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Abstract

The number of trials conducted, and the number of patients per trial are typically small in paediatric clinical

studies. This is due to ethical constraints and the complexity of the medical process for treating children.

While incorporating prior knowledge from adults may be extremely valuable, this must be done carefully. In

this paper, we propose a unified method for designing and analysing dose-finding trials in paediatrics, while

bridging information from adults. The dose-range is calculated under three extrapolation options, linear,

allometry and maturation adjustment, using adult pharmacokinetic data. To do this, it is assumed that target

exposures are the same in both populations. The working model and prior distribution parameters of the

dose-toxicity and dose-efficacy relationships are obtained using early-phase adult toxicity and efficacy data

at several dose levels. Priors are integrated into the dose-finding process through Bayesian model selection

or adaptive priors. This calibrates the model to adjust for misspecification if the adult and pediatric data are

very different. We performed a simulation study which indicates that incorporating prior adult information in

this way may improve dose selection in children.

4
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1 Introduction6

Phase I dose-finding studies represent the first transition from laboratory work to a clinical setting and aim7

to obtain reliable information on the pharmacokinetics (PK), safety and tolerability of a drug. Typically,8

these trials are performed on healthy subjects unless the drug is intended for the treatment of malignancies9

(i.e., oncology).10

In paediatric clinical trials, invasive procedures are avoided or at least minimised for ethical reasons and11

the usefulness of clinical trials in children has been widely debated over the last decades1, as highlighted12

by two papers recently published in the journal of the American Academy for Paediatrics2;3. Several13

authors and specialists have reported a critical need for more clinical studies in paediatrics combined with14

an improvement in the methodologies used in practice. Some authors have argued that incorporating prior15

knowledge from adults should help attain a better understanding of the paediatric population. However,16

other studies have shown that children should not be considered small adults but rather a specific population17

with a different metabolism that is not necessarily linearly related to growth1;4.18
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For dose-finding paediatric studies, guidelines have been suggested for the choice of starting subset doses6
19

(e.g., the starting dose should equal 80% of the adult recommended dose, and these doses should then20

be increased by 30% to obtain the subset doses). However, these recommendations are arbitrary and21

do not rely on any scientific justifications. As a result, to improve the selection of the dose-range that22

should be used in a paediatric study based on the use of adult information, this information should be23

investigated through (1) the choice of the dose-range for a paediatric trial, (2) the dose-finding model and24

(3) its parametrisation.25

Motivating example: Erlotinib is an oral inhibitor of the epidermal growth factor receptor (EGFR)26

tyrosine kinase that blocks cell cycle progression and can slow down tumour progression. This anticancer27

agent was approved by the Food and Drug Administration (FDA) for the treatment of glioblastoma in28

adults. Several early-phase trials were conducted in adults to study the toxicity and PK of this drug at29

different dose levels7–13, and two phase I paediatric studies were conducted after the publication of the30

results in adults. However, only a small amount of the knowledge obtained from the adult trials was used in31

the design and planning of the paediatric trials. Geoerger et al.14 used 80% of the dose recommended for32

adults as the starting dose and incremented this dose by steps of 25 mg/m2 to obtain the subset dose levels;33

however, these researchers provided no scientific justifications for these choices. Neither the available34

adult information nor expert opinions were used to parametrise the model-based dose-finding design.35

Jakacki et al.15 also conducted a phase I dose-finding trial for erlotinib in paediatric subjects and selected36

the starting dose level according to the bioavailability of the solution for injection. The authors did not37

describe the method used for the selection of the subset dose levels, and information from studies on38

the adult population was not used to build a more appropriate trial for the paediatric population. This39

motivating example highlights the need for the development of proper extrapolation or bridging methods40

that should be used when prior knowledge from the adult population is available.41

In the developmentof a dose-finding model for the paediatric population, difficulties regarding the42

evaluation of toxicity alone (except in oncology) have led to the use of a joint model for both toxicity43

and efficacy instead of a model that evaluates toxicity prior to efficacy. Several statistical methods are44
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available for the design of early stage phase I/II clinical trials. Among them, Bayesian methods, such as45

the EFFTOX design and the bivariate Continual Reassessment Method (bCRM), have been proposed16;17.46

Although initially used in oncology settings, these methods have also been used for studies of the paediatric47

population18. Additionally, Broglio et al.19 proposed a method in which adult and paediatric trials are48

performed simultaneously with dose-finding models for each population that share an identical slope but a49

different intercept. Doussau et al.6 reviewed the methods that could also be used in paediatrics, such as50

’3+3’, CRM with its modifications and EWOC.51

The use of an adaptive dose-finding method requires that three components be fixed prior to initiation of52

the trial:53

(1) Dose-range: Misspecification of the dose-range in a clinical trial can lead to inappropriate dose54

selection and invalidation of the trial. Because children have a specific metabolism, we proposed the55

establishment of a dose-range that is more suitable to the paediatric metabolism5. For that purpose, we56

proposed the estimation of paediatric PK parameters from adult PK data, which are often available long57

before data for the paediatric population are available, using extrapolation techniques, such as allometry58

and maturation.59

(2) Working model (WM) or initial guess of dose-toxicity and dose-efficacy relationships: Working60

models are usually selected based on information from experts. In some cases, a unique choice of WM61

can be misleading and result in the selection of an inappropriate dose. One approach for overcoming this62

issue is to use several WMs for toxicity and efficacy using the bCRM20;21 and to select the best model63

with based on the Watanabe-Akaike information criteria developed by Watanabe (WAIC)22;23.64

(3) Prior distribution of the model parameter(s) to be estimated: Although using standard non-informative65

priors is often advised, it is difficult to assess to what degree this choice is informative or non-informative.66

Moreover, it may be interesting to include information in the priors while controlling the informativeness67

in cases with a small effective sample size, particularly in paediatrics. Regarding the selection of priors,68

we considered a method developed by S. Morita24;25, which consists of evaluating the informativeness of69

a prior in terms of the effective sample size. The more informative a prior is, the more patients are needed70
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to compensate for it. In a paediatric setting, where the sample size is small, this scale is a strong asset for71

evaluating a chosen prior. However, if the chosen prior is too informative or misspecified compared with72

the paediatric reality, a non-informative alternative should be available. In this case, we have modified73

a method proposed by Lee et al. and Zhang et al.26;27 that introduced the concept of "adaptive-prior"74

into dose-finding studies. The idea is to be able to switch during the trial to a less informative prior if a75

misspecification in the prior choice is detected.76

The aim of this paper is to propose a unified approach for the design of a paediatric dose-finding clinical77

trial through the extrapolation and bridging of information gleamed from the adult population. We have78

gathered and modified various methods that have been developed in different fields to propose a unified79

approach. The novelty of our work consists of the proposal of extrapolation with maturation from adult PK80

into the definition of the dose-range (1) and of the use of adult information from several sources to better81

parameterise the dose-finding design (2)-(3) instead of leaving these decisions to arbitrary choices. In this82

work, several options are proposed for the selection of the dose-range, the WM and/or the parametrisation83

of the dose-finding design (Figure 1). Section 2 details the dose-finding model, illustrates the options for84

specifying the dose-range and describes the parametrisation of the design using adult information. The85

simulation settings and results are given in Sections 3 and 4. Finally, guidelines are proposed in Section 586

and, a discussion is provided in Section 6.87

2 Model and methods88

We considered the design of a phase I/II clinical trial in the paediatric population using the Bayesian bCRM89

as the dose allocation method. Section 2.1 presents the bCRM method and the dose allocation algorithm.90

The first step (1) consists of defining the doses to evaluate. We proposed three options for the selection of91

the dose-range using adult to paediatric extrapolation methods, which use different adjustments of the92

paediatric dose from the adult’s recommended dose: linear, related to weight with allometry, and related to93

physiological processes with maturation functions to account for maturation differences between adults94

and children. These three options are described in Section 2.2.1. Once the doses are defined, step (2)95
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consists of associating each dose with a given initial guess of the toxicity and efficacy probability, and96

these relationships are called "working models" (WMs). The selected doses are supposed to be within97

a desirable toxicity and efficacy interval to ensure that patients are not overtreated or undertreated. The98

WMs are constructed by gathering several prior sources of information from the adult population, such as99

pharmacokinetics, phase I trials, phase II trials, toxicity and clinical response. We proposed two options100

for the WMs: using only one WM, or using several WMs and selecting the optimal WM using automatic101

criteria. A description of the methods used to elaborate the WMs is given in Section 2.2.2. Finally, step102

(3) involves the selection of the dose-response parameter density of the priors used in the bCRM. We103

proposed two options for these priors: considering adult information or considering the case with the least104

information. These are described in Section 2.2.3, and a summary of this general framework is presented105

in Figure 1.106

[Figure 1 about here.]107

2.1 Bivariate Continual Reassessment Method (bCRM)108

In this general framework, we used the bivariate continual reassessment method (bCRM) as phase I/II109

dose-finding methods. This design proposes a joint model for both toxicity and efficacy17;28. The aim110

of this method is to identify the safe most successful dose (sMSD) which is the most successful dose111

under toxicity restriction. Let d1 ă d2 ă ... ă dK be the paediatric doses to be evaluated in the study,112

with K the number of discrete dose levels, and n the total number of patients to be recruited. Choice113

of doses is discussed in Section 2.2.1. Toxicity and efficacy are random binary variables (0,1) where114

Yj “ 1 denotes a toxicity for patient j ( j P 1, ¨ ¨ ¨ ,n) and Vj “ 1 denotes a positive response. The dose level115

X j is a random variable taking discrete values x j, where x j P td1, . . . ,dKu. The probability of toxicity at116

dose level X j “ x j is given by Rpx jq “ PrpYj “ 1|X j “ x jq, the probability of efficacy with no toxicity at117

dose level X j “ x j is given by Qpx jq “ PrpVj “ 1|X j “ x j,Yj “ 0q and the overall success is obtained by118

Ppdiq “ Qpdiqt1´Rpdiqu.119
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Following the under-parametrised model approximation proposed by O’Quigley et al.28, we have120

Rpdiq “ ψpdi,aq “ α
exppaq
i and Qpdiq “ φpdi,bq “ β

exppbq
i where Rpdiq and Qpdiq are monotonic and121

increasing with dose, a PR (resp. b PR). Parameters 0ă α1 ă . . .ă αK ă 1 (resp. 0ă β1 ă . . .ă βK ă 1)122

correspond to the working models (WM) to be chosen by the user (see Section 2.2.2). The joint probability123

density function is defined by:124

f py,v ; di,a,bq “ ψpdi,aqyp1´ψpdi,aqqp1´yq
φpdi,bqvp1´φpdi,bqqp1´vq. (1)

Under Bayesian inference, the prior distributions for a and b are respectively denoted by πpaq and πpbq.125

Choice of the priors is discussed in Section 2.2.3.126

The dose allocation rule is the following. Let us denote â and b̂ the estimated means of the posterior127

distribution of a given WM for the current available data of toxicity and efficacy already observed with the128

included patients. The estimated probability of toxicity is R̂pdiq –ψpdi, âq and the efficacy Q̂pdiq – φpdi, b̂q.129

Finally, the overall probability of success is given by P̂pdiq “ p1´ R̂pdiqqQ̂pdiq. The recommended dose130

for the new next cohort of patients is the sMSD d˚ that is the dose maximising P̂pd1q, P̂pd2q, ..., P̂pdKq131

under a constraint of toxicity target, defined with parameter τ, such that R̂pd˚q ď τ.132

In practice: For escalation, dose skipping was allowed only on doses already tested. A start-up phase was133

implemented to gather data before estimating the model parameters. The first cohort of three patients were134

treated at a specified dose x0. If no toxicity was observed, a new cohort of three patients would be included135

at the direct higher dose. This process was repeated until at least a toxicity was observed or all doses136

were tested. We then moved to the dose-finding algorithm using bCRM. For safety reason, a stopping-rule137

was added to our algorithm, that is, if Prpψpd1,aq ą τq ą 0.9, the trial was terminated. At the opposite,138

a second stopping rule was defined in case of non-efficacy. For a threshold of minimum efficacy τ1, if139

PrpφpdK ,bq ă τ1q ą 0.9 the trial was terminated.140
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2.2 Extrapolation from adult data to paediatrics141

Similarly to any model-based phase I/II dose-finding method, the design can be sensitive to three settings:142

(1) the choice of dose-range, (2) the WMs and (3) the prior distributions. In our proposed method, we143

suggest that these settings be based on extrapolations from the adult to paediatric population.144

2.2.1 Specification of a dose-range Paediatric data are often rare, and paediatric doses are usually145

selected based on existing recommendations for adult doses. We proposed three options for the selection146

of paediatric doses: linear and allometric extrapolation from adult doses, which are the current practices,147

and use of maturation, which is a novel approach in this context.148

Option linear adjustment (LA). Using the adult dose dad,i (i “ 1, ...,Kq, weight Wch of children and149

average weight Wad of adults, the linear adjustment (LA) option consists of defining the paediatric dose di150

as151

di “ dad,iˆ
Wch

Wad
. (2)

Option allometry adjustment (AA). This option introduces a scale parameter describing the rate at152

which the weight increases, which is usually equal to 0.755:153

di “ dad,iˆ

ˆ

Wch

Wad

˙0.75

. (3)

Option maturation adjustment (MA). The use of maturation functions allows the adjustments to better154

reflect the paediatric physiology4. We took advantage of this allometry-maturation approach29 to propose155

a paediatric dose-range calculation, denoted maturation adjustment (MA). Our method is based on the156

available adult PK knowledge. For a given adult dose dad,i , the corresponding children’s dose di was157

defined such that the same exposure to the dose was achieved. This exposure can be quantified by the AUC158

or Cmax, which depends on PK parameters (typically clearance). Let Clch (resp. Clad) be the paediatric159

(resp. adult) clearance, and AUCpd,Clq “ d{Cl be the corresponding AUC. The goal of achieving equal160
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exposure in adults and children leads to the following definition for the paediatric dose di “ dad,iˆ
Clch
Clad

.161

If the adult PK clearance is available from previously published PK studies, the paediatric clearance is162

generally unknown but might be extrapolated through allometry and maturation functions. The resulting163

general equation defining the evolution of clearance in children according to age and weight for a specific164

drug is165

Clch

Fch
“Cladˆ

ÿ

h

%CYPh MATCYPhpAGEq
loooooooooooooooomoooooooooooooooon

Clearance maturation

ˆ
F

Fch
loomoon

Bioavailability maturation

ˆ

ˆ

Wch

Wad

˙0.75

looooomooooon

Allometry

(4)

Using allometry to account for size, the bioavailability and clearance sections of the equation account166

for the maturation process in the paediatric population4;29. The maturation of clearance depends on167

cytochromes (CYPs), which are responsible for the hepatic elimination process. In Eq. 4, %CYPh is the168

proportion of the hepatic metabolism for hepatic CYP and MATCYPh , which is the maturation function169

related to age. The maturation functions for each CYP can be developed empirically or obtained from170

the literature (in particular, see Johnson et al.5). Bioavailability is defined as the fraction of the dose171

(bioavailable fraction) that reaches the systemic circulation after oral administration. Indeed, only a172

fraction of the dose is absorbed at the gut level, and this fraction is defined as fabs. Before reaching173

the systemic circulation, the drug undergo a first pass effect in the gut and subsequently a second pass174

effect in the liver due to the presence of CYPs. These pass effects are characterised by the gut extraction175

coefficient EG and the hepatic extraction coefficient EH , respectively. The bioavailability in adults equals176

F “ fabsp1´EGqp1´EHq. In the paediatric population, the amount of CYPs in the gut and liver might not177

have reached the adult amount, and this process depends on age. Therefore, the bioavailability in children178

Fch can be expressed as179

Fch “ fabsp1´EGˆ
ÿ

g
%CYPg MATCYPgpAGEqqp1´EH

ÿ

h

%CYPh MATCYPhpAGEqq (5)
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where %CYPg and MATCYPg are similar to the above-described functions but applied to the gut. Using180

Clch
Clad

, this approach yields the following paediatric dose:181

di “ dad,iˆ
ÿ

h

%CYPh MATCYPhpAGEqˆ
F

Fch
ˆ

ˆ

Wch

Wad

˙0.75

(6)

182

The three above-described options were compared by building a dose-range for LA, AA and MA. The183

adult average weight Wad was considered to equal 70 kg, and the average paediatric weight is not184

properly defined. A population of N “ 100,000 patients aged 0 to 21 years was then simulated using P3M185

software30;31 and for each simulated subject, the individual clearance Clch, j ( j “ 1, . . . ,N) was calculated.186

In addition, for each option (LA, AA and MA) and for all individuals j “ 1, . . . ,N, a set of doses di, j,187

i “ 1, . . . ,K, expressed in mg/kg, were computed. For a given age group, the ith dose was obtained by188

averaging the mean across all patients belonging to that age group and rounding up to the closest multiple189

of 5 (due to practice constraints).190

2.2.2 Choice of working models using adult information After selecting the dose-range for the study,191

the next step is to parametrise the model-based dose-finding method, i.e., the bCRM. In this method, the192

WMs αi and βi, i “ 1, ...,K have to be chosen carefully. We proposed two options: defining a unique193

WM (WM1-bCRM), and defining several WMs (WAIC-bCRM) and selecting the best one using an194

automatic criteria. The methodology used to build a WM for both options follows three stages. First, the195

toxicity probabilities are calculated based on adult PK information. We denoted γ
p1q
` as the corresponding196

probability of toxicity for the adult doses dad,`, ` “ 1, . . . ,L tested in clinical trials. Assuming equal197

exposure in adults and children, this approach yielded estimated toxicities γ
p1q
` for the children’s doses198

d`, `“ 1, . . . ,L. Note that these doses are not necessarily concordant with the dose-range in the paediatric199

population. Indeed, the doses tested in clinical trials dad,` may be different from the adult doses selected to200

establish the paediatric dose-range. Second, information from toxicity studies (phase I and I/II clinical201

trials) is gathered using a retrospective design of pooled data32. Details on this method can be found in202
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Appendix A. Through simulation and a power model with re-estimated parameters, the results were pooled203

using a down-weighting method, yielding a second estimate γ
p2q
` of the probabilities of toxicities for the204

adult doses dad,`, or the equivalent children’s doses d` was available. The third step consists of defining a205

mixture estimator of the toxicity probabilities γ
pT q
` “ λ`γ

p1q
` `p1´λ`qγ

p2q
` , where λ` is a weight selected206

through a data-driven approach as defined by Liu et al.20 using data collected from adult clinical trials.207

The weights were defined as λ` “ LR`{pLR``1q where LR` is the estimated likelihood ratio between the208

two estimated models for a dose level `:209

LR` “
γ
p1q n`,toxp1´ γp1qqpn`´n`,toxq

γ
p2q n`,toxp1´ γp2qqpn`´n`,toxq

where n`,tox is the overall number of toxicities and n` is the number of patients given dose `. Finally,210

if the doses d`, `“ 1, . . . ,L obtained through adult information did not match the paediatric dose-range211

td1, . . . ,dKu found as described in the previous section, a logit curve is fit to pd`,γ
pT q
` q to obtain a curve212

ηpdq of the probability of toxicity, which allows the calculation of the probability of toxicity for the213

paediatric doses di.214

We now describe in detail the two proposed options.215

Option unique WM (WM1-bCRM). We proposed the use of a unique WM extracted from the available216

adult information:217

WM1 : αi “ ηpdiq for i“ 1, ...,K (7)

Option WAIC (WAIC-bCRM). To reduce the arbitrariness of a unique choice of WM αi, i“ 1, ...,K, we218

proposed the definition of several WMs followed by model selection. Following Liu et al., two additional219

WMs were built from the above-mentioned WM obtained as follows:220

WM2 : αi “ ηpdi`1q for i“ 1, ...,K´1 and αK “
ηpdKq`1

2
(8)

WM3 : α1 “
ηpd1q

2
and αi “ ηpdi´1q for i“ 2, ...,K
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The bCRM was performed for the three working models, and model selection was based on the Watanabe-221

Akaike information criteria (WAIC) 22;23 was applied. This approach selected the WM that best fit the222

data and returned an estimate of parameters a and b for each dose i.223

2.2.3 Specification of prior density In addition to the WMs, when using Bayesian model-based methods,224

the prior density of the dose-response model needs to be specified. In our framework, the prior distributions225

of the dose-toxicity model parameters were selected using two different parametrisations based on either226

(i) the adult information (option ESS, APESS-bCRM) or (ii) least information (option Least informative227

prior, APLIP-bCRM). In the first option, due to the sparsity of the data, it appears appropriate to attempt to228

incorporate observations into the prior. However, the information introduced by the prior distributions to229

the posterior should not overtake the information introduced by the likelihood distribution.230

Option ESS (APESS-bCRM). Let πESSpaq be the prior normal distribution N pµa,σ
2
a,ESSq. The variance231

σ2
a,ESS was fixed such that the information introduced by the prior would be equivalent to the information232

introduced by a fixed number of patients, which was calibrated to control the amount of information24.233

This approach is based on the effective sample size (ESS): the higher the ESS, the more informative234

the prior. The variable m was set to a fixed hypothetical number of patients and Ym “ pY1, ...,Ymq is the235

associated pseudo-data vector. The likelihood of Ym is fmpYm|aq “
śm

i“1 f pYi;aq, where f pYi;aq is the236

marginal likelihood obtained after integrating the likelihood of Eq. 1 with respect to the efficacy and the237

dose. Then, a non-informative prior q0paq is introduced with the same expectation µa and a very large238

variance. The ESS is defined as the sample size m such that the posterior qmpaq9 q0paqˆ fmpYm|aq is239

very close to πESSpaq . The proximity between qm and πESSpaq is evaluated by the distance between240

the second derivatives of πESSpaq and qm with respect to a, Iπpa,µa,σ
2
a,ESSq “

B2

Ba2 logπESSpaq and241

Iqmpa,m,µa,σ
2
a,ESSq “

ş

B2

Ba2 logqmpaqd fmpYm|aq:242

δpm,µa,σ
2
a,ESSq “

ˇ

ˇIπpā,µa,σ
2
a,ESSq´ Iqmpā,m,µa,σ

2
a,ESSq

ˇ

ˇ (9)
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where ā is the empirical mean of a, which is fixed using the pooling method32 previously introduced243

in the specification of the WMs. For an ESS m˚, parameters pµa,σ
2
a,ESSq were chosen such that244

minm δpm,µa,σ
2
a,ESSq “ m˚. Details of the δ expression can be found in Appendix B.245

246

Option Least informative prior (APLIP-bCRM). Another method proposed by Zhang et al.27 considers247

only information from the dose-toxicity model. Let πLIPpaq follow N pµa,σ
2
a,LIPq. The variance σ2

a,LIP248

was defined such that all doses had the same probability of being the MTD. The parameter space of a249

was divided into K intervals I1 “ ra0,a1s,I2 “ ra1,a2s, ...,Ii “ rai´1,ais, ...,IK “ raK´1,aKs, where250

a0 and aK were the minimal and maximal possible values of a (resp. defined with ψpd1,a0q “ τ`0.05251

and ψpdK ,aKq “ τ´0.05 ) and a1, ...,aK´1 were the solutions of ψpdi,aiq`ψpdi`1,aiq “ 2τ (value such252

that dose i was the MTD). The method theoretically verifies that parameter a had the same chances of253

belonging to the K intervals I1,I2, ...,IK . Therefore, σ2
a is calculated such that the empirical variance of254

the K probabilities of toxicity matches the variance of a discrete uniform distribution pK2´1q{1227.255

256

However, the resulting variances σ2
a,ESS and σ2

a,LIP may be too narrow, leading to difficulties in reaching257

the extremes in the dose-range (minimum and/or maximum doses). Both options were combined with258

the adaptive prior method, which was introduced by Zhang et al.26;27and was used when the probability259

of the MTD being the smallest or the highest dose was high. A second prior πNIPpaq „ N pµa,σ
2
a,NIP),260

which is considered a non-informative prior, was associated with a higher variance σ2
a,NIP defined from261

the former intervals I1,I2, ...,IK such that σ2
a,NIP verified Prpa PI1YIKq “ 0.80.262

263

The decision to switch from πESSpaq to πNIPpaq (option ESS; APESS-bCRM) or from πLIPpaq to264

πNIPpaq (option least informative prior; APLIP-bCRM) was performed using the Bayes factor model265

selection criterion. Three models were defined, each with a uniform distribution: M1 : a PI1; M2 : a P266

I2Y ...YIK´1 and M3 : a PIK with a uniform distribution within each model. This gave:267
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PrpYm|M1q “

ż a1

a0

K
ź

i“1

ψpdi,aqyip1´ψpdi,aqq1´yi
1

a1´a0
da

for model M1 and similar equations can be derived for PrpYm|M2q and PrpYm|M3q. The Bayes factor were268

calculated as follows:269

PrpM1|Ymq “
PrpM1qPrpYm|M1q

PrpM1qPrpYm|M1q`PrpM2qPrpYm|M2q`PrpM3qPrpYm|M3q

where PrpM1q “ PrpM2q “ PrpM3q “ 1{3, and similar equations can be obtained for PrpM2|Ymq and270

PrpM3|Ymq. Using the rule proposed by Zhang et al.27, the following criteria was used: If PrpM3|Ymq ą271

0.61 (Jeffrey’s rule), there was substantial evidence that model M3 was more likely to be true, and a change272

from prior πESSpaq or πLIPpaq to πNIPpaq was thus made.273

In practice, a comparison was performed between APESS-bCRM which used the bCRM with the adaptive274

prior from πESSpaq to πNIPpaq, and the APLIP-bCRM which used the bCRM adaptive prior from πLIPpaq275

to πNIPpaq, respectively.276

3 Simulations277

The aim of the simulation study was to evaluate and compare the performances of each dose-range and278

model setting proposition, in terms of selected dose. Based on the motivating illustration, we proposed to279

plan, conduct and analyse a hypothetical phase I/II dose-finding clinical trial for erlotinib in the paediatric280

population. We used PK parameters as well as dose-finding toxicity and efficacy clinical trial data for281

erlotinib obtained from the adult population for extrapolation and bridging.282

(1) Specification of the dose-range: We hypothesised that the observed AUC in adults was similar in283

the paediatric population for the three dose-range adjustments LA, AA and MA (linear, allometric and284
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maturation adjustments). In previous adult dose-finding studies, the doses ranged from 100 mg to 300 mg285

and the MTD was 150 mg 7;8. Based on these publications, the adult doses 100 mg, 150 mg, 200 mg,286

250 mg and 300 mg were chosen as references for the calculation of paediatric doses. The corresponding287

doses for children were extrapolated using the adult PK data published by Lu et al.33, which describe288

the erlotinib PK as a one-compartment model with a clearance of 3.95 L/h. The maturation functions for289

erlotinib used in the MA option can be found in Appendix C. The dose-ranges associated with each option290

(LA, AA and MA) for patients aged 2 to 5 years were generated according to Eqs. 2, 3 and 6, respectively.291

The resulting dose-range for each option, which were rounded up to the nearest 5 mg/kg, are given in292

Table 1.293

(2) Choice of WMs using adult information: A WM needed to be specified for the initial dose-toxicity294

relationships associated with each dose-range adjustment. These WMs were elaborated as described in295

the Methods section with a mixture of PK, toxicity and efficacy data from adults. In the erlotinib setting,296

the mixture was constructed using toxicity data and PK data from early-phase clinical trials in adults297

(Figure 2). First, the toxicities associated with doses for children γ
p1q
` , `“ 1, ...,4 were extrapolated using298

PK data published by Thomas et al. under the assumption that the same exposure was achieved in the299

adult and paediatric populations (AUC relationship with dose and clearance; Table 2) 34. Second, using300

the pooled data analysis proposed by Zohar et al. and based on adult toxicity data from seven clinical301

trial studies on erlotinib, the second estimate γ
p2q
` was computed32 for each dose ` (computation details302

are given in the Appendix A). These clinical studies have reported that different dose levels of erlotinib303

induce toxicity, defined as skin rash of grade 3 or more in adults. This information and the estimates of304

γ
p2q
` , `“ 1, ...,4 are summarized in Table 2. The resulting estimated mixture γ

pT q
` associated with each dose305

` can also be found in Table 2. Because the dose-range obtained with the different approaches (LA, AA or306

MA) overlap and might correspond to different doses within the adult range, a logistic function was fit to307

the mixture. The resulting logit function is given by ηpdq “ logit´1
´

´3.78`0.06 d
Clch

¯

, where Clch is308

the average clearance across in 2 to 5 year old children. Given the dose-ranges generated as described309

in the previous section and ηpdq, the first working model (WM1), computed with Eq. 7 was obtained by310
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reading the toxicities associated with each dose from the curve (Table 1). Then, WM2 and WM3 were311

computed using Eq. 8.312

For efficacy, data from adults treated for glioblastoma were considered because efficacy is strongly related313

to the specific disease. In this setting, efficacy was defined as remission or stability regarding tumour314

size according to RECIST criteria. Because most of the data were associated with one dose, a method315

developed by Chung et al. was used to obtain the WM. The percentage of efficacy over all available316

published data (Table 2) was 20%. We obtained the WM for efficacy reported in Table 1 using the function317

getprior(halfwidth “ 0.05, target “ 0.2, nu “2, nblevels = 5) available in the dfcrm package in R35.318

(3) Specification of prior densities: The prior densities for dose toxicity and dose efficacy parameters319

πESSpaq,πLIPpaq,πNIPpaq and πpbq are given in Table 1.320

With the ESS option, µa and σ2
a,ESS, the pooling method employed for the WM specification32 with a321

power model, resulting in an estimate of the empirical mean ā“ logp0.88q; thus, Erexppaqs “ eµa`σ2
a,ESS{2.322

The expected chosen sample size was m˚ “ 5 patients and σ2
a,ESS was then computed with Eq. 9.323

Then, σ2
a,LIP was calculated with the least informative prior option, and σ2

a,NIP was calculated using K “ 5324

intervals by minimising Prpa PI1YIKq´0.80“ 0.325

For efficacy, prior πpbq was selected as a non-informative normal distribution N p0,1.34q.326

The performances of our unified approach were investigated through a simulation study under several327

scenarios presented in Figure 3 for the three dose-ranges options (LA, AA, and MA). Extrapolation from328

adults yielded an initial estimate of 48 mg/kg for the MTD associated with a toxicity target of 0.25. We329

aimed to evaluate how this choice influences the performance of our proposed methods by selecting330

scenarios in which the MTD and sMSD were different. Scenarios 1, 2 and 3 were based on the results331

of two real paediatric trials conducted by Geoerger et al.14 and Jakacki et al15. For all three scenarios,332

we considered the same MTD that was found in each trial and the efficacy was simulated. In scenarios333

1 and 2, the MTD (83 mg/kg) is equal to that reported by Geoerger et al. and is far from the efficacy334

extrapolated from adult information (48 mg/kg). In scenario 1, the sMSD was similar to the MTD, whereas335

in scenario 2, the sMSD was 65 mg/kg. In scenario 3, the MTD and the sMSD are equals to those reported336
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by Jakacki et al. (55 mg/kg) and close to the value extrapolated from adult information. Finally, we added337

three scenarios: in scenario 4, the MTD (65 mg/kg) was equivalent to the MSD; in scenario 5, the MSD338

was higher than the MTD (45 mg/kg); and in scenario 6, the sMSD is similar to the MTD (70 mg/kg).339

For each scenario, we performed 1,000 simulated phase I/II trials with a maximal sample size of N “ 50340

patients. Because maturation is known to differ among different paediatric age subgroups, we selected a341

paediatric population with an age range of 2 to 5 years. We also chose a toxicity target of τ“ 0.25 and a342

minimum efficacy target of τ1 “ 0.20 (a realistic target for glioblastoma).343

For each approach, the percentage of correct dose selection (PCS) of the sMSD was computed. We344

also evaluated the percentage of acceptable doses (ADs) that includes the closest dose to the sMSD345

for each approach; if this dose existed, we evaluated the next lower dose for which the probability of346

success P was included in rPpsMSDq´ 0.05; PpsMSDqs. For the three dose-range options ( LA, AA347

and MA), we evaluated the methods as follows: (i) option unique WM (WM1-bCRM) compared with348

WAIC (WAIC-bCRM) using a non-informative prior (N p0,1.34q) for parameter a of the dose-toxicity349

relationship, and (ii) adaptive prior under option ESS (APESS-bCRM) compared with adaptive prior under350

option Least informative prior (APLIP-bCRM).351

[Table 1 about here.]352

[Figure 2 about here.]353

[Figure 3 about here.]354

[Table 2 about here.]355

4 Results356

Based on the toxicity results reported by Geoerger et al.14, scenarios 1 and 2 shared the same MTD of357

83 mg/kg. However, the sMSDs differed depending on the efficacy differed with 83 mg/kg for scenario 1358

and 65 mg/kg for scenario 2 (Figure 3).359
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The LA, for a dose of 83 mg/kg dose was out of range; thus, for scenario 1, the last dose (70 mg/kg) was360

the only option for the recommended dose. The obtained PCSs for all options was greater than 70%, and361

in approximately 10% of cases, the trials was stopped due to inefficiency (Table 3). In scenario 2, the exact362

dose of 65 mg/kg dose was not within the dose-range, and the closest dose was 70 mg/kg. As a result,363

the model hesitated between doses of 55 mg/kg and 70 mg/kg. In this case, the adaptive prior and WAIC364

options recommended doses between these two values for approximately half of the trials. Using the AA365

option, the closest corresponding dose to the sMSD was 80 mg/kg in scenario 1, and the PCS ranged from366

45.2% to 59.1% for all methods. However, because the probability of success for the doses 65 mg/kg and367

80 mg/kg doses in scenario 1 (the green area under the curve of Ppdq) were very close, both doses were368

considered admissible. In this case, the percentage of AD was greater than 94%. In scenario 2, the sMSD369

was 65 mg/kg, and the PCS was greater than 90% for all options. With the MA, the sMSD was not within370

the dose-range; thus, the model hesitated between two doses with average percentages of AD equal to371

90% for scenario 1 and 50% for scenario 2.372

In scenario 3, the sMSD was equal to the MTD (i.e., the 54 mg/kg dose). In the case of AA, the closest373

dose to the MTD was 50 mg/kg, and the PCSs for all options were greater than 71%.374

In scenario 4, the sMSD and MTD were similar (the 65 mg/kg dose). In the case of AA, the dose was within375

the dose-range, and the PCSs of WAIC-bCRM and WM1-bCRM were 70.5% and 75.2%, respectively.376

However, the APESS-bCRM gave a lower PCS (63.9%) compared with that obtained with the APLIP-bCRM377

(73.6%). In scenario 5, the recommended dose was 45 mg/kg, which is within the dose-range obtained378

with LA and MA. In this case, all options gave high PCS values greater than 60%. If the dose was not379

within the range, as was the case with AA, the PCS decreased an average of 10%. In scenario 6, the380

recommended dose was 70 mg/kg. Even if the dose was only in the ranges obtained with the LA and MA381

options, high PCS values (above 90%) were obtained for all dose-range options.382

The comparison of the performances of APESS-CRM and APLIP-CRM, revealed similar performances383

over all dose-range options and scenarios. However, WM1-bCRM and WAIC-bCRM generally provided384

better recommendations in terms of the admissible dose.385
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In the case of a too-toxic scenario (sMSD of 20 mg/kg, data not shown), the stopping rules allowed the386

trial to be stopped if a toxic reaction was observed in 90% of the cases, regardless of the method.387

In general, if the sMSD was within the dose-range, the PCS and AD percentages were high, whereas if the388

dose was close but not within the range, a lower PCS percentage and a rather high AD percentage were389

obtained.390

[Table 3 about here.]391

5 Guidelines392

Based on the results of our simulations, we suggest the following settings for the proposed approach:393

1. For dose-range selection: use either options AA or MA.394

2. For the WM choice: use option WAIC-bCRM because our results indicates that it is better to use395

several WMs in the model selection process than a unique WM.396

3. For prior distribution: if the quantity and quality of the adult information is high, use the APESS-397

bCRM option; however, if there is some doubt regarding the available adult information, use the398

APLIP-bCRM option.399

6 Discussion400

In this work, we present a unified approach for planning, conducting and analysing paediatric dose-finding401

clinical trials. This unified approach is based on several possible methods that aim to improve the choices402

made in the design of paediatric trials. For the analysis of the paediatric population, for which only a small403

number of clinical trials have been conducted and which typically includes a small number of patients, the404

bridging of information from the adult population (when possible) to the paediatric population, particularly405

using PK extrapolation tools such as allometry and maturation functions, is highly relevant.406
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We based our unified method on the bCRM, which jointly models toxicity and efficacy with a dose-finding407

allocation rule because in paediatric populations, safety takes priority over efficacy. Our unified approach408

includes all stages in the dose-finding process, ranging from dose-range selection to the choice of prior409

distributions for dose responses.410

The first step of our work proposed three different dose-range adjustments (i.e., linear, allometry or411

maturation adjustment (LA, AA or MA)). The resulting dose-ranges overlapped, and a wider range was412

obtained with AA. In this study, we used the specific context of erlotinib, a drug that has been investigated413

in both adult and paediatric populations for cancer treatment. Both dose-finding and PK studies in adults414

and children are available. We thus used the available adult information to plan a paediatric trial using the415

proposed extrapolation and bridging methods and used the children’s dose-finding data to build scenarios416

for the simulation study, which allowed us to evaluate our design choices.417

Our extrapolation and bridging approach used data from more than 580 adult observations. We based three418

of our scenarios for the simulation study on the toxicity observations reported by Geoerger et al.14 and419

Jakacki et al.15, who performed trials that evaluated 16 and 19 children, respectively. Thus, the estimation420

of the MTD or recommended dose in each trial was associated with high variability due to the small421

sample size. In this case, it is difficult to assess how far from reality is our model from the true paediatric422

population. In general, our results show that in cases in which the MTD and sMSD are far from our initial423

guess (as in scenarios 1 and 2), our proposed dose-finding designs based on either model selection criteria424

or adaptive priors performed well. A similar finding was obtained for scenario 3, in which the MTD and425

the sMSD were not far from our initial guess. These results are in favour of the implemented methods426

because misspecified initial choices do not impact the performance of our proposition.427

To date, there is no clear recommendation for the selection of the dose-range that should be used in428

paediatric dose-finding clinical trials. Allometric scaling was initially introduced by West et al.36 for429

identifying measurements that work across and within species. Several studies have suggested that the430

allometric coefficient may be different in early childhood36;37. The discrepancy between size-based scaling431
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and effective changes in paediatric patients, particularly neonates and infants, can also be explained by432

differences in physiological processes due to maturation.433

The second step of our work was to propose dose-finding design choices for the dose allocation process434

using adult clinical trial observations. Because not all of the calculated doses were used for adults, we435

needed to build a logit function based on mixture estimates in adults. For this purpose, we assumed that436

the exposure was similar in both adults and children. Adult pharmacokinetics combined with maturation437

served as the first source of information for the toxicity probability, which was defined in terms of PK438

(AUC or Cmax). A direct curve was reported by Thomas et al.34. The second source of information439

was toxicity from early-phase clinical trials in adults. This method allowed us to propose tools for the440

establishment of the WMs and for the prior distributions of dose-toxicity parameters.441

For simplicity reasons, we maintained the same scenarios for all dose-ranges, which led to different442

sMSDs. In cases in which the model hesitated between two doses, a lower PCS was obtained primarily443

because the real dose was not exactly within the dose-range. Other scenario choices could have favoured444

one adjustment method over the other, although this situation occured due to arbitrary choices. Other445

methods that jointly model toxicity and efficacy for dose-finding, such as EFFTOX, can also benefit from446

our proposed approach, although some may only need to use part of our model16. In our case, power447

function modelling of the dose-toxicity or dose-efficacy curves was selected for simplicity. However,448

several other models, such as the logit model, could easily be used in our setting.449

In conclusion, the bridging and extrapolation of adult data for the design of paediatric dose-finding clinical450

trials appeard to improve the results of these studies. Our proposition may prove helpful for physicians451

and statisticians who wish to plan and conduct early-phase trials in this population. We attempted to unify452

and modify existing methods to obtain a clear stream of decision-making regarding several crucial choices453

that need to be made prior to initiation of a trial. We believe that this approach will improve and allow454

better use of the available information sources for the planning of new trials.455
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A Appendix - Pooling method563

The retrospective pooled data method evaluates retrospectively data from several clinical trials. It aims564

at estimating the parameter of a toxicity model from several models. Let nip jq “
ř j

l“11pxl “ diq be565

the number of observations at dose level di after j patients and tip jq “
ř j

l“1 yl1pxl “ diq the number of566

toxicities observed at dose level di among the first j patients. The following approach allows to compute567

an estimate of the parameter a:568

1. First, gather the number of observed DLTs at each dose level ti (i “ 1, . . . ,k) and the number of569

patients included at each dose level, ni, from all available clinical trials.570

2. Then, compute the empirical probability of toxicity associated with each dose level by dividing ti by571

ni.572

3. For each dose i, after n patients, define a weight wnpdiq. It is calculated by a simulation study based573

on a model of interest and marginal frequencies provided by observations. To calculate these weights,574

we simulate CRM studies of size n under the scenario generated by the empirical probability of575

toxicities. The weights wnpdiq are the percentages of the total allocation for each dose level di.576

4. Estimate â, the estimate of parameter a, by solving

Wnpaq “
k
ÿ

i“1

wnpdiqUinpaq “ 0

and

Uinpaq “ Htnipnqu
„

tipnq
nipnq

ψ1

ψ
pdi,aq`

"

1´
tipnq
nipnq

*

ˆ
´ψ1

1´ψ
pdi,aq



i“ 1, . . . ,k

where the coefficient Hpsq “ 1ps‰ 0q, i.e., a function taking the value 1 when s is not equal to 0, and577

zero otherwise, and, in order to cover all cases, we use the convention that 0/0 is equal to 1. Uinpaq578

can be interpreted as a score representing the weighted average across the dose level. This is the579
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average of some function of the dose toxicity working model for the patients experiencing toxicity580

and an average of a similar function of the dose toxicity working model for the non-toxicities.581

5. An estimate for the probability of toxicity at each of the available dose levels i can be computed582

with ψpdi, âq.583

In the present paper, for the adult doses of pd1,d2,d3,d4q “ (100 mg, 150 mg, 200 mg and 250 mg) with584

a power model ψpdi,aq “ αa
i we obtained the observed toxicty probabilities ti{ni of p0,0.37,0.11,0.50q585

respectively, the weights wi p0.02,0.31,0.31,0.36q, which lead to the resulting estimate of â“ 0.88 and586

the following estimates of the probability of toxicity p0.07,0.19,0.35,0.49q.587

B Appendix - Prior specification588

We defined q0paq as a normal N pµa,cσ2
aq where c“ 10,000. We first calculated Iqm :589

qmpaq 9
1

a

2πcσ2
a

e
´ 1

2cσ2a
pa´µaq

2

ˆ

m
ź

j“1

ψpa,x jq
Y jp1´ψpa,x jqq

p1´Y jq
590

For the jth patient receving dose x j, let rx js “ 1, ...,K the number giving the corresponding dose subscript.591

We have the derivative and second derivative:592

Blogqm
Ba paq “ ´

pa´µaq

cσ2
a

` logpαrx jsq

m
ÿ

j“1

¨

˝Yj exppaq´p1´Yjq
exppaqαexppaq

rx js

1´α
exppaq
rx js

˛

‚

B2logqm
Ba2 paq “ ´

1
cσ2

a
` logpαrx jsqexppaq

m
ÿ

j“1

¨

˚

˝

Yj´p1´Yjq
α

exppaq
rx js

´

1` exppaq logpαrx jsq´α
exppaq
rx js

¯

´

1´α
exppaq
rx js

¯2

˛

‹

‚

593

Therefore, we had594
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Iqmpa,m,µa,σ
2
aq “ ´

1
cσ2

a
`

ż

Ym

ż

Xm

m
ÿ

j“1

logpαrx jsqexppaq

¨

˚

˝

Yj´p1´Yjq
α

exppaq
rx js

´

1` exppaq logpαrx jsq´α
exppaq
rx js

¯

´

1´α
exppaq
rx js

¯2

˛

‹

‚

f pYm|XmqgpXmqdYmdXm

595

where f is the marginal distribution of Ym|Xm and g the distribution of Xm. We calculated Iπpaq “ ´ 1
σ2

a
596

and obtained δpm,µa,σ
2
aq “

ˇ

ˇIπpā,µa,σ
2
aq´ Iqmpā,m,µa,σ

2
aq
ˇ

ˇ.597

Since δ was non-computable, due to the dependency of Ym and Xm, the criterion δ was calculated using598

Monte-Carlo simulations. In order to calculate pµa,σ
2
aq, we computed the ESS for several value of pµa,σ

2
aq599

and we chose pµa,σ
2
aq such that minmpδpm,µa,σ

2
aq “ m˚q.600

C Appendix - Specification of clearance for erlotinib in children601

Erlotinib is administered as tablets. It is partly absorbed by the enterocyte cells. Before reaching the602

portal vein, a part of erlotinib is metabolised by the cytochrome CYP3A4 through the gut wall and603

the hepatic barrier. The bioavailability F in adults is 60% with no food intake and 100% otherwise.604

However, due to ingestion problems, erlotinib is often given with no food intake. We therefore considered605

a 60% bioavailability. Once in the blood stream, erlotinib bounds to albumin very strongly. The unbound606

fraction of drug in plasma fu is 0.05. Erlotinib elimination is mainly hepatic, with a very small renal607

elimination (about 9%). We neglected that proportion for the maturation process. The cytochrome CYP3A4608

is responsible for about 70% of erlotinib elimination while CYP1A2 is responsible for the other 30%39.609

The adult apparent clearance Cl{F is 3.95 L/h. We assimilated the global clearance to the hepatic clearance610

ClH . Therefore, we can deduce the hepatic extraction ratio with the hepatic plasmatic flow Qhep. The611

hepatic blood flow is 90 L/h. Correcting by the hematocrit, we obtained Q “ 40.5 L/h, as reported in612

Table 4 and we had EH “
ClH
Qhep

“
Cl{FˆF

Qhep
“ 0.058. Considering the hepatic extraction ratio and the fact613

that CYP1A2, responsible for 30% of the clearance, are not present in the gut wall, we considered a gut614

wall extraction ration null Eg “ 0. We then calculated the fraction absorbed fabs “
F

1´EH
“ 0.64. Adult615
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information gathered in Table 4 were used in the computation of paediatric individual clearance. Based on616

Eq. 5, we have617

Fch “ fabsp1´EGˆMATCY P3A4pAGEqqp1´EH ˆp0.70 MATCY P3A4pAGEq`0.30 MATCY P1A2pAGEqqq

with the maturation function characterised by T. Johnson40 given by MATCY P3A4pAGEq “ AGE0.83

0.31`AGE0.83618

and MATCY P1A2pAGEq “ AGE1.41

1.13`AGE1.41 . The heapatic clearance Clch is related to CYP3A4 and CYP1A2,619

which vary with age up to the adults values. As a results, Eq. 4 of the paediatric clearance becomes for620

erlotinib:621

Clch

Fch
“Clˆp0.70 MATCY P3A4`0.30 MATCY P1A2q

F
Fch
ˆ

ˆ

Wch

Wad

˙0.75

622

[Table 4 about here.]623
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Linear Adjustment - LA Allometry Adjustment - AA Maturation Adjustment - MA
Doses (mg/kg) 25 35 45 55 70 35 50 65 80 100 30 45 55 70 85

WMs for toxicity WM1 0.07 0.13 0.21 0.33 0.55 0.13 0.27 0.48 0.70 0.88 0.10 0.21 0.33 0.55 0.76
WM2 0.13 0.21 0.33 0.55 0.78 0.27 0.48 0.70 0.88 0.94 0.21 0.33 0.55 0.76 0.88
WM3 0.04 0.07 0.13 0.21 0.33 0.06 0.13 0.27 0.48 0.70 0.05 0.10 0.21 0.33 0.55

WM for efficacy 0.05 0.20 0.43 0.64 0.79 0.05 0.20 0.43 0.64 0.79 0.05 0.20 0.43 0.64 0.79

Option ESS
πESSpaq N p´0.31,0.36q N p´0.38,0.50q N p´0.34,0.42q
Option Least Informative Prior
πLIPpaq N p´0.31,0.46q N p´0.38,3.13q N p´0.34,1.46q

πNIPpaq N p´0.31,4.33q N p´0.38,15.24q N p´0.34,8.88q
πpbq N p0,1.34q N p0,1.34q N p0,1.34q

Table 1. Model settings for simulations. APESS-bCMR uses adaptive prior from πESSpaq „N pµa,σ
2
a,ESSq to

πNIPpaq „N pµa,σ
2
a,NIPq and APLIP-bCRM uses adaptive prior from πLIPpaq „N pµa,σ

2
a,LIPq to πNIPpaq.

Prepared using sagej.cls



32 Journal Title XX(X)

Publications Response/toxicity (number of patients)
100 mg 150 mg 200 mg 250 mg

Toxicity
Prados et al. 0 (3) 1 (3) 0 (3) 3 (6)
Raizer et al. - 11 (99) - -
Thepot et al. 0 (5) 3 (25) - -
Calvo et al. - 1 (25) - -
Van den Bent et al. - - 6 (54) -
Sheikh et al - 167 (307) - -
Clinical trial ROCHE NTC00531934 - 11 (59) - -
γ
p1q
` 0.13 0.24 0.40 0.59

γ
p2q
` 0.07 0.19 0.34 0.49

γ
pT q
` 0.09 0.21 0.36 0.54

Efficacy for glioblastoma at dose 150 mg
Prados et al. 1 (16)
Prados et al. (EIAED) 5 (44)
Raizer et al. 7 (53)
Yung et al. 20 (48)

Table 2. Toxicity, efficacy outcomes and the number of treated patients of erlotinib treatment. Toxicities are skin rash of
grade 3 or more and efficacy, defined as stable disease and above (RECIST), was limited to glioblastoma. The

distributions for calculating the mixutre γ
pTq
` are given for each dose ` with the value of γ

p1q
` based on adult PK

information and the value of γ
p2q
` built with adult toxicities.
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Parameters Value Source
ka (h-1) 0.949 Lu et al., 2006
Cl{F (L.h-1) 3.95 Lu et al., 2006
V{F (L) 233 Lu et al., 2006
Q (L.h-1) 40.5 -
Clu (L.h-1) 47.4 -
fabs 0.64 -
fu 0.05 -
EG 0 -
EH 0.058 -

Table 4. Pharmacokinetic parameters used for paediatric extrapolation.
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FIGURES 35

Figure 1. General framework describing the different proposed steps in the planification of paediatric dose-finding
clinical trials. It is composed of (1) the choice of the dose-range with three different possible options, linear adjustment
(LA), allometric adjustment (AA) and maturation adjustment (MA). They are built using extrapolation from adults to
children , with di the paediatric dose, ci the adult dose and Wch and Wad respectively the children and adult weight ; (2)
the working model (WM) specification, where adult PK and toxicities can be used to built a toxicity function η. It allows
to calculate the WMs (αi, i P 1, . . . ,K) for each dose i; and (3) the specification of the prior density parameter a, πpaq,
of the dose-reponse relationship.
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Figure 2. Representation of the estimated probabilities of toxicity used to build WMs for paediatrics according to dose

(mg/kg). The logit function ηpdq in black fits the estimated dose-toxicity ralationship, γ
pTq
` p`“ 1,2,3,4q , in blue, which

is the mixture of both estimated dose-toxicity curves, γ
p1q
` , based on adult PK information, in green, and γ

p2q
` , based on

adult phase I observations, in red. The different dose-range for the LA, AA and MA options are represented below the
graph.
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Figure 3. Presentation of the six scenarios used in the simulation study. The dose-toxicity, Rpdq, curve is in red, the
dose-efficacy, Qpdq, curve is in blue and the dose-success, Ppdq, curve is in green. The sMSD is represented by black
vertical line, the toxicity and efficacy targets are given with dashed lines. The admissible doses (AD) are given by the
green area under the success Ppdq curve.
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