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3 Unité d’Analyse d’Images Biologiques (Institut Pasteur – CNRS), 75 015 Paris,

France
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Abstract. Super-resolution in Structured Illumination Microscopy (SIM) is obtained

through de-aliasing of modulated raw images, in which high frequencies are measured

indirectly inside the optical transfer function. Usual approaches that use 9 or 15 images

are often too slow for dynamic studies. Moreover, as experimental conditions change

with time, modulation parameters must be estimated within the images. This paper

tackles the problem of image reconstruction for fast super resolution in SIM, where the

number of available raw images is reduced to four instead of nine or fifteen. Within an

optimization framework, the solution is inferred via a joint myopic criterion for image

and modulation (or acquisition) parameters, leading to what is frequently called a

myopic or semi-blind inversion problem. The estimate is chosen as the minimizer of the

nonlinear criterion, numerically calculated by means of a block coordinate optimization

algorithm. The effectiveness of the proposed method is demonstrated for simulated

and experimental examples. The results show precise estimation of the modulation

parameters jointly with the reconstruction of the super resolution image. The method

also shows its effectiveness for thick biological samples.
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1. Introduction

Fluorescence microscopy, where only molecules marked by fluorophores are visible,

is a fundamental tool of biology, but remains fundamentally limited in resolution

by diffraction (often modeled by a filter in Fourier space). The last twenty years

have seen numerous developments in super resolution fluorescence microscopy, enabling

resolutions in the 10 to 100 nm using these techniques for dynamic studies remains a

challenge as they require sample scanning or multiple image acquisitions. Localization

super resolution methods, such as photo-activated localization microscopy (PALM) or

stochastic optical reconstruction microscopy (STORM) [1], are based on the localization

of individual, and supposedly separate, photoactivable fluorophores. Thousands of

exposures are necessary to build the final high-resolution image, which strongly limits

the usefulness of these techniques for live imaging. Stimulated emission depletion

(STED) microscopy [2] provides nanometer resolution by reducing the diffraction spot

size through stimulated emission. The reconstructed image is obtained by scanning

the sample. Even though a recent publication has demonstrated the capability of

parallelizing 2000 STED spots, 100 acquired images are still required to build the super-

resolution image [3].

An alternative approach used in structured illumination microscopy (SIM) consists

of illuminating and imaging the entire field of view and using a limited amount of

raw data acquisitions. Illumination by a sinusoidal fringe pattern makes high spatial

frequencies of the sample response, previously filtered, appear inside the support of

the transfer function. An algorithm, after measurement, reconstructs a high-resolution

image by demodulation and Wiener filtering.

SIM has provided [4, 5, 6] resolution down to 100 nm at a rate of ≈11 Hz and an

8µm2 field of view [7]. Recently, Betzig and coworkers [4] demonstrated nonlinear (with

the presence of high-order modulation) SIM capability to reach a resolution of 62 nm in

living cells. These performances paved the way towards high-resolution imaging in living

samples where numerous biological processes require a subsecond temporal resolution.

For living cells studies, TIRF illumination, where only a hundred nanometer thick slice

of the sample is observed, is the most common in the literature [4, 5, 6] but forbids

observation inside the cell. Although SIM can be used for 3D samples, it requires at

least 15 images [4, 5, 6, 7] per optical section.

Furthermore, the reconstruction may generate artifacts that often appear as residual

modulation, especially with thick samples, if sufficient attention is not paid to estimation

of the modulation parameters [8, 9, 5]. Schaefer et al. [8] present a detailed and precise

analysis of possible artifacts as well as an algorithm based on the post analysis of the

result to minimize it. Wicker et al. [5] propose an algorithm based on the weighted cross-

correlation between the central spectrum and the replication due to the modulation in

Fourier space. On the contrary, the proposed approach does not depend on the possible

patterns of artifacts but rather on data simulation and criterion fitting.

A major alternative to harmonic modulation in classical SIM is the Blind-SIM
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approach [10, 11, 12, 13]. With the blind-SIM approach, a large number of images

is generated with different illumination patterns created by speckle. The stochastic

variation of the modulation allows to retrieve the high-resolution image. Very good

results have been obtained and the technique is promising for robust reconstruction,

despite the great number of images required. Ayuk et al. [12] adapted the technique

to distorted modulations. However, currently, blind-SIM is not known to be able to

perform nonlinear reconstruction. Unfortunately, Blind-SIM has not been validated on

living biological samples yet. In our case, the distortion made by the sample does not

seem to be the major limitation, and we have not further investigated this possibility,

especially as we consider the existing problem of harmonic modulation.

A paper by Dong et al. [14] shows an algorithm to reconstruct the image with only

four raw images. In comparison to the proposed approach, the reconstruction is defined

by the algorithm without clear argumentation about which image is reconstructed.

Criterion based methods instead model explicitly the information as presented in Sec. 3,

and optimization algorithm is a tool to reach the minimum. As a consequence,

the reconstruction is not really well-defined, and the stability of the alternative

reconstruction step with the modulation will be hard to guarantee. Finally, contrary

to the previous work [15], the proposed approach allows to simplify the optical setup

and estimate the modulation parameters that were fixed in the above cited work.

Another important distinction is the nature of the estimator and algorithm that were

the posterior mean and Monte Carlo Markov Chain (MCMC) in [15].

This paper describes a new methodological framework and an original algorithm

for 2D joint myopic estimation based on a criterion to minimize. Compared to previous

techniques, the proposed approach focuses on harmonic modulation estimation within

the original Gustafsson framework and small number of raw images. The image

reconstructed cannot be better than that obtained with perfectly reconstructed classical

SIM, or Blind-SIM or [15]. However, even if the image reconstructed compares directly

to other approaches, the proposed approach introduces several improvements in the

acquisition and reconstruction steps. The algorithm is derived from the estimator and

criterion, whereas the usual approaches define their solutions by the algorithms. The

first advantage of our proposed method, as already mentioned in [15], is that it only

needs four raw images to reconstruct one super resolution image in linear SIM and

eight raw images in nonlinear SIM. In addition, there is no limitation to the modulation

pattern that can be arbitrary if a parameterized pattern is available (we study only

harmonic patterns here). Second, our algorithm can estimate, along with the image,

the modulation parameters that need to be estimated from the data, even with four

images. The Shroff et al method [9] is the only other method, to the best of our

knowledge, which can provide a phase parameter value when only four raw images are

used. The cross-correlation proposed by Wicker et al. [5] provides a very good result

but requires component separation and is presented for phase estimation only. The

proposed algorithm also estimates frequency (or orientation) and contrast modulation,

and with a much better accuracy than [9].
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Finally, when fringes are generated by the interference of the first orders of a

diffracted beam, our method allows the use of the zero (or more) order without

constraints. In such cases, standard methods need at least fifteen images [5, 6, 16].

In contrast, our method only needs four images. This point is interesting for two more

reasons: interference with zero order introduces a modulation at half the frequency of

the main fringe, leading to a better SNR for parameter estimation, and the optical setup

does not need to block the zero order.

The remainder of this paper is organized as follows. Section 2 shows the

underlying principles of SIM and our proposed approach for image number reduction.

Section 3 presents our data model and specific constraints on the image and modulation

parameters allowing us to jointly estimate all the unknowns, that is all modulation

parameters and pixels of the image. Section 4 is devoted to the joint optimizer algorithm

and the final section 5 presents the results. Simulated examples are used to quantify

the effectiveness of the proposed algorithm and results for experimental data with thick

samples are presented.

2. Amplitude modulation and redundancy

The diffraction theory states that incoherent optical systems can be described in Fourier

space with the optical transfer function (OTF) H(νx, νy), which is theoretically equal

to zero for all frequencies beyond the cut-off frequency νc. All information outside this

bound is lost, and the underlying idea of SIM is injecting high frequencies inside the

support of the OTF, owing to amplitude modulation, before filtering.

Let us denote the original image f(x, y) ∈ L2 and its continuous Fourier transform

F (νx, νy). In SIM the illumination pattern is considered to be, up to an amplitude

factor,

m(x, y) = 1 + β cos (πkxx+ πkyy + φ) +

α cos (2πkxx+ 2πkyy + 2φ) . (1)

The fringe at the kx/2 frequency comes from the interference between the zero order

and the two orders ±1, and the fringe at the kx frequency from the interference between

the orders −1 and +1. The parameters α and β are contrast parameters between 0 and

1.

After modulation, the image in the Fourier space becomes

G(νx, νy) = F (νx, νy)+
α

2
e−2iπφ [F (νx − kx, νy − ky) + F (νx + kx, νy + ky)] +

β

2
e−iπφ

[
F

(
νx −

kx
2
, νy −

ky
2

)
+ F

(
νx +

kx
2
, νy +

ky
2

)]
. (2)

and it is finally filtered by the OTF as H(νx, νy)G(νx, νy). This result is illustrated in

figure 1 for a 1D signal.
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To the best of our knowledge, all existing approaches [4, 5, 6, 7, 9] state that U0, U1,

and U2 (see figure 1) are three unknowns that can be recovered by a linear combination

of at least three or more modulated images with the same frequency modulation but

different phases φ. Unfortunately, this approach completely disregards that redundancy

is introduced, as mentioned by Heintzmann in [17]. It needs at least five images when

the zero order is present for one grid orientation, and fifteen raw images for one 2D

image.

Indeed, because of the Fourier Hermitian symmetry of the real image, U0 and U2

are complex conjugates of each other. Moreover, the part U1 introduced by the zero

order is not an additional unknown. In essence, irrespective of the sinusoidal pattern,

only two unknowns can be present inside the raw data: the low frequencies between

0 and νc, labeled LF in figure 1 and the high frequencies between νc and 2νc, labeled

HF . The raw data is then a mix of several copies of different frequencies in the range

of these two unknowns (LF and HF ). Based on this observation, we demonstrate that

estimating the high-resolution image still involves the resolution of a linear system but

with only four datasets for four unknowns in a full 2D dataset. Moreover, every extra

modulation with frequency |k| < νc does not introduce an extra unknown.

νx
0

OTF

U0 U1 U2LF

HF
kx
2

kx

Figure 1: Illustration of amplitude modulation for SIM with zero order. The original

spectrum LF is replicated around ±kx
2

and ±kx. The OTF removes all frequencies

beyond νc, equal to kx in this illustration. The unknown HF part comes from the −kx
replication while the redundant spectra are in gray.

3. Data and image model

3.1. Forward model

The unknown image is modeled as N pixels collected in a vector f ∈ RN . The pixel size

is defined to be sufficient to represent all possible frequencies that can be reconstructed

from the raw images. The image is illuminated by a light fieldmmodeled asMf , where

the matrix M is diagonal with diag(M ) = m ∈ RN . The illumination is structured

to produce modulations as described by equation (1). Therefore, the vector m, or

the diagonal of M , depends on the five unknown parameters θ = [kx, ky, φ, α, β] and

corresponds to the fringe pattern.
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The optics and microscope response are supposed to be linearly spatial invariant.

The output is obtained by the convolution of the input image Mf with a known point

spread function (PSF) thanks to simulation of the Airy disc or measurement. Being

linear, the convolution operation can be written as CMf , where C is a block circulant

with circulant block (BCCB) convolution matrix. The BCCB nature of C makes the

application of the convolution manageable in Fourier space

CMθf = F †ΛCFMθf (3)

where ΛC ∈ CN×N is a diagonal complex matrix with the OTF as the diagonal and

F ,F † are the unitary forward and reverse Fourier transform matrices, respectively.

Equation (3) states that the convolution can be easily computed by filtering in the

Fourier domain.

The third element is camera detector integration. We assume the detector as being

squared with perfect integration on its surface. The camera integration is modeled as

a convolution then sampling at the detector resolution. Next, camera convolution is

integrated with the optic convolution, and only sampling remains. This operation is

written as a matrix S ∈ {0, 1}N×M with only one 1 per line, 0 otherwise. Concretely

S is identity if N = M , or make a subsampling by a factor of two if N = 2M . In the

latter case, the image resolution is doubled with respect to the raw data resolution, and

the camera convolution is a 2× 2 square response.

Finally, the full model writes

gi = SCMθif + ni = Hif + ni (4)

where gi ∈ RM are i-th raw data and ni ∈ RM an unknown noise. Then, I raw data

are acquired, stacked, and the complete model is written as

g = Hf + n (5)

where

H =

H1

. . .

HI


I...
I

 and n =

n1

...

nI

 . (6)

However, the naive use of this forward model is ill posed because the least square solution

of the system (
H tH

)
f = H tg

may have several solutions (without additional choice), or is unstable otherwise [18].

This characteristic comes from the sub-sampling S and the convolution C, and it is the

main reason for the use of Wiener filtering in classical methods [16, 6]. We propose an

alternative approach where the image and the modulation parameter models are defined

jointly with the forward model owing to a regularized criterion.
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3.2. Image model

To eliminate the ill-posed feature of the least square criterion, we introduce a

regularization term leading to the mixed criterion

J(x) = ‖g −Hf‖2 + λ‖Df‖2. (7)

This kind of criterion is well known and has been widely studied and used in various

fields and applications [19, 20, 21, 22, 23, 18]. The prior fidelity term ‖Df‖2 stabilizes

the problem and further particular solutions. To counterbalance noise amplification

arising from the data fidelity term, D is chosen as a differential operator or high-pass

filter. We then choose the Laplacian second-order differential operator along the lines

and columns implemented as the 2D impulse response

d =

 0 −1 0

−1 4 −1

0 −1 0

 .
Moreover, we implement filtering in Fourier space D = F †ΛDF , where ΛD is diagonal

and the corresponding high-pass filter. Owing to Parseval equality, the criterion can

then be written as

J(x) = ‖g −Hf‖2 + λ‖ΛDf̊‖2.
where f̊ = Ff is the discrete Fourier transform (dft) of the image. The regularization

parameter λ determines the balance between the data fidelity term, that tends to

introduce high frequencies with noise amplification and instability, and the prior fidelity

term that tends to favor image smoothness. Owing to this Tikhonov regularization, the

criterion remains quadratic with a fast algorithm such as a conjugate gradient [24] to

optimize it. Note that this prior corresponds to the classical Wiener filter. Other prior

are possible, such as TV or `2− `1, which would lead to a nonlinear estimator for better

image reconstruction with the price of a more complex and slower algorithm.

The choice of the λ parameter value is a difficult question, and a significant part

of the literature is dedicated to it [25, 21, 26, 27, 15, 28, 29]. In this work, the value is

considered known and fixed by hand to reconstruct satisfactory images. This possibility

relies on the Bayesian framework such as in [15].

3.3. Modulation parameters model

The modulation parameters must be estimated from the data jointly with the image.

With I raw data acquired, 5 × I parameters must be estimated. Nevertheless, little

information is available about them except some interval constraints.

• Concerning the modulation frequencies k, the nearest discrete frequencies from the

dft of data can be easily located [9] at indices (n,m). This allows stating that the

true frequency k∗ = (k∗x, k
∗
y) is inside the interval

k∗x ∈
[(
n− 1

2

)
∆x,

(
n+

1

2

)
∆x

]



Fast myopic 2D-SIM Super Resolution Microscopy with Joint Modulation Pattern Estimation8

and

k∗y ∈
[(
m− 1

2

)
∆y,

(
m+

1

2

)
∆y

]
where ∆x, and ∆y are the spectral resolution of the dft.

• The phase value is unknown. Shroff et al [9] guess the phase from the data spectrum

phase value at (n,m) frequency. These approaches assume that phases from other

replications are negligible and that frequency modulation is exactly at the discrete

frequency (n∆x,m∆y). Unfortunately, such hypotheses are not available for 2D

super resolution SIM since frequency modulation slightly change with experimental

conditions, especially with significant noise. We consider here that the true phase

value is located inside the interval

φ∗ ∈ [0, 2π].

• Knowledge about the contrast parameters is also limited. As for the phases, we

only use physical information saying that the contrast parameters are inside the

interval

α∗, β∗ ∈ [0, 1]2.

3.4. Complete model

The solution to the problem of joint estimation of the image f and the full set

θ = [k,φ,α,β] of 5 × I modulation parameters are chosen as the joint minimizer

of constrained regularized least square criterion

f̂ , θ̂ = arg min
f ,θ

‖g −Hθf‖2 + λ‖Df‖2 subject to

k ∈ [km,kM ],

φ ∈ [0, 2π]I ,

α,β ∈ [0, 1]2×I .

(8)

The problem is well posed; the regularization factor λDtD ensures the uniqueness of

the solution, stabilizes the inversion, and circumvents noise amplification. The defined

image and parameters solution correspond to the values that best reproduce the data

g while satisfying the constraints. The criterion is, however, globally non-convex with

several local minimizers. Sec. 4 is devoted to an optimisation algorithm that try to

reach a satisfactory solution.

From this point, two main questions arise: First, how to compute the solution

defined by equation (8)? Second, does this solution solve the initial problem of joint

estimation of modulation parameters and image reconstruction ? The next two sections

are devoted to the proposed algorithm that computes the solution and to showing results

that illustrate the effectiveness of the proposition.
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4. Myopic SIM image reconstruction

Several computational difficulties arise in resolving the problem defined by equation (8).

(i) The solution cannot be expressed explicitly. This point is addressed with an

alternate block optimization algorithm on θ and f .

(ii) The criterion, w.r.t. the modulation parameters θ, is nonlinear because of the

cosine and can have several local minima. Hopefully, the number of parameters is

small and, as demonstrated here, global optimization is feasible.

(iii) The dimension, w.r.t. the image f , is very large and non-stationary because of the

presence of the forward model H . Despite the fact that the regularized least square

solution is explicit,

f̂ =
(
H tH + λDD

)−1
H tg, (9)

the problem is too large to invert the matrix and make f directly tractable with

(9). The proposed solution relies on the well-known conjugate gradient algorithm

to solve large linear systems.

To solve the joint problem, we propose an alternate minimization algorithm 1 that we

describe in more detail in the next section. Nevertheless, the quality of the initial image

f (0) is an important point. The non-linearity and multi-modality of the criterion make

the convergence of line 1.5 dependent on the initial point. In section 5.5.1, we propose

a robust and easily feasible initial image.

Algorithm 1 SIM image reconstruction

1: procedure sim(g,H ,D, λ,f (0))

2: k ← 0

3: repeat

4: k ← k + 1

5: θ(k) ← arg minθ J
(
f (k),θ

)
6: f (k) ← arg minf J

(
f ,θ(k)

)
. Done with conjugate gradient

7: until Stopping criterion is met

8: return f (k)

4.1. Modulation parameters optimization

The optimization of the modulation parameters is not straightforward, even more so

when only four raw data images are available. This step requires finding the parameters

θ that best reproduce the data with a fixed image f with respect to equation (8).

However, minor simplifications are possible. First, the regularization term can be

removed because it does not depend on θ. Second, the criterion can be split into one

criterion for each raw data gi because the modulation parameter model is independent
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when f is fixed. Consequently, the line 5 of the algorithm 1 corresponds to I’s parallel

optimization of the constrained nonlinear least square criterion

Ji(θi) = ‖gi − SHMθif‖2 subject to

ki ∈ [km,kM ], φi ∈ [0, 2π], αi, βi ∈]0, 1[2
(10)

with θi = [kxi, kyi, φi, αi, βi] and the diagonal elements of Mθi , with q ∈ [1, . . . , N ],

Mi[q] = 1 + βi cos (πkx,ix[q] + πky,iy[q] + φi) +

αi cos (2πkx,ix[q] + 2πky,iy[q] + 2φi) . (11)

This criterion is only the least squares between a “simulator output” and the data, when

the modulation parameters are varied.

The optimization scheme of criterion (10) has been established owing to practical

observation. First, the contrast parameters (α, β) and cosine parameters (k, φ) form

two distinct families of parameters. The estimated value for the cosine parameters can

be good enough even if the contrast parameter is wrong but with a significant value such

as 0,5. On the contrary, if the cosine parameters are not good enough, the estimation

of the contrast can be extremely low, yielding to 0 value. In other words, if the cosine

shape is incorrectly estimated, the best residual is obtained without any modulation.

These two observations led us to first estimate the cosine parameters with ad hoc values

for the contrast in the first loop of algorithm 1, and to use the contrast parameter as

an empirical diagnostic tool, as already suggested in [5, 6].

The cosine parameters are more difficult: the criterion is nonlinear because of the

cosine, can have several local minima, and the three parameters (kx, ky, and φ) are

strongly correlated. Therefore, we must exhaustively search the full volume in three

directions using a global optimization algorithm

θ̂ =
{
θ∗ ∈ S

∣∣‖g −Hθ∗f‖2 ≤ ‖g −Hθf‖2,∀θ ∈ S
}

(12)

where S is a finite set of evaluated points inside [km,kM ] × [0, 2π]. All other

tested algorithms (nonlinear conjugate gradient, newton method, and Nealder-Mead

for instance), most often local ones, were unable to find the global minimum necessary

for good image reconstruction. The advantage of this algorithm is the parallel evaluation

of each tested point in S and the criterion evaluation J(θ) is only required at the current

point.

The contrast parameters lead to an easily solved linear least squares with the details

explained in Appendix A.

4.2. Image optimization

Unlike the modulation parameters, the image optimization step (line 6 of algorithm 1)

involves a large but linear and strictly convex problem. The solution equation (9) can
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then be approximated owing to a preconditioned conjugate gradient algorithm that

solves the system using the gradient vector

∇J(f) = 2H t(Hf − g) + 2λDtDf

that does not involve large matrix inversion. As this step is inside a larger alternate

minimization strategy, this subpart can be stopped early. We do not describe in more

detail the conjugate gradient because a significant amount of literature is devoted to

it [24, 30]. Appendix B describes a preconditioning matrix that largely diminishes the

number of iterations.

5. Results

This section shows the results of our myopic SIM approach for experimental and

simulated data with only four raw images, with zero order present in the fringe (β 6= 0).

We compare our results with the classical approach where at least 9 or 15 raw images are

needed and show that we provide the same quality as we already demonstrated in [15].

With our method, we can also estimate the modulation parameters. We compare our

results to Shroff [9], which is the sole method, to the best of our knowledge, that can

estimate only the phase parameters with four images (modulation depth are fixed to the

true value in the Shroff tests). This method estimates the frequencies modulation by

locating the maximum value pixel, if visible, in Fourier space. Thus, the phase estimate

is the phase value at this frequency component and therefore neglects wrong location

and noise corruption. The amplitude is also estimated by ratio with the null frequency,

corrected by the OTF value. This method is very fast but is not precise and inefficient

when the frequency modulation is near the Abbe limit.

The algorithm is initialized with f (0) being the wiener deconvolution [31] of a

widefield (image obtained using a uniform illumination) image and α(0) = β(0) = 0,5.

The widefield can be a real one if available, or the mean of several modulated images.

In the latter case, nine classical images are needed to avoid incorrect convergence, and

thus, it is not advisable for our method. In our tests, a widefield image is available. The

initial exhaustive grid search is performed with 10 × 10 × 40 points for (kx, ky, andφ).

The search interval is initialized with prior constraints as explained in section 3.3.3 and

are reduced by a factor 0,9 after each loop for refinement. The implementation is done

with Python and standard library (numpy, . . . ) and typical computing time is between

2 and 10 minutes.

5.1. Results on simulated data

The simulations are conducted using two test images: mire, and boat. For all simulated

data, the acquisition scheme is

• one widefield image (N = M = 256× 256).
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• three modulated images (I = 3) with respective grid orientation
[
0, 2π

3
,−2π

3

]
+ π

4
,

with contrast α = 0,2, β = 0,8, and modulation frequency |k| = 0,2. Figure 2

shows the dataset for the mire test.

• an Airy theoretic OTF with reduced frequency cut |νc| ≈ 0,26

• white gaussian noise with different levels (γn = 10 and 0,1).

• the frequency modulation is 0.23 in reduced frequency.

• all images are in the same displayed with same dynamics with original image values

between 0 and 256.

The algorithm settings are always the same as described in section 3 and the process

takes a few minutes with a 256× 256 pixels image on a 4× 1.9 GHz CPU with 8 GB of

memory. The tests were conducted with the images mire, and boat, and two noise levels

with mire and mire-hn. All known methods [4, 5, 6, 32] rely on the cross-correlation of

extracted spectra with the classical 9 or 15 images. They are thus inefficient with only

four images. We compare the proposed myopic SIM method to Shroff et al [9], which

is the sole method that can also provide phase values.

Figure 2: The four raw images used for the myopic SIM reconstruction in the mire test.

The first image on the left is the widefield image, and the three other are modulated.

The main visible fringes come from the interference between the zero order and the ±1

order, with kx/2 frequency.

The figure 3 shows a zoom of the mire results with 3a being the true image. The

figure 3c is the reconstruction where modulation parameters are estimated with the [9]

method. Artifacts are present and make the image difficult to analyze. The power

spectral density (PSD, or squared absolute value of the Fourier transform) is illustrated

in figure 4c. The PSD exhibits classical interference in SIM because of the wrong

estimation of the modulation parameters. On the contrary, figures 3d and 4d show

the results of our myopic SIM approach. The results show an image without visual

artifacts and more high frequencies than widefield. The PSD figure 4d shows only very

limited effect on high frequency. This effect is so small that no differences are visible in

comparison with the reconstruction made with true parameter values.

To appreciate the gain in resolution, the figure 5 shows a slice of the image for the

widefield and the myopic SIM reconstruction. More details and high frequencies are

visible.
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(a) True image (b) Widefield

(c) SIM w. [9] (d) Myopic SIM w. 4 images (e) Deconvolution

Figure 3: Zoom on results for the mire test. Figures 3a and 3b show the true image and

widefield, respectively. Figure 3c shows the results with four images with modulation

parameters estimated with [9]. Artifacts are strongly present. Figure 3d shows the

results of our proposed method. Almost no artifacts are visible. Horizontal and vertical

lines are caused by the periodic hypothesis of the dft algorithm. Figure 3e is the

deconvolution of the widefield (Figure 3b) as done in [15] and [31].

(a) True image (b) Widefield (c) SIM w. [9] (d) Myopic SIM

Figure 4: Results for the mire test. Figures 4a and 4b show the true image and widefield

module spectrum, respectively. Figure 4c shows the results with four images with

modulation parameters estimated with [9]. Complex interference patterns are clearly

visible. Figure 4d shows the results of our proposed method. Almost no artifacts are

visible.
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(a) The widefield (WF) comparison

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

0

100

200

300

True SIM

(b) The myopic SIM comparison

Figure 5: Slice comparison for mire test between the true image, the widefield, and the

myopic SIM reconstruction. Figure 5a shows the widefield and the true image. We see

that the finer details are no longer visible such as around 140. Figure 5b shows that

myopic SIM can estimate these originally lost frequencies.

Table 1 shows the error of the estimated parameter values w.r.t. the true values,

for the Shroff et al [9] method and our myopic SIM method. We see that, both in

absolute and relative error, our method has better estimation by between one and two

orders of magnitude. This explains the quality of the reconstructed images. The level

of required precision illustrates the difficulty of the problem.

Figure 6 shows the comparison between two reconstructions with two different

levels of noise. The mire-hn test has been simulated with 10 times more noise (that

is γn = 0.1 and γn = 100) and the myopic method is robust and can reconstruct a

good high-resolution image without artifacts. However, the reconstructed image quality

for mire-hn is obviously slightly lower than expected because more noise affects the

measurements.

Finally, the myopic SIM method has been tested with boat image. The figure 7

shows the original image on the left, then the widefield, the SIM reconstruction with

parameters estimated with [9], and our myopic SIM method. Again, the proposed

approach is effective with good parameter estimation and good image reconstruction,

without visible artifacts. The figure 8 shows a slice of the image and illustrates the gain

in detail.

5.2. Results on experimental data

Tests have been conducted on real microscopic biological data. The setup has already

been described in several references such as [33] or [15]. Images are obtained on living

HeLa cells where mitochondria are labeled with Mitotracker green, and observed with

a 96X 1,2 NA objective lens (N = 1014 × 1024, M = 512 × 512) and I = 3). The
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kx abs. error ky abs. error φ abs. error

[9] Myopic [9] Myopic [9] Myopic

8 · 10−4 1 · 10−5 8 · 10−4 2 · 10−5 1 1 · 10−2

1 · 10−3 1 · 10−6 2 · 10−3 2 · 10−6 6 · 10−1 2 · 10−3

2 · 10−3 2 · 10−5 1 · 10−3 1 · 10−6 7 · 10−1 7 · 10−3

(a) Absolute error of modulation parameters for mire test

kx rel. error (%) ky rel. error (%) φ rel. error (%)

[9] Myopic [9] Myopic [9] Myopic

6 · 10−1 9 · 10−3 6 · 10−1 1 · 10−2

2 2 · 10−3 9 · 10−1 1 · 10−3 27 1 · 10−1

9 · 10−1 1 · 10−2 2 2 · 10−3 33 4 · 10−1

(b) Relative error of modulation parameters for mire test

Table 1: Absolute and relative errors of modulation parameters for the mire test and

the three modulated images. Two estimations are compared: the method of Shroff

et al [9] and the proposed myopic. The results show that our method improves the

reconstruction of between one and two order of magnitude w.r.t. [9]

(a) mire reconstruction (b) mire-hn reconstruction

Figure 6: Image reconstruction results with the proposed myopic method for mire and

mire-hn tests. Figures show good reconstruction results for mire-hn even with 10 times

more noise.
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(a) Boat (b) Widefield (c) SIM w. [9] (d) Myopic SIM

Figure 7: The result for boat tests.
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(a) boat slice

Figure 8: Slice comparison for boat test between the true image, the widefield, and the

myopic SIM reconstruction. The results clearly show that high frequencies are recovered

w.r.t. to the widefield.

illumination pattern was generated by three-beam interference and the SIM image was

obtained from four raw images. The exposure time is 500 ms per raw image. Figures 9b

and 9a, respectively, show the classical uniform image and the four-image (I = 3) SIM

reconstruction using the myopic SIM method. The final obtained resolution is related to

the optical setup and the chosen frequency modulation k, but an improvement in spatial

resolution is clearly visible without visual artifacts while we observe a thick sample.

6. Conclusion

We propose a new myopic SIM approach to jointly estimate the modulation parameters

with significant precision with a high-resolution image, allowing reconstruction without

visible artifacts even with only four raw images. The demonstration has been shown in

simulated data and biological samples.

We demonstrated that inverse methodological data processing methods have a great

impact on imaging capability in SIM by increasing the frame rate by a factor of 225 %
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(a) Widefield (b) SIM w. 4 images

(c) Zoom on widefield (d) Zoom on SIM w. 4 images

Figure 9: Thick sample data with 96X lens, and marked mitochondria. The exposure

time of the widefield is equivalent to that for the four SIM raw data, in the presence of

the zero order for the modulation. Spatial resolution enhancement is clearly visible.

(from 9 to 4 images) up to 375 % (from 15 to 4 images), or by the reduction of the

number of raw images needed for one reconstruction by a factor of two. Moreover, our

estimator allows optical setup simplification by removing the need to block the zero

order. Furthermore, the algorithm is independent of the fringe pattern.

Perspective applications are numerous, such as fast 3D imaging. One limitation is

the nonstationary noise because of the Poisson nature of the flux. We also might consider

out-of-focus background estimation with work first published in [33]. Strong out-of-focus

light may modulation parameters to diffucult to estimate without proper handle. Hyper-
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parameter estimation, as in [15], is a possibility with modulation parameters estimation

done with a Metropolis-Hastings step for instance. Finally, the use of optimized or

more specialized optimization algorithm and implementation could drastically reduce

the computation time.
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Appendix A. Contrast estimation

The contrast estimation, for one raw image and without the constraints, leads to the

minimization of

J(θi) = ‖gi − SCMθif‖2 (A.1)

where θi = αi or βi and the other parameters are fixed. The modulation matrix Mθi

can be written as

Mθi = I + αiKkx,ky ,φ + βiK
′

kx,ky ,φ (A.2)

where I is the identity matrix and

K = cos(πkxx+ πkyy + φ) (A.3)

K
′
= cos(2πkxx+ 2πkyy + φ). (A.4)

This simple observation of linearity w.r.t. α or β allows obtaining an explicit minimizer

of
J(θi) = ‖gi − SCMθif‖2

= ‖gi − SCf − αiSCKf − βiSCK
′
f‖2

(A.5)

and therefore,

α̂i = arg min
αi

J(αi) =
g̃i
tf̃

‖f̃‖2

with f̃ = SCKf and g̃i = gi − SCf − βiSCK
′
f ,

(A.6)

and

β̂i = arg min
βi

J(βi) =
g̃i
tf̃

‖f̃‖2

with f̃ = SCK
′
f and g̃i = gi − SCf − αiSCKf .

(A.7)



REFERENCES 19

Appendix B. Preconditionner for conjugate gradient

The goal of a preconditioning matrix is to be the best possible approximation of the

Hessian matrix while being easily invertible. The Hessian matrix of problem (7) is

He = H tH + λDtD. (B.1)

The H tH matrix is a block matrix composed of blocks such as

Hc = M t
θi
CtStSCMθi (B.2)

that forbids the inversion of the full matrix, as well as factorization in Fourier space.

However, the Mθ matrix is diagonal with fluctuations around 1 coming from the

modulation and can thus be approximated by the identity matrix. The Hessian matrix

blocks can then be approximated by

Hc ≈ CtStSC. (B.3)

Moreover, it appears that the sub-sampling matrix StS is composed of 1 or 0 on the

diagonal. An additional approximation is feasible

Hc ≈ CtC (B.4)

where only the convolution part remains. Finally, the Hessian matrix can be

approximated by

He ≈

C
tC

. . .

CtC

+ λDtD, (B.5)

easily factorized in Fourier space

He ≈ F †
(
|ΛC |2 + λ |ΛD|2

)
F (B.6)

where F is the matrix Fourier transform, with the property F−1 = F †, withΛC and

ΛD as complex diagonal matrices with the transfer function of the optics and the

regularization operator, respectively, on the diagonal.

This approximation has an inverse easily tractable

M ≈ F †
(
|ΛC |2 + λ |ΛD|2

)−1
F (B.7)

and can be used in a preconditioned conjugate algorithm. In practice, a strong

improvement in the number of iterations to reach the optimum is observed.
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