Tchebotarev theorems for function fields - Archive ouverte HAL
Article Dans Une Revue Journal of Algebra Année : 2016

Tchebotarev theorems for function fields

Sara Checcoli
Pierre Dèbes
  • Fonction : Auteur
  • PersonId : 895219

Résumé

We prove Tchebotarev type theorems for function field extensions over various base fields: number fields, finite fields, p-adic fields, PAC fields, etc. The Tchebotarev conclusion - existence of appropriate cyclic residue extensions - also compares to the Hilbert specialization property. It is more local but holds in more situations and extends to infinite extensions. For a function field extension satisfying the Tchebotarev conclusion, the exponent of the Galois group is bounded by the l.c.m. of the local specialization degrees. Further local-global questions arise for which we provide answers, examples and counter-examples.
Fichier principal
Vignette du fichier
1301.1815.pdf (267.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01623558 , version 1 (08-01-2024)

Identifiants

Citer

Sara Checcoli, Pierre Dèbes. Tchebotarev theorems for function fields. Journal of Algebra, 2016, 446, pp.346-372. ⟨10.1016/j.jalgebra.2015.08.020⟩. ⟨hal-01623558⟩
62 Consultations
17 Téléchargements

Altmetric

Partager

More