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Abstract

The problem of predicting a binary variable is considered when a p-dimensional
vector of inputs is available. These inputs are structured in a number of
known groups. The objective is to take this structure into account to build
a classification tree. Two tree-based approaches are proposed: the Tree Lin-
ear Discriminant Analysis algorithm (TLDA) and the Tree Penalized Linear
Discriminant Analysis algorithm (TPLDA). They consist in splitting a node
by repeatedly selecting a group of inputs and then applying a linear dis-
criminant method based on this group. This process is iterated until some
stopping criterion is satisfied. A pruning strategy is proposed to select an
optimal tree. The two algorithms differ in the discriminant method used
in the splitting process: TLDA applies a linear discriminant analysis (LDA)
while TPLDA performs a regularized linear discriminant analysis. These two
proposed methods are computationally less demanding than classical exist-
ing multivariate classification tree methods. Moreover, the resulting trees
are more easily interpretable. The good performances of the proposed al-
gorithms and the interest of using them in terms of classification accuracy
and interpretation are demonstrated in comparison with alternative refer-
ence methods (CART, group-lasso logistic regression) though applications
on simulated and real gene expression data.
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1. Introduction

Consider the supervised classification setting where the problem consists in
predicting a binary variable Y , based on a vector X which takes values in Rp.
Suppose further that the inputs are divided into J different groups. In many
situations, inputs can have an obvious group structure. A group structure
can also be defined by the user to capture the underlying input associations.
Moreover, in some cases, the study of groups of inputs can make more sense
than the study of the inputs taken individually. For example, in the analysis
of gene expression data, data sets contain the expression levels of thousands
genes in a much smaller number of observations. Then, it has become fre-
quent to describe the data using a small number of metagenes based on
linear combinations of genes or clusters of genes (Tamayo et al., 2007; Lee
& Batzoglou, 2003). Another example is functional data, like spectrometry
data, where researchers are often more interested by identifying discrimina-
tory parts of the curve rather that individual wave lengths (Tardivel et al.,
2017). Finally, categorical inputs can be converted into a group of dummy
variables that must be treated as a group. In all these situations, elaborating
a classification rule based on groups of inputs rather than on the individual
inputs can improve both interpretation and prediction accuracy (Gregorutti
et al., 2015). Several methods have already been proposed to deal with this
problem. For instance, the logistic regression regularized by the Group Lasso
penalty (GL) enables to elaborate classification rules based on groups of in-
puts (Meier et al., 2008). As far as we know, this problem has not been
studied for classification trees.

Tree-based methods are popular in statistical data classification. Classifica-
tion tree algorithms elaborate classification rules by means of recursive splits.
Starting with all the data, these algorithms partition the data space into two
or more regions, also called nodes, and repeat the splitting procedure on the
resulting nodes. The splitting process is iteratively repeated on all nodes
until some stopping criteria are achieved. Each split is defined according to
the values of one or more inputs. The choice of the optimal split is generally

2



based on the maximization of the change in an impurity function. The result
of this iterative process is a partition of the input space into disjoint sub-
regions, called terminal nodes. This partition defines a classification rule:
each terminal node is assigned to the most-represented class label in the
node. The entire modelling process can be represented as a tree structure
and it can be summarized as a set of ”if-then” rules. Then, classification
trees are easy to understand and to interpret.

In supervised setting, tree-based methods were firstly studied in the 1960s
and 1970s (Kass, 1980; Hunt et al., 1966). A comprehensive study about
classification tree algorithms was presented by Breiman et al. (1984). It in-
troduced the popular CART algorithm. Since then, other classification tree
algorithms have been developed such as for instance ID3 (Quinlan, 1986)
and C4.5 (Quinlan, 1993). All the algorithms mentioned above are univari-
ate classification tree algorithms. It means that, each node is determined
according to the value of one single input. Multivariate classification trees
algorithms, which split each node according to the value of a subset of inputs,
have also been studied. For most of these algorithms, splits are linear and
are often defined according to the value of a linear combination of a subset
of inputs. Generally, the multivariate classification trees algorithms using
linear splits differ in the way they search for the optimal split. For instance,
CART-LC (Breiman et al., 1984), HHCART (Wickramarachchi et al., 2016)
and OC1 (Murthy et al., 1993) use optimization techniques whereas other
methods such as FACT (Wei-Yin Loh, 1988), QUEST (Loh & Shih, 1997)
or LTDS (Li et al., 2003) use linear discriminant analysis (LDA) and some
standard variable selection methods. These algorithms generally have higher
accuracy and build a smaller tree size than the univariate classification trees
(Lim et al., 2000). However, they suffers from two major drawbacks. First
of all, the search for the optimal split often involves greedy algorithms such
as the deterministic hill-climbing (Breiman et al., 1984) or the tabu search
(Li et al., 2003). Secondly, the subset of inputs used to define a split is au-
tomatically selected by the algorithm with respect to an impurity criterion.
Consequently, this input combination cannot sometimes make sense. Thus,
multivariate classification trees are more difficult to interpret than univariate
trees.

As mentioned previously, in many situations, inputs can have a known group
structure. In this context, as far as we know, any multivariate classifica-
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tion tree algorithm enables to take account of the input structure. This led
us to develop the Tree Linear Discriminant Analysis algorithm (TLDA), a
new multivariate classification tree algorithm involving linear splits and well
adapted to grouped inputs. In this new tree-based approach, to split a node,
the algorithm first estimates a split for each group of inputs by performing a
LDA. Next, the algorithm selects the optimal split with respect to an impu-
rity criterion. This splitting procedure is then repeated until pre-determined
stopping criteria are satisfied. This results in a fully-grown tree which can
be prone to overfitting. Thus, a pruning strategy is proposed to select an
optimal tree. This new multivariate classification tree algorithm overcomes
the two major drawbacks of the other multivariate classification tree algo-
rithms. Indeed, the proposed algorithm is less time-consuming than classical
multivariate classification tree algorithms. Besides, the algorithm does not
need to perform a greedy search to determine the subsets of inputs used to
define the optimal splits since the inputs are already structured in groups.
Furthermore, interpretation is easy since the algorithm uses the group struc-
ture which make sense.

During the tree elaboration, as the depth of the tree increases, the number
of observations in each created node becomes smaller and smaller whereas
the size of each group of inputs does not change. Furthermore, it is well
known that LDA does not perform well when the number of inputs is large
relative to the number of observations (Shao et al., 2011; Friedman, 1989).
To circumvent this problem, we propose to replace the classical LDA by a
regularized linear discriminant method. We call this ”modified” version of
the TLDA algorithm the Tree Penalized Linear Discriminant Analysis algo-
rithm (TPLDA).

Performances of the proposed algorithms are analysed through a detailed
simulation study. TLDA and TPLDA are compared to CART since they are
very similar to CART when inputs are not grouped. Moreover, they are also
compared to GL which is one the reference method to elaborate classification
rules with groups of inputs.

Moreover, TLDA and TPLDA are also assessed and compared to CART and
GL on a real problem of tumors classification using gene expression data
(Golub et al., 1999). Nowadays, the ability to classify tumors subtypes using
gene expression data is still challenging. Indeed, the nature of both high
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dimensionality and small size associated with gene expression data (i.e. a
large number of variables relative to the much small number of observations)
implies the use of features selection, clustering and/or regularized methods.
Moreover, the resulted model must be easily understandable to allow both
the identification of ”marker” genes and the characterization of the tumor
subtypes. Up until now, lots of approaches have been used such as committee
neural networks (Sewak et al., 2009), support vector machine (SVM) (Guyon
et al., 2002), k-nearest neighbors (Dudoit et al., 2002), etc. In this paper, we
propose to apply TLDA and TPLDA in order to elaborate a classification
achieving a good trade-off between prediction accuracy and interpretation
while highlighting some relevant groups of genes.

To simply matters, in this paper, we restrict our attention to the classifica-
tion problems involving binary response which already captures many of the
main features of more general problems. Nonetheless, our algorithms can
also be applied on classification problems involving more than two classes.
Indeed, the splitting process allows to split a node into as many nodes as
there are classes.

The paper is organized as follows. Section 2 describes the TLDA and TPLDA
algorithms. Next, performances of the proposed algorithms are emphasized
and are compared with the two competitive methods CART and GL in a
simulation study in Section 3 and on the real Golub data set in Section 4.
The time complexity of TLDA and TPLDA are detailed in Appendix A.
Additional figures about the simulation study are given in Appendix B.

2. The Tree Group algorithms

Let (X, Y ) be a random vector taking values in Rp × {0, 1}, where X is a
vector of inputs and Y is the class label. Let (X1, Y1), . . . , (Xn+m, Yn+m) be
independent copies of (X, Y ). We randomly split the data into a training
set (X1, Y1), . . . , (Xn, Yn) of size n and a validation set (Xn+1, Yn+1), . . . ,
(Xn+m, Yn+m) of size m. A discrimination rule is a measurable function
g : Rp× (Rp×{0, 1})n+m → {0, 1} which classifies a new observation x ∈ Rp

into the class g (x, (X1, Y1), . . . , (Xn+m, Yn+m)). In what follows, we will write
g(x) for the sake of convenience. Consider the situation where X is structured
into J known groups. For j = 1, . . . , J , let pj denote the cardinality of the
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j-th group and Xj denotes the j-th group. To simplify matter, the J groups
are ordered such that X = (X1, . . . ,XJ).

Classification tree algorithms elaborate a model by recursively partitioning
the input space. The entire modelling process can be represented as a tree
and a classification rule can be deduced from the model. Figure 1 shows
a tree representation. Let T be a classification tree built on the training
set (X1, Y1), . . . , (Xn, Yn). The i-th node and the j-th terminal node of T

are denoted by Ni and Ñj respectively. Let Ñ(x) be the terminal node of
T containing the input value x with x ∈ Rp. The classification rule gT
associated to the classification tree T is defined as:

gT (x) =

{
1 if n1,Ñ(x) ≥ n0,Ñ(x)

0 otherwise.

nk,Ñ(x) = card(Rk,Ñ(x)) is the cardinality of Rk,Ñ(x) which is the set Rk,Ñ(x) =

{i = 1, . . . , n : Xi ∈ Ñ(x) and Yi = k}, k = 0, 1 of indices of the observations
belonging N(x).

2.1. The Tree-Linear Discriminant Analysis algorithm

A node N is usually obtained by splitting the input space according to the
value of one or more inputs. In the case where the vector X of inputs is
naturally structured into J groups, we propose the Tree Linear Discriminant
Analysis algorithm (TLDA) which consists in the following iterative two-
steps strategy: i) for each group, split the input space according to a linear
combination of the inputs belonging the group, ii) select the best split with
respect to an impurity criterion (which is equivalent to select the splitting
group). These steps are now described in greater details.

Step 1: within group LDA. We first perform a LDA (Friedman, 1989)
on each group Xj = (Xj

1 , . . . , X
j
pj

), j = 1, . . . , J of inputs. A new
observation x ∈ Rp is then assigned to class 1 if

δ̂j1,N(x)− δ̂j0,N(x) ≥ 0, (1)

where δ̂jk,N and δ̂j0,N are the linear discriminant function estimated from
the training set (X1, Y1), . . . , (Xn, Yn) by:

δ̂jk,N(x) = xj
>

(Σ̂j
N)−1µ̂jk,N −

1

2
(µ̂jk,N)>(Σ̂j

N)−1µ̂jk,N + log π̂k,N , k = 0, 1

(2)
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with > that stands for the transpose vector and

π̂k,N =
nk,N
nN

,

µ̂jk,N =
1

nk,N

∑
i∈RN,k

Xj
i , (3)

Σ̂j
N =

1

nN − 2

1∑
k=0

∑
i∈RN,k

(Xj
i − µ̂

j
k,N)(Xj

i − µ̂
j
k,N)>.

nN = card(RN) is the cardinality of RN which is the set RN = {i =
1, . . . , n : Xi ∈ N} of indices of the observations belonging N . LDA
splits the node N into two child nodes:

N0(j) = {x ∈ N | δ̂j1,N(x)− δ̂j0,N(x) < 0}
and (4)

N1(j) = {x ∈ N | δ̂j1,N(x)− δ̂j0,N(x) ≥ 0}.

Step 2: choosing the splitting group. In the first step of the splitting
process, the algorithm finds a linear split for each group of inputs. In
order to select the splitting group, we use Gini impurity function which
is estimated on the training set by

Î(N) = π̂1,N(1− π̂1,N).

The algorithm selects the splitting group j, j ∈ {1, . . . , J}, which max-
imizes the impurity decrease defined by

∆j(N) = Î(N)−
nN0(j)

nN
Î(N0(j))−

nN1(j)

nN
Î(N1(j)). (5)

At the very beginning of the whole procedure, steps 1 and 2 are applied to
partition the entire data space into two sub-regions. Then, these steps are
repeated recursively on each sub-region until every sub-region denoted by N
satisfies one of the following stopping criteria:

• N is homogeneous (or near so) with respect to a particular class, i.e.

π̂1,N < ε or π̂1,N > 1− ε,

for a small given value ε,
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• no further partition can reduce the impurity of N , that is:

∆j(N) = 0, for all j = 1, . . . , J.

Figure 1: Example of a classification tree. Circles indicate the nodes. d refers to the
depth of the nodes. Here D(T ) = 3. The terminal nodes are: Ñ1(T ) = N8, Ñ2(T ) = N9,

Ñ3(T ) = N10 and Ñ4(T ) = N11. The node N1 denotes the tree root.

Iterating the splitting process described above yields a fully-grown tree Tmax.
It is well known that maximal classification trees are generally not optimal
with respect to any performance criterion (such as the misclassification error)
(Breiman et al., 1984). Indeed, an excessive large number of nodes is prone
to overfitting. Thus, we propose a pruning strategy that allows to select an
optimal tree. This strategy is described below.

Pruning strategy. Let T be a subtree of Tmax, with terminal nodes Ñ1(T ), . . . ,

Ñ|T |(T ), where |T | is the number of terminal nodes of T . Let d(N) be the
depth of nodeN , that is, the number of conditions that an observation x ∈ Rp

has to satisfy from the root to the node N . Then, the depth D(T ) of the
tree T is defined as:

D(T ) = max
`=1,...,|T |

d(Ñ`(T )).

See Figure 1 for an illustration of the notions of nodes, terminal nodes and
depth. We define the sequence

N1 = T0 ⊂ T1 ⊂ . . . ⊂ TD(Tmax) = Tmax (6)
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of nested trees such that Tk, k = 1, . . . , D(Tmax) is the subtree of Tmax which
maximizes over all trees T ⊂ Tmax the quantity∑

`=1,...,|T |

d(Ñ`(T )) subject to d(Ñ`(T )) ≤ k.

In other words, Tk is the deeper subtree of Tmax whose terminal nodes have a
depth less than or equal to k. For example, Table 1 gives the terminal nodes
for the sequence of subtrees of the tree described in Figure 1.

Table 1: Terminal nodes for the subtrees in Figure 1.

Tree Terminal Nodes

T0 N0

T1 N2, N3

T2 N4, N5, N6, N7

T3 N8, N9, N5, N10, N11, N7

Each tree Tk, k = 1, . . . , D(Tmax) defines a classification rule gk:

gk(x) =

{
1 n1,Ñ(x,Tk)

≥ n0,Ñ(x,Tk)

0 otherwise,
(7)

where Ñ(x, Tk) is the terminal node of Tk containing x. Note that the
classification rules gk, k = 1, . . . , D(Tmax) depend only on the training set
(X1, Y1), . . . , (Xn, Yn). Our pruning strategy selects the rule gK̂ which min-
imizes the misclassification error P(gk(X) 6= Y ). This error is estimated on
the validation set (Xn+1, Yn+1), . . . , (Xn+m, Yn+m). Precisely, we choose

K̂ = argmin
k=1,...,DTmax

1

m

n+m∑
i=n+1

1gk(Xi)6=Yi .

The final tree retained by our procedure is the subtree TK̂ . The cardinality
of the sequence {g1, . . . , gD(Tmax)} of classifiers is finite and bounded by the
size n of the training set. Therefore, using classical empirical minimization
tools (Devroye et al., 2013, chapter 26), we show that the selected rule gK̂
satisfies the following inequality:

E
[
|P(gK̂(X) 6= Y )− inf

k∈{1,...,D(Tmax)}
P(gk(X) 6= Y )|

]
≤ 2

√
log(2n) + 1

2m
(8)
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where m is the test sample size. Thus, since in most cases of interest
log(m) � n, inequality (8) means that the selected classification rule gK̂
classifies as well as the best classifier in the sequence {g1, . . . , gD(Tmax)} (with
respect to the misclassification error).

Remark 2.1.

- During the splitting procedure, when choosing the splitting group (Step
2, page 7) other impurity criteria, such as the information criterion,
could be used.

- The time complexity of TLDA at a non-terminal node N of size nN
is in the worst case O (JnNpmaxtmin) where J refers to the number of
groups, pmax = maxj(pj) with pj denoting the size of Xj and tmin =
min(pmax, nN). The computation is detailed in Appendix A. As TLDA
performs a group selection rather than a variable selection, the time
complexity increases when the number of groups J increases. However,
whatever the number of groups J and the size of the largest groups
pmax, TLDA is less consuming than most of multivariate classification
algorithms such as for instance HHCART (time complexity = O (n2

Np
3)

with p =
∑J

j=1 pj is the number of inputs) and OC1 (time complexity

= O (n2
N log(nN)p)) (Wickramarachchi et al., 2016).

The TLDA algorithm is illustrated by the following simple example:

Example 2.1. Let’s consider the random vector (X, Y ) which takes values
in R2 × {0, 1} with

Xi ∼ N (0, 1), i = 1, 2

and (9)

L(Y | X = x) =

{
B(0.9) if x2 > 2(x1)

2 + 0.20 or x2 < 0.5 + x1
B(0.1) otherwise.

The aim is to predict the class label Y according to the unique and single
group X1 = X = (X1, X2). In this scenario, the Bayes classification rule
g∗(x), i.e. the rule which minimizes the misclassification error P(g(X) 6= Y )
is defined by:

g∗(x) =

{
1 if x2 > 2(x1)

2 + 0.20 or x2 < 0.5 + x1
0 otherwise.

(10)
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CART and TLDA have been applied on a training sample of 50 observa-
tions. For TLDA, a validation set of 50 observations is used to perform the
proposed pruning strategy based on the depth while CART maximal tree
has been pruned by applying the classical cost-complexity pruning (Breiman
et al., 1984). Finally, the predictive performances of the two final trees have
been measured by the area under the ROC curve (AUC) estimated on an in-
dependent test sample of 1000 observations. Here, TLDA allows to elaborate
a less complex partition of the input space without lost of accuracy (Figure
2).

(a) (b) (c)

(d) (e)

Figure 2: Example 1 - a simple binary classification problem in R2. From left to
right: (a) representation of 200 observations defined by model (9), (b) a TLDA par-
tition (AUC=0.90), (c) a CART partition (AUC=0.89), (d) the tree associated to the
TLDA partition, (e) the tree associated to the CART partition. On each graph, the Bayes
decision boundaries are represented by the two dotted boundaries. For the trees, circles
defines the nodes and the figure in each node are the node label. The splitting rule is
indicated below each node.
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LDA is known to be very sensitive to the sample size and tends to not perform
well in high-dimension, i.e. when in a nodeN some groups are large compared
to the number of observations (Shao et al., 2011; Friedman, 1989; Xu et al.,
2009; Bouveyron et al., 2007). Yet, the splitting procedure described above
(page 6) creates nodes that becomes smaller and smaller whereas the sizes
of inputs groups remain unchanged. Then LDA may not be appropriate for
estimating recursively the hyperplane splits. Example 2.2 illustrates it.

Example 2.2. Consider the previous example 2.1 with an additional group
of twenty noisy inputs. This second group is denoted by the random vector
X2 which takes values in R20:

X = (X1,X2) and Xi ∼ N (0, 1), i = 1, . . . , 22.

Inputs are considered mutually independent. The conditional distribution
L(Y | X = x) of the response Y , the Bayes classification rule g∗(x), the
size of the training, validation and test sets remain unchanged compared
to Example 2.1 (see equations (9) and (10)). The aim is to predict the
class label Y according to the two groups X1 and X2. Figure 3 outlines
the results based on 500 repetitions of this classification problem. In this
example, TLDA mainly selects the second groups X2 which is ten times
larger that the first and single predictive group X1. Consequently, as the
pruning procedure deletes the uninformative nodes, the final TLDA tree is
trivial (i.e. the depth of the final tree equals zero) in 51% of the cases and
so the predictive performance of TLDA are low.

TLDA CART

AUC
0.50 0.62

[0.50 ; 0.92] [0.60 ; 0.68]

Tree depth
0 4

[0 ; 1] [2 ; 5]

(a) (b)

Figure 3: Example 2 - Sensitivity of LDA to the group size. From left to right: (a) group
selection frequencies for the first split for TLDA (in %), (b) median of the AUC and the
tree depth with the first and the third quartiles in brackets. Note that 51% of the final
TLDA trees are trivial.
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To address the issue illustrated by the previous example, we propose to use
a regularized discriminant method instead of LDA. This modified version of
the TLDA algorithm is called the Penalized Linear Discriminant Analysis
algorithm (TPLDA) and is introduced below.

2.2. The Penalized Linear Discriminant Analysis algorithm

It is established that performing LDA is equivalent to performing Fisher’s
linear discriminant analysis (FDA) (Friedman et al., 2001). For instance,
consider the split of the node N based on the group Xj (Step 1, page 6).
FDA seeks a one-dimensional projection of the observations in the node N
that maximizes the ratio of the between-class variance to the within-class
variance. Then, FDA solves the problem

maximizeβj∈Rp

{
(βj)>B̂j

N β
j
}

s.t. (βj)>Σ̂j
N β

j ≤ 1 (11)

where Σ̂j
N denotes the standard estimate of the within-class covariance matrix

of Xj in the node N defined in equation (3) and B̂j
N is the standard estimate

for the between-class covariance matrix of Xj in the node N :

B̂j
N =

1

nN − 2

1∑
k=0

∑
i∈RN,k

(µ̂jN − µ̂
j
k,N)(µ̂jN − µ̂

j
k,N)>. (12)

The solution of problem (11) is denoted β̂j and is called the discriminant
vector. A new observation x ∈ Rp is assigned to class 1 if xj is closer to the
centroid µ̂j1,N of the class Y = 1 than to the centroid µ̂j0,N of the class Y = 1
in the projected space, which is equivalent to

‖β̂j>xj − β̂j>µ̂j1,N‖2 + log(π̂1,N) ≥ ‖β̂j>xj − β̂j>µ̂j0,N‖2 + log(π̂0,N)

βj>

(
xj −

(µ̂j1,N − µ̂
j
0,N)

2

)
+ log

(
π̂1,N
π̂0,N

)
≥ 0, (13)

with µ̂jk,N , k = 0, 1 denoting the empirical estimate of the prior probability
of belonging the class k in the node N . Then, as LDA (4), FDA splits the
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node N into two child nodes:

N0(j) =

{
x ∈ N | β̂j>

(
xj −

(µ̂j1,N − µ̂
j
0,N)

2

)
+ log

(
π̂1,N
π̂0,N

)
< 0

}
and (14)

N1(j) =

{
x ∈ N | β̂j>

(
xj −

(µ̂j1,N − µ̂
j
0,N)

2

)
+ log

(
π̂1,N
π̂0,N

)
≥ 0

}
.

As illustrated in Example 2.2, FDA or LDA performs badly in high-dimensional
situations. Therefore, FDA may not be appropriate for estimating recursively
the hyperplane splits. To address this issue, we propose to use regularized dis-
criminant analysis (a.k.a penalized Fisher’s linear discriminant analysis, see
Witten & Tibshirani, 2011) instead of the LDA. In penalized Fisher’s linear
discriminant analysis (PLDA), the FDA problem is modified by imposing a
L1-penalty on the discriminant vector βj. The penalized discriminant vector
β̂jpen is then the solution to the PLDA problem defined as:

maximizeβj∈Rp

{
(βj)>B̂j

N β
j − λj

pj∑
l=1

|σ̂jN,lβ
j
l |

}
s.t. (βj)>Σ̃j

N β
j ≤ 1 (15)

where Σ̃j
N is the diagonal positive estimate of the within-group covariance

matrix of Xj in the node N :

Σ̃j
N = diag

(
(σ̂jN,1)

2, . . . , (σ̂jN,pj)
2
)

(16)

with σ̂jN,l, l = 1, . . . , pj denoting the within-class standard deviation estimate

for the l-th input of Xj. This diagonal estimate has been used for instance
by Friedman (1989) and shown good performances in high-dimensional situ-
ations (Bickel & Levina, 2004; Dudoit et al., 2002). In the PLDA problem
(15), λj is a shrinkage parameter taking values in R+: the larger λj is, the
more shrunk the components of βj are. Moreover, with the inclusion of the
within-class standard deviation estimates σ̂jN,l, l = 1, . . . , pj in the penalty,

the inputs in the group Xj that vary more within each class Y = 1 and Y = 0
are more penalized. Consequenthly, large values for λj and σ̂jN,l, l = 1, . . . , pj
can force some components of βjpen to be set to zero. In practice, the value of
λj is chosen by cross-validation from a set of guided values provided by the
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user.

As with FDA, a new observation x ∈ Rp is assigned to the nearest class
centroid in the projected space (see equation (13)). Thus, PLDA splits the
node N into two child nodes:

N0(j) =

{
x ∈ N | β̂j>pen

(
xj −

(µ̂j1,N − µ̂
j
0,N)

2

)
+ log

(
π̂1,N
π̂0,N

)
< 0

}
and (17)

N1(j) =

{
x ∈ N | β̂j>pen

(
xj −

(µ̂j1,N − µ̂
j
0,N)

2

)
+ log

(
π̂1,N
π̂0,N

)
≥ 0

}
.

The use of PLDA instead of LDA leads to the modified version of the TLDA
algorithm called the Tree Penalized Linear Discriminant Analysis algorithm
(TPLDA). As TLDA, TPLDA firstly uses a two-step splitting procedure to
built a maximal tree and next applies the pruning strategy described above.
The pruning procedure remains unchanged compared to TLDA whereas the
splitting process is slightly different:

Step 1: within group PLDA. Before applying a PLDA on a given group
Xj = (Xj

1 , . . . , X
j
pj

), j = 1, . . . , J of inputs in a node N , a K-fold cross-
validation is performed to select the value of the shrinkage parameter
λj. indeed, from a set of L guided values, the algorithm selects the value
for λj which maximizes the cross-validated estimate of the decrease in
impurity (5). Next, PLDA can be performed on Xj which results in
the split of N into the two child nodes N0(j) and N1(j) defined by
equation (17).

Step 2: choosing the splitting group. As TLDA, TPLDA uses Gini
impurity function and selects the group j, j = 1, . . . , J which maximizes
the impurity decrease in the node N (equation (5)).

Remark 2.2.

- The term log
(
π̂1,N
π̂0,N

)
in equations (14) and (17) allows to take account

of the empirical estimates of the prior probabilities of class membership
π̂0,N and π̂1,N .
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- In practice, the PLDA problem (15) is solved by using a minimization
algorithm (Hunter & Lange, 2004). More details about PLDA are
available in the original paper of Witten & Tibshirani (2011). A R
package is also available (Witten, 2015).

- In the PLDA problem (15), if λj is equal to zero and the diagonal

positive estimate Σ̃j
N of the within-group covariance matrix of Xj in

the node N (equation (16)) is replaced by the standard estimate Σ̂j
N

(equation (3)), the PLDA problem (15) corresponds to the FDA prob-
lem (11).

- In a node N , if the inputs in the group Xj are mutually independent
or if the size pj of the group Xj is 1, then Σ̃j

N = Σ̂j
N .

- The time complexity of TPLDA at a node N of size nN is in the worst
case O (JLKnNp

2
max) with J referring to the number of groups, K be-

ing the number of folds in the cross-validation, L denoting the number
of guided values for λj in the cross-validation and pmax = maxj(pj) with
pj being the size of Xj. The computation is detailed in Appendix A.
As TPLDA performs, for each group Xj, j = 1, . . . , J , a K-fold cross-
validation to calibrate λj, the time complexity increases as an increasing
function of L, K and J . However, as the inequality K ≤ nN is always
satisfied, TPLDA remains less time consuming than lots of multivari-
ate classification tree algorithms such as for instance HHCART (time
complexity = O (n2

Np
3) with p =

∑J
j=1 pj is the total number of inputs)

and OC1 (time complexity = O (n2
N log(nN)p)), excepted in very small

nodes (i.e. Lpmax > log(nN)).

Example 2.3. TPLDA is applied on the classification problem introduced
in Example 2.2. Figure 4 describes the results based on 500 repetitions of
this classification problem. Compared to TLDA, TPLDA is less sensitive to
the sizes of the groups. TPLDA selects more frequently the true predictive
group X1 than the noisy group X2 and elaborates a trivial tree in only 28%
cases whereas TLDA builts a trivial tree in 51% cases. In this case, TPLDA
outperforms both TLDA and CART (see Figure 3, page 12).
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(a) (b)
TPLDA

AUC
0.64

[0.50 ; 0.75]

Tree depth
1

[0 ; 2]

(c)

Figure 4: Example 3 - Application of the TPLDA algorithm to the problem introduced
in Example 2.2. From left to right: (a) Group selection frequencies for the first split (in
%), (b) Group selection frequencies (in %), (c) Median of the AUC and the tree depth
with the first and the third quartiles in brackets for TPLDA. Note that 28% of the final
TPLDA trees are trivial.

3. Numerical experiments

In this section, several numerical experiments are presented. In all the ex-
periments, the TLDA and TPLDA algorithms are compared to CART and
GL. Experiments are based on a model inspired by Friedman et al. (2001)
and described below.

Presentation of the general simulation design

First, a sample of outcome variable Y is simulated from a balanced Bernoulli
distribution Y ∼ B(0.5). The vector X of inputs is defined conditionally
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to the variable Y and is structured in J groups: X = (X1, . . . ,XJ). When
Y = 0, for j = 1, . . . J , every component Xj

l , l = 1, . . . , pj of the vector Xj,
follows a standard Gaussian distribution:

L(Xj
l | Y = 0) = N (0, 1), l = 1, . . . , pj.

When Y = 1, every component Xj
l , l = 1, . . . , pj of the vector Xj, is defined

conditionally to the value of the standard uniform random variable U :

L(Xj
l | Y = 1, U = u) =


N (−µj, 1) if u < u1;

N (µj, 1) if u1 ≤ u < u2;

N (0, 1) otherwise.

(18)

where u1, u2 are two fixed real numbers such that 0 ≤ u1 < u2 ≤ u1+u2 ≤ 1.
The components µj ≥ 0, j = 1, . . . J can be interpreted as the discrimina-
tory power of the group j: the higher the value of µj is, the more the class-
conditional distributions of Xj differ. Note that if µj is zero, whatever the val-
ues of Y and U , all inputs in group Xj are distributed according to a standard
Gaussian distributions: L(Xj

l |Y = 0) = L(Xj
l |Y = 1, U = u) = N (0, 1),

l = 1, . . . , pj. Then, when µj is zero, the group Xj is not relevant to predict Y .
The vector of the components µj (j = 1, . . . J) is denoted µ = (µ1, . . . , µJ).

The covariance between two inputs Xj
l and Xj′

l′ (j, j′ = 1, . . . , J , l = 1, . . . , pj,
l′ = 1, . . . , pj′) is defined according to both the group belonging by each of

the two inputs and the distance d1(X
j
l , X

j′

l′ ) between the two inputs:

Cov
(
Xj
l , X

j′

l′

)
=

c
d1(X

j
l ,X

j′
l′ )

w if j = j′,

c
d1(X

j
l ,X

j′
l′ )

b otherwise.

where cw and cb are two real numbers such that 0≤cw, cb< 1 and

d1(X
j
l , X

j′

l′ ) =

max(j,j′)−1∑
i=min(j,j′)

pi + (l − l′)1min(j,j′)=j′ + (l′ − l)1min(j,j′)=j.

Thus, in this simulation design, the group structure of the inputs comes from
both the discriminatory power µj, j = 1, ..., J of the inputs and the block
structure of the covariance matrix of X.
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For all experiments, n+m+ q observations are randomly divided into three
independent subsamples: a training sample of size n, a validation sample of
size m and a test sample of size q. The size of the training and the validation
samples are set to be equal. In all experiments, the test sample size is set
to q = 1000. Moreover, J = 10 groups are simulated and the vector µ is set
to µ = (1.25, 0, 1, 0, 0.75, 0, 0.5, 0, 0.25, 0). In this way, only groups with an
odd index are relevant and the discriminatory power of each even group (i.e.
in each relevant group) is a linear decreasing function of the group index.
Moreover, we choose (u1, u2) = (0.25, 0.90). Four experiments are considered
here by varying:

• the sizes n and m of the training set and the validation set,

• the group sizes pj, j = 1, . . . , J = 10,

• the correlations cw and cb.

In this way, we embrace a variety of situations: independent and ungrouped
inputs, correlated groups of moderate and equal size, large correlated groups
and correlated groups with large noisy groups.

In each experiment, the algorithms are compared and assessed on two main
criteria: 1) the predictive performance of the classification rule and 2) the
ability to identify the true relevant groups/inputs. The first criterion is as-
sessed by using the AUC computed on the test set. The ability to identify the
true relevant groups/inputs is measured by the group selection frequencies
which has not the same meaning for all the assessed algorithms. As CART
ignores the group structure, for this algorithm, the selection frequency of
a given group is defined as the number of times that at least one input in
the group is included in the final tree. For TLDA, TPLDA and GL, as the
algorithms use the group structure to build a classification rule, the selection
frequency of a given group refers to the number of times that a group is
included at least once in the final model. Due to these two different defini-
tions, no direct comparison is made between the group selection frequencies
of CART algorithm and those of the other algorithms.

Furthermore, the complexity of the classification rule is also studied by using
two criteria: the tree depth for the classification tree algorithms (i.e. TLDA,
TPLDA and CART) and the number of groups included in the model for
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GL. For the classification tree algorithms, interpretation of a large tree is
harder than the one of a small tree. So larger a tree is, more complex the
classification rule is. For GL, the complexity increases with the number of
groups included in the model.
Finally, for the classification tree algorithms, the decreasing of the misclas-
sification error is displayed according to the tree depth in the training and
the validation set.
All criteria are averaged over 500 iterations of each experiment.

Remark 3.1. In this simulation design, the covariance structure looks like
the one of gene expression data: genes included in a same biological pathway
are correlated, and the correlation decreases as a function of the distance
between any two genes.

Experiment 1: ungrouped inputs

This first scenario illustrates the similarity of TLDA and TPLDA to CART
when inputs are not grouped. The scenario follows the general simulation
design presented before. Each group includes only a single input (i.e. pj = 1,
for j = 1, . . . , 10), so a group is an input. The size of the training and the
validation sets are set to n = m = 500. Moreover, inputs are not correlated
(i.e. cw = 0 and cb = 0) in order to assess the ability of the algorithms to
identify the true relevant groups/inputs when data are mutually independent
and not grouped.
Results. Figure 5 displays the AUC distribution, the tree-depth distribution
and the group selection frequencies over the 500 iterations. Note that as all
groups include only a single input, CART selection frequency of a given group
has the same meaning than the selection frequency of the group for TLDA,
TPLDA and GL. In this situation, TLDA and TPLDA lead to almost the
same results and can be then used interchangeably. These big similarities
can be explained by the fact that as the size of the groups is 1: the FDA (or
LDA) problem and the PLDA problem are identical (see Remark 2.2).
Moreover, the two proposed algorithms identify the same groups (or inputs)
and have similar predictive performances than CART (Figures 5a, Figures
5c and Table 2). Even though, CART elaborates larger trees. TLDA and
TPLDA do not exactly give the same results than CART because they do
not optimize the same criteria. Indeed, to split a node, CART tries to find
the splitting input and the value for this inputs that maximizes the decrease
in impurity in the node (see Breiman et al., 1984). In our approach, the
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splitting process is composed of two steps (see the description of the two-
step splitting procedure page 6). First, TLDA and TPLDA estimate a split
for every group based on a maximization of the ratio of the between-class
covariance matrix and the within-group covariance matrix (see equation (11)
and equation (15)). Next, they select the split that maximizes the decrease
in impurity in the node (see equation (5)). So, TLDA and TPLDA do not
directly maximizes the decrease in impurity.

Table 2: Experiment 1. AUC distribution according to the methods.

TLDA TPLDA CART GL

AUC
0.66 0.66 0.67 0.64

[0.64;0.67] [0.65;0.68] [0.65;0.68] [0.62;0.65]

(a) (b)

(c)

Figure 5: Experiment 1, ungrouped inputs. From top left to bottom right: (a) Boxplots
of the AUC, (b) Boxplots of the tree depth, (c) Groups selection frequencies according to
the method.
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Table 3: Experiment 1. Number of groups included in the GL model.

Model size 0 1 2 ≥ 3

Frequency (in %) 1.80 31.00 39.80 27.4

Experiment 2: groups of moderate and equal size

In contrast to the previous simulation, in this scenario, inputs are structured
in groups of equal and moderate sizes. Moreover, correlation between and
within groups are considered. This scenario is also simulated according to
the general simulation design presented before, by taking:

• n = m = 500,

• pj = 10 for j = 1, . . . 10,

• (cw, cb) = (0.85, 0.8).

Results. As previously, TLDA, TPLDA and GL select more the relevant
groups than the noisy groups and the selection frequency of a given group
behaves as an increasing function of the discriminatory power of the group
(Figure 6c and Figure 6d). Moreover, TPLDA identifies and selects more
relevant group than TLDA and GL (Figure 6c). It selects the three most
predictive groups in about 80% of the simulations and the fourth most pre-
dictive group in more than 40% of the cases whereas TLDA (GL respectively)
selects the three most predictive groups in less than 50% (less than 30% re-
spectively) and the fourth most relevant group in less than 40% (in less than
10% respectively). Even though the group selection frequencies using CART
and TPLDA are not comparable because CART selects individual inputs
whereas TPLDA select a group of inputs, the group selection frequencies of
the two algorithms are very similar. Then, CART identifies inputs belonging
the groups selected by TLDA and this in the same frequencies.
Figure 7a and Figure 7b display the misclassification error according to the
tree depth in the training and the validation set for TLDA, TPLDA and
CART. In both the training set and the validation set, the misclassification
error decreases quicker with TPLDA and TLDA than with CART because
the two proposed Tree Group algorithms use multivariate splits which are
more informative (Lim et al., 2000). This also explains the smaller size of
the final tree for TLDA and TPLDA compared to CART (Figure 6b). Then,
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TPLDA and TLDA trees are more easily interpretable than CART because
first splits are defined according to the groups which makes more sense that
inputs taken individually and secondly final trees are smaller.

(a) (b)

(c) (d)

TLDA TPLDA CART GL

AUC
0.67 0.75 0.68 0.66

[0.65;0.69] [0.74;0.77] [0.67;0.70] [0.64;0.67]

(e)

Figure 6: Experiment 2, groups of moderate and equal sizes. From top left to bottom
right: (a) Boxplots of the AUC, (b) Boxplots of the tree depth, (c) Groups selection
frequencies for TLDA, TPLDA and GL, (d) Groups selection frequencies for CART, (e)
AUC distribution according to the methods.
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(a)

(b)

Figure 7: Experiments 2. Misclassification error estimate on the training set (a) and on
the validation set (b) versus the tree depth for TLDA, TPLDA and CART. The dotted
lines indicates the value of the Bayes error. The Bayes error is 10%.

Moreover, TPLDA gives the best predictive performances (Figure 6a and Ta-
ble 6e). Thus, TPLDA outperforms all the other algorithms by elaborating
more accurate and more easily understandable classification rules.
The lower performances of TLDA and GL can be explained by the fact that
the algorithms do not identify enough relevant groups (Figure 6c). As previ-
ously mentioned, TLDA is sensitive to the dimension of the training sample
and performs badly when the number of observations is small compared to
the number of inputs. Consequently, splits of the deeper nodes (i.e. splits in
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small nodes) can be less informative and so are deleted during the pruning
step, leading to smaller final TLDA trees than the final TPLDA trees.

Experiment 3: large groups

This simulation deals with the high-dimensional problem introduced previ-
ously (see Example 2.2 and Subsection 2.2). It follows the general simulation
design presented above by setting:

• n = m = 100,

• pj = 50 for j = 1, . . . 10.

The correlation parameters remain unchanged: (cw, cb) = (0.85, 0.80).

Results. Figure 8 gives the group selection frequencies, the tree-depth distri-
bution and the AUC distribution over the 500 iterations for each algorithm.
As in the previous scenarios, all algorithms identify more frequently the most
relevant groups than the noisy groups and the selection frequency of a given
group is an increasing function of the discriminatory power the group (Figure
8c and Figure 8d).
This scenario highlights the bad performances of LDA in high-dimensional
situations. Indeed, in the first split, the LDA used to split the entire data
space overfits the training set. This can be seen in Figures 9a and 9b: the
training misclassification error decreases much faster for TLDA and becomes
smaller than the Bayes error from the first split while the test misclassifica-
tion error for TLDA remains stable. Consequently, after applying the pruning
procedure which removes the less informative nodes, the final TLDA tree is
trivial in 28.40 % of the simulations (Figure 8b and Table 4).
PLDA overcomes the weakness of LDA in high-dimensional situations. In-
deed, TPLDA is not affected by the high-dimension and the algorithm still
outperforms all the other assessed algorithms (Table 8e). The misclassi-
fication error in both the training and the validation test decreases more
faster than CART (Figure 9). Consequently, TPLDA builds smaller trees
than CART (Figure 8b). As previously, all the algorithms well identify the
most true relevant groups and even though the group selection frequencies
of CART and TPLDA have not the same meanings, there are very similar
(Figure 8c and Figure 8d).
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(a) (b)

(c) (d)

TLDA TPLDA CART GL

AUC
0.51 0.86 0.64 0.68

[0.50;0.53] [0.75;0.88] [0.62;0.67] [0.50;0.69]

(e)

Figure 8: Experiment 3, large groups. From top left to bottom right: (a) Boxplots of the
AUC, (b) Boxplots of the tree depth, (c) Groups selection frequencies for TLDA, TPLDA
and GL, (d) Groups selection frequencies for CART, (e) AUC distribution according to
the methods.
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(a) (b)

Figure 9: Experiments 3. Misclassification error estimate on the training set (a) and on
the validation set (b) versus the tree depth for TLDA, TPLDA and CART. The dotted
lines indicates the value of the Bayes error. The Bayes error is 10%.

Note that compared to the previous scenarios, TPLDA and GL better per-
forms (Figure 8a and Table 8e) because the discriminatory power of every
relevant group is higher compared to the previous scenarios. Indeed, given
that, in every group, all inputs share the same discriminatory power, the
discriminatory power of a predictive group increases when the group size in-
creases. Yet, it can be noticed that in this scenario, the variability of the
predictive performances is higher for these two algorithms.

Table 4: Experiment 3, large groups – TLDA tree depth.

Tree depth 0 1 2

Frequency (in %) 28.40 40.40 31.20
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Experiment 4: large noisy groups

The aim of this scenario is to compare the algorithms in a difficult situation
involving large noisy groups. The size of the noisy group is set to 50 and the
size of the relevant group is set to 10:

pj =

{
10 if j ≡ 1 (mod 2);

50 otherwise,

for j = 1, . . . , 10. The correlation between inputs is the same that in the
previous scenario (i.e. (cw, cb) = (0.85, 0.8)) and the training samples and
the validation samples include n = m = 500 simulated observations.

Results. As in the previous scenario, TLDA is sensitive to the sizes of the
groups. Indeed, TLDA selects as many Group 1 (i.e. the most relevant group)
as the five large noisy groups (Figure 10c). Besides, the first splitting group
chosen by TLDA is a large noisy group in 51.2% of the simulations (Figure 11
and Table 11). This explains why the misclassification error in the training
set decreases fast whereas the misclassification error in the validation set stays
quite stable (Figure 12). Thus, in this situation, TLDA selects the trivial
tree in 22.60% of the simulations and has bad predictive performances (Figure
10a, Figure 10b and Table 10e). On the contrary, the other algorithms and
especially TPLDA are not affected by the large noisy groups. Indeed, the
other algorithms select mainly the most predictive groups/inputs (Figure 10c
and figure 10d).
Moreover, as in the previous scenarios, the misclassification error in both
the training set and the validation set decreases faster for TPLDA than for
CART (Figure 12). Consequently, TPLDA builds smaller trees while having
better predictive performance than the other algorithms (Figure 10a, Figure
10b and Table 10e). Thus, whatever the group sizes, TPLDA performs well
in these two last difficult scenarios.
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(a) (b)

(c) (d)

TLDA TPLDA CART GL

AUC
0.51 0.74 0.67 0.66

[0.50;0.58] [0.72;0.76] [0.65;0.68] [0.64;0.67]

(e)

Figure 10: Experiment 4, large noisy groups. From top left to bottom right: (a) Boxplots
of the AUC, (b) Boxplots of the tree depth, (c) Groups selection frequencies for group
methods, (d) Groups selection frequencies for CART, (e) AUC distribution according to
the methods.
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Group
1

Other
relevant
groups

Noisy
Groups

Total

TLDA 21.60 4.60 52.10 77.40
TPLDA 79.40 19.60 1.00 100

Figure 11: Experiment 4. First splitting group (in %) for the TLDA maximal trees and
the TPLDA maximal trees.

(a) (b)

Figure 12: Experiments 4. Misclassification error estimate on the training set (a) and on
the validation set (b) versus the tree depth for TLDA, TPLDA and CART. The dotted
lines indicates the value of the Bayes error. The Bayes error is 10%.
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Remark 3.2. CART has also been pruned with our pruning strategy to
assess the sensitivity to the pruning method (see Appendix B). The obtained
pruned trees are slightly larger but have similar prediction accuracy than the
pruned trees selected with the cost-complexity pruning. Thus, the prediction
accuracy does not seem to be affected by the choice of the pruning method.

4. Application to gene expression data

In this section, TLDA and TPLDA are compared to CART and GL on the
leukemia microarray study of Golub et al. (1999). This study is the first study
on leukemia tumor classification using gene expression data and has then be-
come a benchmark in cancer tumors classification. The data can be freely
downloaded from http://www.broadinstitute.org/cgi-bin/cancer/publications/

pub_paper.cgi?paper_id=43. The data set consists of 72 tumor samples
from leukemia patients, with each sample giving the expression levels of 2185
genes. Based on pathological and histological criteria, 47 tumor samples are
classified as acute lymphoblastic leukemias (called ALL) and the remaining
25 samples are classified as acute myeloid leukemias (called AML). The al-
gorithms are applied on this data set to elaborate a classification rule based
on the gene expression patterns. This classification rule will be mainly used
both to predict the leukemia tumors and to identify groups or ”marker” genes
that allow to characterize the several tumors subtypes. So, the aim is to ob-
tain a classification rule which both well classifies the leukemia tumors while
being easily understandable to yield information about relationship between
some groups of genes and the several tumors classes.

Data preprocessing and genes clustering

Following Dudoit et al. (2002) and Sewak et al. (2009), a preprocessing is
applied to the whole data set. First, only the first quartile of genes with
the greatest variation across the sample is considered, the other genes are
excluded. Next, gene expression values less than 20 and higher than 16000
are set to 20 and 16000 respectively.
After that, as proposed by Lee & Batzoglou (2003), independent component
analysis (ICA) is applied to cluster the remaining genes. Genes are then
clustered into non-mutually exclusive groups based on their load on each
ICA component.
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Evaluation of the methods

Following previous analysis of this data set (Sewak et al., 2009; Dudoit et al.,
2002), the accuracy rate is used to assess the predictive performances of
TLDA, TPLDA, CART and GL. It has been computed by using 5-fold cross-
validation and 200 Monte Carlo replications of the whole data set.

Results

The data preprocessing keeps 545 genes. Next, based on the ICA applied
on the remaining genes, ten groups are created. The choice of the number
of groups has been driven by Tamayo et al. (2007) and Sewak et al. (2009).
Each group includes the 5% of genes with the highest loads in absolute terms.
Then, each group consists in 28 genes and the ten groups are based on 82
genes of which 32 genes belonging only a single group.

Figure 13: Application on the Leukemia data set: boxplots of the accuracy.

The distribution of the accuracy rate according to the algorithm is repre-
sented in Figure 13. On this data set, TPLDA outperforms the other meth-
ods with a median accuracy rate of 92%. GL has lightly lower predictive
performances with a median accuracy rate of 89% while TLDA and CART
are less efficient with a median accuracy rate of 83% and 81% respectively.
Moreover, the accuracy rate seems more stable with TPLDA and GL.
As mentioned above, one of the major issue in the classification of tumors us-
ing gene expression data is the identification of relevant variables or relevant
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groups of genes. Figure 14 displays the TPLDA tree obtained by applying
the algorithm on the whole data set. The tree consists in two splits. The first
one is defined according to the first group which includes the variables with
the highest load (in absolute terms) on the first ICA component. The second
split is based on the fourth group including the variables with the highest
(in absolute terms) on the fourth ICA component. We are not attempted to
give biological interpretation of the genes and groups of genes involved in the
TPLDA tree. However, these results seem consistent with those presented
in the original paper of Golub et al. (1999). Indeed, in the two splits, some
of the genes that contribute the most to the split decision rule belongs the
set of informative genes reported by Golub et al. (1999). Moreover, in the
TPLDA tree, the shape of the splits and the tree structure enable to highlight
possible relevant interactions between genes inside the first and the fourth
groups and also between these groups.

Figure 14: Application on the Leukemia data set: the TPLDA tree estimated on the
whole leukemia data set. From the tree, circles refer to the nodes. The two numbers in
the circles indicate the number of AML and the number of ALL belonging the node. The
splitting group is indicated below the node with the five genes that contribute the most
to the splitting rule. The stars are used to identify the genes belonging the set of relevant
genes reported by Golub et al. (1999).

On this data set, TPLDA gives competitive results with other popular clas-
sifiers such as nearest-neighbors classifiers (Dudoit et al., 2002), committe
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neural networks (CNN) (Sewak et al., 2009) or SVM (Guyon et al., 2002).
Compared to Dudoit et al. (2002), our study considered twice as many genes
(82 genes) and the genes are structured in groups based on ICA which enables
to underline the existence of informative biological processes and genes inter-
actions (Lee & Batzoglou, 2003). By comparison, Dudoit et al. (2002) keep
only the 40 genes the most correlated with the tumor subtypes and then
genes selection ignores possible genes interactions or biological processes.
Sewak et al. (2009) and (Guyon et al., 2002) have applied CNN and SVM
respectively which lead to high predictive performances. Yet, the resulted
classification rules cannot be easily interpreted. Therefore, the TPLDA algo-
rithm achieves comparatively a better trade-off between interpretation and
prediction accuracy than CNN or SVM.

5. Conclusion

In this work we have presented a new way to classify data with grouped in-
puts. Our approach consists in building a classification tree based on splits
of the input space defined according to the groups. Two algorithms have
been introduced: TLDA which uses LDA to defined the decision splits and
TPLDA which partitions the inputs space by performing regularized LDA.
To our knowledge, there are the first classification trees algorithms dealing
with grouped inputs.
The TLDA and TPLDA can be considered as two multivariate classification
tree algorithms which use linear combinations of inputs to built the partition
like lots of multivariate classification tree algorithms. However, contrary
to most of the multivariate classification tree algorithms (Breiman et al.
1984; Murthy et al. 1993; Loh & Shih 1997; Li et al. 2003; Wickramarachchi
et al. 2016, etc.), TLDA and TPLDA are not computationally expensive and
they built classification trees easily understandable. Based on the simula-
tion study and the application on real data, it is clear that TPLDA is well
adapted to classify data with groups of inputs. Furthermore, as shown in
the application on gene expression data, TPLDA is also an effective method
to perform variable selection when inputs are grouped. Thus, this algorithm
shows promising results in term of predictive performances, interpretation
and variable selection.
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Appendix A. Time complexity of the tree-groups algorithms at a
node

In the following section, the maximal time complexity at a node N of TLDA
and TPLDA is detailed. We assume that there are nN observations in the
node N , J groups of variables and the group j, j = 1, . . . , J , includes pj
inputs.

Appendix A.1. Time complexity of TLDA

To split a node N including nN observations, first the algorithm estimates a
split for each group:

• Complexity for estimating the hyperplan split with the group j by using
a LDA is O (pjnN t) with t = min(pj, nN). See Cai et al. (2008) for a
detailed calculation of LDA time complexity.

• Complexity for assigning each of the nN observations to one of the two
child nodes N0(j) and N1(j) is O (nNpj).

• Complexity for computing the decrease in impurity resulting from the
split ∆j(N) is O (nN).

So, the maximal time complexity at a node to estimate the split with the
group j is O (pjnN t) +O (nNpj) +O (nN) = O (pjnN t). The previous steps
are repeated on the J groups, so the complexity for estimating a split for
each group is O (JpmaxnN t) with pmax = maxj(pj).

Next, the algorithm selects, among the J estimated splits, the one which
maximizes the impurity decrease. The complexity for choosing the splitting
group is then O (1).

Consequently, the maximal time complexity of TLDA at a node is in the worst
case O (JnNpmaxtmax) +O (1) = O (JnNpmaxtmin) with pmax = maxj(pj) and
tmin = min(pmax, nN).

Appendix A.2. Time complexity of TPLDA

To split a node N including nN observations, first the algorithm estimates
a split for each group. Compared to TLDA, the estimation of the split for
a given group j consists in the two following steps: first the selection of
the shrinkage parameter λj and next the application of a PLDA using the
selected value for λj and the group j.
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Complexity of performing PLDA:

PLDA computation steps are described in the original paper (Witten & Tib-
shirani, 2011). We detailed here its maximal time complexity:

• Complexity for constructing the estimated between covariance matrix
B̂j
N is O

(
nNp

2
j

)
with pj, j = 1, . . . , J being the size of Xj.

• Complexity for constructing the estimated diagonal within covariance
matrix Σ̃j

N is O (nNpj).

• Complexity of the eigen analysis of (Σ̃j
N)−1B̂j

N is O
(
p2j
)
.

• Complexity of the eigen analysis of (B̂j
N)−1B̂j

N and the research for the
dominant eigenvector is O

(
p2j
)
.

• Complexity for estimating the penalized discriminant vector β̂jpen by
performing M iterations of the minimization-maximization algorithm
(Lange et al., 2000) isO

(
Mp2j

)
. Note that the minimization-maximization

algorithm uses the dominant eigenvector as the initial value for the pe-
nalized discriminant vector.

So, maximal time complexity of performing PLDA on the group j in the
node N is O

(
nNp

2
j

)
+O (nNpj) +O

(
p2j
)

+O
(
Mp2j

)
=
(
nNp

2
j

)
by supposing

that M < nN .

Complexity of the selection of the shrinkage parameter:

The value of shrinkage parameter λj is determined by using a K-fold cross-
validation and a grid {v1, . . . , vL} containing L values for λj.

First, before performing the K-fold cross-validation, the nN observations in
the node N into K disjoint samples {S1, . . . , SK}. The complexity of this
step is O (nN).

Next, for each fold k, k = 1, . . . , K and each value vl, l = 1, . . . , L:

• Performing a PLDA on N \ Sk (i.e. all the disjoint sets {S1, . . . , SK}
excepted Sk) with λj = vl: the complexity is O

(
K−1
K
nNp

2
j

)
.

• Predicting the class of each observation of Sk using the resulted PLDA
model computed on N \ Sk: the complexity is O

(
nN

K
pj
)
.
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Then, the two previous steps are repeated on each fold k, k = 1, . . . , K
and each value vl, l = 1, . . . , L. So the complexity of the cross-validation is
O
(
L(K − 1)nNp

2
j

)
+O (LnNpj).

After that, the impurity decrease ∆j(N, vl) is computed for each value vl,l =
1, . . . , L: its time complexity is O (nN) for one value vl, l = 1, . . . , L and is
then O (LnN) for all the values vl.

Next, the algorithm selects the λj value in the grid {v1, . . . , vL} which max-
imizes the decrease in impurity: the complexity is O (1).

Therefore, the complexity for selecting the value of λj isO (nN)+O
(
L(K − 1)nNp

2
j

)
+

O (LnNpj) +O (LnN) +O (1) = O
(
L(K − 1)nNp

2
j

)
.

The two previous steps (selection of the shrinkage parameter λj and PLDA
computation) are repeated on all the J groups. So, the complexity for
estimating a split for each group is (JnNp

2
max) + O (JL(K − 1)nNp

2
max) =

O (JLKnNp
2
max) with pmax = maxj(pj), L denoting the number of possible

value for λj, j = 1, . . . , J and K denoting the number of folds used in the
cross-validation.

Next, the algorithm selects, among the J estimated splits, the one which
maximizes the impurity decrease: the complexity of this step is O (1).

Consequently, the maximal time complexity of TPLDA at a node N is in the
worst case (JnNp

2
max) + O (JL(K − 1)nNp

2
max) + O (1) = O (JLKnNp

2
max)

with pmax = maxj(pj).

Appendix B. Additional figures from the simulation study

In the numerical experiment, the proposed pruning strategy based on the
tree depth is also applied on the maximal CART trees, for each scenario.
Figures B.15, B.16, B.17 and B.18 display the AUC distribution, the tree
depth and the group selection frequencies for the final tree CART according
to the pruning strategy. CART + CCP refers to CART when applying the
cost-complexity pruning strategy while CART + DP refers to CART when
applying the proposed pruning method based on the depth. Overall, the
two pruning methods lead to similar CART trees and so similar classification
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rules. Indeed, the predictive performances and the tree depth are very close.
Moreover, the group selection frequencies do not really differ: they are lightly
higher when using the proposed pruning strategy based on the depth which
can be expected.

(a) (b) (c)

Figure B.15: Experiment 1, ungrouped inputs: comparison of the pruning methods. From
left to right: (a) Boxplots of the AUC, (b) Boxplots of the tree depth, (c) Groups selection
frequencies according to the method.

(a) (b) (c)

Figure B.16: Experiment 2, groups of moderate and equal size: comparison of the pruning
methods. From left to right: (a) Boxplots of the AUC, (b) Boxplots of the tree depth, (c)
Groups selection frequencies according to the method.
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(a) (b) (c)

Figure B.17: Experiment 3, large groups: comparison of the pruning methods. From left
to right: (a) Boxplots of the AUC, (b) Boxplots of the tree depth, (c) Groups selection
frequencies according to the method.

(a) (b) (c)

Figure B.18: Experiment 4, large noisy groups: comparison of the pruning methods. From
left to right: (a) Boxplots of the AUC, (b) Boxplots of the tree depth, (c) Groups selection
frequencies according to the method.
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