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We consider a stochastic individual-based model in continuous time to describe a sizestructured population for cell divisions. This model is motivated by the detection of cellular aging in biology. We address here the problem of nonparametric estimation of the kernel ruling the divisions based on the eigenvalue problem related to the asymptotic behavior in large population. This inverse problem involves a multiplicative deconvolution operator. Using Fourier techniques we derive a nonparametric estimator whose consistency is studied. The main difficulty comes from the non-standard equations connecting the Fourier transforms of the kernel and the parameters of the model. A numerical study is carried out and we pay special attention to the derivation of bandwidths by using resampling.

Introduction

We consider a population model with size structure in continuous time, where individuals are cells which grow continuously and undergo binary divisions after random exponential times at rate R > 0. When a cell of size x divides, it dies and is replaced by two daughter cells of sizes γx and (1 -γ)x, where γ is assumed here to be a random variable drawn according to a distribution with a density with respect to the Lebesgue measure on [0, 1]: Γ(dγ) = h(γ)dγ. Between divisions, the sizes of the cells grow with speed α > 0. Because the two daughter cells are exchangeable, we assume that h is a symmetric density with respect to γ = 1/2. When h is piked at 1/2, then both daughters tend to have similar sizes, i.e. the half of their mother's size. The more h puts weight in the neighbourhood of 0 and 1, the more asymmetric the divisions are. They give birth to one small daughter and one big daughter with size close to its mother's. In this article, we are interested in the estimation of this function h in the case of large populations where the division tree is not observed. We stick to constant rate R and speed α for the sake of simplicity.

Our biological motivation for studying this model comes from the understanding of aging phenomena associated with cell division. When a cell that contains toxic content divides asymmetrically, the daughter that contains less toxicity can be viewed as younger in the sense that it has a higher fitness. This toxic content could be detrimental cellular components, such as proteins, extrachromosomal rDNA circles or possibly damaged mitochondria, etc. The concentration of toxic content, that is an increasing function of time during the cell's life, can be seen as a 'size'. Asymmetry during the divisions impacts the distributions of toxicity among cells and the shapes of trees describing the successive generations of cells in continuous time. Statistical evidence of asymmetrical divisions and biological consequences are described in Stewart et al. [START_REF] Stewart | Aging and Death in an Organism That Reproduces by Morphologically Symmetric Division[END_REF]. See also Ackermann et al. [START_REF] Ackermann | Senescence in a Bacterium with Asymmetric Division[END_REF], Aguilaniu et al. [START_REF] Aguilaniu | Asymmetric Inheritance of Oxidatively Damaged Proteins During Cytokinesis[END_REF], Banks et al. [START_REF] Banks | Estimation of cell proliferation dynamics using cfse data[END_REF], Doumic, Robert and co-authors [START_REF] Robert | Doumic Division in Escherichia coli is triggered by a size-sensing rather than a timing mechanism[END_REF][START_REF] Doumic | Estimating the division rate from indirect measurements of single cells[END_REF] or Moseley [START_REF] Moseley | Cellular Aging: Symmetry Evades Senescence[END_REF] for discussions on these topics.

The population can be described by a stochastic individual-based (particle) model, where the population at time t is represented by a random measure that is the sum of Dirac masses on R + weighting the cells' sizes. Stochastic continuous time individual-based models of dividing cell populations with size-structure have made the subject of an abundant literature starting from Athreya and Ney [START_REF] Athreya | Branching processes[END_REF], Harris [START_REF] Harris | The theory of branching processes[END_REF], Jagers [START_REF] Jagers | A general stochastic model for population development[END_REF] etc. until recent years (e.g. Bansaye et al. [START_REF] Bansaye | Branching feller diffusion for cell division with parasite infection[END_REF][START_REF] Bansaye | Limit theorems for markov processes indexed by continuous time galton-watson trees[END_REF], Cloez [START_REF] Cloez | Limit theorems for some branching measure-valued processes[END_REF]). Similar models in discrete time should also be mentioned (e.g. [START_REF] Bansaye | Proliferating parasites in dividing cells: Kimmel's branching model revisited[END_REF][START_REF] Bansaye | On the extinction of continuous state branching processes with catastrophes[END_REF][START_REF] Bercu | Asymptotic analysis for bifurcating autoregressive processes via a martingale approach[END_REF][START_REF] Bitseki Penda | Deviation inequalities for bifurcating markov chains on galton-watson tree[END_REF][START_REF] Delmas | Detection of cellular aging in a galton-watson process[END_REF][START_REF] Guyon | Limit theorems for bifurcating markov chains. application to the detection of cellular aging[END_REF]). For the individual-based model considered in this work, exact numerical simulations are possible. This model offers a convenient framework for statistics (see e.g. Hoffmann and Olivier [START_REF] Hoffmann | Nonparametric estimation of the division rate of an age dependent branching process[END_REF], Hoang [START_REF] Hoang | Estimating the division kernel of a size-structured population[END_REF][START_REF] Hoang | Estimation adaptative pour des problèmes inverses avec des applications à la division cellulaire[END_REF]). It also connects to the partial differential equations (PDEs) that are usually used in population dynamics (see [START_REF] Bansaye | Some stochastic models for structured populations : scaling limits and long time behavior[END_REF]). We start from an initial population where the individuals are labelled in an exchangeable way by integers. The population of cells descending from these initial individuals can be seen as the forest of trees rooted in these initial individuals. We use the Ulam-Harris-Neveu notation to label the cells appearing in the population: if the mother has a label i ∈ I = ∪ ≥1 N × {0, 1} -1 , then the two daughters have labels i0 and i1 obtained by concatening the mother's label with integers 0 or 1. The population at time t is described by the point measure:

Z K t = 1 K i∈V K t δ x i (t) , (1.1) 
where δ x is the Dirac measure at x, V K t is the set of labels of living individuals at time t and K is a renormalizing parameter corresponding to the order of the initial population size. In what follows, the parameter K will tend to +∞. The individual with label i ∈ V K t is represented by a Dirac mass weighting the size x i (t) of this individual at time t. Notice that if we follow a lineage starting from a cell at time 0 and choosing a daughter at random at each division, we recover an ergodic process with multiplicative jumps (see [START_REF] Hoang | Estimation adaptative pour des problèmes inverses avec des applications à la division cellulaire[END_REF]Section 2.2.2]) implying that the cell sizes are controlled over time, whatever the values of α and R.

When the complete division forest is observed, we can associate to each division an independent random variable with distribution h: if T i is the division time of the cell i, then, we define Γ i = x i0 (T i )/x i (T i-), where x i (T i-) = lim t→T i ,t<T i x i (t). Estimating the function h from such a sample has been considered in [START_REF] Hoang | Estimation adaptative pour des problèmes inverses avec des applications à la division cellulaire[END_REF][START_REF] Hoang | Estimating the division kernel of a size-structured population[END_REF]. Here, we focus on the situation when the division tree is not completely observed. Following ideas from Doumic et al. [START_REF] Doumic | Statistical estimation of a growth-fragmentation model observed on a genealogical tree[END_REF][START_REF] Doumic | Nonparametric estimation of the division rate of a size-structured population[END_REF][START_REF] Doumic | Estimating the division rate and kernel in the fragmentation equation[END_REF] or Bourgeron [START_REF] Bourgeron | Estimating the division rate of the growth-fragmentation equation with a self-similar kernel[END_REF] whose aim was to recover the division rate R when the latter depends on the size, our strategy is to consider the PDE approximating the evolution of the measure-valued process (Z K t ) t≥0 when K is large. The long-time behavior of the solution of this PDE can be studied thanks to an eigenvalue problem. This yields a stationary distribution N (x)dx from which we can assume that we have drawn a sample of n i.i.d. random variables X 1 , . . . , X n . Along this paper, we do not take into account the approximation errors related to the asymptotic setting K → +∞ (the fluctuations associated to the convergence of Z K could be established following [START_REF] Bansaye | Limit theorems for markov processes indexed by continuous time galton-watson trees[END_REF][START_REF] Tran | Une ballade en forêts aléatoires[END_REF]) nor the approximation by the stationary solution. The latter assumption is discussed in the next section. The function h is then solution to an intricate inverse problem involving a multiplicative convolution operator. We use deconvolution techniques inspired by those used by Comte and Lacour [START_REF] Comte | Data driven density estimation in presence of unknown convolution operator[END_REF][START_REF] Comte | Anisotropic adaptive kernel deconvolution[END_REF], Comte et al. [START_REF] Comte | Deconvolution estimation of onset of pregnancy with replicate observations[END_REF], Neumann [START_REF] Neumann | On the effect of estimating the error density in nonparametric deconvolution[END_REF] to construct and study a kernel estimator of h. Changing variables and taking Fourier transforms lead us to an equation where the regularities of the different terms are strongly related to the regularity of the unknown function h to be estimated. In the setting of a large population close to its stationary state, we define an original estimator of h. The consistency of the estimator is studied, and simulations are performed. In particular, we discuss and illustrate numerically the bandwidth selection rules for the kernel estimator.

The paper is organized as follows. Section 2 describes the miscroscopic model. Section 3 tackles the problem of estimating the division kernel h. Section 4 presents the numerical performances of our estimation procedure. Eventually, all the proofs are gathered in the Appendix.

Notation:

We denote by M F (R + ) the space of finite measures on R + endowed with the weak convergence topology. For µ ∈ M F (R + ) and for f ∈ C b (R + , R) a bounded continuous real function on R + , µ, f = R + f dµ is the integral of f with respect to µ. We denote by D(R + , M F (R + )) the space of càdlàg functions from R + to M F (R + ) embedded with the Skorokhod topology (e.g. [START_REF] Billingsley | Convergence of probability measures[END_REF]). The set of integrable (resp. bounded) non-negative functions with respect to the Lebesgue measure on R + is denoted by

L 1 (R + , R + ) (resp. L ∞ (R + , R + )).
The Fourier transform of any integrable function f is defined by

f * (ξ) = +∞ -∞ f (x)e ixξ dx, ξ ∈ R.

Microscopic model

Let (Ω, F, P) be a probability space, let (Z K 0 ) K∈N * be a sequence of random point measures on R + of the form (1.1) that converges to ξ 0 ∈ M F (R + ) in distribution and for the weak convergence topology on M F (R + ). We also assume that sup

K∈N * E( Z K 0 , 1 2 ) < +∞. (2.1)
For each K ∈ N * and initial condition Z K 0 as above, we can represent the measure-valued process (Z K t ) t≥0 as the unique solution of a stochastic differential equation (SDE) driven by a Poisson point measure that satisfies the following martingale problem.

Proposition 1. For a given K ∈ N * and a test function

f : (x, s) → f (x, s) = f s (x) ∈ C 1,1 b (R + × R + , R), the process (Z K t ) t≥0 satisfies: Z K t , f t = Z K 0 , f 0 + t 0 R + ∂ s f s (x) + α∂ x f s (x) + R 1 0 f s (γx) + f s ((1 -γ)x) -f s (x) h(γ)dγ Z K s (dx)ds + M K,f t , (2.2) 
where (M K,f t ) t≥0 is a square integrable martingale started at 0 with bracket:

M K,f t = 1 K t 0 R + 1 0 R f s (γx) + f s ((1 -γ)x) -f s (x) 2 h(γ)dγZ K s (dx)ds. (2.3)
The above equations in Proposition 1 show the evolution of a microscopic random system of particles. The drift coefficient (r.h.s. in the first line of (2.2)) indicates that each particle grows with speed α. When a particle of size x divides, it is replaced by two daughters of sizes γx and (1 -γ)x, where γ is drawn in the probability distribution with density h: this corresponds to the second line of (2.2). When the function h is piked at 1/2, the daughter cells have almost equal sizes at division, whereas when h has large variance, it is likely to have an asymmetrical division. The detailed construction of the SDE satisfied by (Z K t ) t≥0 is given in Appendix A, as well as a sketch of proofs for the results of this section. The martingale property and quadratic variation are direct consequences of stochastic calculus with the SDE. The variance of the martingale part M K,f is of order 1/K and we heuristically expect a deterministic limit when K → +∞. The following theorem states the limit of (Z K ) K∈N * when K → +∞.

Theorem 1. If (Z K 0 ) K∈N * converges in distribution to the deterministic measure ξ 0 ∈ M F (R + ) as K → +∞ then (Z K ) K∈N * converges in distribution in D (R + , M F (R + )) as K → +∞ to the unique solution ξ ∈ C (R + , M F (R + )) of ξ t , f t = ξ 0 , f 0 + t 0 R + ∂ s f s (x) + α∂ x f s (x) + R 1 0 f s (γx) + f s ((1 -γ)x) -f s (x) h(γ)dγ ξ s (dx)ds, (2.4 
)

where f t (x) ∈ C 1,1 b (R + × R + , R) is a test function.
When the limiting initial condition ξ 0 admits a smooth density with respect to the Lebesgue measure, the following proposition allows us to connect the measure-valued processes with the growth-fragmentation integro-differential equations usually introduced for cell divisions, e.g. [START_REF] Perthame | Transport equations arising in biology[END_REF][START_REF] Doumic | Numerical solution of an inverse problem in size-structured population dynamics[END_REF].

Proposition 2. If ξ 0 has a density n 0 ∈ C 1 b (R + , R + )
with respect to the Lebesgue measure on R + , then ∀t ∈ R + , ξ t (dx) admits a density n(t, x) that is the unique solution of the PDE:

∂ t n(t, x) + α∂ x n(t, x) + Rn(t, x) = 2R ∞ 0 n(t, y)h x y dy y , (2.5) 
where h(x/y) = 0 if y < x (since h is supported on [0, 1]).

See Appendix A and [37, Proposition 3.2.10] for the proof of this result. Besides the drift α associated with the continuous growth of individuals in time, the PDE (2.5) involves the death term Rn(t, x) and the birth term 2R ∞ 0 n(t, y)h(x/y)dy/y. These terms highlight that a particle disappearing at x is replaced by two particles whose sizes are fractions of x. The division is ruled by the density function h and as explained in the introduction, we are interested in the estimation of this density function. The long time behaviour of the solution of PDE (2.5) is well-known and presented in the following proposition. In this work, we shall base our statistical estimation of h on the long time limit of the PDE. Notice that by change of variable in the integral, the right hand side of Equation (2.5) can also be rewritten as: 2R 1 0 n(t, x/u)h(u) du/u. We observe that a convenient assumption on the density h is the following:

1 0 h(u) du u < +∞. (2.6)
In this paper, a stronger assumption will be needed to obtain the consistency of our estimators.

Proposition 3. Assume (2.6). Then, there exists a unique probability density N ∈ L 1 (R + , R + ) solving the following system:

   α∂ x N (x) + 2R N (x) = 2R ∞ 0 N (y)h x y dy y , x ≥ 0, N (0) = 0, N (x)dx = 1, N (x) ≥ 0.
(2.7)

With ρ = n 0 1 = ∞ 0 n 0 (u)
du (where n 0 has been introduced in Prop. 2), we have:

∞ 0 |n(t, x)e -Rt -ρN (x)|dx ≤ e -Rt g 0 1 + 6R α G 0 1 , (2.8) 
where g 0 (x) = n 0 (x) -ρN (x), and G 0 (x) =

x 0 g 0 (y)dy.

Proposition 3 shows that the renormalized population density ρ -1 n(t, x)e -Rt converges exponentially fast, when the time t tends to infinity, to a stationary density N (x) that is obtained by solving an eigenvalue problem. The proof of Proposition 3 is given in Appendix A. Notice that we do not have such a strong result if the division rate is not a constant. Another remark is that the right hand side of (2.7) is a multiplicative convolution between y → N (y)/y and h. Multiplicative convolutions appear naturally in problems where independent random variables are multiplied (here the size of the cell undergoing division and the random variable of density h ruling how the cell breaks into two daughters). Estimating h can thus be seen as performing a multiplicative deconvolution. We explain in the next section the building of our statistical estimation procedure based on the results of this proposition.

3 Estimation of the division kernel 3.1 Estimation procedure and assumptions

Principle

We consider the problem of estimating the density h in the case of incomplete data of divisions. As explained previously, we shall construct an estimator of h based on the stationary size distribution which results from the study of the large population limit n(t, x). The long time behavior provides us an observation scheme for the estimation of the density h in the statistical approach: since e -Rt n(t, x) converges exponentially fast to N (x) (up to a constant) as t increases by Proposition 3, when we pick n cells randomly in the population at a large time t, we can assume that we have n i.i.d observations X 1 , X 2 , . . . , X n with distribution N (x)dx. We estimate h from the data X 1 , . . . , X n and Equation (2.7). This experimental scheme has also been used in [START_REF] Doumic | Nonparametric estimation of the division rate of a size-structured population[END_REF] and [START_REF] Bourgeron | Estimating the division rate of the growth-fragmentation equation with a self-similar kernel[END_REF].

Starting with Equation (2.7), the multiplicative convolution ∞ 0 N (y)h x y dy y leads to more intricate technical problems than for the classical additive convolution. So, we apply a logarithmic change of variables to transform the multiplicative convolution in the right hand side of (2.7) into an additive one. Then, we classically apply the Fourier transform and work with products of functions in the Fourier domain. We end up with a deconvolution problem which is more involved and quite different when compared with classical deconvolution problems (see Remark 2). Let us now describe our estimation procedure in details. By using the change of variable x = e u for x > 0 and u ∈ R, we introduce the functions g(u) = e u h(e u ), and

M (u) = e u N (e u ), D(u) = ∂ u u → N (e u ) = e u N (e u ).
Equation (2.7) becomes αD(u)

+ 2R M (u) = 2R M g)(u), (3.1) 
where denotes the standard convolution product, so

M g)(u) = M (u -x)g(x)dx, u ∈ R.
We have h(γ) = γ -1 g log(γ) for γ ∈ (0, 1). Then, the estimator of h will be obtained from the estimator of g once we have obtained estimators for unknown functions M and D.

Assumptions on h

First, assumptions on the density h are needed. Of course, since h is the density of a symmetric probability distribution on [0, 1], it satisfies h(x)dx = 1 and xh(x)dx = 1/2. For the proofs, we will also need the following condition. Moreover, we assume that there exists a positive integer ν 0 ≥ 2 such that for all k ∈ {0, . . . , ν 0 }, h (k) (0) = 0.

Under Assumption 1, h can take positive values only on (0, 1), and the function g introduced previously is supported on R -.

Remark 1. Assumption 1 implies (2.6). For t ∈ (0, 1), by Taylor's formula, there exists indeed θ ∈ (0, 1) such that:

0 ≤ h(t) t = [β]-1 k=ν 0 +1 1 k! h (k) (0)t k-1 + h [β] (θt) [β]! t [β]-1 ,
which is integrable in the neighborhood of 0 (the sum in the right hand side being 0 if

ν 0 + 1 > [β] -1.
This remark shows that, under Assumption 1, the results of Proposition 3 are hence available to justify our approximation to start with a sample of i.i.d. random variables with density N (x). We also have the following proposition that will be essential to show consistency and derive rates of convergence (the proof is in Appendix B): x -ν N (x)dx < +∞ for ν ∈ {1, . . . , (ν 0 + 2) ∧ ([β] + 1)}.

(3.2)

(ii) M is of class C [β] and its Fourier transform M * satisfies:

lim sup |ξ|→+∞ |ξ| [β]∧(ν 0 +3) × |M * (ξ)| < +∞.
(iii) The extension of M * (ξ) to the complex half-plane {ξ ∈ C : (ξ) < 1}, ξ → M * (ξ) = R e ixξ M (x)dx, is holomorphic and thus, M * admits only isolated zeros on this half-plane. Moreover, M * does not admit zeros on the real line.

The point (i) is crucial for proving the consistency. This proof relies on the use of the Rosenthal inequality (see Eq. (D.3)). This explains why we need ν ≥ 4 and hence ν 0 ≥ 2 and β > 3 in Assumption 1. The point (ii) establishes strong connections between the regularities of functions involved in (2.7). Paradoxically, the more regular h is, the faster M * converges to 0 at infinity, which may lead to some difficulties in view of the subsequent (3.3). Fortunately, point (iii) shows that M * (ξ) does not vanish on the real line.

Fourier transformation

Notice that g is square integrable since we have

R g 2 (u)du = R e 2u h 2 (e u )du = ∞ 0 xh 2 (x)dx = 1 0 xh 2 (x)dx < +∞.
We can thus take the Fourier transform of both sides of equation (3.1). We obtain

αD * (ξ) + 2R M * (ξ) = 2RM * (ξ) × g * (ξ).
Therefore, under Assumption 1, the Fourier transform of g is obtained via the formula

g * (ξ) = αD * (ξ) 2RM * (ξ) + 1, ξ ∈ R. (3.3) 
Remark 2. Note that Equation (3.3) is not standard in classical inverse problems. Actually, classical deconvolution problems with independent noise (see (5.1) below) can be transformed so that, in the Fourier domain, they can be written similarly to (3.3) and assumptions are made on the asymptotic behavior of the Fourier transform of the noise density, which is the analog of M * (see [START_REF] Comte | Anisotropic adaptive kernel deconvolution[END_REF] for instance). Such assumptions are not possible here since the smoothness of g is related to the smoothness of M via (3.1). Assumptions on M * (ξ) when |ξ| → +∞ would break these strong relationships between g and M . But these connections between g and M allow us to deduce the asymptotic behavior of M * (ξ) in Proposition 4 and the issues are circumvented.

Estimators of g and h

Given the sample of i.i.d random variables X 1 , . . . , X n with density function x → N (x), we can consider the random variables U 1 , . . . , U n defined as U i = log(X i ). These random variables are i.i.d of density function u → M (u) = e u N (e u ). In view of (3.3), the purpose is first to propose an estimator for g * and then to apply the inverse Fourier transform to obtain an estimator of g. Our procedure will be naturally based on M * n (ξ) and D * n (ξ), estimators of M * (ξ) and D * (ξ) respectively, and defined by

M * n (ξ) = 1 n n j=1 e iξU j , (3.4) 
D * n (ξ) = (-iξ) 1 n n j=1 e (iξ-1)U j . (3.5)
Obviously, we have that M * n (ξ) and

D * n (ξ) are unbiased estimators of M * (ξ) = E e iξU 1 and D * (ξ) = (-iξ)E e (iξ-1)U 1 respectively.
As usual in the nonparametric setting, the estimate of g will be obtained by regularization technics. For density estimation, convoluting by an appropriate rescaled kernel is a natural methodology. Convolution is expressed by products in the Fourier domain. Along the paper, we use the sinus cardinal kernel defined by K(x) = sin(x) πx for which

K * (t) = 1 [-1,1] (t). For > 0, define the rescaled kernel K (•) := 1 K • .
Definition 1. Given > 0, the estimate ĝn, of g is defined through its Fourier transform:

ĝ * n, (ξ) = K * (ξ) × α D * n (ξ) 2R 1 Ωn(ξ) M * n (ξ) + 1 , (3.6) 
where

Ω n (ξ) = | M * n (ξ)| ≥ n -1/2 and 1 Ωn(ξ) M * n (ξ)
is the truncated estimator of 1

M * n (ξ)
:

1 Ωn(ξ) M * n (ξ) =      1 M * n (ξ) , if | M * n (ξ)| ≥ n -1/2 , 0, otherwise. (3.7) 
The technique used to obtain (3.6) is similar to inverse truncation filtering (see [START_REF] Bertero | Introduction to inverse problems in imaging[END_REF] or [START_REF] Byrne | Signal processing. A mathematical approach[END_REF]). Truncation is necessary to avoid explosion when | M * n (ξ)| is close to 0. Finally, taking the inverse Fourier transform of ĝ * n, , we obtain the estimator of g.

Definition 2. The estimator of g is ĝn, (u) = 1 2π R ĝ * n, (ξ)e -iuξ dξ, u ∈ R -. (3.8)
The estimator of the division kernel h is deduced from ĝn, :

ĥn, (γ) = γ -1 ĝn, log(γ) , γ ∈ (0, 1).

(3.9)

The main difficulty lies in the choice of . This problem is dealt with subsequently. Deconvolution estimators have been studied in Comte and Lacour [START_REF] Comte | Data driven density estimation in presence of unknown convolution operator[END_REF][START_REF] Comte | Anisotropic adaptive kernel deconvolution[END_REF], Comte et al. [START_REF] Comte | Deconvolution estimation of onset of pregnancy with replicate observations[END_REF], Neumann [START_REF] Neumann | On the effect of estimating the error density in nonparametric deconvolution[END_REF]. However, the difference and the difficulty in our problem come from the fact that the regularities of g and h are closely related to the functions M and D that solve the eigenvalue problem (2.7), in particular through Equation (3.3). This complicates the study of the rates of convergence. The next section studies the quadratic risk of ĝn, and ĥn, .

Study of the quadratic risk

Relations between the risks of the estimators of h and g

The first goal is to connect the L 2 -risk of ĥn, and the L 2 -risk of ĝn, . Using a randomized estimator, we can show the following result.

Proposition 5. For a Bernoulli random variable τ with parameter 1/2 independent of X 1 , . . . , X n , let us define the randomized estimator ǧn, (u) = τ ĝn, (u) + (1 -τ )g n, (u), where gn, (u) = e u ĥn, (1 -e u ).

We have

E ĥn, -h 2 2 = 2E ǧn, -g 2 2 = E R - e -u ĝn, (u) -g(u) 2 du . (3.10)
The last equality in (3.10) shows that if we want to control the quadratic risk of ĥn, with respect to the Lebesgue measure, tight controls on the loss of ĝn, at -∞ are needed. But, since h, as defined in our biological problem, is a symmetric function (as the daughter cells obtained after a division are exchangeable), it is natural to consider

ĥsym n, (x) = 1 2 ĥn, (x) + ĥn, (1 -x) , (3.11) 
whose quadratic risk is controlled by the quadratic risk of ĝn, except at boundaries of the interval [0, 1], as proved by the next proposition.

Proposition 6. Setting m(x) = x(1 -x), we have that 1 0 ĥsym n, (x) -h(x) 2 m(x)dx ≤ ĝn, -g 2 2 .
(3.12)

Propositions 5 and 6 are proved in Appendix C. The previous result does not provide any control on boundaries of the interval [0, 1] but the consistency of ĝn, will establish the consistency of ĥsym n, on every compact set of (0, 1). The study of the consistency of ĝn, is the goal of the next section.

Consistency of the estimator of g for the quadratic-risk

This section is devoted to the theoretical study of the estimate ĝn, . More precisely, we establish the L 2 -consistency of ĝn, under a suitable choice of the bandwidth .

We first study the bias-variance decomposition of the L 2 -risk of ĝn, . Recall that from Proposition 4(iii), we have that under Assumption 1, |M * (ξ)| is strictly positive on every compact set of the real line ξ ∈ [-A, A], A > 0, and thus lower bounded by a positive constant on each of these intervals (that depends on A). Theorem 2. Under Assumption 1, there exists a positive constant C < +∞ such that

E ĝn, -g 2 2 ≤ K g -g 2 2 + C n S( ), (3.13) 
where

S( ) = K * (ξ)ξ M * (ξ) 2 2 + K * (ξ) M * (ξ) 2 2 
.

Then the following corollary gives the L 2 -consistency of the estimator ĝn, .

Corollary 1. We suppose that Assumption 1 is satisfied and the kernel bandwidth

= (n) satisfies lim n→+∞ = 0. Provided that lim n→+∞ 1 n K * (ξ)ξ M * (ξ) 2 2 + K * (ξ) M * (ξ) 2 2 = 0, (3.14) 
we have

lim n→+∞ E ĝn, -g 2 2 = 0. (3.15)
The proof of Corollary 1 is straightforward. Indeed, due to the well-known results on kernel density, we have lim n→+∞ K g -g 2 2 = 0 and under the assumptions of the corollary we have for the variance term lim n→+∞ n -1 S( ) = 0. Thus we get the result (3.15). The proof of Theorem 2 is given in Appendix D. Note that under Assumption 1, we have by Proposition 4 that

|M * (ξ)| = O(|ξ| -([β]∧(ν 0 +3)) ) when |ξ| → +∞. If we have |M * (ξ)| ∼ C|ξ| -([β]∧(ν 0 +3))
, for a constant C > 0, a bandwidth can be easily derived. Indeed,

K * (ξ) = K * ( ξ) = 1 [--1 , -1 ] (ξ) and K * (ξ)ξ M * (ξ) 2 2 = -1 --1 ξ 2 |M * (ξ)| 2 dξ = O( -(3+2([β]∧(ν 0 +3))) ),
and then, Assumption (3.14) is satisfied if

-1 = o n 1 3+2([β]∧(ν 0 +3))
. We obtain convergences rates for the quadratic risk of ĝn, under additional smoothness properties for the density g. For this purpose, we introduce Sobolev spaces defined as follows.

Definition 3. We consider Sobolev spaces S(β, L) defined as the class of integrable functions

f : R → R satisfying |f * (t)| 2 (1 + t 2 ) β dt ≤ L 2 .
We then obtain the following result.

Proposition 7. If g ∈ S(β, L) and |M * (ξ)| ∼ C|ξ| -([β]∧(ν 0 +3)) , for a constant C > 0, then we have E ĝn, -g 2 2 = O n - 2β 2β+2([β]∧(ν 0 +3))+3
.

The rate of convergence of Proposition 7 is the usual rate of convergence for ill-posed inverse problems involving a derivative and an ordinary smooth noise with a polynomial decay of order [β] ∧ (ν 0 + 3). This result shows good theoretical performances of our procedure. In this section, we study the numerical performances of our estimation procedure.

In the literature (e.g. [START_REF] Stewart | Aging and Death in an Organism That Reproduces by Morphologically Symmetric Division[END_REF][START_REF] Wang | Robust growth of Escherichia coli[END_REF]), it is possible to obtain real datasets of sample size n = 30, 000 or even a larger: in [START_REF] Stewart | Aging and Death in an Organism That Reproduces by Morphologically Symmetric Division[END_REF], the authors followed divisions of E. coli and obtained a complete record of measurements of 35,049 cells, in [START_REF] Wang | Robust growth of Escherichia coli[END_REF], the authors introduced their experimental procedures and techniques that allow to obtain a real dataset of 10 7 cells. Therefore, the simulations presented here are performed on simulated samples of sizes n varying from 1,000 to 30,000.

We consider the density of the Beta(2, 2)-distribution and the density of the truncated normal distribution on [0, 1] with mean 1/2 and variance 0.25 2 , respectively denoted h 1 and h 2 . The density h 1 is proportional to x(1 -x)1 [0,1] (x) and h 2 has the following form:

h 2 (x) = φ x-µ σ σ Φ 1-µ σ -Φ -µ σ , x ∈ [0, 1],
where µ = 0.5, σ = 0.25 and φ(•) and Φ(•) are respectively the density and the cdf of the standard normal distribution. Furthermore, for all simulations we take α = 0.7 and R = 1. Figures 1 and2 show h 1 , h 2 and their corresponding stationary densities N 1 , N 2 . The stationary densities are obtained by solving numerically the PDE (2.5) using the method presented in Doumic et al. [START_REF] Doumic | Numerical solution of an inverse problem in size-structured population dynamics[END_REF]. For the estimation of h 1 and h 2 , even if theoretical boundary conditions stated in Assumption 1 are not satisfied, we shall observe that the procedure does a good job. Before presenting the numerical results, let us point out some difficulties that affect the quality of the estimation.

First, one can observe in Figures 1 and2 that shapes of functions N 1 and N 2 are very similar although functions h 1 and h 2 are very different. This illustrates a major difficulty of our inverse problem and leads to some difficulties for the estimation of the densities g and h.

Secondly, in view of (3.3) and (3.6), the construction of the estimator ĝn, is based on the estimation of M * and D * . Remember that D * (ξ) = (-iξ)E e (iξ-1)U 1 and the leading term -iξ of the last expression, coming from the computation of the Fourier transform of the derivation function D, gives large fluctuations for the estimation of D * when ξ takes large values. To justify this point, we introduce the modified formulas of D * and D * n , denoted respectively by D * and D * n , obtained by removing -iξ from the original formulas: Figures 3 and5 show that the reconstructions of M * and D * are very satisfying, whereas large oscillations in the reconstruction of D * (ξ) appear when ξ is large (see Figure 4), due to a large variance term. This confirms what we mentioned: the estimation of the derivative D * has a strong influence for our statistical problem. In what follows, we introduce our bandwidth selection rules for the estimators ĝn, and ĥn, , then we present some numerical results to illustrate the performances of our estimators. 

D * (ξ) = E e (iξ-1)U 1 and D * n (ξ) = 1 n n j=1 e (iξ-1)U j .

Bandwidth selection rules

To establish a bandwidth selection rule for the estimator ĝn, and ĥn, , we use resampling techniques inspired from the principle of cross-validation. We first study the L 2 -risk of the estimator ĝn, in the Fourier domain:

ĝn, -g 2 2 = 1 2π ĝ * n, -g * 2 2 = 1 2π ĝ * n, 2 2 -2 ĝ * n, , g * + 1 2π g * 2 2 . Define J( ) := ĝ * n, 2 
2 -2 ĝ * n, , g * where the scalar product of two complex functions u and v is defined as

u, v = R u(ξ)v(ξ)dξ.
Let L be a family of possible bandwidths, the optimal bandwidth is given by

CV := argmin ∈L J( ) = argmin ∈L ĝn, -g 2 2 .
We aim at constructing an estimator of J( ), which is equivalent to providing an estimate of the scalar product ĝ * n, , g since ĝ * gives us an estimate of ĝ * (t) n, , g * and subsequently an estimate of J( ). The final bandwidth is the one which minimizes the average of all risk estimates computed over a number of couples of training-validation set selected from the same sample.

In detail, let {X 1 , . . . , X n } be a random sample. Let E and E C be the subsets of {1, . . . , n} such that |E| = n/2 and E C = {1, . . . , n} \ E. We divide {X 1 , . . . , X n } into two sub-samples:

X E := (X i ) i∈E and X E C := (X i ) i∈E C .
There are V max possibilities to select the subsets (E, E c ), where

V max := n n/2 .
If n is large then V max will be huge. Hence we choose in practice a number V which is smaller than V max to reduce computation time. We propose two criteria for the selection of bandwidths as follows.

Definition 4. Let (E j , E C j ) 1≤j≤V , V ≤ V max be the sequence of subsets selected from {1, . . . , n} and the corresponding sub-samples (X E j , X E C j ) 1≤j≤V . Let ĝ * (E j ) n, and ĝ * (E C j ) n, be the estimators of g * respectively constructed on the sub-samples X E j and X E C j . Define

J Crit1 ( ) := 1 V V j=1 ĝ * (E j ) n, 2 2 -2 ĝ * (E j ) n, , ĝ * (E C j ) n, . (4.1) 
Then the selected bandwidth is given by 

ˆ Crit1 := argmin ∈L J Crit1 ( ). ( 4 
J Crit2 ( , ) := 1 V V j=1 ĝ * (E j ) n, 2 2 -2 ĝ * (E j ) n, , ĝ * (E C j ) n, . (4.3) 
Then an alternative bandwidth selection rule is given as follows:

ˆ Crit2 := argmin ∈L min ∈L J Crit2 ( , ) . (4.4) 
Note that the second criterion is more computationally intensive.

Numerical results

Remember that we aim at reconstructing the densities h 1 and h 2 , i.e. the Beta(2, 2) density and the density of a truncated normal N (0.5, 0.25 2 ) on [0, 1]. We apply formulas (3.6), (3.8) and (3.9) to construct the estimators for these densities. The bandwidth is chosen in the family L ⊂ 1/(0.5∆), ∆ = 1, . . . , 50 according to two bandwidth selection rules. We compare the estimated densities when using our selection rules with those estimated with the oracle bandwidth. The oracle bandwidth is the optimal bandwidth obtained by assuming that we know the true density and defined as follows:

oracle := argmin ∈L ĝn, -g 2 2 .
Of course, oracle and ĝn, oracle cannot be used in practice (since they depend on the true function to estimate) but they can be viewed as benchmark quantities. For n = 30, 000 observations, we illustrate in Figures 6 and7 the estimates of (g 1 , h 1 ) and (g 2 , h 2 ) using the first bandwidth selection rule (see Definition 4). These graphs show bad behaviors when reconstructing h 1 and h 2 if we do not take into account the symmetry of theses densities. Considering symmetrization (see (3.11)) provides significant improvements (see Figure 8). Reconstructions of densities are quite satisfying except at boundaries of [0, 1], which is expected in view of remarks of Section 3.2.1. Table 1 shows the L 2 -risk of ĝn, ˆ Crit1 and ĝn, ˆ Crit2 where ˆ Crit1 and ˆ Crit2 are the bandwidths selected by our selection rules (see Definitions 4 and 5), over 100 Monte Carlo runs for estimating h 1 and h 2 with respect to V = 10, 25 and 40. The sample size for each repetition is n = 30, 000. We also provide associated Boxplots in Figure 9 and10.

Table 1 and boxplots show that the performances of our estimators are close to those of the oracle. When comparing the first bandwidth selection rule Crit1 with the second one Crit2, one can observe that the performances of Crit2 are slightly better than those of Crit1 (see Table 1). However, Crit2 is more time-consuming than Crit1. For both selection rules, we observe that the performances are slightly better when we increase the number of selected subsamples V . Remember that the larger the value of V , the larger the computation time whereas the performances are improved marginally. Hence, in practice it is reasonable to choose the first bandwidth selection rule Crit1 with V = 10. Finally, for both estimation of g 1 and g 2 according to the Beta(2, 2) distribution and the truncated normal distribution respectively, we illustrate in Figure 11 the regression lines of the logarithm of the mean squared error of ĝn, ˆ Crit1 versus the logarithm of the sample size, with n ∈ {1, 000; 2, 000; 5, 000; 10, 000; 20, 000; 30, 000}. One can observe that the MSE's decrease as the sample size n increases. This justifies the convergence 

h 1 -Beta(2,
V = 10 V = 25 V = 40
Bandwidths q q q q q q Crit1 Crit2 Oracle 0.20 0.25 0.30 0.35 q q q q q Crit1 Crit2 Oracle 0.20 0.25 0.30 0.35 q q q q q q Crit1 Crit2 Oracle 0.20 0.25 0.30 0.35 Errors q q q q q q q q Crit1 Crit2 Oracle 0.00 0.02 0.04 0.06 0.08 q q q q q q q q q q Crit1 Crit2 Oracle 0.00 0.02 0.04 0.06 0.08 q q q q q q q q q q q q q q q q q Crit1 Crit2 Oracle 0.00 0.02 0.04 0.06 0.08 of our estimators from the practical point of view.

Conclusion

Many statistical papers interested in aging phenomena for population of dividing cells concentrate on the estimation of the division rate (the constant R in the present work) [START_REF] Bourgeron | Estimating the division rate of the growth-fragmentation equation with a self-similar kernel[END_REF][START_REF] Doumic | Statistical estimation of a growth-fragmentation model observed on a genealogical tree[END_REF][START_REF] Doumic | Nonparametric estimation of the division rate of a size-structured population[END_REF][START_REF] Doumic | Estimating the division rate and kernel in the fragmentation equation[END_REF][START_REF] Hoffmann | Nonparametric estimation of the division rate of an age dependent branching process[END_REF]. In these papers, the division rate is assumed to be a function that depends on certain quantities growing with time and that can be seen as ages of the cells (bad chemical contents, size...). The decrease of the division rate with respect to these quantities can be understood as senescence at the individual level. At the population level, lineages along which the distribution of these quantities tend to shift to higher values can be seen as aging or senescent lineages. In the present work, we investigate another aspect that is the kernel h(.) ruling the division of the mother cell. In most of the previous works, e.g. [START_REF] Doumic | Statistical estimation of a growth-fragmentation model observed on a genealogical tree[END_REF][START_REF] Doumic | Nonparametric estimation of the division rate of a size-structured population[END_REF], the mother cell divides into two
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Bandwidths q q q q q q q q q Crit1 Crit2 Oracle Errors q q q q q q q q q Crit1 Crit2 Oracle 0.00 0.02 0.04 0.06 0.08 q q q q q q q q Crit1 Crit2 Oracle 0.00 0.02 0.04 0.06 0.08 q q q q q q q Crit1 Crit2 Oracle Figure 11: The regression lines for log-mean square error for the reconstruction of g1 (left, Eq: y = -1.351 -0.175x) and the reconstruction of g2 (right, Eq: y = -1.375 -0.179x) versus log(n), with the sample size n varying from 1, 000 to 30, 000.

identical cells. From the microscopic individual-based point of view, the senescence in lineages then arises from the sole randomness in the times of division. The asymmetry between daughter cells is however an important feature that has to be taken into account. Some recent developments have been made in this direction: by the authors [START_REF] Hoang | Estimating the division kernel of a size-structured population[END_REF][START_REF] Hoang | Estimation adaptative pour des problèmes inverses avec des applications à la division cellulaire[END_REF] and also by [START_REF] Bourgeron | Estimating the division rate of the growth-fragmentation equation with a self-similar kernel[END_REF][START_REF] Doumic | Estimating the division rate and kernel in the fragmentation equation[END_REF] but from a deterministic point of view.

The inverse problem arising from the estimation of h, Equation (3.3), is not a standard deconvolution problem. The function M * is closely linked to the function of interest g (that is the function h in a logarithmic scale) through Equation (3.1). Compared with classical deconvolution problems (e.g. (5.1) below or [START_REF] Meister | Deconvolution Problems in Nonparametric Statistics[END_REF]), M * cannot be handled as an independent known noise. Firstly, the regularity and positivity of M * have to be studied and give way to involved and technical proofs. Secondly, one has to estimate M * in order to devise an estimator of g * . This actually complicates the study of the proposed estimation procedure since we have to control the fluctuations of the empirical process M * n . However, the theoretical study led in Section 3 allows us to circumvent these issues and to show consistency of our estimates. These nice performances are also illustrated from a numerical point of view by the use of artificial data whose size is consistent with real ones. In line with the previous comment, a natural extension would consist in deriving the bandwidth by using an alternative theoretical approach to the cross-validation type approach described in Section 4.3. It would be natural to use, for instance, the Goldenshluger-Lepski methodology [START_REF] Goldenshluger | General selection rule from a family of linear estimators[END_REF] in the same as [START_REF] Comte | Anisotropic adaptive kernel deconvolution[END_REF] or the PCO methodology [START_REF] Lacour | Estimator selection: a new method with applications to kernel density estimation[END_REF], with the aim of deriving oracle inequalities. But such technical approaches require sharp controls of the variance of estimates and powerful concentration inequalities. Obtaining such results is beyond the scope of this paper but constitutes interesting challenges for future research. Of course, our probabilistic model could be enhanced by taking into account some observational noise and instead of the X i 's we would observe,

Y i = X i + ε i , (5.1) 
with X i and the noise ε i being independent, which corresponds to a classical deconvolution problem if we are interested in recovering the density of X i 's. The estimation of h would then require to combine classical deconvolution technics and the approach of this paper. Furthermore, our study is in line with the references mentioned at the beginning of the conclusion: large populations close to their stationary states. This is justified by the exponentially fast convergence rate given in (2.8). A possible direction for further research would be to focus directly on the evolution problem (2.5). Following ideas of Comte and Genon-Catalot [START_REF] Comte | Nonparametric drift estimation for i.i.d. paths of stochastic differential equations[END_REF], it could be possible to study a projection estimator computed from the finite particle system on the compact time interval [0, T ]. These challenging inverse problems provide nice motivations for further work.

A Large population renormalization

Before proving the results of Section 2, let us build the SDE satisfied by the process (Z K t ) t≥0 . Consider

Z K t = 1 K i∈V K t δ (i,x i (t))
the random point measure on I × R + = ∪ ≥1 N × {0, 1} -1 × R + with marginal measure Z t on R + , and that keeps track of the sizes and labels of the individuals in the population.

Let us consider as in Section 2 a sequence ( Z K 0 ) K∈N * of random point measures on I×R + such that the sequence of marginal measures (Z K 0 ) K∈N * of the form (1.1) converges to ξ 0 ∈ M F (R + ) in probability and for the weak convergence topology on M F (R + ) and satisfies (2.1). Let also Q(ds, di, dγ) be a Poisson point measure on R + × E := R + × I × [0, 1] with intensity q(ds, di, dγ) = Rds n(di) h(γ)dγ where n(di) is the counting measure on I and ds and dγ are Lebesgue measures on R + . We denote {F t } t≥0 the canonical filtration associated with the Poisson point measure and the sequence ( Z K 0 ) K∈N * . For a given K ∈ N * , it is possible to describe the measure Z K t at time t by the following equation:

Z K t = i∈V K 0 δ (i,x i (0)+αt) + t 0 E 1l {i∈V K s -} δ (i0,γx i (s -)+α(t-s)) + δ (i1,(1-γ)x i (s -)+α(t-s)) -δ (i,x i (s -)+α(t-s) Q(ds, di, dγ), (A.1)
where the notation x i (s) stands for the size of the individual with label i in the population Z K s (we omit the dependence in K). This representation allows to take deterministic motions into account and the idea comes from [START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an agestructured population[END_REF][START_REF] Metz | Daphnias: from the individual based model to the large population equation[END_REF]: we build the population at time t by considering the contribution of the initial condition for this time t, and then the modifications due to all the divisions between times 0 and t. The first term in the r.h.s. of (A.1) corresponds to the individuals alive at time 0 with their sizes at time t if they don't die. In the integral with respect to the Poisson point process, an atom at (s, i, γ) of Q corresponds to a 'virtual' division event at time s of the individual i associated with the fraction γ. This event effectively takes place only if the individual with label i is alive at time s -. In this case, the Dirac masses corresponding to the mother at t (at size x i (s -) + α(t -s)) is replaced with the Dirac masses of the two daughters, at the size that they will have if they are still alive at time t (γx i (s -)+α(t-s) and (1-γ)x i (s -)+α(t-s)).

The moment assumption (2.1) propagates to positive time and it is possible to show that for any T > 0, (see [START_REF] Hoang | Estimation adaptative pour des problèmes inverses avec des applications à la division cellulaire[END_REF]Prop.3.2.5])

sup K∈N * E sup t∈[0,T ] Z K t , 1 2 < +∞.
For every K ∈ N * and every test function

f s (x) = f (x, s) ∈ C 1,1 b (R + × R + , R), the stochastic process (Z K t ) t∈R + satisfies: Z K t , f t = Z K 0 , f 0 + t 0 R + ∂ s f s (x) + α∂ x f s (x) Z K s (dx)ds + 1 K t 0 E 1 {i∈V K s-} f s γx i (s-) + f s (1 -γ)x i -) -f s x i (s -) Q(ds, di, dγ), = Z K 0 , f 0 + M K,f t (A.2) + t 0 R + ∂ s f s (x) + α∂ x f s (x) + R 1 0 f s (γx) + f s ((1 -γ)x) -f s (x) h(γ)dγ Z K s (dx)ds,
where (M K,f t ) t≥0 is a square integrable martingale started at 0 with bracket:

M K,f t = 1 K t 0 R + 1 0 R f s (γx) + f s ((1 -γ)x) -f s (x) 2 h(γ)dγZ K s (dx)ds. (A.
3)

The proof of Proposition 1 then follows the ideas in [START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an agestructured population[END_REF][START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptive et pour l'approximation de solutions statisques[END_REF] and are detailed in [START_REF] Hoang | Estimation adaptative pour des problèmes inverses avec des applications à la division cellulaire[END_REF]. Equation (A.2) corresponds to Equation (2.2) in the main body.

The proof of Theorem 1 uses the martingale problem established in Prop. 1 and standard arguments (see e.g. [START_REF] Ethier | Markov processes: characterization and convergence[END_REF][START_REF] Joffe | Weak convergence of sequences of semimartingales with applications to multitype branching processes[END_REF][START_REF] Bansaye | Some stochastic models for structured populations : scaling limits and long time behavior[END_REF] and [59, Th.1.1.8 and proof of Th. 1.1.11]). Let us denote by A K,f the finite variation part of Z K t , f t :

A K,f t = t 0 R + ∂ s f s (x) + α∂ x f s (x) + R 1 0 f s (γx) + f s ((1 -γ)x) -f s (x) h(γ)dγ Z K s (dx)ds.
(A.4) First, using the moment assumptions together with (A.2)-(A.3), we can show that the sequences of real valued processes (A K,f ) K∈N * and ( M K,f ) K∈N * are tight in D(R + , R), which by the Aldous-Rebolledo condition imply the tightness of the sequence ( Z K . , f

) K∈N * for all test func- tion f ∈ C 1 b (R + , R). As a consequence, the sequence (Z K ) K∈N * is tight in D(R + , (M F (R + ), v))
, where (M F (R + ), v) means that the space of finite positive measures M F (R + ) is embedded with the topology of vague convergence. Secondly, the limiting values Z to which subsequences of (Z K ) K∈N * converge vaguely, are continuous measure-valued processes of C(R + , (M F (R + ), w)), where M F (R + ) is embedded with the weak convergence topology. Thirdly, proceeding as in [START_REF] Tran | Une ballade en forêts aléatoires[END_REF]proof of Th.1.1.11] (see also [START_REF] Jourdain | Lévy flights in evolutionary ecology[END_REF][START_REF] Méléard | Slow and fast scales for superprocess limits of age-structured populations[END_REF]), we can prove that

lim k→+∞ lim K→+∞ E sup t≤T Z K t , ϕ k = 0,
where the functions ϕ k are C 2 approximations of 1l {x≥k} for k ∈ N and are defined by ϕ 0 (x) = 1 and for all k ∈ N * , ϕ k (x) = ψ(0 ∨ (x -k + 1) ∧ 1) with ψ(x) = 6x 5 -15x 4 + 10x 3 . This ensures that for every subsequence of (Z K ) K∈N * that converges vaguely to a limiting process Z, their masses converge in distribution to Z, 1 , which provides the tightness in (M F (R + ), w) by a criterion due to Méléard and Roelly [START_REF] Méléard | Sur les convergences étroite ou vague de processus à valeur mesures[END_REF]. We can now establish that the limiting values to which subsequences of (Z K ) K∈N * converge in D(R + , (M F (R + ), w)) are solutions of (2.4) (see [START_REF] Hoang | Estimation adaptative pour des problèmes inverses avec des applications à la division cellulaire[END_REF]). This integro-differential equation admits a unique solution. Indeed, let ξ 1 and ξ 2 be two solutions of (2.4) starting with the same initial condition ξ 0 . For a test function ϕ ∈ C 1 b (R + , R) and t > 0, setting

f (x, s) = f s (x) = ϕ(x + α(t -s)), (A.5)
we obtain that for i ∈ {1, 2},

ξ i t , ϕ = ξ 0 , ϕ(. + αt) + t 0 R + 1 0 R f s (γx) + f s ((1 -γ)x) -f s (x) h(γ)dγ ξ i s (dx) ds.
Substracting these two equations for i = 1 and i = 2, we obtain

ξ 1 t -ξ 2 t T V ≤ 3R ϕ ∞ t 0 ξ 1 s -ξ 2 s T V ds
where . T V stands for the total variation norm. Gronwall's inequality concludes the of uniqueness of the solution of (2.4). Since the limiting value of (Z K ) K∈N * is unique, the sequence hence converges in D(R + , (M F (R + ), w)) to this unique solution. This concludes the proof of Theorem 1.

The proof of Proposition 2 is detailed in [START_REF] Hoang | Estimation adaptative pour des problèmes inverses avec des applications à la division cellulaire[END_REF] (see also [START_REF] Tran | Large population limit and time behaviour of a stochastic particle model describing an agestructured population[END_REF]). First, notice that if ξ 0 (dx) admits a density n 0 (x) with respect to the Lebesgue measure, then for any t > 0, ξ t also admits a density. Indeed, for a function ϕ ∈ C 1 (R + , R + ) with non-negative values, let us define the test function f (x, s) as in (A.5). Then, neglecting the negative terms in the second line of (2.4) and using the symmetry of h with respect to 1/2: Since ξ t is dominated by a nonnegative measure absolutely continuous with respect to the Lebesgue measure on R + it follows that ξ t admits itself a density. Let us denote by n(t, x) the density of ξ t with respect to the Lebesgue measure dx on R + . Then, for a non-negative test function f ∈ C 1 b (R + , R + ) depending only on x and using the symmetry of h, (2.4) becomes:

ξ t , ϕ ≤ R + ϕ(x + αt)n 0 (x)dx + 2R t 0 R + 1 0 ϕ(γx + α(t -s))h(γ)dγ ξ s (dx) ds = +∞ αt ϕ(y)n 0 (y -αt)dy + 2R t 0 ϕ(α(t -s))ξ s ({0}) ds + 2R t 0 R + \{0} R 1l (α(t-s),x+α(t-s)) (y)ϕ(y)h y -α(t -s) x
R + f (x)n(t, x)dx = R + f (x)n 0 (x)dx + t 0 R + αf (x)n(s, x)dx ds + t 0 R + 2R 1 0 f (γx)h(γ)dγ n(s, x)dx ds -R t 0 R + f (x)n(s, x)dx ds = R + f (x)n 0 (x)dx + t 0 R + αf (x)n(s, x)dx ds + t 0 R + f (x) × 2R +∞ x h x y n(s, y) dy y dx ds -R t 0 R + f (x)n(s, x)dx ds, (A.6)
where we used Fubini's Theorem for the third term in the right hand side. For the second term in the r.h.s., integrating by part gives:

t 0 R + αf (x)n(s, x)dx ds = t 0 αf (x)n(s, x) +∞ 0 - R + αf (x)∂ x n(s, x)dx ds = -αf (0) t 0 n(s, 0)ds - t 0 R + αf (x)∂ x n(s, x)dx ds. (A.7)
Gathering (A.6) and (A.7) that are true for any test function f and time t, we can identify the equations satisfied by (n(t, x), x ∈ R + , t > 0). We find that n(t, 0) = 0 for every t ≥ 0 and that (n(t, x), x ∈ R + , t > 0) solves in distribution sense (2.5) for which uniqueness of the solution holds (e.g. [53, Theorem 4.3 p.90]).

The proof of Proposition 3 is a particular case of [53, Th.4.6 p. 94] based on Krein-Rutman theorem (e.g. [53, Th.6.5 p.175]) (see also [START_REF] Doumic | Eigenelements of a general aggregation-fragmentation model[END_REF]). In the case that we consider, the proof can be simplified compared with [START_REF] Perthame | Transport equations arising in biology[END_REF].

Let us consider the eigenelements (λ, N, φ) associated with (2.5), i.e. the solution of:

             α∂ x N (x) + (λ + R)N (x) = 2R 1 0 N x γ h(γ) dγ γ , x ≥ 0, N (0) = 0, N (x)dx = 1, N (x) ≥ 0, λ > 0, α∂ x φ(x) -(λ + R)φ(x) = -2R 1 0 φ(γx)h(γ)dγ, x ≥ 0, φ(x) ≥ 0, +∞ 0 φ(x)N (x)dx = 1. (A.8)
It is clear that λ = R and φ ≡ 1 solve the third equation of (A.8). Because the first line is linear in N , we can forget for the proof the condition N (x)dx = 1: if there exists a nonnegative integrable solution, we can renormalize it.

Step 1 : Let us consider the following auxiliary PDE, for a constant µ > 0 and two functions

f ∈ C(R + , R + ), and M ∈ L 1 (R + , R) ∩ C(R + , R + ): α∂ x N (x) + (µ + R) N (x) -2R 1 0 M x γ h(γ) dγ γ = f (x), x ≥ 0 ; N (0) = 0. (A.9)
Equation (A.9) is a first order ODE that can be solved with the variation of constant method. It admits a unique solution, that we denote T (M ):

T (M )(x) = 1 α x 0 e -µ+R α (x-y) 2R 1 0 M y γ h(γ) dγ γ + f (y) dy. Consider M 1 an M 2 ∈ L 1 (R + , R) ∩ C(R + , R + ). Then, for x ≥ 0: |T (M 1 )(x) -T (M 2 )(x)| ≤ 2R α 1 0 x/γ 0 e -µ+R α (x-γz) |M 1 (z) -M 2 (z)|h(γ)dz dγ ≤ 2R µ + R 1 -e -(µ+R)x α 1 0 h(γ) γ dγ M 1 -M 2 ∞ . (A.10)
Provided the integral in the term above is finite, then for µ > 2R

1 0 h(γ)/γ dγ -R, the map M ∈ L 1 (R + , R) ∩ C(R + , R + ) → T (M ) ∈ L 1 (R + , R) ∩ C(R + , R + ) is a contraction.
Thus it admits a unique fixed point that is the unique solution of

α∂ x N (x) + (µ + R) N (x) -2R 1 0 N x γ h(γ) dγ γ = f (x), x ≥ 0 ; N (0) = 0. (A.11)
Step 2 : The map A that associates to f ∈ C(R + , R + ) ∩ L 1 (R + , R + ) the unique corresponding solution of (A.11) is thus well defined. Following the path of [53, Section 6.6.2], we can show that this map is linear, continuous (with computation similar to (A.10)) and strongly positive. Finally, the boundedness of N implies the boundedness of ∂ x N , with norms controlled by f ∞ . This allows to use Arzela-Ascoli theorem to obtain the compactness of the map A. We can then use Krein-Rutman theorem (using similar truncations as in [START_REF] Perthame | Transport equations arising in biology[END_REF]) to obtain that the spectral radius of A, ρ(A), is a positive simple eigenvalue associated with a positive eigenvector satisfying:

α∂ x N (x) + µ + R - 1 ρ(A) N (x) -2R 1 0 N x γ h(γ) dγ γ = 0, x ≥ 0 ; N (0) = 0.
(A.12) The fact that λ := µ + R -1 ρ(A) is equal to 2R is a consequence of integrating the direct equation against the the adjoint eigenvector (here φ ≡ 1) and using that N (x)dx = 1.

Step 3 : The computation to establish the speed of convergence of n(t, x)e -Rt to ρN (x) stated in (2.8), are obtained by generalizing the proof of [53, Th.4.2 p.88] (see also [START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF]). Define g(t, x) = n(x, t)e -Rt -ρN (x), G(t, x) = x 0 g(t, y)dy and K(t, x) = ∂ t G(t, x). One can write the PDEs satisfied by g and G. The PDE for G implies that

∂ t +∞ 0 G(t, x)e Rt dx ≤ 0. As a consequence, +∞ 0 |G(t, x)|dx ≤ e -Rt G 0 1 . (A.13) From the PDE of g, K(0, x) = ∂ t G(t, x)| t=0 = 2R 1 0 G 0 (x/u)h(u)du -2RG 0 (x) -αg 0 (x). Proceeding similarly as for G, we show that +∞ 0 |K(t, x)|dx ≤e -Rt +∞ 0 |K(0, x)|dx ≤ e -Rt 3R G 0 1 + α g 0 1 .
(A.

Plugging (A.13) and (A.14) in the PDE of g (where we notice that g(t, x) = ∂ x G(t, x)), we obtain the result announced in the proposition.

B Proof of Proposition 4

Proof of Proposition 4 (i). Let > 0 to be chosen small enough. Since N is a probability density, we have for ν ≤ (ν 0 + 2) ∧ ([β] + 1):

+∞ 0 x -ν N (x)dx ≤ 0 x -ν N (x)dx + 1 ν .
Hence, it remains to prove

0 x -ν N (x)dx < +∞.
We follow and adapt the steps of the proof of Theorem 1 in Doumic and Gabriel [START_REF] Doumic | Eigenelements of a general aggregation-fragmentation model[END_REF]. Integrating both side of equation (2.7) between 0 and x 0 ≤ x, we get: Let us define:

αN (x 0 ) + 2R
f : x → sup x 0 ∈(0,x] N (x 0 ), then we have for all x f (x) ≤ 2R α x 0 +∞ 0 N (y)h z y dy y dz. (B.2)
Recall Assumption 1. Using a Taylor expansion, it implies that for any t ∈ (0, 1),

t 0 h(x)dx ≤ C t 0 x (ν 0 +1)∧[β] dx ≤ Ct (ν 0 +2)∧([β]+1) ≤ Ct ν (B.3) by choice of ν ≤ (ν 0 + 2) ∧ ([β] + 1)
. Then, we have for all x < :

f (x) ≤ 2R α +∞ 0 N (y)dy x 0 h z y dz y ≤ 2R α +∞ 0 N (y) min 1, C x ν y ν dy ≤ 2R α x 0 N (y)dy + C x N (y) x ν y ν dy + C +∞ N (y) x ν y ν dy ≤ 2R α x 0 sup z∈(0,x] N (z)dy + Cx ν x sup z∈(0,y] N (z) dy y ν + 2CR α +∞ N (y) y ν dy x ν ≤ 2R α f (x) + 2CRx ν α x f (y) y ν dy + Kx ν , with K = 2CR α ν . We choose such that 0 < < α 2R .
and by setting F (x) = x -ν f (x), we get

F (x) ≤ K 1 -2R α + 2CR α -2R x F (y)dy. (B.4)
Then, applying Gronwall's inequality to (B.4), we obtain

F (x) ≤ K 1 -2R α exp 2CR α -2R =: C, ∀x ∈ [0, ] and x -ν N (x) ≤ C, ∀x ∈ [0, ].
We finally obtain

0 x -ν N (x)dx ≤ C < +∞.
This ends the proof of Proposition 4(i).

Proof of Proposition 4(ii). Let us first notice that by the fixed point theorem in the proof of Proposition 3, N is continuous as uniform limit of a sequence of continuous functions. Let us show that under Assumption 1 the map

Φ : x ∈ (0, +∞) → +∞ x N (y)h x y
dy y is of class C [β] on (0, +∞). We proceed by induction, and start by computing the first derivative of Φ for x > 0. 

Φ(x + ε) -Φ(x) ε = - 1 ε x+ε x N ( 
Φ (k) (x) = +∞ x N (y)h (k)
x y dy y k+1 .

Since N , h and their derivatives are bounded functions, the latter integrals are always finite for x > 0. This implies that Φ is of class C k and that using this information in (2.7),

∂ x N is of class C k-1 entailing that N is of class C k .
As the computation of the first derivative of Φ shows, we are limited by the regularity of h. So we finally have that x → N (x) is of class C [β] , and thus, u → M (u) is also of class C [β] .

Take k ≤ [β]. That M is of class C [β] implies that (iξ) k M * (ξ)
is the Fourier transform of M (k) and bounded on R provided we additionally prove that the derivatives of M up to the order k are integrable. Since M (u) = e u N (e u ), M (k) is a linear combination of terms of the form e ( +1)u N ( ) (e u ) with ≤ k. We thus have to check the finiteness, for all ≤ k, of: 

(R + , R + ) ∩ L ∞ (R + , R + ). (B.7)
Assume that for some < k, we have proved that +∞ 0 e µx N ( ) (x) dx < +∞ for µ < R/α. Let us prove that this also holds for + 1, which would entail (B.6). Deriving (2.7) times, multiplying by e µx and integrating again in x ∈ (0, +∞), we obtain: By the induction assumption, the first term in the right hand side is finite. Because h ( ) is a continuous function on [0, 1], h ( ) 1 is finite. Using that N (x)e µx ∈ L 1 (R + , R + ) implies that the second term is integrable at +∞. Point (i) of Proposition 4 ensures the integrability at 0. Thus, the right hand side of (B.8) is finite. The use of point (i) of Proposition 4 explains why [β] ∧ (ν 0 + 3) appears in the announced result. The finiteness of +∞ 0 e µx N ( ) (x) dx, for ≤ [β] ∧ (ν 0 + 3), is thus proved by recursion, implying the finiteness of the terms in (B.6) and concluding the proof.

α +∞ 0 e µx N ( +1) (x) dx ≤2R +∞ 0 e µx N ( ) (x) dx + 2R

Proof of Proposition 4(iii).

The proof is divided into several steps.

Step 1: First, notice that

M * : ξ = ξ 1 + iξ 2 → +∞ -∞
e ixξ M (x)dx = +∞ 0 e iξ log(y) N (y)dy = +∞ 0 e iξ 1 log(y) y -ξ 2 N (y)dy.

We first prove that M * has isolated zeros in {ξ ∈ C : (ξ) < 1}.

Because N is such that e µx N (x) ∈ L ∞ (R + , R + ) ∩ L 1 (R + , R + ) for µ < R/α (see [53, p.95]), M * is well defined on the half plane {ξ ∈ C : (ξ) ≤ 0}. By Proposition 4(i), N (y)/y is integrable on the neighborhood of zero. Hence, for ξ 2 < 1, so is y -ξ 2 N (y). As a consequence, M * is analytic on the lower half-plane {ξ ∈ C : (ξ) < 1} which contains the real axis. The derivative of the integrand with respect to ξ has modulus | log(y)| y -ξ 2 N (y). The latter function is upper bounded, when ξ 2 < 1 and when y < 1, by N (y) y which is integrable on the neighborhood of zero by Proposition 4(i). It follows from the results on integrals with parameters that the extension of M * to the complex plane is holomorphic on {ξ ∈ C : (ξ) < 1}. Because M * is not the null function, its zeros in {ξ ∈ C : (ξ) < 1} have to be isolated.

Step 2: Let us now show that M * admits no zero on the real line. First we link the Fourier transform to the Mellin transform of N . Recall that M * is related to the solution N of (2.7) where the right hand term is a multiplicative convolution of x → N (x)/x and h. A natural way of treating multiplicative deconvolution is by using Mellin transform (e.g. [START_REF] Epstein | Some applications of the Mellin transform in Statistics[END_REF][START_REF] Titchmarsh | Introduction to the Theory of Fourier Integrals[END_REF]).

It is natural to set

ψ(x) = N (x) x , x ≥ 0. (B.9)
The Mellin transforms of ψ and h are defined for s ∈ C as:

Ψ(s) = +∞ 0
x s-1 ψ(x)dx, and H(s) = Notice firstly that (B.13) is in particular true for all s such that (s) > 1 since (B.12) is then satisfied. Secondly, let us add that (B.13) is reminiscent of Equation (2.4) in Doumic et al. [START_REF] Doumic | Estimating the division rate and kernel in the fragmentation equation[END_REF], with the difference that our equation is establish on the eigenvalue problem (2.7) with constant branching rate R, while Doumic and co-authors work with an evolution equation with no evolution of the cell sizes but power-law branching rate.

To prove (B.13), observe that

N (x) = xψ(x) and ∂ x N (x) = xψ (x) + ψ(x).
Therefore, (2.7) can be expressed by using ψ instead of N :

α∂ x N (x) + 2R N (x) = 2R ∞ 0 N (y)h x y dy y , x ≥ 0 ⇐⇒ xψ (x) + 1 + 2R α x ψ(x) = 2R α +∞ x yψ(y)h x y dy y , x ≥ 0.
Multiplying each side of this equation by x s-1 and integrating on x ∈ [0, +∞), we obtain:

+∞ 0 x s ψ (x)dx + +∞ 0 1 + 2R α x x s-1 ψ(x)dx = 2R α +∞ 0 x s-1 +∞ x yψ(y)h x y dy y dx ⇐⇒ (1 -s)Ψ(s) = 2R α H(s) -1 Ψ(s + 1),
by using an integration by parts for the left term and the Fubini theorem for the right term. This shows (B.13).

Step 3: We now prove that for any ξ ∈ R, and any n ∈ N,

M * (ξ) = 0 ⇐⇒ Ψ(iξ + n + 2) = 0. (B.14)
This is true for n = 0, by (B.11). For ξ ∈ R, applying (B.13) with s = 2 + iξ, for which (B.12) is satisfied:

M * (ξ) = Ψ(iξ + 2) = - 2R α(1 + iξ) H(iξ + 2) -1 Ψ(iξ + 3).
By induction, we have for any n ∈ N (n will be chosen subsequently),

M * (ξ) = - 2R α n n k=1 1 k + iξ H(iξ + k + 1) -1 × Ψ(iξ + n + 2). Since for any ξ = ξ 1 + iξ 2 ∈ C such that ξ 1 ≥ 1, |H(iξ 2 + ξ 1 + 1)| = 1 0 x iξ 2 +ξ 1 h(x)dx ≤ 1 0 xh(x)dx = 1 2 , (B.15)
by symmetry of h, then the product in the right hand side is non zero and this leads to (B.14).

As a consequence, to prove that M * admits no zero on the real line, it is sufficient to prove that Ψ admits no zero on some line n 0 + iR where n 0 is an integer larger than 2.

Step 4: Following the computation in Doumic et al. [START_REF] Doumic | Estimating the division rate and kernel in the fragmentation equation[END_REF], we can prove that: Let us fix s 0 ∈ R such that s 0 ≥ 2. For s ∈ C such that s 0 < (s) < s 0 + 1, we look for particular solutions of (B.17 Then, following the steps of Doumic et al. [START_REF] Doumic | Estimating the division rate and kernel in the fragmentation equation[END_REF]Proposition 2], the function P solves a Carleman equation, from which a solution of (B.17) can be obtain. There exist several solutions to (B.17), and computing the inverse Mellin transforms of the latters, it appears that the solution corresponding to the Mellin transform of the solution of (2.7) is:

∀s ∈ C with (s) ≥ 2, |Ψ(s)| = 0. (B.
Ψ(s) = exp - (σ)=s 0 log Φ(σ) 1 1 -e 2iπ(s-σ) - 1 1 + e 2iπ(s 0 -σ) dσ , (B.18)
for s ∈ { (s) ∈ (s 0 , s 0 + 1)}, where the chosen determination of the logarithm is log(z) = log |z| + i arg(z) with arg(z) ∈ [0, 2π). That the right hand side of (B.18) is well defined and does not vanish on { (s) ∈ (s 0 , s 0 + 1)} follows closely the proofs in [23, Lemma 3 and Section 6.3] by careful study of the behavior of Φ(s) when the imaginary part of s tend to ±∞. Conclusion: choose for example s 0 = 5 2 so that s 0 ≥ 2 and n 0 = 3 ∈ (s 0 , s 0 + 1). The function given in (B.18) is analytic, non-vanishing and coincide with the Mellin transform of ψ on {s ∈ C : (s) ∈ (s 0 , s 0 + 1)}. This implies that Ψ admits no zero on n 0 + iR and finishes the proof.

C Proof of Propositions 5 and 6

Proof of Proposition 5. We have ĝn, -g Since g(u) = e u h(e u ) = e u h(1 -e u ) by the symmetry of h, we can show that gn, -

g 2 2 = 1 0 ĥn, (x) -h(x) 2 (1 -x)dx.
Thus,

E ǧn, -g 2 2 = E τ ĝn, + (1 -τ )g n, -g 2 2 = 1 2 E ĝn, -g 2 2 + 1 2 E gn, -g 2 2 = 1 2 E ĥn, -h 2 2 , (C.2) since ĝn, -g 2 2 + gn, -g 2 2 = ĥn, -h 2 2 . Let us now compute E gn, -g 2 2 .
Recall that h = 0 on R \ (0, 1), so g = 0 on R + . For u < 0, we define the new variable v ∈ R * -such that e v = 1 -e u . We have gn, (u) =e u ĥn, (1 -e u ) = e u ĥn, (e v ) = e u-v ĝn, (v) = e u 1 -e u ĝn, log(1 -e u ) .

Similarly, we have that g(u) = e u 1-e u g(log(1 -e u )) and thus

E gn, -g 2 2 =E R - gn, (u) -g(u) 2 du =E R - e u 1 -e u 2 ĝn, log(1 -e u ) -g log(1 -e u ) 2 du =E R - 1 -e v e v ĝn, (v) -g(v) 2 dv .
As a consequence, the middle term in (C.2) is

1 2 E ĝn, -g 2 2 + 1 2 E gn, -g 2 2 =E R - 1 2 1 + 1 -e v e v ĝn, (v) -g(v) 2 dv =E R - e -v 2 ĝn, (v) -g(v) 2 dv .
This concludes the proof.

Proof of Proposition 6. Remember (C.1). Then, since h

(x) = h(1 -x), 1 0 ĥsym n, (x) -h(x) 2 m(x)dx = 1 4 1 0 ĥn, (x) -h(x) + ĥn, (1 -x) -h(1 -x) 2 m(x)dx ≤ 1 2 1 0 ĥn, (x) -h(x) 2 m(x)dx + 1 2 1 0 ĥn, (1 -x) -h(1 -x) 2 m(1 -x)dx = 1 0 ĥn, (x) -h(x) 2 m(x)dx ≤ 1 0 ĥn, (x) -h(x) 2 xdx = ĝn, -g 2 2 .
This concludes the proof.

D Proof of Theorem 2

Proof of Theorem 2. Let g = K g. We have ĝn, -g 2 ≤ g -g 2 + ĝn, -g 2 .

The first term of the above r.h.s inequality is a bias term whereas the second is a variance term.

To control the variance term, we have by the Parseval's identity and by (3.6):

ĝn, -g 2 2 = 1 2π ĝ * n, -g * 2 2 = 1 2π R K * (ξ) α D * n (ξ) 2R 1 Ωn(ξ) M * n (ξ) + 1 -g * (ξ) 2 dξ = 1 2π R K * (ξ) α D * n (ξ) 2R 1 Ωn(ξ) M * n (ξ) - α D * n (ξ) 2RM * (ξ) + α D * n (ξ) 2RM * (ξ) + 1 -g * (ξ) = 1 2π R α 2R K * (ξ) D * n (ξ) 1 Ωn(ξ) M * n (ξ) - 1 M * (ξ) + K * (ξ) α D * n (ξ) 2RM * (ξ) + 1 -g * (ξ) 2 dξ ≤ C R K * (ξ) D * n (ξ) 1 Ωn(ξ) M * n (ξ) - 1 M * (ξ) 2 dξ + C R |K * (ξ) 2 | α D * n (ξ) 2RM * (ξ) + 1 -g * (ξ) 2 dξ := I + II .
We deal with variance of complex variables. Note that for a complex variable, say Z, by distinguishing real and imaginary parts one gets that

Var(Z) := E[|Z -E(Z)| 2 ] = E[|Z| 2 ] -|E[Z]| 2 ≤ E[|Z| 2 ].
For the term II, because

E K * (ξ) α D * n (ξ) 2RM * (ξ) + 1 = K * (ξ) αD * (ξ) 2RM * (ξ) + 1 = K * (ξ)g * (ξ),
we have

E[II] = C R Var K * (ξ) α D * n (ξ) 2RM * (ξ) + 1 dξ ≤ C R Var K * (ξ) D * n (ξ) M * (ξ) dξ ≤ C R K * (ξ) M * (ξ) 2 Var   (-iξ) n n j=1 e (iξ-1)U j   dξ ≤ C n R K * (ξ)ξ M * (ξ) 2 Var e (iξ-1)U 1 dξ ≤ C n R K * (ξ)ξ M * (ξ) 2 E e (iξ-1)U 1 2 dξ ≤ C n R K * (ξ)ξ M * (ξ) 2 E e -2U 1 dξ ≤ C n K * (ξ)ξ M * (ξ) 2 2 
, since E[e -2U 1 ] = +∞ 0

x -2 N (x)dx < +∞ thanks to Proposition 4. We now set To control the term IV, we need the following lemma whose proof is postponed in Appendix E. Thus we obtain

IV ≤ C n R K * (ξ) M * (ξ) 2 dξ = C n K * (ξ) M * (ξ) 2 2 
.

For the term III, we have by applying Cauchy-Schwarz's inequality and by Lemma 1: where Z j (ξ) = e (iξ-1)U j -E e (iξ-1)U 1 . Since Z 1 (ξ), . . . , Z n (ξ) are independent centered variables with E[|Z 1 (ξ)| 4 ] = E e (iξ-1)U 1 -E e (iξ-1)U 1

III ≤ C R K * (ξ) 2 E D * n (ξ) -E D * n (ξ)

4

≤ E e (iξ-1)U 1 + E e (iξ-1)U 1 4 ≤ 2 3 E e (iξ-1)U 1 4 + E e (iξ-1)U 1 4

≤ 16E e -4U 1 = 16 .

This ends the proof of Theorem 2.

Proof of Proposition 7. First let us find an upper bound for the bias term K g -g 2 2 . We assume that g * is integrable and g belongs to the Sobolev class S(β, L). Proposition 1 of Comte and Lacour [START_REF] Comte | Anisotropic adaptive kernel deconvolution[END_REF] yields K g -g 2 2 ≤ L 2 2β . Now we shall consider the variance term. We have

K * (ξ)ξ M * (ξ) 2 2 = -1 --1 ξ 2 |M * (ξ)| 2 dξ = O( -(3+2([β]∧(ν 0 +3))) ).
Performing the usual trade-off between the bias and the variance terms, we get the following choice of the bandwith , for a fixed α > 0 : = αn -1 2β+2([β]∧(ν 0 +3))+3 , which concludes the proof.

E Proof of technical lemma

Proof of Lemma 1. This proof is inspired by the proof of Neumann [START_REF] Neumann | On the effect of estimating the error density in nonparametric deconvolution[END_REF]. We will prove the result with p = 1. For p = 2, the proof is similar.

We split the proof in two cases: |M * (ξ)| < 2n This ends the proof of Lemma 1.

Assumption 1 .

 1 The function h is of class C β on [0, 1], for some β > 3: the function h is [β] times differentiable (where [β] is the largest integer smaller than β) and the derivative of order [β] is β -[β] Hölder continuous.

Proposition 4 .

 4 Under Assumption 1: (i) the first eigenvector N of the eigenproblem (2.7) satisfies +∞ 0
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 1 Influence of the preliminary estimators M * n and D * n on the performances of ĥn, and ĝn,
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 12 Figure 1: The Beta(2, 2) density h1 (left) and its corresponding stationary density N1 (right).

Figures 3 ,

 3 Figures 3, 4 and 5 provide a reconstruction of M * n , D * n and D * n based on a random sample U 1 , . . . , U n of size n = 30, 000 for h 1 . For each figure, we represent both the real part and the imaginary part of M * n (resp. D * n , D * n ) and we compare them with those of M * (resp. D * , D * ). The Fourier transforms M * , D * and D * are computed directly from the function N 1 , indicating that one can consider M * , D * and D * as the "true" functions.Figures3 and 5show that the reconstructions of M * and D * are very satisfying, whereas large oscillations in the reconstruction of D * (ξ) appear when ξ is large (see Figure4), due to a large variance term. This confirms what we mentioned: the estimation of the derivative D * has a strong influence for our statistical problem.
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 3 Figure 3: For the Beta(2, 2) density, the real part (left) and the imaginary part (right) of M * n (blue line) compared with those of M * (red line).

Figure 4 :

 4 Figure 4: For the Beta(2, 2) density, the real part (left) and the imaginary part (right) of D * n (blue line) compared with those of D * (red line).

Figure 5 :

 5 Figure 5: For the Beta(2, 2) density, the real part (left) and the imaginary part (right) of D * n (blue line) compared with those of D * (red line).

  of g * n, as in Definition 4. Define,
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 6 Figure 6: Estimation of g1(x) = e x h1(e x ) (left) and h1 (right).

Figure 7 :Figure 8 :

 78 Figure 7: Estimation of g2(x) = e x h2(e x ) (left) and h2 (right).

Figure 9 :

 9 Figure 9: Bandwidths and errors for the estimation of h1 (Beta(2, 2) distribution).

Figure 10 :

 10 Figure 10: Bandwidths and errors for the estimation of h2 (Truncated normal).

  1l (α(t-s),x+α(t-s)) (y) 1 x h y -α(t -s)x ξ s (dx) ds ϕ(y)dy.

Re

  ( +1)u N ( ) (e u ) du = +∞ 0 v N ( ) (v) dv. (B.6) It is known (as a direct adaptation of [53, Th.4.6 p.95] for example) that as soon as µ < R/α, N (x)e µx ∈ L 1

MNx s- 1 N

 1 (x)e ixξ dx = ∞ -∞ e x N (e x )e ixξ dx = +∞ 0 (u)u iξ du = Ψ(iξ + 2). (B.11)So the Point (iii) of Proposition 4 will be proved if Ψ does not vanish on the line 2 + iR. We first establish an equation satisfied by Ψ (Step 3) and then conclude with the proof by adapting the results of Doumic et al.[START_REF] Doumic | Estimating the division rate and kernel in the fragmentation equation[END_REF].Recall (B.7). Let us prove below that for any s ∈ C such that lim x→0

  ) of the formΨ(s) = exp P (ζ(s))where ζ(s) = e i2π(s-s 0 ) .

  e u ) -e u h(e u )

2 E

 2 | (ξ)| 2 dξ := III + IV.

Lemma 1 .

 1 There exists a positive constant C p such thatE | (ξ)| 2p ≤ C p min 1 |M * (ξ)| 2p , n -p |M * (ξ)| 4p for p = 1, 2. (D.2)Since D * n is an unbiased estimator of D * using Lemma 1 with p = 1 equation (3.3) and using that g * is the Fourier transform of a density function, we getD * (ξ) M * (ξ) ≤ 2R α (|g * (ξ)| + 1) ≤ 4R α .
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 04422 (x)dx < +∞ (D.3) by Proposition 4, applying Rosenthal inequality to real and imaginary parts of complex variablesZ j 's, we get ≤ Cn -4 nE[|Z 1 (ξ)| 4 ] + nE[|Z 1 (ξ)| 2 ] Cn -2 . Hence III ≤ C n R K * (ξ)ξ 2 |M * (ξ)| 2 dξ = C n K * (ξ)ξ M * (ξ)

- 1 / 2 2 . 2 = 1 n 2 : 2 ≤ 2 ≤ 2 = 2 = 2 ≤ 2 1 2 . (E. 5 )≤

 12221222222225 and |M * (ξ)| ≥ 2n -1/2 . Recall that Ω n (ξ) = | M * n (ξ)| ≥ n -1/2 and E M * n (ξ) = E e iξU 1 = M * (ξ), we have:E | (ξ)| 2 = E 1 Ωn(ξ) c n (ξ)) |M * (ξ)| 2 + E 1 Ωn(ξ) | M * n (ξ) -M * (ξ)| 2 | M * n (ξ)| 2 |M * (ξ)| (E.1) i) If |M * (ξ)| < 2n -1/2 : E | (ξ)| 2 ≤ 1 |M * (ξ)| 2 + E | M * n (ξ) -M * (ξ)| 2 n |M * (ξ)| 2 . But E M * n (ξ) -M * (ξ) Var Var e iξU 1 ≤ 1 n E |e iξU 1 | 2 = 1 n .Hence we obtainE | (ξ)| 2 ≤ C |M * (ξ)| 2 ≤ C min 1 |M * (ξ)| 2 , n -1 |M * (ξ)| 4 , (E.2) since |M * (ξ)| < 2n -1/2 . ii) If |M * (ξ)| ≥ 2n -1/We first control the probability P(Ω c n (ξ)),P (Ω c n (ξ)) = P | M * n (ξ)| < n -1/2 = P | M * n (ξ)| < |M * (ξ)| -|M * (ξ)| + n -1/P | M * n (ξ) -M * (ξ)| > |M * (ξ)| -n -1/P | M * n (ξ) -M * (ξ)| > |M * (ξ)|/2 . (E.3) Let T j (ξ) = e iξU j -E e iξU 1 , then M * n (ξ) -M * (ξ) = 1 n n j=1 e iξU j -E e iξU 1 = 1 n n j=1 T j (ξ).We have|T 1 (ξ)| = e iξU j -E e iξU 1 ≤ e iξU j + E e iξU 1 ≤ 2,andVar T 1 (ξ) ≤ E |e iξU 1 | 2 = 1. Since |M * (ξ)| ≤ 1 for all ξ ∈ Rbecause of M is a density function, we get by Bernstein inequality (cf. for instance Comte and Lacour [19, Lemma 2, p.20])P | M * n (ξ) -M * (ξ)| > |M * (ξ)|/2 ≤ 2 max exp -n|M * (ξ)| 2 16 , exp -n|M * (ξ)| 16 ≤ 2 exp -n|M * (ξ)| 2 16 ≤ C n -1 |M * (ξ)| 2 . |M * (ξ)| 2 | M * n (ξ)| 2 |M * (ξ)| | M * n (ξ) -M * n (ξ) -M * (ξ) | 2 | M * n (ξ)| 2 |M * (ξ)| |M * (ξ)| 2 + | M * n (ξ) -M * (ξ)| 2 | M * n (ξ)| 2 |M * (ξ)|Thus, from (E.1), (E.3) and (E.5) we have:E | (ξ)| 2 ≤ C n -1 |M * (ξ)| 4 + E 1 Ωn(ξ) | M * n (ξ) -M * (ξ)| 2 | M * n (ξ)| 2 ||M * (ξ)| 2 ≤ C n -1 |M * (ξ)| 4 + E | M * n (ξ) -M * (ξ)| 2 |M * (ξ)| 4 + E | M * n (ξ) -M * (ξ)| 4 n |M * (ξ)| 4 . (E.6)To find an upper bound for E | M * n (ξ) -M * (ξ)| 4 , recall that T j (ξ) = e iξU j -E e iξU 1 . By similar calculations as obtained (D.3), we have E[|T 1 (ξ)| 4 ] < +∞ as |T 1 (ξ)| ≤ 2. Thus we get by Rosenthal's inequality applied to real and imaginary parts of the sequence of independent centered variables T 1 (ξ), . . . , T n (ξ):E | M * n (ξ) -M * (ξ)| 4 = E Cn -4 nE[|T 1 (ξ)| 4 ] + nE[|T 1 (ξ)| 2 ] 2 ≤ Cn -2 .Thus, from (E.3) and (E.6) we getE | (ξ)| 2 ≤ C n -1 |M * (ξ)| 4 .

Furthermore 1 |M

 1 * (ξ)| 2 ≥ n -1 |M * (ξ)| 4 , since |M * (ξ)| > 2n -1/2 . Hence E | (ξ)| 2 ≤ C min 1 |M * (ξ)| 2 , n -1 |M * (ξ)| 4 .Combining the two cases, we obtainE | (ξ)| 2 ≤ C min 1 |M * (ξ)| 2 , n -1 |M * (ξ)| 4 .

  -risk which is intricate in our case, we use the following alternative approach: we start from a random sample and divide it into two disjoint sets, called the training set and the validation set. They are respectively used for computing the estimator and measuring its performance. For sake of simplicity, those sets have the same size.

		2		
	is known. Instead of finding a closed formula for the estimator of the L 2 Let n, 2 ĝ * (t) n, (resp. ĝ * (v) n, ) be the estimator of g * constructed on the training set (resp. on the validation set). The heuristics is that
	if	ĝ * (v) n, is an estimator constructed on the validation set, then	ĝ * (t) n, ,	ĝ * (v)

n,

Table 1 :

 1 Average of the L 2 -risk of ĝn, ˆ Crit1 and ĝn, ˆ Crit2 over 100 Monte Carlo repetitions for estimating h1 and h2, compared with those of the oracle.

			2)	h 2 -Truncated normal
	Crit1	Crit2	Oracle	Crit1	Crit2	Oracle
	V = 10 ē 0.04155 0.04031 0.03056 0.03703 0.03669 0.02806
	¯ 0.29839 0.29606 0.27583 0.30255 0.30312 0.27858
	V = 25 ē 0.04145 0.03898 0.03056 0.03679 0.03602 0.02806
	¯ 0.29732 0.29787 0.27583 0.30348 0.30155 0.27858
	V = 40 ē 0.04039 0.03708 0.03056 0.03613 0.03440 0.02806
	¯ 0.29837 0.29985 0.27583 0.30396 0.30303 0.27858

  = 0 by Assumption 1. This shows that Φ is of class C 1 . Plugging this information into (2.7), it follows that ∂ x N is continuous, and hence N is of class C 1 and thus ∂ x N also. This entails from the computation of Φ that Φ is of class C 2 . Suppose that we have computed the successive derivatives of Φ up to k -1 and that we have shown that N is of class C k-1 for k ≤ [β] ∧ ν 0 . Then, since the successive derivatives of h at 0 vanish by Assumption 1,

			y)h	x y	dy y	+	+∞ x+ε	N (y)	y ε	h	x + ε y	-h	x y	dy y 2
	→ ε→0 -	N (x)h(1) x	+	x	+∞	N (y)h	x y	dy y 2 =	x	+∞	N (y)h	x y	dy y 2 ,	(B.5)
	since h(1) = h(0)													

  Notice that our equation has much more regularities than the one studied in Doumic et al. since the application Φ is analytic on {s ∈ C, (s) ≥ 2} and does not vanish on this half-plane.

	α 2R	×	1 -s H(s) -1	.	(B.17)
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First, notice that (B.15) implies that H(s) -1 = 0 as soon as (s) ≥ 2. For such s ∈ C, dividing by H(s) -1, we can reformulate (B.13) as: Ψ(s + 1) = Φ(s)Ψ(s), where Φ(s) =

dξ
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Appendix

This section is devoted to the proofs of the paper's results. C is a constant whose value may change from line to line.