck process, with diffusion term σ(v; θ) = σ

√
(1− v)v.

This is a Jacobi diffusion, called this way because the eigenfunctions of its generator
are the Jacobi polynomials, see Forman and Sørensen (2008). It lives on a bounded
interval, in this formulation on the interval (0, 1), after a suitable affine transfor-
mation of the observations. The exact likelihood is not available for this model.
Three estimation methods are proposed in Lanska and Lansky (1998); maximum
likelihood based on a discretization of the continuous time likelihood, a Bayesian
approach assuming Gaussian priors on the parameters in the drift, and a minimum
contrast method. Estimators, based on martingale estimating functions, are given
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as solutions to the equations,

α̂ =

n∑
j=1

Vj − Vj−1ρ̂

Vj−1(1− Vj−1)

(1− ρ̂)
n∑
j=1

1

Vj−1(1− Vj−1)

ρ̂ =

n∑
j=1

(Vj − α̂)(Vj−1 − α̂)

Vj−1(1− Vj−1)

n∑
j=1

(Vj−1 − α̂)2

Vj−1(1− Vj−1)

σ̂2 =
1

n∆

n∑
j=1

(Vj − Vj−1ρ̂− α̂(1− ρ̂))2

Vj−1(1− Vj−1)

where, as before, α̂ = µ̂τ̂ and ρ̂ = − log ∆/τ̂ .

3 Synaptic conductance based model

The neuronal membrane potential is as in the previous Section only modeled during
sub-threshold fluctuations (i.e. between spikes), but now the membrane equation is
driven by two independent sources of synaptic conductance noise, namely excitatory
and inhibitory currents. These models are called point-conductance models by Des-
texhe et al. (2001). For notational reasons we now write V (t) = Vt, to distinguish
between a subindex and the time variable. The system is given by

CdV (t) = (−gL(V (t)− VL)− ge(t)(V (t)− Ve)− gi(t)(V (t)− Vi) + I)dt+ σdW (t)

dge(t) = − 1

τe
(ge(t)− ge0)dt+ σedWe(t)

dgi(t) = − 1

τi
(gi(t)− gi0)dt+ σidWi(t) (3)

where gL, ge(t), gi(t) are the conductances of leak, excitatory and inhibitory currents,
VL, Ve and Vi are their respective reversal potentials, C is the capacitance, I is a
constant current, W (t), We(t) and Wi(t) are independent Brownian motions, and
σ, σe and σi are the diffusion coefficients. We set C = 1, since it only enters as
a proportionality constant, and is thus unidentifiable. Unknown parameters are
θ = (gL, ge0, gi0, τe, τi, Ve, Vi, VL, I, σ

2, σ2
e , σ

2
i ).
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Note that the two hidden components ge(t) and gi(t) are autonomous: they do not
depend on the membrane potential V (t). This simplifies the statistical analysis.
Moreover, they are Ornstein-Uhlenbeck processes.

Estimation in these synaptic conductance models using discrete observations of V (t)

has been widely studied, and depends on the noise and whether some of the diffusion
coefficients are set to 0. When noise appears on all three equations, then system (3)
can be viewed as a hidden Markov model (HMM). We refer to Cappé et al. (2005)
for a well documented review of estimation methods. Nevertheless, the synaptic
conductance based model with noise on all components has not been treated much
in the literature.
In the next two subsections, we focus on model (3) with noise only on the hidden
components (σ = 0), which has been considered by Rudolph and Destexhe (2003);
Destexhe et al. (2004); Rudolph et al. (2004a,b); Pospischil et al. (2007, 2009a,b),
and then on model (3) with noise only on the first equation (σe = σi = 0), which
has been considered by Huys et al. (2006); Paninski et al. (2010).

3.1 Noise on the synaptic conductance equations

Two main estimation methods have been proposed for model (3) with noise only on
the hidden components (σ = 0), a method based on the probability distribution of
the membrane potential V (t), and a method based on the extraction of the synaptic
conductances. We start with the distribution of V (t).

V probability distribution method The seminal paper is Rudolph and Des-
texhe (2003) which computes the probability distribution of the membrane potential
V (t) at steady-state. Following this idea, several papers have derived estimators of
some parameters (Destexhe et al., 2004; Rudolph et al., 2004a,b; Pospischil et al.,
2009a). The probability distribution of the membrane potential V (t) at time t is
denoted ρ(v, t). Using intensive Itô calculus on the two Ornstein-Uhlenbeck pro-
cesses ge(t) and gi(t), the dynamics of ρ(v, t) can be described by a Fokker-Planck
equation. Then under the steady-state assumption (t→∞), an analytic expression
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of ρ(v, t) is available:

ρ(v, t) = N exp
(
A1 log

(
σ2
eτe(v − Ve)2 + σ2

i τi(v − Vi)2
)

(4)

+A2 arctan

(
σ2
eτe(v − Ve) + σ2

i τi(v − Vi)
(Ve − Vi)

√
σ2
eσ

2
i τeτi

))

where A1 and A2 are two constants which depend on all the parameters θ, and N is
a normalizing constant.

Given the expression of ρ(v, t), Destexhe et al. (2004) claim that it is possible to
estimate θ directly by maximizing it. However, it is emphasized by Rudolph et al.
(2004a) that since ρ(v, t) is highly non-linear in θ, the maximization procedure
may not converge. They instead propose to approximate ρ(v, t) with a Gaussian
distribution, which corresponds to a second-order Taylor expansion of (4):

ρ(v, t) ≈ exp(−(v − V̄ )2

2σ2
V

)

where V̄ and σ2
V are functions of θ (see Rudolph et al., 2004a, for analytic ex-

pressions). They focus on the estimation of the conductance parameters, namely
(ge0, gi0, σ

2
e , σ

2
i ). There are thus four parameters, but only two quantities can be

identified using the Gaussian approximation (namely the expectation V̄ and the
variance σ2

V ). Rudolph et al. (2004a) propose to use two sets of experimental data
traces V0:n, corresponding to two sets of experimental conditions, to identify and
estimate the four parameters (ge0, gi0, σ

2
e , σ

2
i ) (the others assumed fixed and known).

No theoretical properties of these estimators can be studied.
Following Rudolph et al. (2004a), Pospischil et al. (2009a) suggest the use of the
power spectral density of V (t) to estimate two parameters more, τe and τi. An
approximation of the power spectral density is given by

SV (u) = C
1

1 + u2τ 2
m

(
σ2
eτe(Ve − V̄ )2

1 + u2τ 2
e

+
σ2
i τi(Vi − V̄ )2

1 + u2τ 2
i

)
where τm = 1/gT is the effective time constant, gT = gL + ge0 + gi0 is the total
conductance, and V̄ = (gLVL + ge0Ve + gi0Vi)/gT is the mean membrane potential.
Maximizing SV yields estimators of τe and τi. No theoretical properties of these
estimators can be studied.
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Extraction of synaptic conductance method Pospischil et al. (2007, 2009a,b)
focus on the estimation of the synaptic currents ge(t), gi(t), which are non-observed
random processes. They propose to discretize the first equation of model (3) using
an Euler scheme with a time step ∆, and to derive an approximation of gi at discrete
times tk. We call this approximation ḡi(tk), which is a function of V (tk) and ge(tk),
V (tk) being observed but not ge(tk). Then, discretizing the two last equations of (3)
using an Euler-Maruyama scheme with a time step ∆, and plugging ḡi(tk) into these
discretized equations, one can obtain an approximation of the transition density
pk = p(ge(tk+1), gi(tk+1)|ge(tk), gi(tk)),

pk ≈ exp

(
− 1

2∆

(
1

σ2
e

(ge(tk+1)− ge(tk)−
∆

τe
(−ge(tk)− ge0))2

+
1

σ2
i

(ḡi(tk+1)− ḡi(tk)−
∆

τi
(−ḡi(tk)− ḡi0))2

))
Maximizing

∏n
k=1 pk with respect to (ge(tk)) provides an estimator (ĝe(tk)) of the

excitatory synaptic conductance which is then used in the expression of ḡi(tk) to es-
timate also the inhibitory synaptic conductance, (ĝi(tk)). Extensions of this method
are considered by Pospischil et al. (2007) who suggest an averaging of this procedure
in space, and by Pospischil et al. (2009a) treating the case of correlated Brownian
motions (We(t)) and (Wi(t)).

Note that this approach assumes that the parameters θ are known. Therefore,
Pospischil et al. (2009b) propose a criteria to estimate also θ. This criteria, called a
likelihood in their paper, even if it is not a likelihood in the statistical sense, is the
following

f(V0:n, θ) =

∫ ∏n
k=1 p(ge(tk+1), ḡi(tk+1, ge(tk+1), Vk+1))|ge(tk), ḡi(tk, ge(tk), Vk))dge(tk)∫ ∏n

k=1 p(ge(tk+1), gi(tk+1))|ge(tk), gi(tk))dge(tk)dgi(tk)

Pospischil et al. (2009b) then maximize f(V0:n, θ) to estimate θ.

Note that it is not explained how these multidimensional integrals can be computed
efficiently in practice, especially the one appearing in the denominator, nor is it
explained how the optimization is performed. Moreover, no theoretical properties
have been stated for this procedure. The approximated ḡi(tk) is in the same spirit as
the approximation of the hidden state proposed by Samson and Thieullen (2012) for
a two-dimensional hypoelliptic system (no noise on the first equation). Samson and

12



Thieullen (2012) prove that a direct plug-in of ḡi(tk) in an Euler discretization of the
transition density of (ge(t), gi(t)) induces a bias when maximizing the corresponding
criteria.

3.2 Noise on the membrane voltage equation

Consider model (3) with σe = σi = 0 and the synaptic conductance equations
written as

dge(t) = − 1

τe
(ge(t)− Ie(t))dt (5)

dgi(t) = − 1

τi
(gi(t)− Ii(t))dt

where Ie(t) and Ii(t) are (random) presynaptic inputs that should be estimated.

Presynaptic input estimation A first approach focuses on the estimation of
these presynaptic inputs, assuming parameters θ to be known.
Huys et al. (2006) show that the two synaptic conductances ge(t) and gi(t) can be
written as convolutions of the presynaptic inputs, gs(t) =

∫ t
Is(u)e−(t−u)/τsdu, for

s = e or i being the two synaptic conductances. Then, by discretizing the signals, the
convolution can be approximated by [[ADELINE: And also lacks to multiply
by the length of the discretization interval?] [SUSANNE: If I understood
well their paper, it is not multiply by the length of the interval. But I
agree with you]]

gs(tk) ≈
∑
j≤k

e−(tk−tj)/τsIs(tj) = KsIs, (6)

where Ks is a convolution matrix. The first equation of model (3) is also discretized
using an Euler-Maruyama scheme with step size ∆, and written in vectorial form as

∆V0:n = ∆(−gL(VL − V0:n)− diag(Ve − V0:n)KeIe0:n + diag(Vi − V0:n)KiIi0:n − I)

+σε0:n

where diag(Vs−V0:n) is a diagonal matrix with the kth diagonal term being Vs−V (tk),
and Ks is a convolution matrix operating as described in (6). Then the problem
of estimating Ie0:n and Ii0:n reduces to a linear estimation problem with Gaussian
noise, under the constraints that Ie0:n and Ii0:n are non-negative. Concatenating all

13



the shape matrices ((VL−V0:n) or diag(Vs−V0:n)Ks) in J and the parameter vectors
in a = (gL, Ie0:n, Ii0:n, I), the model can be written

∆V0:n = Ja + σε0:n

A solution to this linear equation can be written as a constrained optimization

â = arg min
a,ai≥0

||∆V0:n − Ja||2.

As emphasized by Paninski et al. (2010), this is equivalent to solving a penalized
criteria

â = arg min
a
||∆V0:n − Ja||2 + λ pen(a),

where λ is a tuning parameter and pen is a penalty function. Paninski et al. (2010)
suggest pen(a) =

∑
i log(ai) (they call this approach the log-barrier method).

As an alternative to this linear optimization, Paninski et al. (2012) use a particle
filter to infer the hidden synaptic inputs Ie(t) and Ii(t). Particle filters have been
widely developed in the HMM context, which is the case here because the hidden
presynaptic inputs Ie(t) and Ii(t) are autonomous and do not depend on V (t). We
refer the reader to Cappé et al. (2005) for a general presentation.

Parameter estimation Paninski et al. (2010) also consider the estimation of θ,
but they now assume that the input signals Ie(t) and Ii(t) are known. They assume
noisy measurements y0:n of V0:n. This simplifies the statistical problem in the sense
that it enters the well-known framework of HMMs. The likelihood is

p(y0:n; θ) =

∫
p(y0:n|V0:n; θ)p(V0:n; θ)dV0:n.

One would like to optimize the log-likelihood, namely computing

arg max
θ

log p(y0:n; θ).

They claim that this optimization reduces to the joint optimization of

arg max
θ

max
V

(log p(y0:n|V ; θ) + log p(V ; θ))

As this function is jointly quadratic in (V, θ), they use a single step of Newton’s
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method.

As an alternative, Paninski et al. (2012) couple an EM algorithm to a particle
filter. The particle filter is used to infer the hidden synaptic inputs Ie(t) and
Ii(t) (see above). Using inferred (or simulated) synaptic inputs, the M step of
the EM algorithm consists in maximizing the log likelihood of the complete trajec-
tories (V (t), ge(t), gi(t)). This is performed using a Newton-Raphson or a conjugate
gradient ascent method.

Presynaptic conductance and parameter estimation In Berg and Ditlevsen
(2013) only the first equation for the membrane potential in (3) is considered,
with the conductances ge(t) and gi(t) time-varying functions, which should be es-
timated. They propose to make a moving window, within which the process is
assumed approximately stationary. Inside this window the process is approximated
by an Ornstein-Uhlenbeck process, and the time constant and the asymptotic mean
are estimated, either by fitting the empirical autocorrelation function to a mono-
exponential decay, or by maximum likelihood with subsampling to correct for the
short time scales, where the model is not suitable. The estimates can be used to
identify the two conductances, assumed constant within the window. By sweeping
through the data trace, time-varying synaptic input conductances are estimated.

4 Voltage conductance based model

In the previous models, only subthreshold fluctuations are modeled, and spikes are
either ignored or imposed by a point event triggered by high membrane potential
values. In the following models, the membrane voltage dynamics, also during spiking
activity, is modeled by a membrane equation driven by voltage conductances. The
model is given by

CdV (t) =
(
− gL(V (t)− VL)−

∑
c

ḡcfc(t)(V (t)− Vc)− I
)
dt+ σdW (t) (7)

where W (t) is a Brownian motion, σ is the diffusion coefficient, gL is the leak
conductance, ḡc are maximal membrane conductances for several conductance types
c (like K, Na or Ca), functions fc represent the time-varying open fraction of the
c-ion channel, and is typically given by complex, highly nonlinear functions of time
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and voltage. For example, for the Morris-Lecar K+ channel, the kinetics are given
by fK(t) = U(t) with

dU(t) = (αU(V (t))(1− U(t))− βU(V (t))U(t))dt+ σU(V (t), U(t))dWU(t) (8)

where WU(t) is a Brownian motion, σU(·) is the diffusion coefficient function, and
αU(v) and βU(v) are non-linear functions of v, depending on some parameters
φ. We set C = 1 for parameter identifiability. Unknown parameters are θ =

(gL, ḡc, VL, Vc, I, φ, σ
2, σ2

c ).
Estimation of θ has been considered assuming both noisy and exact observations of
V0:n. Counter-intuitively, noisy observations provide simpler estimation approaches.
The two situations are now detailed.

Noisy observations of the membrane potential With noisy observations y0:n

of the voltage V0:n, the model enters the HMM framework. This has been considered
by Kostuk et al. (2012) and Huys and Paninski (2009). Both papers approximate
the transition density of the SDE with a Gaussian Euler-Maruyama scheme.
Kostuk et al. (2012) estimate the parameters with an MCMC algorithm. The au-
thors notice a bias in the parameter estimates. It could be due to the problem
of simultaneous estimation of the diffusion coefficient and of the hidden path, no-
ticed by Roberts and Stramer (2001). Then, a data augmentation scheme should
be used. This has been underlined again by Jensen et al. (2012) in the case of a
2-dimensional neural FitzHugh Nagumo-model, assuming no observation noise and
both components observed (which is not plausible working with real data). We refer
to Roberts and Stramer (2001); Papaspiliopoulos et al. (2013) for more details on
data augmentation.
Huys and Paninski (2009) focus on parameters in the membrane potential equa-
tion, assuming known all the parameters entering the voltage conductance equations
(called φ in the description above). Then they propose an EM algorithm coupled
to a standard particle filter. As already said, particle filters have been widely de-
veloped in the HMM context. As Huys and Paninski (2009) focus on parameters of
the first observed component, the conditional expectation (E step) is Gaussian and
the maximization step of the EM algorithm reduces to a linear optimization.
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Direct observations of the membrane potential Huys and Paninski (2009)
consider this case assuming deterministic kinetics of the voltage conductances (σU =

0 in (8)). They also assume all the parameters involved in these kinetics known,
thus the voltage conductances can be computed with an Euler discretization scheme
given the observations of V0:n. The estimation problem of the parameter a =

(gL, ḡc, VL, Vc, I) then reduces to a linear problem, similarly to the synaptic con-
ductance model. It can be written

∆V0:n = Ja + σε0:n

where J is the regressor matrix. The optimization in a is performed under constraints
on a, since the conductances are non-negative. Thus, it is a constraint optimization
problem

â = arg min
a,ai≥0

||∆V0:n − Ja||2.

Ditlevsen and Samson (2014) consider the conductance based model when voltage
conductance kinetics are assumed to be deterministic. They focus on the two-
dimensional Morris-Lecar model, which has only one hidden conductance channel
(8). Unlike in Huys and Paninski (2009), this model does not enter the class of
HMMs, because the hidden component is not autonomous. Ditlevsen and Samson
(2014) propose an estimation method which also includes the estimation of an un-
known parameter in the conductance kinetics and with stochastic kinetics. Their
method is based on an EM algorithm coupled to a particle filter. Standard particle
filters, which have been developed in the HMM context, can not be used in this
case, as it could in Huys and Paninski (2009). Ditlevsen and Samson (2014) extend
a particle filter to this non-autonomous hidden state. Then the maximization step is
also linear, like Huys and Paninski (2009), because only linear parameters entering
both the V (t) and the U(t) equations are estimated. Ditlevsen and Samson (2014)
prove the convergence of their algorithm, which requires the number of particles to
increase at a logarithmic rate with the iterations of the EM algorithm.
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