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ABSTRACT 

Understanding how tumours develop resistance to chemotherapy is a major issue in 

oncology. When treated with temozolomide (TMZ), an oral alkylating chemotherapy drug, 

most low-grade gliomas (LGG) show an initial volume decrease but this effect is rarely long 

lasting. In addition, it has been suggested that TMZ may drive tumour progression in a subset 

of patients as a result of acquired resistance. Using longitudinal tumour size measurements 

from 121 patients, the aim of the present study was to develop a semi-mechanistic 

mathematical model to determine whether resistance of LGG to TMZ was more likely to 
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result from primary and/or from chemotherapy-induced acquired resistance that may 

contribute to tumour progression. We applied the model to a series of patients treated upfront 

with TMZ (n = 109) or PCV (procarbazine, CCNU, vincristine) chemotherapy (n=12) and 

used a population mixture approach to classify patients according to the mechanism of 

resistance most likely to explain individual tumour growth dynamics. Our modelling results 

predicted acquired resistance in 51 % of LGG treated with TMZ. In agreement with the 

different biological effects of nitroso-ureas, none of the patients treated with PCV were 

classified in the acquired resistance group. Consistent with the mutational analysis of 

recurrent LGG, analysis of growth dynamics using mathematical modelling suggested that in 

a subset of patients, TMZ might paradoxically contribute to tumour progression as a result of 

chemotherapy-induced resistance. Identification of patients at risk of developing acquired 

resistance is warranted to better define the role of TMZ in LGG.  

 
KEYWORDS: Low-Grade Glioma, Temozolomide, Resistance, Tumor Growth Inhibition, 

Mathematical Model. 

 
INTRODUCTION 
 
Adults’ diffuse low-grade glioma (LGG) is a primary brain tumour. LGGs account for about 

25% of gliomas and are characterized radiologically by slow and continuous growth 

preceding anaplastic transformation [1]. However, despite surgery, radiotherapy and 

chemotherapy, most tumours recur and remain incurable with a median survival of 5 to 15 

years. Among chemotherapeutic treatments, temozolomide (TMZ), an alkylating agent, has 

improved the prognosis of glioblastomas, especially in tumours that have a methylated 

MGMT promoter and therefore cannot repair TMZ-induced DNA damages [2]. In LGG, 

however, despite the presence of a methylated MGMT promoter in most patients, the benefit 

of TMZ remains unclear [3]. Growth kinetic studies have shown that TMZ most frequently 
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results in an initial volume decrease but that this effect is rarely long lasting with most 

patients developing tumour progression either during or shortly after TMZ disruption [4]. In 

addition, mutational analyses in recurrent LGG have demonstrated that, in a subset of 

patients, TMZ leads to the acquisition of a hypermutation phenotype which is associated with 

increased mitotic activity and could contribute to malignant progression through mutations in 

the RB and AKT-mTOR pathways [5]. This phenomenon is thought to result from 

inactivating mutations of the DNA mismatch repair (MMR) pathway which has been shown 

to be a mechanism of acquired resistance to TMZ, especially in gliomas with a methylated 

MGMT promoter [6-10]. Therefore, in a subset of LGG, the mutagenic effect of TMZ could 

induce inactivating mutations in MMR genes resulting in acquired resistance to TMZ and in a 

detrimental hypermutation phenotype as a result of continued TMZ exposure [6].  

Mechanisms of LGG resistance to TMZ remain unclear, although we can suppose that two 

types of resistance exist: i) primary resistance and ii) acquired resistance. Primary resistance 

may correspond to natural tumour capacity to resist to treatment damages, such as p53 

mutation and MGMT hypermethylation. As for acquired resistance, it corresponds to genetic 

and epigenetic changes in neoplastic cells initially sensitive to treatment. Acquired resistance 

arises with TMZ treatment, and can be linked to MGMT production increase [11], or to new 

mutations appearing after TMZ onset [5, 7]. Nevertheless, these hyper mutated recurrent 

cancer cells are not observed in all patients treated with TMZ, and there is currently no 

available pre-TMZ treatment biomarker that can help to prevent this emergence of resistance. 

Understanding how LGG develop resistance to treatment is therefore a major issue.  

Our aim herein is to propose a semi-mechanistic model, describing the different processes of 

emergence of resistance for LGG treated with TMZ. In this view, our mathematical model 

distinguishes between sensitive cells, primary resistant cells and cells becoming resistant due 

to exposure to treatment. We furthermore present a statistical population mixture model that 
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allows to determine if a given patient developed acquired resistance or not. Associations 

between predicted resistance profiles, LGG molecular characteristics and outcome are then 

studied. In order to explore whether the resistance profile might be different in patients 

treated with PCV chemotherapy (Procarbazine, CCNU, Vincristine), another chemotherapy 

regimen used in LGG, a subset of patients who received this treatment is also analysed.  

 
MATERIAL AND METHODS 
 
Data 
 
We analysed longitudinal follow-up of tumour size measurements in 121 patients treated with 

upfront chemotherapy (109 patients with TMZ, 12 patients with PCV) and in whom time-

course of tumour size was available before, during and after treatment [12]. Tumour sizes 

were expressed as mean tumour diameters (MTD) estimated from magnetic resonance 

imaging (MRI) [12]. MRIs were performed every 4 to 6 months before and after treatment. 

During the treatment, MRIs were performed every 3 months.  For each patient, 12 MRI were 

performed on averaged, with at least 2 MRI before treatment onset and 4 after. One TMZ 

cycle corresponds to a daily administration of 200 mg/m2 of TMZ for five consecutive days. 

Patients included in the study received one cycle of TMZ per month for up to two years. PCV 

administration protocol consists of up to 6 cycles, with intervals of 6 weeks between cycles: 

CCNU (110 mg/m2) administered on day 1, procarbazine (60 mg/m2) administered on days 8 

to 21, and vincristine (1.4 mg/m2, max. 2 mg) administered on days 8 and 29.  

In most patients, TMZ resulted in an initial reduction in tumour size, which was followed by 

tumour regrowth either during treatment or after TMZ administration. Figure 1 displays three 

different individual profiles that are observed in our population of patients treated with TMZ, 

where duration of treatment is represented with the grey shaded area. The left graph 

represents an example of a patient who experienced tumour progression during treatment. For 
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the two other patients, the tumour regrows immediately after treatment disruption (middle 

graph) and after a certain time (right graph). Note that no tumour regrowth during PCV 

treatment was observed, but rather a prolonged response for several months after cessation of 

treatment.  

In addition to tumour size measurements, data on survival and genetic information were also 

available for patients treated with TMZ. Progression-free and overall survivals were 

computed as the time between treatment onset and clinical progression or death respectively. 

Patients lost to follow-up were censored at the time of last news. For 71 out of the 109 

patients treated with TMZ, the following molecular characteristics were available: 1p/19q 

chromosomal co-deletion, p53 overexpression, and IDH mutation status. MGMT promoter 

methylation was available in 53 patients.  

 

Mathematical models for resistance in low-grade gliomas treated with chemotherapy  
 

We first developed two models describing each of them a different resistance profile. The 

first model, called model PR, describes LGG dynamics assuming there are only primary 

resistant cells. The second model, called model PAR, describes LGG dynamics assuming 

both primary and acquired resistant cells are present in the tumour. These two models are 

schematically represented in Figure 2.  

For model PR, we assume that the tumour is initially composed of sensitive cells, denoted S 

and primary resistant cells, denoted RP. During treatment, chemotherapy induces DNA 

lesions to sensitive cells only. They then become damaged cells (denoted D) with a rate 

τSDC(t), where C(t) is the chemotherapy blood concentration. Damaged cells eventually die 

with a rate μD. We assume that sensitive and primary resistant cells proliferate with the same 

growth rate λ. Mathematical formulation of this model is as follows:  
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dS

dt
=λ × S × 1 −

PPR

120

 

 
 

 

 
 −τ SD × C t( ) × S with S(0) = ks × P0

dD

dt
=τ SD × C t( ) × S − μD × D with D(0) = 0

dRP

dt
=λ × RP × 1 −

PPR

120

 

 
 

 

 
 with RP(0) = 1 − kS( )× P0

 

 

 
 
 

 

 
 
 

(A) 

 

where PPR = S + D + RP is the total tumour size,  P0 is the initial mean tumour diameter and 

kS represents the initial proportion of sensitive cells in the tumour. The tumour is assumed to 

grow according to a logistic model with maximal tumour size fixed to 120 mm, a choice 

consistent with the maximal tumour size observed in clinical practice [4].  

 

For TMZ, blood concentration C is supposed to follow a mono-compartmental kinetic [13]:  

C(t) =
D × ka

V × ka −Cl
e

−
Cl

V
(t −td )+ − e

−ka t −td( )+
 

 
 

 

 
 

d =1

ND


 

where ka , Cl , and V are, respectively, the absorption coefficient, the clearance, and 

the volume of distribution of TMZ. Other ways to implement TMZ concentration would have 

been possible. For example, the TMZ concentration could have been supposed to be constant 

during the treatment period. However, this hypothesis seemed to us less realistic than to use a 

previously published PK model to simulate TMZ concentrations. In addition assuming a 

continuous TMZ concentration may have introduced a bias in parameters estimate. For PCV, 

we did not model the three drugs separately. Following the work of Ribba et al. [14], we 

defined PCV’s concentration C( t) as a unique variable representing a virtual drug 

administrated intravenously at a dose D fixed to 1: 

C( t) = t − td( )+
× e

−ke t −td( )+
d =1

ND

  

where ke is the rate of decay of PCV concentration.  
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For model PAR, we assumed that resistant cells emerge due to exposure to chemotherapy, in 

addition to pre-existing resistant cells. As in model PR, the tumour is initially composed of 

sensitive cells S and primary resistant cells RP, only sensitive cells being affected by the 

treatment. However, in this model, damaged cells D can either die with a rate μ

 

or become 

resistant with a rate τDR due to new mutations for instance. These resistant cells, denoted RA 

in the model, proliferate at a rate λR. Mathematical formulation is as follows:  

 

dS

dt
=λ × S × 1 −

PPAR

120

 

 
 

 

 
 −τ SD × C t( ) × S with S(0) = ks × P0

dD

dt
=τ SD × C t( ) × S − τ DRA

+ μD( )× D with D(0) = 0

dRA

dt
=λ × 1 + ΔRA

( )× RA × 1 −
PPAR

120

 

 
 

 

 
 +τ DRA

× D with RA(0) = 0

dRP

dt
=λ × RP × 1 −

PPAR

120

 

 
 

 

 
 with RP(0) = 1 − kS( )× P0

 

 

 
 
 
 
 

 

 
 
 
 
 

(B)

 

where PPAR = S + D + RP + RA represents the total tumour size. Because TMZ can induce 

malignant transformation, and thus faster tumour growth [5], we further assumed that 

acquired resistant cells divide at a rate that could be greater than or equal to λ. Therefore we 

set λR = λ(1+∆R), with ∆≥0. Blood concentration of chemotherapy is modelled as described 

above.  

 

Population Mixture Model 

 

As hypermutation phenotype was not clinically observed in all patients treated with TMZ, we 

could assume that tumours can, but do not necessarily develop acquired resistance. Instead of 

describing all patients with either model PR or model PAR, it could be interesting to 

determine which model is more suitable for a given patient. Resistance profile (PR or PAR) 
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is therefore viewed as an unknown status to determine, as we do not know a priori which 

resistance profile corresponds the best. We thus introduced a population mixture model, 

allowing to describe both profiles within the same framework, and to classify patients in one 

or the other resistance profile.  

Let us denote by yij tumour measurement at time tij for the i-th patient and φi  its individual 

parameters. We introduce a Between Subject Model Mixture (BSMM) describing tumour 

observations as follows [15]: 

yij = PPAR tij ,φi( )+ ε ij with Pr G i = PAR( ) = π PAR

yij = PPR tij ,φi( )+ ε ij with Pr G i = PR( ) = 1 − π PAR

 
 
 

  
(C)

 

Where Gi is the resistance profile of patient i, PPR and PPAR are the tumour size obtained with 

models (A) and (B) respectively. Residual errors ε ij  are assumed to be normally distributed 

with mean equal to 0, and standard deviation equal to σ. To summarize equation (C), the 

BSMM assumes that the growth curve of each subject follows one of the two previously 

described models (PR or PAR) but without knowing which one a priori. The proportion of 

the population associated to each of the two models is unknown a priori. Each subject has a 

label Gi corresponding to the model from which it has been generated. This label is inferred 

using an estimation algorithm. This estimated label is the used to classify the subjects in the 

two groups. This mixture model enables to describe both patients with primary resistance 

only and patients who develop acquired resistance within the same model. Such statistical 

model has been successfully used to detect non-responder to a given treatment [15,16] or to 

describe complex absorption process [17]. Finally, the vector of individual parameters φi  was 

given by φi = (λi , Δ i ,τ SDi
,τ DRi

, μDi
, kSi

, P0 i
). We assumed that all parameters were log-

normally distributed, except kS that was assumed to follow a logit-normal distribution. 
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Model Development and Evaluation  

 

Model development was based on TMZ data set as the model’s hypothesis are based on 

biological results obtained from patients treated with TMZ. During this first step, we 

determined which model structure best fitted the data between PPR, PPAR
, or BSMM. Once a 

model’s structure was selected, final estimates were obtained using TMZ and PCV data sets 

that had been pooled together to study potential differences between TMZ- and PCV-treated 

patients. 

Population parameters were estimated using the SAEM algorithm [18] implemented 

in the Monolix software [19]. Model evaluation and selection were based on the visual 

inspection of the goodness of fit plots, precision of parameter estimates and a decrease in 

Bayesian Information Criterion (BIC). Shrinkage of individual random effects and residual 

error was also assessed [20]. The goodness of fit was established by plotting the population 

predictions of the model vs. observations, individual predictions vs. observations and visual 

predictive check. All graphics were generated using the package ggplot2 [21] with R 

software [22]. 

 

Analysis of Clusters’ Characteristics for patients treated by TMZ 

 

When considering the mixture model, each patient is assigned to a cluster. Patients' 

characteristics of both clusters are compared using a Student test for continuous variables and 

a chi-squared test for categorical ones. Progression-free survival (PFS) and overall survival 

(OS) are studied using the Kaplan-Meier method. Difference between PFS and OS in both 

clusters is assessed using a Log-Rank test. A multivariate survival analysis is conducted 
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using a Cox proportional hazard model to adjust for age, mutation status and tumour size at 

TMZ onset. Statistical significance of each variable is assessed using a Wald test.  

 

RESULTS 

 

Model development and evaluation 

 

We first studied whether resistance to TMZ most likely results from primary resistance only 

(model PR) or from primary and acquired resistance (model PAR). For this purpose, we 

independently estimated parameters of models PR and PAR on the TMZ data set only. 

Parameter τSD , standing for the rate of transition from sensitive cells to damaged ones, was 

considered as fixed effect since it improved the quality of parameter estimates and had no 

impact on the goodness of fit plots. Moreover it prevents identifiably issues due to the lack of 

pharmacokinetic data. We found that model PAR performs better than model PR (BIC=7489 

compared to 7670 with model PR), showing that taking into account the two types of 

resistance more accurately describes experimental data than taking into account primary 

resistance only. 

 However, because all tumours do not exhibit hyper mutation phenotype after TMZ 

treatment [5], and therefore may not develop acquired resistance, we investigated whether 

model PAR is suitable for all patients. For this purpose, we estimated parameters of the 

mixture model, which allows patients to be described either with model PR or with model 

PAR. This latter yielded to even better results suggesting that resistance to TMZ in LGG is 

variable, resulting from primary resistance only in some patients and from both (primary and 

acquired resistance) in others. The BSMM mixture model improved data fitting as 

demonstrated by the decrease of BIC value (BIC =7466 for BSMM), and led also to a more 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

accurate parameter estimates and a decrease of variances of random effects. Shrinkage values 

for parameters τDR  and ΔR remained high (between 45% and 60%), indicating an identifiably 

issue in individual random effects. In consequence, no inter-individual variability was 

allocated to these two parameters. It improved shrinkage values and precision of parameter 

estimates. 

After having identified the BSMM model as the model that best fits data in LGG 

patients treated with upfront TMZ, we estimated parameters of the BSMM model using the 

whole dataset of patients (i.e including also patients treated with upfront PCV 

chemotherapy). Population parameter estimates (mean value and inter-individual variability) 

are presented in Table 1. Note that as ΔR was estimated different to zero, it implies a faster 

proliferation of acquired resistant cells, which support the hypothesis of increased mitotic 

activity. All parameters were accurately estimated with residual standard errors smaller than 

25%. Highest shrinkage value of individual random effects was 31%. Shrinkage value of 

residual errors was 14% indicating good identifiably of the proposed model. Individual 

parameters were then estimated. In the same time, the 121 patients were classified into one of 

the two clusters, according to the mechanism of resistance (primary resistance only or 

primary and acquired resistance) most likely to explain their individual tumour growth 

dynamics. Among patients treated with upfront TMZ, 56 patients (51%) were assigned to 

PAR cluster (primary and acquired resistance) and 53 patients (49%) to PR cluster. In 

contrast, all patients treated with upfront PCV were assigned to PR cluster. 

Model validation was then performed using observed versus predicted plots and 

Visual Predictive Check (VPC). The are presented in Figure 3 and Figure 4. Concerning VPC 

plots in TMZ treated patients, left plot represents VPC for PR cluster, while right plot is VPC 

for PAR cluster. Data fall into confidence intervals for both clusters, indicating good 

properties of the population model. Tumour regrowth occurs sooner in the PAR cluster, and 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

tumour size increases faster after TMZ onset. For both cluster, the 95-th quantiles seem to 

over predict tumour re-growth. This phenomenon is partially due to missing information as a 

consequence of an informative censoring process. Indeed, the follow up of most patients 

ended quickly after tumour re-growth because of the initiation of a new therapeutic. 

Figure 5 displays examples of individual fits for patients in each cluster, with 

dynamics of each sub-population of cells. As shown, the model is able to reproduce different 

patterns of growth dynamics in each cluster.   

 

Impact of genetic mutations and survival analysis 

 

There was no significant difference between baseline characteristics of patients clustered in 

PR or PAR profile, including age, tumour size at TMZ onset, sex, p53 expression, IDH 

mutation status, 1p/19q co-deletion status and MGMT methylation status. 

However, their outcome was different (Figure 6). Patients with acquired resistance to 

TMZ have both a shorter median progression free survival (22.7 months (95\% CI = 16.0 to 

28.6) versus 49 months (95\% CI = 37.9 to 57.2), p-value < 0.001) and a shorter median 

overall survival  (50.7 months (95\% CI = 35.3 to 76.4) versus 139.5 months (95\% CI= 86.4 

to not reached), p-value < 0.001) compared to patients without acquired resistance. This 

result is coherent with the model's assumption as acquired resistance enhance tumour growth. 

On multivariate analysis, the impact of acquired resistance to TMZ was independent of age, 

molecular profile (p53 overexpression, IDH mutation and 1p/19q co-deletion) and tumour 

size at TMZ onset (Table 2 and right plot in Figure 6).  
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DISCUSSION 

It has been recently suggested that because of acquired resistance, TMZ may paradoxically 

drive tumour progression in LGG [5-6]. Consistently, in the present study, using 

mathematical modelling, we show that in a subset of LGG, tumour growth dynamics is best 

described by the hypothesis of a detrimental TMZ-induced resistance and that this 

phenomenon is associated with worst outcome independently of classical prognostic factor. 

 

Resistance to treatments is one of the main causes of therapeutic failures in oncology. 

Mathematical modelling has been shown to be an effective strategy to investigate resistance 

mechanisms to chemotherapy and to propose new therapeutic strategies [23-24]. There is a 

long tradition of mathematical modelling of both resistance to chemotherapy and of glioma 

growth; however, to the best of our knowledge, no study has specifically focused on 

modelling resistance to chemotherapy in LGG. Most of the models that have been proposed 

to describe and analyse cancer resistance to chemotherapy have considered the tumour as 

being composed of two cell populations: one population of sensitive cells and one population 

of resistant cells. In the 1980s, [25] first proposed such a model based on ODE. This 

pioneering model effectively accounted for kinetic resistance in breast cancer treated with 

cell cycle phase-specific chemotherapy based on the distinction of sensitive/resistant and 

proliferative/quiescent cells. Thereafter, this framework was widely used to explore different 

hypotheses in cancer resistance such as optimal dosing schedules and the potential 

implications of cancer stem cells in drug resistance [23,26]. However, these models were not 

developed to explicitly differentiate primary from acquired resistance. For this purpose, 

Komarova et al [27] proposed a discrete space markov process; but, this model was not 

calibrated using clinical data, and may be computationally very demanding. Terranova et al 

[28] proposed an ODE model incorporating different resistant cell subpopulations allowing 
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the description of both primary and acquired resistance. Here again, the model was not 

calibrated using real data. Finally, in the specific context of LGG, Mazzocco et al [29] 

developed a tumour growth inhibition model of LGG treated with TMZ, in which parameters 

were estimated using longitudinal tumour size measurements. In this model, however, 

resistance to TMZ was described using an empirical parametric function, giving no insight on 

resistance mechanisms, as treatment efficacy was simply considered to decrease with time. 

 

The aim of our study was to develop a model to investigate TMZ resistance in LGG. 

To our knowledge, this is the first study trying to classify patients according to their potential 

resistance mechanisms. For this purpose, we developed a model describing both primary and 

chemotherapy-induced resistance using a data-driven approach. We distinguished different 

cell subpopulations: sensitive cells, primary resistant cells, damaged cells, and cells that 

become resistant after being damaged. After evaluating different models, we found that, in 

agreement with the hypothesis of a detrimental TMZ-driven progression in a subset of 

patients, the model that most accurately described the data was a model considering that 

resistance to TMZ in LGG is heterogeneous, consisting of either primary resistance only or 

primary and acquired resistance contributing to tumour progression. A potential development 

of the model would be to use it to identify patients who may not benefit from TMZ. 

However, in the current version of the model, to accurately classify patients, we need 

observations during and after treatment with TMZ. In order to detect as early as possible 

patients who develop acquired resistance, or even to predict it, we would need to include 

covariates such as p53 mutation, IDH mutations or MGMT promoter hypermethylation in the 

model, particularly on parameter π PAR . In the present study, however, these molecular 

characteristics were not available in every patients making impossible evaluation of these 

covariates according to a mixed model approach. 
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Due to the lack of patients who underwent re-resection after TMZ progression, we 

could not determine whether in recurrent tumours clustered with acquired resistance, features 

suggestive of acquired resistance such as MMR gene mutations or a hypermutation 

phenotype were found. However, our modelling results are supported by striking similarities 

with those of the mutational analysis performed in recurrent LGG after TMZ. These analyses 

have shown that the acquisition of a hypermutation profile after TMZ treatment was only 

observed in a subset of patients (6 out 10 LGG analyzed [5]), was associated with an 

increased mitotic activity, and occurred in both LGG with and without the 1p/19q co- 

deletion [5,30]. Consistently, our model predicted that acquired resistance to TMZ only 

occurred in a subset of patients (56 out of 109 patients), occurred independently of LGG 

molecular characteristics (especially 1p/19q co-deletion) and was associated with a much 

important growth rate during tumour progression. Our modelling results are also indirectly 

supported by the fact that none of the patients treated with PCV chemotherapy were 

classified into the acquired resistance cluster. Indeed, in contrast to TMZ, the effect of 

CCNU, which is a nitrosourea and the main drug of the PCV regimen, is not mediated by the 

MMR pathway. To our knowledge, the genomic profile of recurrent LGG after PCV 

chemotherapy has not been assessed; however, several in vitro studies have shown that in 

contrast to TMZ, an exposure to nitrosoureas does not lead to the acquisition of a 

hypermutation phenotype [31-33]. 

 

TMZ induced-hypermutation phenotype has been suggested to be detrimental but its 

clinical impact has not been studied yet. It would require the analysis of a large number of re-

operated recurrent LGG. Owing to the absence of a biological validation, our model results 

must be taken with caution, although they suggest that TMZ-induced resistance may have a 
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negative clinical impact. Indeed, in our model, predicted acquired resistance was associated 

with shorter overall survival independently of age, tumour size, and of LGG molecular 

characteristics, namely 1p/19q co-deletion. This finding may have important clinical 

consequences. In recent years, upfront chemotherapy with TMZ has been developed as a 

strategy to defer radiotherapy and its potential neurotoxicity in LGG patients. The 

preliminary results of a randomized phase III study comparing initial TMZ versus initial RT 

suggested that this strategy might be effective in 1p/19q co-deleted but not in LGG without 

1p/19q co-deletion [34]. Yet, our modelling results suggest that even in 1p/19q co-deleted 

LGG, TMZ might be detrimental in patients at risk of developing acquired resistance. 

 

Although our modelling results provide original insight into the resistance mechanism 

of LGG after chemotherapy, some points will need to be further investigated. The lack of 

validation of our prediction is the principal limitation of this work. The validation of our 

predictions will need: i) to validate at the biological level that our patients with 

acquired resistance have a hyper mutated phenotype and ii) to validate our model in 

an external dataset. The association with the worst outcome will also need to be validated in 

an independent study. Nevertheless, together with mutational analysis of recurrent LGG after 

TMZ, our study suggests that beyond LGG current molecular classification, the benefit of 

TMZ may depend on the tumour capacity to develop acquired resistance and that 

identification of patients at risk of developing acquired resistance will be important to better 

define the role of TMZ in LGG. 
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Table 1: Estimated values of the population parameter 

 
Population mean 

(% RSE) 
Inter-patient 

variability (% RSE) 
Shrinkage 

(%) 

Tumor Growth 
Parameters 

   

λ  (d-1) 0.000385 (8) 0.745 (9) 0.16 

ΔRA
 11 (11) - - 

τSD(L.g-1.d-1) 0.0382 (10) - - 

τDR  (d-1) 0.000544 (24) - - 

μD (d-1) 0.00219 (9) 0.701 (10) 0.27 

kS  0.474 (5) 0.65 (10) 0.31 

P0  (mm) 40 (5) 0.503 (7) 0.01 

Pharmacokinetic 
Parameters of TMZ 

   

ka (d
-1) 140 (fixed) - - 

V (L) 30 (fixed) - - 

Cl (L.d-1) 240 (fixed) - - 
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Pharmacokinetic 
Parameters of PCV 

   

ke 0.025 (fixed) - - 

Mixture Parameter    

π PAR  0.48 (13) - - 

Residual Error 
Parameter 

   

σ 2.31 (2) - 
0.14 

 
λ : division rate of sensitive and primary resistant cells, ΔRA

: increase in division rate of 

acquired resistant cells, τSD : transition rate from sensitive to damaged cells, τDR : transition 

rate from damaged to acquired resistant cells, μD: death rate of damaged cells, kS : 

proportion of sensitive cells at the beginning of the follow-up, P0 : initial mean tumor size, ka: 

TMZ absorption rate, V : TMZ volume of distribution, Cl: TMZ clearance,  π PAR : probability 

to belong to the cluster with acquired resistance, σ: residual error standard deviation. 
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Table 2: Multivariate survival analysis using Cox proportional hazard model. 

 
 

Hazard Ratio 95 % Confidence 
Interval 

p-value 

Acquired Resistance 
Cluster 

3.65 1.65 – 8.1 0.00143 

Age  
(year) 

1.032 0.99 - 1.067 0.07 

Tumor Size at TMZ 
Onset  
(mm) 

1.018 0.997 - 1.0385 0.09 

p53 overexpression 1.01 0.42 - 2.43 0.97 

IDH Mutation 1.09 0.47 - 2.51 0.83 

1p/19q 
Chromosomal Co-

deletion 

0.17 0.05 - 0.65 0.009 
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Figure 1 

Observed tumor mean diameter in three patients. Dots represent observed mean tumor 

diameters. Gray shaded intervals correspond to TMZ administration.  

 

Figure 2  

Schematic representation of the two tumor growth inhibition models (left: model with 

primary resistance only, right: model with primary and acquired resistance). LGG cells are 

divided into cells sensitive to TMZ (S), cells damaged by TMZ (D), primary resistant cells 

(RP), and acquired resistant cells produced by chemotherapy exposition (RA). λ : division rate 

of sensitive and primary resistant cells, ΔR: increase in division rate of acquired resistant 

cells, τSD : transition rate from sensitive to damaged cells, τDR : transition rate from damaged 

to acquired resistant cells, μD: death rate of damaged cells, kS : proportion of sensitive cells 

at the beginning of the follow-up. 

 

Figure 3 

Observations versus model predictions (top: population predictions, bottom: individual 

predictions) for each cluster [left: cluster with primary and acquired resistance, middle: 

cluster with primary resistance only (TMZ treated patients), right: cluster with primary 

resistance only (PCV treated patients)]. 

 

Figure 4 

Visual Predictive Check plots in both clusters for TMZ treated patients. Left: Median, 5% 

and 95% quantiles of model simulations for model PR, ie with primary resistance only. Dots 

represent individual data for patients clustered in PR profile. Right: Median, 5% and 95% 

quantiles of model simulations for model PAR, ie with primary and acquired resistant cells. 
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Dots represent individual data for patients clustered in PAR profile. 

 

Figure 5 

Evolution of individual mean tumor diameter simulations in 9 representative patients. Black 

dots correspond to mean tumor diameters. Black curves correspond to simulated mean tumor 

diameters. Green, yellow, light red and dark red curves respectively correspond to sensitive, 

damaged, acquired and primary resistant cells. First row: Patients with primary and acquired 

resistance treated with TMZ. Second row: Patients with primary resistance only treated with 

TMZ. Third row: Patients with primary resistance only treated with PCV. 

 

Figure 6 

Left and middle: comparison of clinical outcomes between patients with and without 

acquired resistance. Red curve corresponds to the group with primary and acquired resistant 

cells (PAR profile). Blue curve corresponds to the group with primary resistance only (PR 

profile). Black marks correspond to censored observations. Left: Kaplan-Meier estimates of 

progression free survival since treatment onset in patients with and without acquired 

resistance. Middle: Kaplan-Meier estimates of overall survival from treatment onset in both 

cluster. Right: Kaplan-Meier estimates of overall survival since treatment onset stratified 

according to 1p/19q chromosomal co-deletion status and resistance clusters for patients 

treated with TMZ. Red survival curve corresponds to the group with primary and acquired 

resistance without 1p/19q chromosomal co-deletion. Green survival curve corresponds to the 

group with primary and acquired resistance with 1p/19q chromosomal co-deletion. Purple 

survival curve corresponds to the group with primary resistance only with 1p/19q 

chromosomal co-deletion. Blue survival curve corresponds to the group with primary 
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resistance only without 1p/19q chromosomal co-deletion.  Black marks correspond to 

censored observations.  
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