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Parameter estimation in neuronal stochastic differential equation models from intracellular recordings of membrane potentials in single neurons: a Review

Dynamics of the membrane potential in a single neuron can be studied estimating biophysical parameters from intracellular recordings. Diffusion processes, given as continuous solutions to stochastic differential equations, are widely applied as models for the neuronal membrane potential evolution.

One-dimensional models are the stochastic integrate-and-fire neuronal diffusion models. More biophysical neuronal models take into account the dynamics of ion channels or synaptic activity, leading to multidimensional diffusion models. Since only the membrane potential can be measured, this complicates the statistical inference and parameter estimation from these partially observed detailed models. This paper reviews parameter estimation techniques from intracellular recordings in these diffusion models.

Introduction

Neurons communicate by short and precisely shaped electrical impulses, the socalled spikes or action potentials. It is therefore of major interest to understand the principles of the underlying spike generating mechanisms, starting by understanding the dynamics of the membrane potential in a single neuron. Intracellular recordings provide high frequency observations of good precision, typically measured around every 0.1 ms. There is thus a growing demand for robust methods to estimate biophysical relevant parameters from such data. Diffusion processes, given as continuous solutions to stochastic differential equations, are widely applied as models for the neuronal membrane potential evolution. The stochastic integrate-and-fire neuronal diffusion models are one-dimensional, though they have also been extended to include a recovery variable to model memory in the system. They are probably some of the most common mathematical representations of single neuron electrical activity, and result from more or less dramatic simplifications of more involved neuronal models. The simplification implies that the shape of the action potential is neglected and represented by a point event, typically represented by the first hitting time to a firing threshold, an upper bound of the membrane potential. More biophysical neuronal models take into account the dynamics of ion channels or synaptic activity, leading to multidimensional diffusion models. Electrical activity in neurons consists of ionic currents through the cell membranes. Conductance-based models are simple biophysical representations of excitable cells like neurons, and are based on an electrical circuit model of a cell membrane. In these models current flows across the membrane due to charging of the capacitance and movement of ions across ion channels in the membrane. These models are based on the seminal work by [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF], which formulated a mathematical model including dynamics of gating variables in dependence of the membrane potential, and in turn influencing the evolution of the membrane potential, creating a feedback system capable of producing oscillatory behavior and spikes. Since only the membrane potential can be measured, this complicates the statistical inference and parameter estimation from these partially observed detailed models. This paper reviews parameter estimation techniques from intracellular recordings in models of the type dX t = b(X t ; θ)dt + Σ(X t ; θ)dW t where X t = (V t , Y t ) is a d-dimensional process with first coordinate V t representing the membrane potential, and Y t being unobserved coordinates representing for example gating variables, proportion of open ion channels of a specific ion or in-time (ms) -50 0 0 500 measured membrane voltage, V(t)

Figure 1: Observations of the membrane potential in a spinal motoneuron of an adult red-eared turtle during 600 ms measured every 0.1 ms. Data from Berg Laboratory, see [START_REF] Berg | Balanced inhibition and excitation drive spike activity in spinal half-centers[END_REF].

hibitory or excitatory synaptic input. If d = 1 then X t = V t . Here, b(x) is the drift function taking values in R d , Σ(x)
is the diffusion matrix taking values in R d×m and W t is an m-dimensional standard Wiener process. The goal is to estimate the parameter vector θ ∈ Θ ⊂ R p . Data are discrete measurements of V t . Denote t 0 < t 1 < • • • < t n the observation times, which we assume equidistant, and denote the sampling step by ∆ = t i -t i-1 . We denote V i = V t i the observation at time t i , and V 0:n = (V 0 , V 1 , . . . , V n ) the vector of all observed data. An example of a sample trace of the membrane potential in a spinal motoneuron of an adult red-eared turtle during 600 ms (6000 data points) is shown in Figure 1.

The models and different parameter estimation approaches will be discussed next.

To read more about the derivation of the models and biophysical justifications, we refer to [START_REF] Tuckwell | Introduction to theoretical neurobiology[END_REF]; [START_REF] Gerstner | Spiking Neuron Models[END_REF]; [START_REF] Izhikevich | Dynamical Systems in Neuroscience[END_REF]; [START_REF] Laing | Stochastic Methods in Neuroscience[END_REF]; [START_REF] Bachar | Stochastic Biomathematical Models with Applications to Neuronal Modeling[END_REF][START_REF] Gerstner | Neuronal Dynamics. From single neurons to networks and models of cognition[END_REF].

Models

The model for the membrane potential is given by an equation of the form

C dV dt = sum of currents + noise
where C is the cell membrane capacitance, and V is the membrane potential evolution. Sometimes the constant C is not specifically stated and absorbed into other parameters. The currents are ions, such as sodium, potassium, calcium and chloride, flowing in and out of the cell through ion channels in the cell membrane, as well as input currents received from other neurons in the surrounding network, or injected current controlled by the experimentalist. The noise models the inherent stochasticity of neural activity. These models fall into two classes, posing different statistical challenges, namely one-dimensional models (integrate-and-fire models), where there are no hidden components, and multi-dimensional models with unobserved coordinates, complicating the statistical analysis considerably.

Integrate-and-fire models

The integrate-and-fire neuronal models are reviewed in [START_REF] Burkitt | A review of the integrate-and-fire neuron model: I. homogeneous synaptic input[END_REF], see also references therein. We will only treat the subclass of diffusion integrate-and-fire models given as solutions to the Itô-type stochastic differential equation

dV t = b(V t ; θ) dt + σ(V t ; θ)dW t , V 0 = v 0 . (1) 
For the theory of diffusion processes, see e.g. [START_REF] Kloeden | Numerical solution of stochastic differential equations[END_REF]; Øksendal (2010). Due to the simplicity of the model, spike generation is not an inherent part of process (1) as in more complex models, and a firing threshold has to be imposed. An action potential is produced when the membrane voltage V exceeds a voltage threshold, V th , for the first time, and such that V th > v 0 . Formally, the spike time is identified with the first-passage time T of the threshold,

T = inf{t > 0 : V t ≥ V th }, (2) 
and V t is then reset to v 0 . When estimating θ from equation (1), only recordings of the subthreshold fluctuations between spikes are used, and the parameter estimation problem reduces to estimation in one-dimensional diffusions from discrete observations. In this model, the spike is reduced to a point event, whereas in the real system, a spike takes a couple of miliseconds. If measuring around every 0.1 ms, as is costumary, many observations during each spike has to be discarded. Furthermore, it is not clear when the diffusive behavior ends and the more deterministic behavior of the spike begins, see Figure 1. Different ad-hoc methods have been proposed, and in most studies it is not even specified how it was done. It is straightforward to localize the peak of all spikes, and the problem is to decide how large an interval to cut out around this peak. In [START_REF] Lansky | The parameters of the stochastic leaky integrate-and-fire neuronal model[END_REF] they defined the beginning of the spike as the last point with decreasing depolarization before the spike in an interval from 10.05 ms before the voltage reaches -35.5 mV. Then the data was transformed by a moving average over 6 values and they then defined the end of a spike as the minimum in the first valley after the peak. The valley is defined to start when the membrane potential reaches the value of -65.5 mV for the first time after the spike, and ends 10.05 ms later. The same approach was adopted in [START_REF] Picchini | Parameters of the diffusion leaky integrate-and-fire neuronal model for a slowly fluctuating signal[END_REF].

In [START_REF] Jahn | Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process[END_REF] all spikes were aligned according to the peak, and then the empirical variance was estimated cross-sectionally at each time point backwards in time from the peak. The spike initiation was then defined to be where the variance started decreasing, determined to be 4 ms before the peak.

Maximum likelihood estimation can be used in some few cases where the transition density is available, but in general other approaches are necessary. The methodology of parameter estimation in one-dimensional diffusions, equation (1), from discrete observations is well studied, see for example Prakasa [START_REF] Rao | Statistical inference for diffusion type processes[END_REF]; [START_REF] Sørensen | Parametric inference for diffusion processes observed at discrete points in time: a survey[END_REF]; [START_REF] Forman | The Pearson diffusions: A class of statistically tractable diffusion processes[END_REF]; [START_REF] Iacus | Simulation and Inference for Stochastic Differential Equations with R examples[END_REF]; [START_REF] Sørensen | Statistical Methods for Stochastic Differential Equations, chapter Estimating functions for diffusion type processes[END_REF], and references therein.

There is a bias issue with the drift parameters, though, caused by the sampling conditioned on being below the threshold, see [START_REF] Bibbona | Estimating input parameters from intracellular recordings in the Feller neuronal model[END_REF]; [START_REF] Bibbona | Estimation in discretely observed diffusions killed at a threshold[END_REF]. This is more pronounced when the neuron is frequently firing.

The problem is commonly ignored when analysing data, which we will also do in the sequel. Here we review estimators from maximum likelihood or martingale estimating functions for a few common integrate-and-fire models.

The simplest integrate-and-fire model is just the Wiener process with constant drift, the diffusion approximation of the random walk model for the membrane dynamics, first introduced in [START_REF] Gerstein | Random walk models for the spike activity of a single neuron[END_REF]. Here, b(v; θ) = µ and σ(v; θ) = σ are just constants so that θ = (µ, σ 2 ). It is assumed that µ > 0 such that the waiting time for a spike is finite. The process is Gaussian, and the maximum likelihood estimators are

μ = V n -V 0 n∆ ; σ2 = 1 n∆ n i=1 (V i -V i-1 -∆μ) 2
with asymptotic variances Var(μ) = σ 2 /n∆ and Var(σ 2 ) = σ 4 /n. This is one of the few models where the first passage time distribution is known, which is an inverse Gaussian distribution, and justifies why this model has been popular. The Wiener model does not take into account the leakage of the neuronal membrane, namely that current flows through the membrane due to its passive properties. The most popular leaky integrate-and-fire model is the Ornstein-Uhlenbeck process, where b(v; θ) = -v/τ + µ and σ(v; θ) = σ. Here, µ characterizes neuronal input and τ > 0 is the membrane time constant and reflects spontaneous voltage decay in absence of input. For an input µ > V th /τ , the neuron fires regularly, whereas for µ ≤ V th /τ , the model only fires due to noise. This defines the suband suprathreshold regimes. Parameters V th , v 0 and τ characterize the neuronal membrane, µ characterizes the input signal, and σ scales the noise.

The maximum likelihood estimators are given as solutions to the equations

α = n i=1 (V i -V i-1 ρ) n(1 -ρ) ρ = n i=1 (V i -α)(V i-1 -α) n i=1 (V i-1 -α) 2 σ2 = 2 n i=1 (V i -α -(V i-1 -α)ρ) 2 n(1 -ρ2 )τ
where α = μτ estimates the asymptotic variance, and ρ = -log ∆/τ estimates the autocorrelation, see [START_REF] Ditlevsen | Stochastic Biomathematical Models with Applications to Neuronal Modeling, chapter Introduction to Stochastic Models in Biology[END_REF]. The maximum likelihood estimator exists only

if n i=1 (V i -α)(V i-1 -α) > 0.
Note that if τ is known, the likelihood equations become particularly simple, the estimators are explicit and exist always. The asymptotic variances obtained by inverting the Fisher information are Var(τ ) = 2τ 3 /n∆, Var(α) = σ 2 τ /n∆ and Var(σ 2 ) = 2σ 4 /n. Using that intracellular recordings are high-frequency, i.e., ∆ τ , the above likelihood equations can be simplified using the approximation ρ = e -∆/τ ≈ 1 -∆/τ , in which case the estimators become explicit, see [START_REF] Lansky | Inference for the diffusion-models of neuronal-activity[END_REF]. The same estimator is derived in [START_REF] Habib | Inference for stochastic neuronal models[END_REF] and extended to allow time varying parameters such that the drift function is also a function of time; b(v, t; θ) = -β(t)v + µ(t).

In [START_REF] Picchini | Parameters of the diffusion leaky integrate-and-fire neuronal model for a slowly fluctuating signal[END_REF] the model is extended to accomodate a slowly fluctuating signal, by permitting µ to change stochastically between spikes, assuming a normal distribution. This is a random effects model. The likelihood is no longer tractable, but is approximated by Gauss-Hermite quadrature. In [START_REF] Paninski | Comparing integrate-and-fire models estimated using intracellular and extracellular data[END_REF] a more involved model is proposed, based on the basic integrate-and-fire model, generalizing the spike-response model in [START_REF] Gerstner | Spiking Neuron Models[END_REF]. The model accomodates memory effects, and thus is a generalization of the renewal model, now allowing for burstiness, refractoriness or adaptation. The maximum likelihood estimator is derived for all model parameters, including the threshold. The threshold value V th is biased, though, probably caused by assuming a fixed threshold, when it is more likely not so sharp, see also discussion above. They propose to solve this by first detecting the spiking times (via automatic thresholdings), then fit the parameters except V th by linear least squares, and finally estimate V th using the likelihood depending on V th only. The Ornstein-Uhlenbeck leaky integrate-and-fire model is unbounded and does not take into account non-linearities, for example caused by the inhibitory reversal potential, V I , a lower limit for the membrane potential. The Feller model (also called the square-root model, or the Cox-Ingersoll-Ross model in mathematical finance) has the same drift term as the Ornstein-Uhlenbeck, and diffusion term [START_REF] Bibbona | Estimating input parameters from intracellular recordings in the Feller neuronal model[END_REF] estimation methods for the Feller process are reviewed and compared in simulations, assuming τ known, thus estimating θ = (µ, σ 2 ). They use least squares, conditional least squares, martingale estimating functions, a Gauss-Markov method, optimal estimating functions, and maximum likelihood estimation. They discuss the bias issue in the estimation of µ arising from the conditional sampling under the threshold, and suggest a bias correction. They recommend to use martingale estimating functions, or the Gauss-Markov method if only µ is estimated, with the bias correction. If all parameters should be estimated, we refer to [START_REF] Forman | The Pearson diffusions: A class of statistically tractable diffusion processes[END_REF] for martingale estimating functions, which only treats the case of unconditional sampling. Their estimators are

σ(v; θ) = σ √ v -V I . When 2µ + 2V I /τ ≥ σ 2 , the process stays above V I if v 0 ≥ V I . In
α = 1 n n j=1 V j + ρ n(1 -ρ) (V n -V 0 ) ρ = n n j=1 V j V j-1 - n j=1 V j n j=1 1 V j-1 n 2 - n j=1 V j-1 n j=1 1 V j-1 σ2 = n j=1 1 V j-1 (V j -V j-1 ρ -α(1 -ρ)) 2 β n j=1 1 V j-1 ( α 2 -V j-1 )ρ 2 -(α -V j-1 )ρ + α 2
where, as before, α = μτ and ρ = -log ∆/τ . In Hoepfner (2007) a kernel estimator is applied to non-parametrically estimate the drift and the diffusion functions in (1) to data from a pyramidal neuron from a cortical slice preparation exposed to different levels of potassium. He finds both Ornstein-Uhlenbeck and Feller behavior in different trials. The same approach is employed in [START_REF] Jahn | Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process[END_REF] on data from a spinal motoneuron from a red-eared turtle, where the most suitable model is first determined non-parametrically, and then fitted parametrically. Here it is found that the neural activity is well described by a Feller process when the neuron is stimulated, and by an Ornstein-Uhlenbeck under spontaneous activity with no stimulation. In Lanska and Lansky (1998) a model of type ( 1) is derived taking into account both inhibitory and excitatory reversal potentials. The drift is linear with a leaky term as in the Ornstein-Uhlenbeck process, with diffusion term

σ(v; θ) = σ (1 -v)v.
This is a Jacobi diffusion, called this way because the eigenfunctions of its generator are the Jacobi polynomials, see [START_REF] Forman | The Pearson diffusions: A class of statistically tractable diffusion processes[END_REF]. It lives on a bounded interval, in this formulation on the interval (0, 1), after a suitable affine transformation of the observations. The exact likelihood is not available for this model. Three estimation methods are proposed in [START_REF] Lanska | Input parameters in a one-dimensional neuronal model with reversal potentials[END_REF]; maximum likelihood based on a discretization of the continuous time likelihood, a Bayesian approach assuming Gaussian priors on the parameters in the drift, and a minimum contrast method. Estimators, based on martingale estimating functions, are given as solutions to the equations,

α = n j=1 V j -V j-1 ρ V j-1 (1 -V j-1 ) (1 -ρ) n j=1 1 V j-1 (1 -V j-1 ) ρ = n j=1 (V j -α)(V j-1 -α) V j-1 (1 -V j-1 ) n j=1 (V j-1 -α) 2 V j-1 (1 -V j-1 ) σ2 = 1 n∆ n j=1 (V j -V j-1 ρ -α(1 -ρ)) 2 V j-1 (1 -V j-1 )
where, as before, α = μτ and ρ = -log ∆/τ .

Synaptic conductance based model

The neuronal membrane potential is as in the previous Section only modeled during sub-threshold fluctuations (i.e. between spikes), but now the membrane equation is driven by two independent sources of synaptic conductance noise, namely excitatory and inhibitory currents. These models are called point-conductance models by [START_REF] Destexhe | Fluctuating synaptic conductances recreate in-vivo-like activity in neocortical neurons[END_REF]. For notational reasons we now write V (t) = V t , to distinguish between a subindex and the time variable. The system is given by

CdV (t) = (-g L (V (t) -V L ) -g e (t)(V (t) -V e ) -g i (t)(V (t) -V i ) + I)dt + σdW (t) dg e (t) = - 1 τ e
(g e (t) -g e0 )dt + σ e dW e (t)

dg i (t) = - 1 τ i (g i (t) -g i0 )dt + σ i dW i (t) (3) 
where g L , g e (t), g i (t) are the conductances of leak, excitatory and inhibitory currents, V L , V e and V i are their respective reversal potentials, C is the capacitance, I is a constant current, W (t), W e (t) and W i (t) are independent Brownian motions, and σ, σ e and σ i are the diffusion coefficients. We set C = 1, since it only enters as a proportionality constant, and is thus unidentifiable. Unknown parameters are θ = (g L , g e0 , g i0 , τ e , τ i , V e , V i , V L , I, σ 2 , σ 2 e , σ 2 i ).

Note that the two hidden components g e (t) and g i (t) are autonomous: they do not depend on the membrane potential V (t). This simplifies the statistical analysis. Moreover, they are Ornstein-Uhlenbeck processes.

Estimation in these synaptic conductance models using discrete observations of V (t) has been widely studied, and depends on the noise and whether some of the diffusion coefficients are set to 0. When noise appears on all three equations, then system (3) can be viewed as a hidden Markov model (HMM). We refer to [START_REF] Cappé | Inference in Hidden Markov Models[END_REF] for a well documented review of estimation methods. Nevertheless, the synaptic conductance based model with noise on all components has not been treated much in the literature.

In the next two subsections, we focus on model ( 3 

Noise on the synaptic conductance equations

Two main estimation methods have been proposed for model (3) with noise only on the hidden components (σ = 0), a method based on the probability distribution of the membrane potential V (t), and a method based on the extraction of the synaptic conductances. We start with the distribution of V (t).

V probability distribution method The seminal paper is [START_REF] Rudolph | Characterization of subthreshold voltage fluctuations in neuronal membranes[END_REF] which computes the probability distribution of the membrane potential V (t) at steady-state. Following this idea, several papers have derived estimators of some parameters [START_REF] Destexhe | A novel method for characterizing synaptic noise in cortical neurons[END_REF]Rudolph et al., 2004a,b;Pospischil et al., 2009a). The probability distribution of the membrane potential V (t) at time t is denoted ρ(v, t). Using intensive Itô calculus on the two Ornstein-Uhlenbeck processes g e (t) and g i (t), the dynamics of ρ(v, t) can be described by a Fokker-Planck equation. Then under the steady-state assumption (t → ∞), an analytic expression of ρ(v, t) is available:

ρ(v, t) = N exp A 1 log σ 2 e τ e (v -V e ) 2 + σ 2 i τ i (v -V i ) 2 (4) +A 2 arctan σ 2 e τ e (v -V e ) + σ 2 i τ i (v -V i ) (V e -V i ) σ 2 e σ 2 i τ e τ i
where A 1 and A 2 are two constants which depend on all the parameters θ, and N is a normalizing constant.

Given the expression of ρ(v, t), [START_REF] Destexhe | A novel method for characterizing synaptic noise in cortical neurons[END_REF] claim that it is possible to estimate θ directly by maximizing it. However, it is emphasized by Rudolph et al. (2004a) that since ρ(v, t) is highly non-linear in θ, the maximization procedure may not converge. They instead propose to approximate ρ(v, t) with a Gaussian distribution, which corresponds to a second-order Taylor expansion of (4):

ρ(v, t) ≈ exp(- (v -V ) 2 2σ 2 V )
where V and σ 2 V are functions of θ (see Rudolph et al., 2004a, for analytic expressions). They focus on the estimation of the conductance parameters, namely (g e0 , g i0 , σ 2 e , σ 2 i ). There are thus four parameters, but only two quantities can be identified using the Gaussian approximation (namely the expectation V and the variance σ 2 V ). Rudolph et al. (2004a) propose to use two sets of experimental data traces V 0:n , corresponding to two sets of experimental conditions, to identify and estimate the four parameters (g e0 , g i0 , σ 2 e , σ 2 i ) (the others assumed fixed and known). No theoretical properties of these estimators can be studied. Following Rudolph et al. (2004a), Pospischil et al. (2009a) suggest the use of the power spectral density of V (t) to estimate two parameters more, τ e and τ i . An approximation of the power spectral density is given by

S V (u) = C 1 1 + u 2 τ 2 m σ 2 e τ e (V e -V ) 2 1 + u 2 τ 2 e + σ 2 i τ i (V i -V ) 2 1 + u 2 τ 2 i
where τ m = 1/g T is the effective time constant, g T = g L + g e0 + g i0 is the total conductance, and V = (g L V L + g e0 V e + g i0 V i )/g T is the mean membrane potential. Maximizing S V yields estimators of τ e and τ i . No theoretical properties of these estimators can be studied.

Extraction of synaptic conductance method [START_REF] Pospischil | Calculating event-triggered average synaptic conductances from the membrane potential[END_REF]Pospischil et al. ( , 2009a,b) ,b) focus on the estimation of the synaptic currents g e (t), g i (t), which are non-observed random processes. They propose to discretize the first equation of model ( 3) using an Euler scheme with a time step ∆, and to derive an approximation of g i at discrete times t k . We call this approximation ḡi (t k ), which is a function of V (t k ) and g e (t k ),

V (t k ) being observed but not g e (t k ). Then, discretizing the two last equations of (3) using an Euler-Maruyama scheme with a time step ∆, and plugging ḡi (t k ) into these discretized equations, one can obtain an approximation of the transition density

p k = p(g e (t k+1 ), g i (t k+1 )|g e (t k ), g i (t k )), p k ≈ exp - 1 2∆ 1 σ 2 e (g e (t k+1 ) -g e (t k ) - ∆ τ e (-g e (t k ) -g e0 )) 2 + 1 σ 2 i (ḡ i (t k+1 ) -ḡi (t k ) - ∆ τ i (-ḡ i (t k ) -ḡi0 )) 2
Maximizing n k=1 p k with respect to (g e (t k )) provides an estimator (ĝ e (t k )) of the excitatory synaptic conductance which is then used in the expression of ḡi (t k ) to estimate also the inhibitory synaptic conductance, (ĝ i (t k )). Extensions of this method are considered by [START_REF] Pospischil | Calculating event-triggered average synaptic conductances from the membrane potential[END_REF] who suggest an averaging of this procedure in space, and by Pospischil et al. (2009a) treating the case of correlated Brownian motions (W e (t)) and (W i (t)).

Note that this approach assumes that the parameters θ are known. Therefore, [START_REF] Pospischil | Extracting synaptic conductances from single membrane potential traces[END_REF] propose a criteria to estimate also θ. This criteria, called a likelihood in their paper, even if it is not a likelihood in the statistical sense, is the following

f (V 0:n , θ) = n k=1 p(g e (t k+1 ), ḡi (t k+1 , g e (t k+1 ), V k+1 ))|g e (t k ), ḡi (t k , g e (t k ), V k ))dg e (t k ) n k=1 p(g e (t k+1 ), g i (t k+1 ))|g e (t k ), g i (t k ))dg e (t k )dg i (t k ) Pospischil et al. (2009b) then maximize f (V 0:n , θ) to estimate θ.
Note that it is not explained how these multidimensional integrals can be computed efficiently in practice, especially the one appearing in the denominator, nor is it explained how the optimization is performed. Moreover, no theoretical properties have been stated for this procedure. The approximated ḡi (t k ) is in the same spirit as the approximation of the hidden state proposed by [START_REF] Samson | A contrast estimator for completely or partially observed hypoelliptic diffusion[END_REF] for a two-dimensional hypoelliptic system (no noise on the first equation). [START_REF] Samson | A contrast estimator for completely or partially observed hypoelliptic diffusion[END_REF] prove that a direct plug-in of ḡi (t k ) in an Euler discretization of the transition density of (g e (t), g i (t)) induces a bias when maximizing the corresponding criteria.

Noise on the membrane voltage equation

Consider model (3) with σ e = σ i = 0 and the synaptic conductance equations written as

dg e (t) = - 1 τ e (g e (t) -I e (t))dt (5) 
dg i (t) = - 1 τ i (g i (t) -I i (t))dt
where I e (t) and I i (t) are (random) presynaptic inputs that should be estimated.

Presynaptic input estimation A first approach focuses on the estimation of these presynaptic inputs, assuming parameters θ to be known. [START_REF] Huys | Efficient estimation of detailed single-neuron models[END_REF] show that the two synaptic conductances g e (t) and g i (t) can be written as convolutions of the presynaptic inputs, g s (t) = t I s (u)e -(t-u)/τs du, for s = e or i being the two synaptic conductances. Then, by discretizing the signals, the convolution can be approximated by [[ADELINE: And also lacks to multiply by the length of the discretization interval?] [SUSANNE: If I understood well their paper, it is not multiply by the length of the interval. But I agree with you]]

g s (t k ) ≈ j≤k e -(t k -t j )/τs I s (t j ) = K s I s , (6) 
where K s is a convolution matrix. The first equation of model ( 3) is also discretized using an Euler-Maruyama scheme with step size ∆, and written in vectorial form as

∆V 0:n = ∆(-g L (V L -V 0:n ) -diag(V e -V 0:n )K e I e0:n + diag(V i -V 0:n )K i I i0:n -I) +σε 0:n
where diag(V s -V 0:n ) is a diagonal matrix with the kth diagonal term being V s -V (t k ), and K s is a convolution matrix operating as described in (6). Then the problem of estimating I e0:n and I i0:n reduces to a linear estimation problem with Gaussian noise, under the constraints that I e0:n and I i0:n are non-negative. Concatenating all the shape matrices ((V L -V 0:n ) or diag(V s -V 0:n )K s ) in J and the parameter vectors in a = (g L , I e0:n , I i0:n , I), the model can be written ∆V 0:n = Ja + σε 0:n A solution to this linear equation can be written as a constrained optimization a = arg min a,a i ≥0

||∆V 0:n -Ja|| 2 .

As emphasized by [START_REF] Paninski | A new look at state-space models for neural data[END_REF], this is equivalent to solving a penalized criteria

a = arg min a ||∆V 0:n -Ja|| 2 + λ pen(a),
where λ is a tuning parameter and pen is a penalty function. [START_REF] Paninski | A new look at state-space models for neural data[END_REF] suggest pen(a) = i log(a i ) (they call this approach the log-barrier method).

As an alternative to this linear optimization, [START_REF] Paninski | Inferring synaptic inputs given a noisy voltage trace via sequential Monte Carlo methods[END_REF] use a particle filter to infer the hidden synaptic inputs I e (t) and I i (t). Particle filters have been widely developed in the HMM context, which is the case here because the hidden presynaptic inputs I e (t) and I i (t) are autonomous and do not depend on V (t). We refer the reader to [START_REF] Cappé | Inference in Hidden Markov Models[END_REF] for a general presentation. As this function is jointly quadratic in (V, θ), they use a single step of Newton's method.

Parameter estimation

As an alternative, [START_REF] Paninski | Inferring synaptic inputs given a noisy voltage trace via sequential Monte Carlo methods[END_REF] couple an EM algorithm to a particle filter. The particle filter is used to infer the hidden synaptic inputs I e (t) and I i (t) (see above). Using inferred (or simulated) synaptic inputs, the M step of the EM algorithm consists in maximizing the log likelihood of the complete trajectories (V (t), g e (t), g i (t)). This is performed using a Newton-Raphson or a conjugate gradient ascent method.

Presynaptic conductance and parameter estimation In [START_REF] Berg | Synaptic inhibition and excitation estimated via the time constant of membrane potential fluctuations[END_REF] only the first equation for the membrane potential in (3) is considered, with the conductances g e (t) and g i (t) time-varying functions, which should be estimated. They propose to make a moving window, within which the process is assumed approximately stationary. Inside this window the process is approximated by an Ornstein-Uhlenbeck process, and the time constant and the asymptotic mean are estimated, either by fitting the empirical autocorrelation function to a monoexponential decay, or by maximum likelihood with subsampling to correct for the short time scales, where the model is not suitable. The estimates can be used to identify the two conductances, assumed constant within the window. By sweeping through the data trace, time-varying synaptic input conductances are estimated.

Voltage conductance based model

In the previous models, only subthreshold fluctuations are modeled, and spikes are either ignored or imposed by a point event triggered by high membrane potential values. In the following models, the membrane voltage dynamics, also during spiking activity, is modeled by a membrane equation driven by voltage conductances. The model is given by

CdV (t) = -g L (V (t) -V L ) - c ḡc f c (t)(V (t) -V c ) -I dt + σdW (t) (7)
where W (t) is a Brownian motion, σ is the diffusion coefficient, g L is the leak conductance, ḡc are maximal membrane conductances for several conductance types c (like K, Na or Ca), functions f c represent the time-varying open fraction of the c-ion channel, and is typically given by complex, highly nonlinear functions of time and voltage. For example, for the Morris-Lecar K + channel, the kinetics are given by f K (t) = U (t) with

dU (t) = (α U (V (t))(1 -U (t)) -β U (V (t))U (t))dt + σ U (V (t), U (t))dW U (t) (8) 
where W U (t) is a Brownian motion, σ U (•) is the diffusion coefficient function, and α U (v) and β U (v) are non-linear functions of v, depending on some parameters φ. We set C = 1 for parameter identifiability. Unknown parameters are θ = (g L , ḡc , V L , V c , I, φ, σ 2 , σ 2 c ). Estimation of θ has been considered assuming both noisy and exact observations of V 0:n . Counter-intuitively, noisy observations provide simpler estimation approaches. The two situations are now detailed.

Noisy observations of the membrane potential With noisy observations y 0:n of the voltage V 0:n , the model enters the HMM framework. This has been considered by [START_REF] Kostuk | Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods[END_REF] and [START_REF] Huys | Smoothing of, and parameter estimation from, noisy biophysical recordings[END_REF]. Both papers approximate the transition density of the SDE with a Gaussian Euler-Maruyama scheme. [START_REF] Kostuk | Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods[END_REF] estimate the parameters with an MCMC algorithm. The authors notice a bias in the parameter estimates. It could be due to the problem of simultaneous estimation of the diffusion coefficient and of the hidden path, noticed by [START_REF] Roberts | On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm[END_REF]. Then, a data augmentation scheme should be used. This has been underlined again by [START_REF] Jensen | Markov chain Monte Carlo approach to parameter estimation in the FitzHugh-Nagumo model[END_REF] in the case of a 2-dimensional neural FitzHugh Nagumo-model, assuming no observation noise and both components observed (which is not plausible working with real data). We refer to [START_REF] Roberts | On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm[END_REF]; [START_REF] Papaspiliopoulos | Data augmentation for diffusions[END_REF] for more details on data augmentation. [START_REF] Huys | Smoothing of, and parameter estimation from, noisy biophysical recordings[END_REF] focus on parameters in the membrane potential equation, assuming known all the parameters entering the voltage conductance equations (called φ in the description above). Then they propose an EM algorithm coupled to a standard particle filter. As already said, particle filters have been widely developed in the HMM context. As [START_REF] Huys | Smoothing of, and parameter estimation from, noisy biophysical recordings[END_REF] focus on parameters of the first observed component, the conditional expectation (E step) is Gaussian and the maximization step of the EM algorithm reduces to a linear optimization.

Direct observations of the membrane potential [START_REF] Huys | Smoothing of, and parameter estimation from, noisy biophysical recordings[END_REF] consider this case assuming deterministic kinetics of the voltage conductances (σ U = 0 in (8)). They also assume all the parameters involved in these kinetics known, thus the voltage conductances can be computed with an Euler discretization scheme given the observations of V 0:n . The estimation problem of the parameter a = (g L , ḡc , V L , V c , I) then reduces to a linear problem, similarly to the synaptic conductance model. It can be written ∆V 0:n = Ja + σε 0:n where J is the regressor matrix. The optimization in a is performed under constraints on a, since the conductances are non-negative. Thus, it is a constraint optimization problem a = arg min a,a i ≥0 ||∆V 0:n -Ja|| 2 . [START_REF] Ditlevsen | Estimation in the partially observed stochastic Morris-Lecar neuronal model with particle filter and stochastic approximation methods[END_REF] consider the conductance based model when voltage conductance kinetics are assumed to be deterministic. They focus on the twodimensional Morris-Lecar model, which has only one hidden conductance channel (8). Unlike in [START_REF] Huys | Smoothing of, and parameter estimation from, noisy biophysical recordings[END_REF], this model does not enter the class of HMMs, because the hidden component is not autonomous. [START_REF] Ditlevsen | Estimation in the partially observed stochastic Morris-Lecar neuronal model with particle filter and stochastic approximation methods[END_REF] propose an estimation method which also includes the estimation of an unknown parameter in the conductance kinetics and with stochastic kinetics. Their method is based on an EM algorithm coupled to a particle filter. Standard particle filters, which have been developed in the HMM context, can not be used in this case, as it could in [START_REF] Huys | Smoothing of, and parameter estimation from, noisy biophysical recordings[END_REF]. [START_REF] Ditlevsen | Estimation in the partially observed stochastic Morris-Lecar neuronal model with particle filter and stochastic approximation methods[END_REF] extend a particle filter to this non-autonomous hidden state. Then the maximization step is also linear, like [START_REF] Huys | Smoothing of, and parameter estimation from, noisy biophysical recordings[END_REF], because only linear parameters entering both the V (t) and the U (t) equations are estimated. [START_REF] Ditlevsen | Estimation in the partially observed stochastic Morris-Lecar neuronal model with particle filter and stochastic approximation methods[END_REF] prove the convergence of their algorithm, which requires the number of particles to increase at a logarithmic rate with the iterations of the EM algorithm.

  ) with noise only on the hidden components (σ = 0), which has been considered by[START_REF] Rudolph | Characterization of subthreshold voltage fluctuations in neuronal membranes[END_REF];[START_REF] Destexhe | A novel method for characterizing synaptic noise in cortical neurons[END_REF];Rudolph et al. (2004a,b);[START_REF] Pospischil | Calculating event-triggered average synaptic conductances from the membrane potential[END_REF]Pospischil et al. ( , 2009a,b),b), and then on model (3) with noise only on the first equation (σ e = σ i = 0), which has been considered by[START_REF] Huys | Efficient estimation of detailed single-neuron models[END_REF];[START_REF] Paninski | A new look at state-space models for neural data[END_REF].

  [START_REF] Paninski | A new look at state-space models for neural data[END_REF] also consider the estimation of θ, but they now assume that the input signals I e (t) and I i (t) are known. They assume noisy measurements y 0:n of V 0:n . This simplifies the statistical problem in the sense that it enters the well-known framework of HMMs. The likelihood is p(y 0:n ; θ) = p(y 0:n |V 0:n ; θ)p(V 0:n ; θ)dV 0:n .One would like to optimize the log-likelihood, namely computing arg max θ log p(y 0:n ; θ). They claim that this optimization reduces to the joint optimization of arg max θ max V (log p(y 0:n |V ; θ) + log p(V ; θ))