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Nonparametric estimation of the fragmentation kernel based on a

PDE stationary distribution approximation

Van Hà Hoang∗, Thanh Mai Pham Ngoc†, Vincent Rivoirard‡, Viet Chi Tran§

Abstract

We consider a stochastic individual-based model in continuous time to describe a size-
structured population for cell divisions. This model is motivated by the detection of cellular
aging in biology. We address here the problem of nonparametric estimation of the kernel
ruling the divisions based on the eigenvalue problem related to the asymptotic behavior
in large population. This inverse problem involves a multiplicative deconvolution operator.
Using Fourier technics we derive a nonparametric estimator whose consistency is studied.
The main difficulty comes from the non-standard equations connecting the Fourier transforms
of the kernel and the parameters of the model. A numerical study is carried out and we pay
special attention to the derivation of bandwidths by using resampling.

Keywords: Growth-fragmentation; cell division; nonparametric estimation; Kernel rule;
deconvolution;
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1 Introduction

We consider a population model with size structure in continuous time, where individuals are
cells which grow continuously and undergo binary divisions after random exponential times at
rate R > 0. When a cell of size x divides, it dies and is replaced by two daughter cells of
sizes γx and (1 − γ)x, where γ is assumed here to be a random variable drawn according to
a distribution with a density with respect to the Lebesgue measure on [0, 1]: Γ(dγ) = h(γ)dγ.
Between divisions, the sizes of the cells grow with speed α > 0. Because the two daughter cells
are exchangeable, we assume that h is a symmetric density with respect to γ = 1/2. When h is
piked at 1/2, then both daughters tend to have similar sizes, i.e. the half of their mother’s size.
The more h puts weight in the neighbourhood of 0 and 1, the more asymmetric the divisions are.
They give birth to one small daughter and one big daughter with size close to its mother’s. In
this article, we are interested in the estimation of this function h in the case of large populations
where the division tree is not observed. We stick to constant rate R and speed α for the sake of
simplicity.

The population can be described by a stochastic individual-based (particle) model, where
the population at time t is represented by a random measure that is the sum of Dirac masses on
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R+ weighting the cells’ sizes. Stochastic continuous time individual-based models of dividing cell
populations with size-structure have made the subject of an abundant literature starting from
Athreya and Ney [1], Harris [22], Jagers [27] etc. until recent years (e.g. Bansaye et al. [6, 3],
Cloez [10]). Similar models in discrete time should also be mentioned (e.g. [2, 5, 7, 35, 14, 21]).
Individual-based models are easy to simulate and offer sometimes a convenient framework for
statistics (see e.g. Hoffmann and Olivier [26], Hoang [25, 24]). They also connect to the partial
differential equations (PDEs) that are usually used in population dynamics (see [4]).
We start from an initial population where the individuals are labelled in an exchangeable way
by integers. The population of cells descending from these initial individuals can be seen as the
forest of trees rooted in these initial individuals. We use the Ulam-Harris-Neveu notation to
label the cells appearing in the population: if the mother has a label i ∈ I = ∪`≥1N×{0, 1}`−1,
then the two daughters have labels i0 and i1 obtained by concatening the mother’s label with
integers 0 or 1.
The population at time t is described by the point measure:

ZKt =
1

K

∑
i∈V Kt

δxi(t), (1.1)

where δ is the Dirac Delta function, V K
t is the set of labels of living individuals at time t and

K is a renormalizing parameter corresponding to the order of the initial population size. The
parameter K will tend to +∞ in the sequel. The individual with label i ∈ V K

t is represented by
a Dirac mass weighting the size xi(t) of this individual at time t.

When the complete division forest is observed, we can associate to each division an inde-
pendent random variable with distribution h: if Ti is the division time of the cell i, then, we
define Γi = xi0(Ti)/xi(Ti−). Estimating the function h from such a sample has been considered
in [24, 25]. Here, we focus on the situation when the division tree is not completely observed.
Following ideas from Doumic et al. [17, 18, 15] or Bourgeron [9] whose aim was to recover the
division rate R when the latter depends on the size, our strategy is to consider the PDE approx-
imating the evolution of the measure-valued process (ZKt )t≥0 when K is large. The long-time
behavior of the solution of this PDE can be studied thanks to an eigenvalue problem. This
yields a stationary distribution N(x)dx from which we can assume that we have drawn a sample
of n i.i.d. random variables X1, . . . , Xn. The function h is then solution to an intricate inverse
problem involving a multiplicative convolution operator. We use deconvolution techniques in-
spired by those used by Comte and Lacour [12, 11], Comte et al. [13], Neumann [34] to construct
and study a kernel estimator of h. Changing variables and taking Fourier transforms lead us to
an equation where the regularities of the different terms are strongly related to the regularity
of the unknown function h to be estimated. The consistency of the estimator is studied, and
simulations are performed. In particular, we discuss and illustrate numerically the bandwidth
selection rules for the kernel estimator.

The paper is organized as follows. Section 2 describes the miscroscopic model. Section 3
tackles the problem of estimating the division kernel h. Section 4 presents the numerical perfor-
mances of our estimation procedure. Eventually, all the proofs are gathered in the Appendix.

Notation: We denote by MF (R+) the space of finite measures on R+ endowed with the
weak convergence topology. For µ ∈ MF (R+) and for f ∈ Cb(R+,R) a bounded continuous
real function on R+, 〈µ, f〉 =

∫
R+
fdµ is the integral of f with respect to µ. We denote by

D(R+,MF (R+)) the space of càdlàg functions from R+ to MF (R+) embedded with the Sko-
rokhod topology (e.g. [8]).
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The Fourier transform of any integrable function f is defined by

f∗(ξ) =

∫ +∞

−∞
f(x)eixξdx, ξ ∈ R.

2 Microscopic model

Let (Ω,F ,P) be a probability space, let (ZK0 )K∈N∗ be a sequence of random point measures
on R+ of the form (1.1) that converges to ξ0 ∈ MF (R+) in distribution and for the weak
convergence topology on MF (R+). We also assume that

sup
K∈N∗

E(〈ZK0 , 1〉2) < +∞. (2.1)

For each K ∈ N∗ and initial condition ZK0 as above, we can represent the measure-valued process
(ZKt )t≥0 as the unique solution of a stochastic differential equation (SDE) driven by a Poisson
point measure that satisfies the following martingale problem.

Proposition 1. For a given K ∈ N∗ and a test function f(x, s) ∈ C1
b (R+ × R+,R), the process

(ZKt )t≥0 satisfies:

〈ZKt , f〉 = 〈ZK0 , f〉+

∫ t

0

∫
R+

(
∂sfs(x) + α∂xfs(x)

+R

∫ 1

0

(
f(γx) + f((1− γ)x)− f(x)

)
h(γ)dγ

)
ZKs (dx)ds+MK,f

t , (2.2)

where (MK,f
t )t≥0 is a square integrable martingale started at 0 with bracket:

〈MK,f 〉t =
1

K

∫ t

0

∫
R+

R
(
f(γx) + f((1− γ)x)− f(x)

)2
h(γ)dγZKs (dx)ds. (2.3)

The detailed construction of the SDE satisfied by (ZKt )t≥0 is given in Appendix A, as well
as a sketch of proofs for the results of this section. The martingale property and quadratic
variation are direct consequences of stochastic calculus with the SDE. The following theorem
states the limit of (ZK)K∈N∗ when K → +∞.

Theorem 1. If (ZK0 )k∈N∗ converges in distribution to ξ0 ∈ MF (R+) as K → +∞ then
(ZK)K∈N∗ converges in distribution in D (R+,MF (R+)) as K → +∞ to the unique solution
ξ ∈ C (R+,MF (R+)) of

〈ξt, f〉 = 〈ξ0, f〉+

∫ t

0

∫
R+

(
∂sfs(x) + α∂xfs(x)

+R

∫ 1

0

(
fs(γx) + fs((1− γ)x)− fs(x)

)
h(γ)dγ

)
ξs(dx)ds, (2.4)

where ft(x) ∈ C1
b (R+ × R+,R) is a test function.

When the limiting initial condition ξ0 admits a smooth density with respect to the Lebesgue
measure, the following proposition allows us to connect the measure-valued processes with the
growth-fragmentation integro-differential equations usually introduced for cell divisions (e.g.
[37, 19]).
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Proposition 2. If ξ0 has a density n0 ∈ C1
b (R+,R+) with respect to the Lebesgue measure on

R+, then ∀t ∈ R+, ξt(dx) admits a density n(t, x) that is the unique solution of the PDE:

∂tn(t, x) + α∂xn(t, x) +Rn(t, x) = 2R

∫ ∞
0

n(t, y)h

(
x

y

)
dy

y
, (2.5)

where h(x/y) = 0 if y < x (since h is supported by [0, 1]).

The long time behaviour of the solution of PDE (2.5) is well-known and presented in the
following proposition. In the sequel, we shall base our statistical estimation of h on the long
time limit of the PDE. Notice that by change of variable in the integral, the right hand side of
Equation (2.5) can also be rewritten as: 2R

∫ 1
0 n(t, x/u)h(u) du/u. We observe that a convenient

assumption on the density h is the following:∫ 1

0
h(u)

du

u
< +∞. (2.6)

In the sequel, a stronger assumption will be needed to obtain the consistency of our estimators.

Proposition 3. Assume (2.6). Then, there exists a unique probability density N ∈ L1(R+,R+)
solving the following system: α∂xN(x) + 2RN(x) = 2R

∫∞
0 N(y)h

(
x

y

)
dy

y
, x ≥ 0,

N(0) = 0,
∫
N(x)dx = 1, N(x) ≥ 0.

(2.7)

With ρ = ‖n0‖1 =
∫∞

0 n0(u)du (where n0 has been introduced in Prop. 2), we have:∫ ∞
0
|n(t, x)e−Rt − ρN(x)|dx ≤ e−Rt

(
‖g0‖1 +

6R

α
‖G0‖1

)
, (2.8)

where g0(x) = n0(x)− ρN(x), and G0(x) =
∫ x

0 g0(y)dy.

Proposition 3 shows that the renormalized population density ρ−1n(t, x)e−Rt converges ex-
ponentially fast, when the time t tends to infinity, to a stationary density N(x) that is obtained
by solving an eigenvalue problem. The proof of Proposition 3 is given in Appendix A. Notice
that we do not have such a strong result if the division rate is not a constant. We explain in
the next section the building of our statistical estimation procedure based on the results of this
proposition.

3 Estimation of the division kernel

3.1 Estimation procedure and assumptions

3.1.1 Principle

We consider the problem of estimating the density h in the case of incomplete data of divisions.
As explained previously, we shall construct an estimator of h based on the stationary size
distribution which results from the study of the large population limit n(t, x). The long time
behavior provides us an observation scheme for the estimation of the density h in the statistical
approach: since e−Rtn(t, x) converges exponentially fast to N(x) (up to a constant) as t increases
by Proposition 3, when we pick n cells randomly in the population at a large time t, we can
assume that we have n i.i.d observations X1, X2, . . . , Xn with distribution N(x)dx. We estimate
h from the data X1, . . . , Xn and Equation (2.7).
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This corresponds to a deconvolution problem but it is more complicated and quite different
when compared to classical deconvolution problems. The convolution in Equation (2.7) is a

multiplicative convolution
∫∞

0 N(y)h
(
x
y

)
dy
y leading to more intricate technical problems than

for the classical additive convolution. So, we apply a logarithmic change of variables to transform
the multiplicative convolution in the right hand side of (2.7) into an additive one. Then, we
classically apply the Fourier transform and work with products of functions in the Fourier
domain. Let us describe our estimation procedure in details.
By using the change of variable x = eu for x > 0 and u ∈ R, we introduce the functions

g(u) = euh(eu),

and
M(u) = euN(eu), D(u) = ∂u

(
u 7→ N(eu)

)
= euN ′(eu).

Equation (2.7) becomes
αD(u) + 2RM(u) = 2R

(
M ? g)(u). (3.1)

We have h(γ) = γ−1g
(

log(γ)
)

for γ ∈ (0, 1). Then, the estimator of h will be obtained from the
estimator of g once we have obtained estimators for unknown functions M and D.

3.1.2 Assumptions on h

First, assumptions on the density h are needed in the sequel. Of course, since h is the density
of a symmetric distribution on [0, 1], it satisfies

∫
h(x)dx = 1 and

∫
xh(x)dx = 1/2. For the

proofs, we will also need the following condition.

Assumption 1. The function h is of class Cβ on [0, 1], for some β > 3: the function h is [β]
times differentiable (where [β] is the largest integer smaller than β) and the derivative of order
[β] is β − [β] Hölder continuous.
Moreover, we assume that there exists a positive integer ν0 ≥ 2 such that for all k ∈ {0, . . . , ν0},
h(k)(0) = 0.

Under Assumption 1, h can take positive values only on (0, 1), and the function g introduced
previously is supported by R−.

Remark 1. Assumption 1 implies (2.6). For t ∈ (0, 1), by Taylor’s formula, there exists indeed
θ ∈ (0, 1) such that:

0 ≤ h(t)

t
=

[β]−1∑
k=ν0+1

1

k!
h(k)(0)tk−1 +

h[β](θt)

[β]!
t[β]−1,

which is integrable in the neighborhood of 0 (the sum in the right hand side being 0 if ν0 + 1 >
[β]− 1.

This remark shows that, under Assumption 1, the results of Proposition 3 are hence available
to justify our approximation to start with a sample of i.i.d. random variables with density
N(x). We also have the following result that will be needed to show consistency (the proof is in
Appendix B):

Lemma 1. Under Assumption 1:
(i) the first eigenvector N of the eigenproblem (2.7) satisfies∫ +∞

0
x−νN(x)dx < +∞ for ν ∈ {1, . . . , (ν0 + 2) ∧ ([β] + 1)}. (3.2)
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(ii) M is of class C[β] and its Fourier transform M∗ satisfies:

lim sup
|ξ|→+∞

{
|ξ|[β]∧(ν0+3) × |M∗(ξ)|

}
< +∞.

(iii) The extension of M∗(ξ) to the complex plane, ξ ∈ C 7→ M∗(ξ) =
∫
R e

ixξM(x)dx, is holo-
morphic and thus, M∗ admits only isolated zeros. Moreover, M∗ does not admit zeros on the
real line.

The point (i) is crucial for proving the consistency. This proof relies on the use of the
Rosenthal inequality (see Eq. (D.3)). This explains why we need ν ≥ 4 and hence ν0 ≥ 2 and
β > 3 in Assumption 1. The point (ii) establishes strong connections between the regularities
of functions involved in (2.7). Paradoxically, the more regular h is, the faster M∗ converges to
0 at infinity, which may lead to some difficulties in view of the subsequent (3.3). Fortunately,
point (iii) shows that M∗(ξ) does not vanish on the real line.

3.1.3 Fourier transformation

Notice that g is square integrable since we have∫
R
g2(u)du =

∫
R
e2uh2(eu)du =

∫ ∞
0

xh2(x)dx =

∫ 1

0
xh2(x)dx < +∞.

We can thus take the Fourier transform of both sides of equation (3.1). We obtain

αD∗(ξ) + 2RM∗(ξ) = 2RM∗(ξ)× g∗(ξ).

Therefore, under Assumption 1, the Fourier transform of g is obtained via the formula

g∗(ξ) =
αD∗(ξ)

2RM∗(ξ)
+ 1, ξ ∈ R. (3.3)

Note that Equation (3.3) is not standard in classical inverse problems. Indeed, for instance in
the density deconvolution setting, the Fourier transform of the noise appears at the denominator
in place of M∗. Here, M is connected to g which has to be estimated and thus cannot be handled
as the usual noise.

3.1.4 Estimators of g and h

Given the sample of i.i.d random variables X1, . . . , Xn with density function x 7→ N(x), we can
consider the random variables U1, . . . , Un defined as Ui = log(Xi). These random variables are
i.i.d of density function u 7→ M(u) = euN(eu). In view of (3.3), the purpose is first to propose
an estimator for g∗ and then to apply the inverse Fourier transform to obtain an estimator of

g. Our procedure will be naturally based on M̂∗(ξ) and D̂∗(ξ), estimators of M∗(ξ) and D∗(ξ)
respectively, and defined by

M̂∗(ξ) =
1

n

n∑
j=1

eiξUj , (3.4)

D̂∗(ξ) = (−iξ)
1

n

n∑
j=1

e(iξ−1)Uj . (3.5)
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It’s straightforward to show that M̂∗(ξ) and D̂∗(ξ) are unbiased estimators of M∗(ξ) = E
[
eiξU1

]
and D∗(ξ) = (−iξ)E

[
e(iξ−1)U1

]
respectively.

As usual in the nonparametric setting, the estimate of g will be obtained by regularization
technics. For density estimation, convoluting by an appropriate rescaled kernel is a natural
methodology. Convolution is expressed by products in the Fourier domain. So, let K a kernel
function in L2(R) such that its Fourier transform K∗ exists and is compactly supported. A

possible kernel is given by the sinus cardinal kernel K(x) = sin(x)
πx for which K∗(t) = 1[−1,1](t).

For ` > 0, define

K`(·) :=
1

`
K
( ·
`

)
.

Definition 1. Given ` > 0, the estimate ĝ` of g is defined through its Fourier transform:

ĝ`
∗(ξ) = K∗` (ξ)×

(
αD̂∗(ξ)

2R

1Ω

M̂∗(ξ)
+ 1

)
, (3.6)

where Ω =
{
|M̂∗(ξ)| ≥ n−1/2

}
and 1Ω

M̂∗(ξ)
is the truncated estimator of 1

M̂∗(ξ)
:

1Ω

M̂∗(ξ)
=


1

M̂∗(ξ)
, if |M̂∗(ξ)| ≥ n−1/2,

0, otherwise.

(3.7)

Truncation is necessary to avoid explosion when |M̂∗(ξ)| is close to 0. Finally, taking the
inverse Fourier transform of ĝ`

∗, we obtain the estimator of g.

Definition 2. The estimator of g is

ĝ`(u) =
1

2π

∫
R
ĝ∗` (ξ)e

−iuξdξ. (3.8)

The estimator of the division kernel h is deduced from ĝ`:

ĥ`(γ) = γ−1ĝ`
(

log(γ)
)
, γ ∈ (0, 1). (3.9)

The main difficulty lies in the choice of `. This problem is dealt with subsequently. Deconvo-
lution estimators have been studied in Comte and Lacour [12, 11], Comte et al. [13], Neumann
[34]. However, the difference and the difficulty in our problem come from the fact that the
regularities of g and h are closely related to the functions M and D that solve the eigenvalue
problem (2.7), in particular through Equation (3.3). This complicates the study of the rates of
convergence. The next section studies the quadratic risk of ĝ` and ĥ`.

3.2 Study of the quadratic risk

3.2.1 Relations between the risks of the estimators of h and g

The first goal is to connect the L2-risk of ĥ` and the L2-risk of ĝ`. Using a randomized estimator,
we can show the following result.

Proposition 4. For a Bernoulli random variable τ with parameter 1/2 independent of X1, . . . , Xn,
let us define the randomized estimator

ǧ`(u) = τ ĝ`(u) + (1− τ)g̃`(u), where g̃`(u) = euĥ`(1− eu).

We have

E
[
‖ĥ` − h‖22

]
= 2E

[
‖ǧ` − g‖22

]
= E

[ ∫
R−

e−u
(
ĝ`(u)− g(u)

)2
du
]
. (3.10)
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The last equality in (3.10) shows that if we want to control the quadratic risk of ĥ` with
respect to the Lebesgue measure, tight controls on the loss of ĝ` at −∞ are needed. But, since
h, as defined in our biological problem, is a symmetric function (as the daughter cells obtained
after a division are exchangeable), it is natural to consider

ĥsym` (x) =
1

2

(
ĥ`(x) + ĥ`(1− x)

)
, (3.11)

whose quadratic risk is controlled by the quadratic risk of ĝ` except at boundaries of the interval
[0, 1], as proved by the next proposition.

Proposition 5. Setting m(x) = x(1− x), we have that∫ 1

0

(
ĥsym` (x)− h(x)

)2
m(x)dx ≤ ‖ĝ` − g‖22 . (3.12)

Propositions 4 and 5 are proved in Appendix C. The previous result does not provide any
control on boundaries of the interval [0, 1] but the consistency of ĝ` will establish the consistency
of ĥsym` on every compact set of (0, 1). The study of the consistency of ĝ` is the goal of the next
section.

3.2.2 Consistency of the estimator of g for the quadratic-risk

This section is devoted to the theoretical study of the estimate ĝ`. More precisely, we establish
the L2-consistency of ĝ` under a suitable choice of the bandwidth `.

We first study the bias-variance decomposition of the L2-risk of ĝ`. Recall that from
Lemma 1(iii), we have that under Assumption 1, |M∗(ξ)| is strictly positive on every com-
pact set of the real line ξ ∈ [−A,A], A > 0, and thus lower bounded by a positive constant on
each of these intervals (that depends on A).

Theorem 2. Under Assumption 1, there exists a positive constant C < +∞ such that

E
[
‖ĝ` − g‖22

]
≤ ‖K` ? g − g‖22 +

C

n
S(`), (3.13)

where

S(`) =
∥∥∥K∗` (ξ)ξ

M∗(ξ)

∥∥∥2

2
+
∥∥∥K∗` (ξ)

M∗(ξ)

∥∥∥2

2
.

Then the following corollary gives the L2-consistency of the estimator ĝ`.

Corollary 1. We suppose that Assumption 1 is satisfied and the kernel bandwidth ` = `(n)
satisfies lim

n→+∞
` = 0. Provided that

lim
n→+∞

1

n

(∥∥∥K∗` (ξ)ξ

M∗(ξ)

∥∥∥2

2
+
∥∥∥K∗` (ξ)

M∗(ξ)

∥∥∥2

2

)
= 0, (3.14)

we have
lim

n→+∞
E
[
‖ĝ` − g‖22

]
= 0. (3.15)

The proof of these results is given in Appendix D. Note that under Assumption 1, we
have by Lemma 1 that |M∗(ξ)| = O(|ξ|−([β]∧(ν0+3))) when |ξ| → +∞. If we have |M∗(ξ)| ∼
C|ξ|−([β]∧(ν0+3)), for a constant C > 0, then if we still take K(x) = sin(x)

πx , we can derive a
bandwidth `. Indeed,

K∗` (ξ) = K∗(`ξ) = 1[−`−1,`−1](ξ)
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and ∥∥∥K∗` (ξ)ξ

M∗(ξ)

∥∥∥2

2
=

∫ `−1

−`−1

ξ2

|M∗(ξ)|2
dξ = O(`−(3+2([β]∧(ν0+3)))),

and then, Assumption (3.14) is satisfied if

`−1 = o
(
n

1
3+2([β]∧(ν0+3))

)
.

4 Numerical simulations

In this section, we study the numerical performances of our estimation procedure. We consider
the density of the Beta(2, 2)-distribution and the density of the truncated normal distribution
on [0, 1] with mean 1/2 and variance 0.252, respectively denoted h1 and h2. The density h1 is
proportional to x(1− x)1[0,1](x) and h2 has the following form:

h2(x) =
φ
(x−µ

σ

)
σ
(

Φ
(

1−µ
σ

)
− Φ

(
−µ
σ

)) , x ∈ [0, 1],

where µ = 0.5, σ = 0.25 and φ(·) and Φ(·) are respectively the density and the cdf of the standard
normal distribution. Furthermore, for all simulations we take α = 0.7 and R = 1. Figures 1
and 2 show h1, h2 and their corresponding stationary densities N1, N2. The stationary densities
are obtained by solving numerically the PDE (2.5) using the method presented in Doumic et al.
[19].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 1: The Beta(2, 2) density h1 (left) and its corresponding stationary density N1 (right).
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Figure 2: The truncated normal density h2 (left) and its corresponding stationary density N2 (right).

For the estimation of h1 and h2, even if theoretical boundary conditions stated in Assump-
tion 1 are not satisfied, we shall observe that the procedure does a good job. Before presenting
the numerical results, let us point out some difficulties that affect the quality of the estimation.
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First, one can observe in Figures 1 and 2 that shapes of functions N1 and N2 are very similar
although functions h1 and h2 are very different. This illustrates a major difficulty of our inverse
problem and leads to some difficulties for the estimation of the densities g and h.

Secondly, in view of (3.3) and (3.6), the construction of the estimator ĝ` is based on the
estimation of M∗ and D∗. Remember that D∗(ξ) = (−iξ)E

[
e(iξ−1)U1

]
and the leading term −iξ

of the last expression, coming from the computation of the Fourier transform of the derivation
function D, gives large fluctuations for the estimation of D∗ when ξ takes large values. To justify
this point, we introduce the modified formulas of D∗ and D̂∗, denoted respectively by D∗ and
D̂∗, obtained by removing −iξ from the original formulas:

D∗(ξ) = E
[
e(iξ−1)U1

]
and D̂∗(ξ) =

1

n

n∑
j=1

e(iξ−1)Uj .

Figures 3, 4 and 5 provide a reconstruction of M̂∗, D̂∗ and D̂∗ based on a random sample
U1, . . . , Un of size n = 30000 for h1. For each figure, we represent both the real part and the
imaginary part of M̂∗ (resp. D̂∗, D̂∗) and we compare them with those of M∗ (resp. D∗,
D∗). The Fourier transforms M∗, D∗ and D∗ are computed directly from the function N1,
indicating that one can consider M∗, D∗ and D∗ as the “true” functions. Figure 3 shows that
the reconstruction of M̂∗ is very satisfying, whereas many oscillations in the reconstruction of
D̂∗ appear (see Figure 4). These oscillations vanish for D̂∗ (see Figure 5). This confirms what
we mentioned: the estimation of the derivative D∗ has a strong influence for our statistical
problem.
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Figure 3: For the Beta(2, 2) density, the real part (left) and the imaginary part (right) of M̂∗ (blue line) compared
with those of M∗ (red line).
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Figure 4: For the Beta(2, 2) density, the real part (left) and the imaginary part (right) of D̂∗ (blue line) compared
with those of D∗ (red line).

In the sequel, we introduce our bandwidth selection rules for the estimators ĝ` and ĥ`, then
we present some numerical results to illustrate the performances of our estimators.
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Figure 5: For the Beta(2, 2) density, the real part (left) and the imaginary part (right) of D̂∗ (blue line) compared
with those of D∗ (red line).

4.1 Bandwidth selection rules

To establish a bandwidth section rule for the estimator ĝ` and ĥ`, we use resampling techniques
inspired from the principle of cross-validation. We first study the L2-risk of the estimator ĝ` in
the Fourier domain:

‖ĝ` − g‖22 =
1

2π
‖ĝ∗` − g∗‖

2
2 =

1

2π

(
‖ĝ∗` ‖

2
2 − 2〈ĝ∗` , g∗〉

)
+

1

2π
‖g∗‖22 .

Define
J(`) := ‖ĝ∗` ‖

2
2 − 2〈ĝ∗` , g∗〉

where the scalar product of two complex functions u and v is defined as

〈u, v〉 =

∫
R
u(ξ)v(ξ)dξ.

Let L be a family of possible bandwidths, the optimal bandwidth is given by

`CV := argmin
`∈L

J(`) = argmin
`∈L

‖ĝ` − g‖22 .

We aim at constructing an estimator of J(`), which is equivalent to providing an estimate of
the scalar product 〈ĝ∗` , g〉 since ‖ĝ∗` ‖

2
2 is known. Instead of finding a closed formula for the

estimator of the L2-risk which is intricate in our case, we use the following alternative approach:
we start from a random sample and divide it into two disjoint sets, called the training set and
the validation set. They are respectively used for computing the estimator and measuring its

performance. For sake of simplicity, those sets have the same size. Let ĝ
∗(t)
` be the estimator

of g∗ constructed on the training set. The heuristics is that if ĝ
∗(v)
`′ is an estimator constructed

on the validation set, then 〈ĝ∗(t)` , ĝ
∗(v)
`′ 〉 gives us an estimate of 〈ĝ∗(t)` , g∗〉 and subsequently an

estimate of J(`). The final bandwidth is the one which minimizes the average of all risk estimates
computed over a number of couples of training-validation set selected from the same sample.

In detail, let {X1, . . . , Xn} be a random sample. Let E and EC be the subsets of {1, . . . , n}
such that |E| = n/2 and EC = {1, . . . , n} \ E. We divide {X1, . . . , Xn} into two sub-samples:

XE := (Xi)i∈E and XEC := (Xi)i∈EC .

There are Vmax possibilities to select the subsets (E,Ec), where

Vmax :=

(
n

n/2

)
.

If n is large then Vmax will be huge. Hence we choose in practice a number V which is smaller
than Vmax to reduce computation time. We propose two criteria for the selection of bandwidths
as follows.
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Definition 3. Let (Ej , E
C
j )1≤j≤V , V ≤ Vmax be the sequence of subsets selected from {1, . . . , n}

and the corresponding sub-samples (XEj ,XECj )1≤j≤V . Let ĝ
∗(Ej)
` and ĝ

∗(Ecj )

` be the estimators of

g∗` respectively constructed on the sub-samples XEj and XECj . Define

ĴCrit1(`) :=
1

V

V∑
j=1

[∥∥∥ĝ∗(Ej)`

∥∥∥2

2
− 2
〈
ĝ
∗(Ej)
` , ĝ

∗(ECj )

`

〉]
. (4.1)

Then the selected bandwidth is given by

ˆ̀
Crit1 := argmin

`∈L
ĴCrit1(`). (4.2)

Definition 4. Let ĝ
∗(Ej)
` and ĝ

∗(Ecj )

`′ be the estimators of g∗` as in Definition 3. Define,

ĴCrit2(`, `′) :=
1

V

V∑
j=1

[∥∥∥ĝ∗(Ej)`

∥∥∥2

2
− 2
〈
ĝ
∗(Ej)
` , ĝ

∗(ECj )

`′
〉]
. (4.3)

Then an alternative bandwidth selection rule is given as follows:

ˆ̀
Crit2 := argmin

`∈L

{
min
`′∈L

ĴCrit2(`, `′)
}
. (4.4)

Note that the second criterion is more computationally intensive.

4.2 Numerical results

Remember that we aim at reconstructing the densities h1 and h2, i.e. the Beta(2, 2) density
and the density of a truncated normal N (0.5, 0.252) on [0, 1]. We apply formulas (3.6), (3.8)
and (3.9) to construct the estimators for these densities. The bandwidth ` is chosen in the
family L ⊂

{
1/(0.5∆), ∆ = 1, . . . , 50

}
according to two bandwidth selection rules. We compare

the estimated densities when using our selection rules with those estimated with the oracle
bandwidth. The oracle bandwidth is the optimal bandwidth obtained by assuming that we
know the true density and defined as follows:

`oracle := argmin
`∈L

‖ĝ` − g‖22 .

Of course, `oracle and ĝ`oracle
cannot be used in practice (since they depend on the true function

to estimate) but they can be viewed as benchmark quantities. For n = 30000 observations,
we illustrate in Figures 6 and 7 the estimates of (g1, h1) and (g2, h2) using the first bandwidth
selection rule (see Definition 3).
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Figure 6: Estimation of g1(x) = exh1(ex) and h1.
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Figure 7: Estimation of g2(x) = exh2(ex) and h2.

These graphs show bad behaviors when reconstructing h1 and h2 if we do not take into
account the symmetry of theses densities. Considering symmetrization (see (3.11)) provides sig-
nificative improvements (see Figure 8). Reconstructions of densities are quite satisfying except
at boundaries of [0, 1], which is expected in view of remarks of Section 3.2.1.
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Figure 8: Reconstructions of h1 (left) and h2 (right) after symmetrization.

Table 1 shows the L2-risk of ĝˆ̀
Crit1

and ĝˆ̀
Crit2

where ˆ̀
Crit1 and ˆ̀

Crit2 are the bandwidths
selected by our selection rules (see Definitions 3 and 4), over 100 Monte Carlo runs for estimating
h1 and h2 with respect to V = 10, 25 and 40. The sample size for each repetition is n = 30000.
We also provide associated Boxplots in Figure 9 and 10.

h1 - Beta(2, 2) h2 - Truncated normal
Crit1 Crit2 Oracle Crit1 Crit2 Oracle

V = 10 ē 0.04155 0.04031 0.03056 0.03703 0.03669 0.02806
¯̂
` 0.29839 0.29606 0.27583 0.30255 0.30312 0.27858

V = 25 ē 0.04145 0.03898 0.03056 0.03679 0.03602 0.02806
¯̂
` 0.29732 0.29787 0.27583 0.30348 0.30155 0.27858

V = 40 ē 0.04039 0.03708 0.03056 0.03613 0.03440 0.02806
¯̂
` 0.29837 0.29985 0.27583 0.30396 0.30303 0.27858

Table 1: Average of the L2-risk of ĝˆ̀
Crit1

and ĝˆ̀
Crit2

over 100 Monte Carlo repetitions for estimating h1 and
h2, compared with those of the oracle.

Table 1 and boxplots show that the performances of our estimators are close to those of the
oracle. When comparing the first bandwidth selection rule Crit1 with the second one Crit2,
one can observe that the performances of Crit2 are slightly better than those of Crit1 (see
Table 1). However, Crit2 is more time-consuming than Crit1. For both selection rules, we
observe that the performances are slightly better when we increase the number of selected sub-
samples V . Remember that the larger the value of V , the larger the computation time whereas
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the performances are improved marginally. Hence, in practice it is reasonable to choose the first
bandwidth selection rule Crit1 with V = 10.
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Figure 9: Bandwidths and errors for the estimation of h1 (Beta(2, 2) distribution).
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Figure 10: Bandwidths and errors for the estimation of h2 (Truncated normal).
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Appendix

This section is devoted to the proofs of the paper’s results. C is a constant whose value may
change from line to line.

A Large population renormalization

Before proving the results of Section 2, let us build the SDE satisfied by the process (ZKt )t≥0.
Consider

Z̃Kt =
1

K

∑
i∈V Kt

δ(i,xi(t))

the random point measure on I × R+ with marginal measure ZKt on R+, and that keeps track
of the sizes and labels of the individuals in the population.

Let us consider as in Section 2 a sequence (Z̃K0 )K∈N∗ of random point measures on I×R+ such
that the sequence of marginal measures (ZK0 )K∈N∗ of the form (1.1) converges to ξ0 ∈MF (R+)
in probability and for the weak convergence topology on MF (R+) and satisfies (2.1). Let
also Q(ds, di, dγ) be a Poisson point measure on R+ × E := R+ × I × [0, 1] with intensity
q(ds, di, dγ) = Rdsn(di)h(γ)dγ where n(di) is the counting measure on I and ds and dγ are
Lebesgue measures on R+.
We denote {Ft}t≥0 the canonical filtration associated with the Poisson point measure and the

sequence (Z̃K0 )K∈N∗ .

For a given K ∈ N∗, it is possible to describe the measure Z̃Kt at time t by the following
equation:

Z̃Kt =
∑
i∈V K0

δ(i,xi(0)+αt)

+

∫ t

0

∫
E

1li∈V Ks−

(
δ(i0,γxi(s−)+α(t−s)) + δ(i1,(1−γ)xi(s−)+α(t−s)) − δ(i,xi(s−))

)
Q(ds, di, dγ),

(A.1)

where the notation xi(s) stands for the size of the individual with label i in the population ZKs
(we omit the dependence in K). This representation allows to take deterministic motions into
account and the idea comes from [39, 33]: we build the population at time t by considering the
contribution of the initial condition for this time t, and then the modifications due to all the di-
visions between times 0 and t. The first term in the r.h.s. of (A.1) corresponds to the individuals
alive at time 0 with their sizes at time t if they don’t die. In the integral with respect to the Pois-
son point process, an atom at (s, i, γ) of Q corresponds to a ‘virtual’ division event at time s of
the individual i associated with the fraction γ. This event effectively takes place only if the indi-
vidual with label i is alive at time s−. In this case, the Dirac masses corresponding to the mother
at t (at size xi(s−) + t− s) is replaced with the Dirac masses of the two daughters, at the size
that they will have if they are still alive at time t (γxi(s−)+α(t−s) and (1−γ)xi(s−)+α(t−s)).

The moment assumption (2.1) propagates to positive time and it is possible to show that for
any T > 0, (see [24, Prop.3.2.5])

sup
K∈N∗

E
(

sup
t∈[0,T ]

〈ZKt , 1〉2
)
< +∞.
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For every K ∈ N∗ and every test function fs(x) = f(x, s) ∈ C1,1
b (R+ × R+,R), the stochastic

process (ZKt )t∈R+ satisfies:

〈ZKt , f〉 = 〈ZK0 , f〉+

∫ t

0

∫
R+

(
∂sfs(x) + α∂xfs(x)

)
ZKs (dx)ds

+
1

K

∫ t

0

∫
E
1{i∈V Ks−}

(
fs
(
γxi(s−)

)
+ fs

(
(1− γ)xi(s−)

)
− fs

(
xi(s−)

))
Q(ds, di, dγ),

=〈ZK0 , f〉+MK,f
t (A.2)

+

∫ t

0

∫
R+

(
∂sfs(x) + α∂xfs(x) +R

∫ 1

0

(
f(γx) + f((1− γ)x)− f(x)

)
h(γ)dγ

)
ZKs (dx)ds,

where (MK,f
t )t≥0 is a square integrable martingale started at 0 with bracket:

〈MK,f 〉t =
1

K

∫ t

0

∫
R+

R
(
f(γx) + f((1− γ)x)− f(x)

)2
h(γ)dγZKs (dx)ds. (A.3)

The proof of Proposition 1 then follows the ideas in [39, 38] and are detailed in [24]. Equa-
tion (A.2) corresponds to Equation 2.2 in the main body.

The proof of Theorem 1 uses the martingale problem established in Prop. 1 and standard
arguments (see e.g. [20, 28, 4] and [40, Th.1.1.8 and proof of Th.1.1.11]). Let us denote by AK,f

the finite variation part of ZK,f :

AK,ft =

∫ t

0

∫
R+

(
∂sfs(x) + α∂xfs(x) +R

∫ 1

0

(
f(γx) + f((1− γ)x)− f(x)

)
h(γ)dγ

)
ZKs (dx)ds.

(A.4)
First, using the moment assumptions together with (A.2)-(A.3), we can show that the sequences
of real valued processes (〈AK,f 〉)K∈N∗ and (〈MK,f 〉)K∈N∗ are tight in D(R+,R), which by the
Aldous-Rebolledo condition imply the tightness of the sequence (〈ZK. , f〉)K∈N∗ for all test func-
tion f ∈ C1

b (R+,R). As a consequence, the sequence (ZK)K∈N∗ is tight in D(R+, (MF (R+), v)),
where (MF (R+), v) means that the space of finite positive measuresMF (R+) is embedded with
the topology of vague convergence.
Secondly, the limiting values Z̄ to which subsequences of (ZK)K∈N∗ converge vaguely, are con-
tinuous measure-valued processes of C(R+, (MF (R+), w)), where MF (R+) is embedded with
the weak convergence topology.
Thirdly, proceeding as in [40, proof of Th.1.1.11] (see also [29, 32]), we can prove that

lim
k→+∞

lim
K→+∞

E
(

sup
t≤T
〈ZKt , ϕk〉

)
= 0,

where the functions ϕk are C2 approximations of 1lx≥k for k ∈ N and are defined by ϕ0(x) = 1
and for all k ∈ N∗, ϕk(x) = ψ(0 ∨ (x− k + 1) ∧ 1) with ψ(x) = 6x5 − 15x4 + 10x3. This ensures
that for every subsequence of (ZK)K∈N∗ that converges vaguely to a limiting process Z̄, their
masses converge in distribution to 〈Z̄, 1〉, which provides the tightness in (MF (R+), w) by a
criterion due to Méléard and Roelly [31].
We can now establish that the limiting values to which subsequences of (ZK)K∈N∗ converge in
D(R+, (MF (R+), w)) are solutions of (2.4) (see [24]). This integro-differential equation admits
a unique solution. Indeed, let ξ1 and ξ2 be two solutions of (2.4) starting with the same initial
condition ξ0. For a test function ϕ ∈ C1

b (R+,R) and t > 0, setting

f(x, s) = fs(x) = ϕ(x+ α(t− s)), (A.5)
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we obtain that for i ∈ {1, 2},

〈ξit, ϕ〉 = 〈ξ0, ϕ(.+ αt)〉+

∫ t

0

∫
R+

∫ 1

0
R
(
fs(γx) + fs((1− γ)x)− fs(x)

)
h(γ)dγ ξis(dx) ds.

Substracting these two equations for i = 1 and i = 2, we obtain

‖ξ1
t − ξ2

t ‖TV ≤ 3R‖ϕ‖∞
∫ t

0
‖ξ1
s − ξ2

s‖TV ds

where ‖.‖TV stands for the total variation norm. Gronwall’s inequality concludes the proof of
uniqueness of the solution of (2.4). Since the limiting value of (ZK)K∈N∗ is unique, the sequence
hence converges in D(R+, (MF (R+), w)) to this unique solution. This concludes the proof of
Theorem 1.

The proof of Proposition 2 is detailed in [24] (see also [39]). First, notice that if ξ0(dx)
admits a density n0(x) with respect to the Lebesgue measure, then for any t > 0, ξt also admits
a density. Indeed, for a function ϕ ∈ C1(R+,R+) with non-negative values, let us define the test
function f(x, s) as in (A.5). Then, neglecting the negative terms in the second line of (2.4) and
using the symmetry of h with respect to 1/2:

〈ξt, ϕ〉 ≤
∫
R+

ϕ(x+ αt)n0(x)dx+ 2R

∫ t

0

∫
R+

∫ 1

0
ϕ(γx+ α(t− s))h(γ)dγ ξs(dx) ds

=

∫ +∞

αt
ϕ(y)n0(y − αt)dy + 2R

∫ t

0
ϕ(α(t− s))ξs({0}) ds

+ 2R

∫ t

0

∫
R+\{0}

∫
R

1l(α(t−s),x+α(t−s))(y)ϕ(y)h
(y − α(t− s)

x

)dy
x
ξs(dx) ds

=

∫ +∞

αt
ϕ(y)n0(y − αt)dy + 2R

∫ αt

0
ϕ(y)ξt− y

α
({0}) dy

α

+ 2R

∫ +∞

0

{∫ t

0

∫
R+\{0}

1l(α(t−s),x+α(t−s))(y)
1

x
h
(y − α(t− s)

x

)
ξs(dx) ds

}
ϕ(y)dy.

Since ξt is dominated by a nonnegative measure absolutely continuous with respect to the
Lebesgue measure on R+ it follows that ξt admits itself a density. Denoting by n(x, t) the
density of ξt with respect to the Lebesgue measure dx on R+, we see that (n(x, t), x ∈ R+, t > 0)
solves in distribution sense (2.5) for which uniqueness of the solution holds (e.g. [37, Th.4.3
p.90]).

The proof of Proposition 3 is a particular case of [37, Th.4.6 p. 94] based on Krein-Rutman
theorem (e.g. [37, Th.6.5 p.175]) (see also [16]). In the case that we consider, the proof can be
simplified compared with [37].
Let us consider the eigenelements (λ,N, φ) associated with (2.5), i.e. the solution of:

α∂xN(x) + (λ+R)N(x) = 2R
∫ 1

0 N
(
x
γ

)
h(γ)

dγ

γ
, x ≥ 0,

N(0) = 0,
∫
N(x)dx = 1, N(x) ≥ 0, λ > 0,

α∂xφ(x)− (λ+R)φ(x) = −2R
∫ 1

0 φ(γx)h(γ)dγ, x ≥ 0,

φ(x) ≥ 0,
∫ +∞

0 φ(x)N(x)dx = 1.

(A.6)

It is clear that λ = R and φ ≡ 1 solve the third equation of (A.6). Because the first line is linear
in N , we can forget for the proof the condition

∫
N(x)dx = 1: if there exists a nonnegative

integrable solution, we can renormalize it.
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Step 1 : Let us consider the following auxiliary PDE, for a constant µ > 0 and two functions
f ∈ C(R+,R+), and M ∈ L1(R+,R) ∩ C(R+,R+):

α∂xN(x) + (µ+R)N(x)− 2R

∫ 1

0
M

(
x

γ

)
h(γ)

dγ

γ
= f(x), 0 ≤ x ; N(0) = 0. (A.7)

Equation (A.7) is a first order ODE that can be solved with the variation of constant method.
It admits a unique solution, that we denote T (M):

T (M)(x) =
1

α

∫ x

0
e−

µ+R
α

(x−y)
(

2R

∫ 1

0
M

(
y

γ

)
h(γ)

dγ

γ
+ f(y)

)
dy.

Consider M1 an M2 ∈ L1(R+,R) ∩ C(R+,R+). Then, for x ≥ 0:

|T (M1)(x)− T (M2)(x)| ≤2R

α

∫ 1

0

∫ x/γ

0
e−

µ+R
α

(x−γz)|M1(z)−M2(z)|h(γ)dz dγ

≤ 2R

µ+R

(
1− e−

(µ+R)x
α
) ∫ 1

0

h(γ)

γ
dγ‖M1 −M2‖∞. (A.8)

Provided the integral in the term above is finite, then for µ > 2R
∫ 1

0 h(γ)/γ dγ − R, the map
M ∈ L1(R+,R)∩C(R+,R+) 7→ T (M) ∈ L1(R+,R)∩C(R+,R+) is a contraction. Thus it admits
a unique fixed point that is the unique solution of

α∂xN(x) + (µ+R)N(x)− 2R

∫ 1

0
N

(
x

γ

)
h(γ)

dγ

γ
= f(x), 0 ≤ x ; N(0) = 0. (A.9)

Step 2 : The map A that associates to f ∈ C(R+,R+) ∩ L1(R+,R+) the unique corresponding
solution of (A.9) is thus well defined. Following the path of [37, Section 6.6.2], we can show
that this map is linear, continuous (with computation similar to (A.8)) and strongly positive.
Finally, the boundedness of N implies the boundedness of ∂xN , with norms controlled by ‖f‖∞.
This allows to use Arzela-Ascoli theorem to obtain the compactness of the map A. We can then
use Krein-Rutman theorem to obtain that the spectral radius of A, ρ(A), is a positive simple
eigenvalue associated with a positive eigenvector satisfying:

α∂xN(x) +
(
µ+R− 1

ρ(A)

)
N(x)− 2R

∫ 1

0
N

(
x

γ

)
h(γ)

dγ

γ
= 0, 0 ≤ x ; N(0) = 0. (A.10)

The fact that λ := µ+R− 1
ρ(A) is equal to 2R is a consequence of integrating the direct equation

against the the adjoint eigenvector (here φ ≡ 1) and using that
∫
N(x)dx = 1.

Step 3 : The computation to establish the speed of convergence of n(t, x)e−Rt to ρN(x) stated
in (2.8), are obtained by generalizing the proof of [37, Th.4.2 p.88] (see also [36]). Define
g(t, x) = n(x, t)e−Rt − ρN(x), G(t, x) =

∫ x
0 g(t, y)dy and K(t, x) = ∂tG(t, x). One can write

the PDEs satisfied by g and G. The PDE for G implies that ∂t
∫ +∞

0

∣∣G(t, x)eRt
∣∣dx ≤ 0. As a

consequence, ∫ +∞

0
|G(t, x)|dx ≤ e−Rt‖G0‖1. (A.11)

From the PDE of g, K(0, x) = ∂tG(t, x)|t=0 = 2R
∫ 1

0 G0(x/u)h(u)du − 2RG0(x) − αg0(x).
Proceeding similarly as for G, we show that∫ +∞

0
|K(t, x)|dx ≤e−Rt

∫ +∞

0
|K(0, x)|dx ≤ e−Rt

(
3R‖G0‖1 + α‖g0‖1

)
. (A.12)

Plugging (A.11) and (A.12) in the PDE of g (where we notice that g(t, x) = ∂xG(t, x)), we
obtain the result announced in the proposition.
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B Proof of Lemma 1

Proof of Lemma 1 (i). Let ε > 0 to be chosen small enough, we have for ν ≤ (ν0 + 2)∧ ([β] + 1):∫ +∞

0
x−νN(x)dx =

∫ ε

0
x−νN(x)dx+

∫ +∞

ε
x−νN(x)dx

≤
∫ ε

0
x−νN(x)dx+

1

εν

∫ +∞

ε
N(x)dx

≤
∫ ε

0
x−νN(x)dx+

1

εν
.

Hence, it remains to prove ∫ ε

0
x−νN(x)dx < +∞.

We follow and adapt the steps of the proof of Theorem 1 in Doumic and Gabriel [16]. Integrating
both side of equation (2.7) between 0 and x0 ≤ x, we get:

αN(x0) + 2R

∫ x0

0
N(y)dy = 2R

∫ x0

0

∫ +∞

0
N(y)h

(
z

y

)
dy

y
dz. (B.1)

Thus,

αN(x0) ≤ 2R

∫ x0

0

∫ +∞

0
N(y)h

(
z

y

)
dy

y
dz ≤ 2R

∫ x

0

∫ +∞

0
N(y)h

(
z

y

)
dy

y
dz.

Let us define:
f : x 7→ sup

x0∈(0,x]
N(x0),

then we have for all x

f(x) ≤ 2R

α

∫ x

0

∫ +∞

0
N(y)h

(
z

y

)
dy

y
dz. (B.2)

Recall Assumption 1. Using a Taylor expansion, it implies that for any t ∈ (0, 1),∫ t

0
h(x)dx ≤ C

∫ t

0
x(ν0+1)∧[β]dx ≤ Ct(ν0+2)∧([β]+1) ≤ Ctν (B.3)

by choice of ν ≤ (ν0 + 2) ∧ ([β] + 1). Then, we have for all x < ε:

f(x) ≤ 2R

α

∫ +∞

0
N(y)dy

∫ x

0
h

(
z

y

)
dz

y

≤ 2R

α

∫ +∞

0
N(y) min

(
1, C

xν

yν

)
dy

≤ 2R

α

(∫ x

0
N(y)dy + C

∫ ε

x
N(y)

xν

yν
dy + C

∫ +∞

ε
N(y)

xν

yν
dy

)
≤ 2R

α

(∫ x

0
sup
z∈(0,x]

N(z)dy + Cxν
∫ ε

x
sup
z∈(0,y]

N(z)
dy

yν

)
+

(
2CR

α

∫ +∞

ε

N(y)

yν
dy

)
xν

≤ 2Rε

α
f(x) +

2CRxν

α

∫ ε

x

f(y)

yν
dy +Kxν ,

with K =
2CR

αεν
. We choose ε such that

0 < ε <
α

2R
.
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and by setting F (x) = x−νf(x), we get

F (x) ≤ K

1− 2Rε
α

+
2CR

α− 2Rε

∫ ε

x
F (y)dy. (B.4)

Then, applying Gronwall’s inequality to (B.4), we obtain

F (x) ≤ K

1− 2Rε
α

exp

(
2CRε

α− 2Rε

)
=: C̃, ∀x ∈ [0, ε]

and
x−νN(x) ≤ C̃, ∀x ∈ [0, ε].

We finally obtain ∫ ε

0
x−νN(x)dx ≤ C̃ε < +∞.

This ends the proof of Lemma 1(i).

Proof of Lemma 1(ii). Let us first notice that by the fixed point theorem in the proof of Propo-
sition 3, N is continuous as uniform limit of a sequence of continuous functions. Let us show
that under Assumption 1 the map

Φ : x ∈ (0,+∞) 7→
∫ +∞

x
N(y)h

(x
y

)dy
y

is of class C[β] on (0,+∞). We proceed by induction, and start by computing the first derivative
of Φ for x > 0.

Φ(x+ ε)− Φ(x)

ε
=− 1

ε

∫ x+ε

x
N(y)h

(x
y

)dy
y

+

∫ +∞

x+ε
N(y)

y

ε

[
h
(x+ ε

y

)
− h
(x
y

)]dy
y2

→ε→0 −
N(x)h(1)

x
+

∫ +∞

x
N(y)h′

(x
y

)dy
y2

=

∫ +∞

x
N(y)h′

(x
y

)dy
y2
, (B.5)

since h(1) = h(0) = 0 by Assumption 1. This shows that Φ is of class C1. Plugging this
information into (2.7), it follows that ∂xN is continuous, and hence N is of class C1, which itself
entails from the computation of Φ′ that Φ is of class C2.
Suppose that we have computed the successive derivatives of Φ up to k − 1 and that we have
shown that N is of class Ck−1 for k ≤ [β] ∧ ν0. Then, since the successive derivatives of h at 0
vanish by Assumption 1,

Φ(k)(x) =

∫ +∞

x
N(y)h(k)

(x
y

) dy

yk+1
.

Since N , h and their derivatives are bounded functions, the latter integrals are always finite for
x > 0. This implies that Φ is of class Ck and that using this information in (2.7), ∂xN is of class
Ck−1 entailing that N is of class Ck. As the computation of the first derivative of Φ shows, we
are limited by the regularity of h.
So we finally have that x 7→ N(x) is of class C[β], and thus, u 7→M(u) is also of class C[β].

Take k ≤ [β]. That M is of class C[β] implies that (iξ)kM∗(ξ) is the Fourier transform of
M (k) and bounded on R provided we additionally prove that the derivatives of M up to the
order k are integrable. Since M(u) = euN(eu), M (k) is a linear combination of terms of the
form e(`+1)uN (`)(eu) with ` ≤ k. We thus have to check the finiteness, for all ` ≤ k, of:∫

R
e(`+1)u

∣∣N (`)(eu)
∣∣du =

∫ +∞

0
v`
∣∣N (`)(v)

∣∣dv. (B.6)
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It is known (as a direct adaptation of [37, Th.4.6 p.95] for example) that N(x)eµx ∈ L1 ∩
L∞(R+,R+) as soon as µ < R/α. Assume that for some ` < k, we have proved that

∫ +∞
0 eµx

∣∣N (`)(x)
∣∣dx <

+∞ for µ < R/α. Let us prove that this also holds for `+ 1, which would entail (B.6). Deriving
(2.7) ` times, multiplying by eµx and integrating again in x ∈ (0,+∞), we obtain:

α

∫ +∞

0
eµx
∣∣N (`+1)(x)

∣∣dx ≤2R

∫ +∞

0
eµx
∣∣N (`)(x)

∣∣dx+ 2R

∫ +∞

0
eµx
∣∣∣ ∫ +∞

x
h(`)
(x
y

)N(y)

y`+1
dy
∣∣∣dx

≤2R

∫ +∞

0
eµx
∣∣N (`)(x)

∣∣dx+ 2R

∫ +∞

0

N(y)eµy

y`
‖h(`)‖1dy. (B.7)

By the induction assumption, the first term in the right hand side is finite. Because h(`) is a
continuous function on [0, 1], ‖h(`)‖1 is finite. That N(x)eµx ∈ L1(R+,R+) implies that the
second term is integrable at +∞. Point (i) of Lemma 1 ensures the integrability at 0. Thus, the
right hand side of (B.7) is finite. The use of point (i) of Lemma 1 explains why [β] ∧ (ν0 + 3)
appears in the announced result.
The finiteness of

∫ +∞
0 eµx

∣∣N (`)(x)
∣∣dx, for ` ≤ [β]∧(ν0 +3), is thus proved by recursion, implying

the finiteness of the terms in (B.6) and concluding the proof.

Proof of Lemma 1(iii). Let us consider the application

Φ : ξ = ξ1 + iξ2 ∈ C 7→
∫ +∞

−∞
eixξM(x)dx =

∫ +∞

0
eiξ log(y)N(y)dy.

Because N is such that eµxN(x) ∈ L∞(R+,R+)∩L1(R+,R+) for µ < R/α (see [37, p.95]), Φ is
well defined on C. The derivative of the integrand with respect to ξ has modulus | log(y)|N(y)

that is upper bounded when y is close to zero by N(y)
y , which is integrable on the neighborhood of

zero by Lemma 1(i). It follows from the results on integrals with parameters that the extension
of ξ 7→ M∗(ξ) to the complex plane is holomorphic on C. Because M∗ is not the null function,
its zeros have to be isolated.

To show that Φ admits no zero on the real line, we use the argument principle (see [23,
Section 4.10]). Let Γ be a positively oriented Jordan contour. If there are J zeros of Φ inside Γ,
with multiplicities m1, . . . ,mJ , then

J∑
j=1

mj =
1

2πi

∫
Γ

Φ′(ξ)

Φ(ξ)
dξ.

Let A > 0 and ε > 0. We choose for Γ the rectangle with vertices (±A,±ε). Because the zeros
of Φ are isolated, it is possible without restriction to assume that the contour Γ does not go
through any of them. Then:∫

Γ

Φ′(ξ)

Φ(ξ)
dξ =−

∫ A

−A

∂1Φ(ξ1 + iε)

Φ(ξ1 + iε)
dξ1 +

∫ A

−A

∂1Φ(ξ1 − iε)

Φ(ξ1 − iε)
dξ1

+

∫ ε

−ε

∂2Φ(A+ iξ2)

Φ(A+ iξ2)
dξ2 −

∫ ε

−ε

∂2Φ(−A+ iξ2)

Φ(−A+ iξ2)
dξ2 (B.8)

where ∂1 and ∂2 denote the derivatives with respect to ξ1 and ξ2:

∂1Φ(ξ1 ± iε)

Φ(ξ1 ± iε)
=

∫ +∞
−∞ ixeiξ1x∓εxM(x)dx∫ +∞
−∞ eiξ1x∓εxM(x)dx

(B.9)

∂2Φ(±A+ iξ2)

Φ(±A+ iξ2)
= −

∫ +∞
−∞ xe±iAx−ξ2xM(x)dx∫ +∞
−∞ e±iAx−ξ2xM(x)dx

. (B.10)
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We see that when ε→ 0 (for A fixed), the first two terms in the r.h.s. of (B.8) cancel each other
by (B.9). The two last terms vanish in the limit as we integrate between −ε and ε terms that
are bounded at the neighborhood of 0. This shows that M∗ does not have any zero on the real
interval [−A,A], for any A > 0. The proof is finished.

C Proof of Propositions 4 and 5

Proof of Proposition 4. We have

‖ĝ` − g‖22 =

∫
R−

(
ĝ`(u)− g(u)

)2
du =

∫
R−

(
euĥ`(e

u)− euh(eu)
)2
du

=

∫ 1

0

(
ĥ`(x)− h(x)

)2
xdx. (C.1)

Since g(u) = euh(eu) = euh(1− eu) by the symmetry of h, we can show that

‖g̃` − g‖22 =

∫ 1

0

(
ĥ`(x)− h(x)

)2
(1− x)dx.

Thus,

E
[
‖ǧ` − g‖22

]
= E

[
‖τ ĝ` + (1− τ)g̃` − g‖22

]
=

1

2
E
[
‖ĝ` − g‖22

]
+

1

2
E
[
‖g̃` − g‖22

]
=

1

2
E
[
‖ĥ` − h‖22

]
, (C.2)

since ‖ĝ` − g‖22 +‖g̃` − g‖22 = ‖ĥ`−h‖22. Let us now compute E
[
‖g̃` − g‖22

]
. Recall that h = 0 on

R \ (0, 1), so g = 0 on R+. For u < 0, we define the new variable v ∈ R∗− such that ev = 1− eu.
We have

g̃`(u) =euĥ`(1− eu) = euĥ`(e
v) = eu−v ĝ`(v) =

eu

1− eu
ĝ`
(

log(1− eu)
)
.

Similarly, we have that g(u) = eu

1−eu g(log(1− eu)) and thus

E
[
‖g̃` − g‖22

]
=E
[ ∫

R−

(
g̃`(u)− g(u)

)2
du
]

=E
[ ∫

R−

( eu

1− eu
)2(

ĝ`
(

log(1− eu)
)
− g
(

log(1− eu)
))2

du
]

=E
[ ∫

R−

(1− ev

ev

)(
ĝ`(v)− g(v)

)2
dv
]
.

As a consequence, the middle term in (C.2) is

1

2
E
[
‖ĝ` − g‖22

]
+

1

2
E
[
‖g̃` − g‖22

]
=E
[ ∫

R−

1

2

(
1 +

1− ev

ev

)(
ĝ`(v)− g(v)

)2
dv
]

=E
[ ∫

R−

e−v

2

(
ĝ`(v)− g(v)

)2
dv
]
.

This concludes the proof.
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Proof of Proposition 5. Remember (C.1). Then, since h(x) = h(1− x),∫ 1

0

(
ĥsym` (x)− h(x)

)2
m(x)dx

=
1

4

∫ 1

0

(
ĥ`(x)− h(x) + ĥ`(1− x)− h(1− x)

)2
m(x)dx

≤1

2

∫ 1

0

(
ĥ`(x)− h(x)

)2
m(x)dx+

1

2

∫ 1

0

(
ĥ`(1− x)− h(1− x)

)2
m(1− x)dx

=

∫ 1

0

(
ĥ`(x)− h(x)

)2
m(x)dx

≤
∫ 1

0

(
ĥ`(x)− h(x)

)2
xdx = ‖ĝ` − g‖22 .

This concludes the proof.

D Proof of Theorem 2 and Corollary 1

Proof of Theorem 2. Let g` = K` ? g. We have

‖ĝ` − g‖2 ≤ ‖g` − g‖2 + ‖ĝ` − g`‖2.

The first term of the above r.h.s inequality is a bias term whereas the second is a variance term.
To control the variance term, we have by the Parseval’s identity and by (3.6):

‖ĝ` − g`‖22 =
1

2π
‖ĝ`∗ − g∗` ‖22

=
1

2π

∫
R

∣∣∣∣∣K∗
` (ξ)

[(αD̂∗(ξ)

2R

1Ω

M̂∗(ξ)
+ 1
)
− g∗(ξ)

]∣∣∣∣∣
2

dξ

=
1

2π

∫
R

∣∣∣∣∣K∗
` (ξ)

[(αD̂∗(ξ)

2R

1Ω

M̂∗(ξ)
− αD̂∗(ξ)

2RM∗(ξ)
+

αD̂∗(ξ)

2RM∗(ξ)
+ 1
)
− g∗(ξ)

]∣∣∣∣∣
2

dξ

=
1

2π

∫
R

∣∣∣∣∣ α2RK∗
` (ξ)D̂∗(ξ)

( 1Ω

M̂∗(ξ)
− 1

M∗(ξ)

)
+K∗

` (ξ)
( αD̂∗(ξ)

2RM∗(ξ)
+ 1− g∗(ξ)

)∣∣∣∣∣
2

dξ

≤ C
∫
R

∣∣∣∣∣K∗
` (ξ)D̂∗(ξ)

( 1Ω

M̂∗(ξ)
− 1

M∗(ξ)

)∣∣∣∣∣
2

dξ + C

∫
R
|K∗

` (ξ)2|

∣∣∣∣∣ αD̂∗(ξ)

2RM∗(ξ)
+ 1− g∗(ξ)

∣∣∣∣∣
2

dξ

:= I + II .

In the sequel, we deal with variance of complex variables. Note that for a complex variable,
say Z, by distinguishing real and imaginary parts one gets that

Var(Z) := E[|Z − E(Z)|2] = E[|Z|2]− |E[Z]|2 ≤ E[|Z|2].

For the term II, because

E

(
K∗` (ξ)

(
αD̂∗(ξ)

2RM∗(ξ)
+ 1

))
= K∗` (ξ)

(
αD∗(ξ)

2RM∗(ξ)
+ 1

)
= K∗` (ξ)g∗(ξ),

we have

E[II] = C

∫
R
Var

(
K∗` (ξ)

(
αD̂∗(ξ)

2RM∗(ξ)
+ 1

))
dξ
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≤ C

∫
R
Var

(
K∗` (ξ)

D̂∗(ξ)

M∗(ξ)

)
dξ

≤ C

∫
R

∣∣∣∣K∗` (ξ)

M∗(ξ)

∣∣∣∣2 Var

(−iξ)

n

n∑
j=1

e(iξ−1)Uj

 dξ

≤ C

n

∫
R

∣∣∣∣K∗` (ξ)ξ

M∗(ξ)

∣∣∣∣2 Var
(
e(iξ−1)U1

)
dξ

≤ C

n

∫
R

∣∣∣∣K∗` (ξ)ξ

M∗(ξ)

∣∣∣∣2 E [∣∣∣e(iξ−1)U1

∣∣∣2] dξ ≤ C

n

∫
R

∣∣∣∣K∗` (ξ)ξ

M∗(ξ)

∣∣∣∣2 E [e−2U1
]
dξ

≤ C

n

∥∥∥∥K∗` (ξ)ξ

M∗(ξ)

∥∥∥∥2

,

since E[e−2U1 ] =
∫ +∞

0 x−2N(x)dx < +∞ thanks to Lemma 1.
We now set

4(ξ) :=
1Ω

M̂∗(ξ)
− 1

M∗(ξ)
. (D.1)

Then we get

E[ I ] ≤ C
∫
R
E
[∣∣∣K∗` (ξ)D̂∗(ξ)4(ξ)

∣∣∣2] dξ ≤ C ∫
R

∣∣K∗` (ξ)
∣∣2E [∣∣D̂∗(ξ)∣∣2∣∣4(ξ)

∣∣2] dξ
≤ C

∫
R

∣∣K∗` (ξ)
∣∣2E [∣∣D̂∗(ξ)− E

[
D̂∗(ξ)

]∣∣2∣∣4(ξ)
∣∣2] dξ

+ C

∫
R

∣∣K∗` (ξ)
∣∣2∣∣∣E[D̂∗(ξ)]∣∣∣2E[|4(ξ)|2

]
dξ

:= III + IV.

To control the term IV, we need the two following lemmas whose proofs are postponed in
Appendix E.

Lemma 2. There exists a positive constant Cp such that

E
[
|4(ξ)|2p

]
≤ Cp min

{
1

|M∗(ξ)|2p
,

n−p

|M∗(ξ)|4p

}
for p = 1, 2. (D.2)

Lemma 3. The ratio
∣∣∣ D∗(ξ)M∗(ξ)

∣∣∣ is bounded:∣∣∣∣D∗(ξ)M∗(ξ)

∣∣∣∣ ≤ 4R

α
, ∀ξ ∈ R.

Since D̂∗ is an unbiased estimator of D∗ using Lemma 2 we get

IV ≤ C
∫
R

∣∣K∗` (ξ)
∣∣2∣∣∣D∗(ξ)∣∣∣2 n−1

|M∗(ξ)|4
dξ.

Then using Lemma 3 we get

IV ≤ C
∫
R

∣∣K∗` (ξ)
∣∣2 n−1

|M∗(ξ)|2
dξ

≤ C

n

∥∥∥K∗` (ξ)

M∗(ξ)

∥∥∥2

2
.
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For the term III, we have by applying Cauchy-Schwarz’s inequality and by Lemma 2:

III ≤ C
∫
R

∣∣K∗` (ξ)
∣∣2 (E[∣∣D̂∗(ξ)− E

[
D̂∗(ξ)

]∣∣4])1/2 (
E
[∣∣4(ξ)

∣∣4])1/2
dξ

≤ C
∫
R

∣∣K∗` (ξ)ξ
∣∣2E

[∣∣ 1
n

n∑
j=1

e(iξ−1)Uj − E
[
e(iξ−1)U1

]∣∣2]1/2

×min

{
1

|M∗(ξ)|4
,

n−2

|M∗(ξ)|8

}1/2

dξ

≤ C
∫
R

∣∣K∗` (ξ)ξ
∣∣2

|M∗(ξ)|2

E

∣∣∣ 1
n

n∑
j=1

Zj(ξ)
∣∣∣4
1/2

dξ,

where Zj(ξ) = e(iξ−1)Uj−E
[
e(iξ−1)U1

]
. Since Z1(ξ), . . . , Zn(ξ) are independent centered variables

with

E[|Z1(ξ)|4] = E
[∣∣∣e(iξ−1)U1 − E

[
e(iξ−1)U1

]∣∣∣4] ≤ E
[(∣∣e(iξ−1)U1

∣∣+
∣∣E[e(iξ−1)U1

]∣∣)4
]

≤ 23
(
E
[∣∣e(iξ−1)U1

∣∣4]+
∣∣E[e(iξ−1)U1

]∣∣4)
≤ 8

(
E
[
e−4U1

]
+
∣∣E[e−U1

]∣∣4)
≤ 8

(∫ +∞

0
x−4N(x)dx+

(∫ +∞

0
x−1N(x)dx

)4
)
< +∞ (D.3)

by Lemma 1, applying Rosenthal inequality to real and imaginary parts of complex variables
Zj ’s, we get

E

∣∣∣ 1
n

n∑
j=1

Zj(ξ)
∣∣∣4
 ≤ Cn−4

(
nE[|Z1(ξ)|4] +

(
nE[|Z1(ξ)|2]

)2) ≤ Cn−2.

Hence

III ≤ C

n

∫
R

∣∣K∗` (ξ)ξ
∣∣2

|M∗(ξ)|2
dξ =

C

n

∥∥∥K∗` (ξ)ξ

M∗(ξ)

∥∥∥2
.

Finally, we obtain

E
[
‖ĝ` − g`‖22

]
≤ ‖K` ? g − g‖22 +

C

n

(∥∥∥K∗` (ξ)ξ

M∗(ξ)

∥∥∥2

2
+
∥∥∥K∗` (ξ)

M∗(ξ)

∥∥∥2

2

)
.

This ends the proof of Proposition 2.

Proof of Corollary 1. Using (3.13), due to well-known results on kernel density, the bias term
converges to 0:

lim
n→+∞

‖K` ? g − g‖22 = 0,

and under the assumptions of the theorem we have for the variance term

lim
n→+∞

1

n

(∥∥∥K∗` (ξ)ξ

M∗(ξ)

∥∥∥2

2
+
∥∥∥K∗` (ξ)

M∗(ξ)

∥∥∥2

2

)
= 0,

which completes the proof of Theorem 1.
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E Proofs of technical lemmas

Proof of Lemma 2. This proof is inspired by the proof of Neumann [34]. We will prove the
result with p = 1. For p = 2, the proof is similar.

We split the proof in two cases: |M∗(ξ)| < 2n−1/2 and |M∗(ξ)| ≥ 2n−1/2. Recall that

Ω =
{
|M̂∗(ξ)| ≥ n−1/2

}
and E

[
M̂∗(ξ)

]
= E

[
eiξU1

]
= M∗(ξ), we have:

E
[
|4(ξ)|2

]
= E

[∣∣∣ 1Ω

M̂∗(ξ)
− 1

M∗(ξ)]

∣∣∣2] = E

∣∣∣∣∣ 1Ω

M̂∗(ξ)
−

(
1Ω

M∗(ξ)
+

1Ωc

M∗(ξ)

)∣∣∣∣∣
2


=
P(Ωc)

|M∗(ξ)|2
+ E

[
1Ω
|M̂∗(ξ)−M∗(ξ)|2

|M̂∗(ξ)|2|M∗(ξ)|2

]
. (E.1)

i) If |M∗(ξ)| < 2n−1/2:

E
[
|4(ξ)|2

]
≤ 1

|M∗(ξ)|2
+

E
[
|M̂∗(ξ)−M∗(ξ)|2

]
n

|M∗(ξ)|2|
.

But

E
[∣∣∣M̂∗(ξ)−M∗(ξ)∣∣∣2] = Var

[
M̂∗(ξ)

]
= Var

 1

n

n∑
j=1

eiξUj


≤ 1

n
Var

(
eiξU1

)
≤ 1

n
E
[
|eiξU1 |2

]
=

1

n
.

Hence we obtain

E
[
|4(ξ)|2

]
≤ C

|M∗(ξ)|2
≤ C min

{
1

|M∗(ξ)|2
,

n−1

|M∗(ξ)|4

}
, (E.2)

since |M∗(ξ)| < 2n−1/2.

ii) If |M∗(ξ)| ≥ 2n−1/2:

We first control the probability P(Ωc),

P (Ωc) = P
(
|M̂∗(ξ)| < n−1/2

)
= P

(
|M̂∗(ξ)| < |M∗(ξ)| − |M∗(ξ)|+ n−1/2

)
≤ P

(
|M̂∗(ξ)−M∗(ξ)| > |M∗(ξ)| − n−1/2

)
≤ P

(
|M̂∗(ξ)−M∗(ξ)| > |M∗(ξ)|/2

)
. (E.3)

Let Tj(ξ) = eiξUj − E
[
eiξU1

]
, then

M̂∗(ξ)−M∗(ξ) =
1

n

n∑
j=1

eiξUj − E
[
eiξU1

]
=

1

n

n∑
j=1

Tj(ξ).

We have
|T1(ξ)| =

∣∣eiξUj − E
[
eiξU1

]∣∣ ≤ ∣∣eiξUj ∣∣+
∣∣E[eiξU1

]∣∣ ≤ 2,

and
Var

(
T1(ξ)

)
≤ E

[
|eiξU1 |2

]
= 1.
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Since |M∗(ξ)| ≤ 1 for all ξ ∈ R because of M is a density function, we get by Bernstein inequality
(see Massart [30])

P
(
|M̂∗(ξ)−M∗(ξ)| > |M∗(ξ)|/2

)
≤ 2 max

{
exp

(
− n|M∗(ξ)|2

16

)
, exp

(
− n|M∗(ξ)|

16

)}
≤ 2 exp

(
− n|M∗(ξ)|2

16

)
≤ C n−1

|M∗(ξ)|2
. (E.4)

We also have that

1

|M̂∗(ξ)|2
=

|M∗(ξ)|2

|M̂∗(ξ)|2|M∗(ξ)|2
=
|M̂∗(ξ)−

(
M̂∗(ξ)−M∗(ξ)

)
|2

|M̂∗(ξ)|2|M∗(ξ)|2

≤ 2

{
1

|M∗(ξ)|2
+
|M̂∗(ξ)−M∗(ξ)|2

|M̂∗(ξ)|2|M∗(ξ)|2

}
. (E.5)

Thus, from (E.1), (E.3) and (E.5) we have:

E
[
|4(ξ)|2

]
≤ C

{
n−1

|M∗(ξ)|4
+ E

[
1Ω
|M̂∗(ξ)−M∗(ξ)|2

|M̂∗(ξ)|2||M∗(ξ)|2

]}

≤ C

{
n−1

|M∗(ξ)|4
+

E
[
|M̂∗(ξ)−M∗(ξ)|2

]
|M∗(ξ)|4

+
E
[
|M̂∗(ξ)−M∗(ξ)|4

]
n

|M∗(ξ)|4

}
. (E.6)

To find an upper bound for E
[
|M̂∗(ξ) − M∗(ξ)|4

]
, recall that Tj(ξ) = eiξUj − E

[
eiξU1

]
. By

similar calculations as obtained (D.3), we have E[|T1(ξ)|4] < +∞. Thus we get by Rosenthal’s
inequality applied to real and imaginary parts of the sequence of independent centered variables
T1(ξ), . . . , Tn(ξ):

E
[
|M̂∗(ξ)−M∗(ξ)|4

]
= E

∣∣∣ 1
n

n∑
j=1

Tj(ξ)
∣∣∣4


≤ Cn−4
(
nE[|T1(ξ)|4] +

(
nE[|T1(ξ)|2]

)2) ≤ Cn−2.

Thus, from (E.3) and (E.6) we get

E
[
|4(ξ)|2

]
≤ C n−1

|M∗(ξ)|4
.

Furthermore
1

|M∗(ξ)|2
≥ n−1

|M∗(ξ)|4
,

since |M∗(ξ)| > 2n−1/2. Hence

E
[
|4(ξ)|2

]
≤ C min

{
1

|M∗(ξ)|2
,

n−1

|M∗(ξ)|4

}
.

Combining the two cases, we obtain

E
[
|4(ξ)|2

]
≤ C min

{
1

|M∗(ξ)|2
,

n−1

|M∗(ξ)|4

}
.

This ends the proof of Lemma 2.
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Proof of Lemma 3. From equation (3.3) we have∣∣∣∣D∗(ξ)M∗(ξ)

∣∣∣∣ ≤ 2R

α
(|g∗(ξ)|+ 1) .

Using the change of variable eu = x

|g∗(ξ)| =
∣∣∣∣∫

R
eiuξg(u)du

∣∣∣∣ =

∣∣∣∣∫
R
eiuξeuh(eu)du

∣∣∣∣ =

∣∣∣∣∫ ∞
0

eiξ log xh(x)dx

∣∣∣∣
≤
∫ 1

0
h(x)dx = 1,

thus ∣∣∣∣D∗(ξ)M∗(ξ)

∣∣∣∣ ≤ 4R

α
,

which completes the proof.
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[7] Bernard Bercu, Benôıte De Saporta, and Anne Gegout-Petit. Asymptotic analysis for bifurcating autore-
gressive processes via a martingale approach. Electronic Journal of Probability, 14(87):2492–2526, 2009.

[8] Patrick Billingsley. Convergence of probability measures. MR0233396. John Wiley & Sons, 1968.

[9] Thibault Bourgeron, Marie Doumic, and Miguel Escobedo. Estimating the division rate of the growth-
fragmentation equaion with a self-similar kernel. Inverse Problems, 30:28p, 2014.

[10] Bertrand Cloez. Limit theorems for some branching measure-valued processes. arXiv preprint
arXiv:1106.0660, 2011.

[11] F. Comte and C. Lacour. Anisotropic adaptive kernel deconvolution. Ann. Inst. Henri Poincaré Probab.
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[25] Van Ha Hoang. Estimating the division kernel of a size-structured population. to appear. ESAIM: Probability
and Statistics (ESAIM: P&S), 2017.
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