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Abstract
Double-walled carbon nanotubes (DWCNTs) are fluorinated using (1) fluorine F2 at 200 °C, (2) gaseous BrF3 at room temperature,

and (3) CF4 radio-frequency plasma functionalization. These have been comparatively studied using transmission electron micros-

copy and infrared, Raman, X-ray photoelectron, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. A forma-

tion of covalent C–F bonds and a considerable reduction in the intensity of radial breathing modes from the outer shells of

DWCNTs are observed for all samples. Differences in the electronic state of fluorine and the C–F vibrations for three kinds of the

fluorinated DWCNTs are attributed to distinct local surroundings of the attached fluorine atoms. Possible fluorine patterns realized

through a certain fluorination technique are revealed from comparison of experimental NEXAFS F K-edge spectra with quantum-

chemical calculations of various models. It is proposed that fluorination with F2 and BrF3 produces small fully fluorinated areas and

short fluorinated chains, respectively, while the treatment with CF4 plasma results in various attached species, including single or

paired fluorine atoms and –CF3 groups. The results demonstrate a possibility of different patterning of carbon surfaces through

choosing the fluorination method.
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Introduction
Even after surface chemical functionalization, due to their inner

shell double-walled carbon nanotubes (DWCNTs) display many

advantages characteristic of single-walled carbon nanotubes

(SWCNTs), particularly small diameter, high strength and flexi-

bility [1]. Carbon nanotube (CNT) surfaces are rather inert to

chemical functionalization. The highest possible concentration

of attached surface species is achieved through fluorination

because fluorine is the most electronegative element and highly

reactive, while its small atomic radius compared to other func-

tional groups allows potentially high density surface packing.

The maximal C2F ratio for SWCNTs is obtained using

elemental fluorine at 200–300 °C [2]. The application of a simi-

lar fluorination procedure to DWCNTs yields a product with

overall CF0.3 composition, leaving the inner shells intact [3].

The higher fluorination loading, obtained through an increase of

the synthesis temperature, creates defects in the DWCNT sur-

face and introduces fluorine onto the inner shell too [4].

Although fluorinated CNTs are generally expected to be insu-

lating, one-dimensional structures with a conducting shell

surrounded by an insulating layer from the fluorinated carbon

could find potential application in nanoelectronics and gas

sensing [5]. The ability to change the functional composition of

the outer shell would significantly extend the areas of possible

DWCNT applications. For example, quantum-chemical calcula-

tions predict that the conductivity of fluorinated CNTs changes

from semiconducting to metallic depending on surface distribu-

tion of fluorine atoms [6]. Furthermore, the energy of a C–F

bond decreases with reduction of fluorine content in CNTs [7],

which should promote nucleophilic substitution reactions,

leading to new derivatives [8,9]. Fluorinated CNTs have a

potential in chromatographic separations of various halo-

genated compounds owing to an optimal combination of hydro-

phobic properties and specific polar interactions [10]. The

promises of the fluorinated CNTs may be fully realized only

when the fluorine atoms would be controllably attached to the

nanotube surface and the search of the appropriate ways for that

is one of the key points in this scientific field at present [11].

There are several ways to fluorinate CNTs, the most common

being fluorination using F2 gas [12], CF4 plasma [13], and BrF3

vapor [14]. For all of these methods, the parameters preserving

the tubular structure of the nanotubes after the fluorination have

been determined. The high thermal stability of F2 means

elevated temperatures are required in order for the fluorination

process to take place. The saturation composition C2F for a

CNT surface was achieved using pure F2 below 300 °C for

several hours [15]. The temperature and/or duration of the syn-

thesis can be reduced substantially in the presence of HF, which

catalyzes the breaking of the F–F bond [16]. The non-metallic

fluorides are much more reactive than elemental fluorine, and

can interact with the graphitic surface even at room tempera-

ture [17]. To control the energy release associated with fluori-

nation, BrF3, in particular, is mixed with Br2 [18]. Depending

on the structure of the CNT samples diffusion of the diluted

vapors occurs at different rates leading to a different fluorine

loading [19]. In the process of radio-frequency (rf) plasma

fluorination, the rf power, gas flow rate, and exposure time

should be carefully chosen to avoid nanotube damage [20].

Previously, we have revealed that the thermal behavior of the

fluorinated DWCNTs strongly depends on the fluorination

method [21]. An observation of fluorine removal within differ-

ent temperature intervals has pointed on a difference in the

bonding strength between fluorine and DWCNT surface real-

izing through different methods. This resulted in fluorine loss

together with carbon accompanied by partial surface etching of

the DWCNTs fluorinated by F2 and BrF3, while no detectable

wall destruction occurred for the plasma-fluorinated DWCNTs.

We show here that the C–F bond strength is sensitive to

surroundings in the addition pattern, which can be controlled

through the fluorination method. The preferable fluorine distri-

butions on the DWCNT surface are proposed from quantum-

chemical modelling of the fluorine near-edge X-ray absorption

fine structure (NEXAFS) spectra, which showed substantial

differences for the samples prepared using elemental F2 at

elevated temperature, BrF3 at room temperature, and CF4 rf

plasma. Infrared (IR) spectroscopy and X-ray photoelectron

spectroscopy (XPS) are invoked to support the proposed fluo-

rine distributions.

Results and Discussion
Raman spectroscopy detected a growth of the intensity of the

D band corresponding to out-of-plane vibrations of carbon

hexagons after fluorination of the DWCNT sample (Figure 1).

This is due to development of sp3-hybridized carbon defect sites

as the result of covalent attachment of fluorine to the DWCNT

shells. The ratio of integral intensities of D band to G band

(ID/IG) progressively grows in a sequence of the fluorination

techniques (CF4 plasma < BrF3 gas < F2 gas), which can be at-

tributed to an increase of the fluorine loading.

In the low-frequency region (100–400 cm 1) the Raman spec-

trum of the pristine sample exhibits two groups of radial

breathing modes (RBM) (Figure 1, curve 1). The RBM peaks

below ca. 250 cm 1 are usually attributed to the outer DWCNT

shells, while the RBM peaks above ca. 250 cm 1 are assigned to

the inner DWCNT shells [22]. Since the sample contains about

20% of SWCNTs [23], they also can contribute in the RBM
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Figure 2: TEM images of pristine purified DWCNTs (a) and DWCNTs fluorinated with CF4 plasma (b), BrF3 (c), and F2 (d).

Figure 1: Raman spectra of pristine DWCNTs (1) and DWCNTs fluori-

nated with CF4 plasma (2), BrF3 (3), and F2 (4).

region. The used CCVD procedure yields a variety of nanotube

configurations, which can be identified from Raman spectra

measured at different laser lines. After fluorination, the intensi-

ty in the RBM region decreases and becomes negligible in the

spectrum of DWCNTs fluorinated by F2 (Figure 1, curve 4).

This is possibly due to fluorine penetration between the

DWCNT layers. However, in the spectra of DWCNTs fluori-

nated by CF4 plasma and BrF3 two lines are clearly visible in

the range of 270–320 cm 1 , which can undoubtedly be attri-

buted to the non-fluorinated inner shells of DWCNTs.

TEM analysis of the pristine and fluorinated DWCNTs revealed

a different effect of the used treatments on the sample micro-

structure (Figure 2). The CCVD synthesis produces DWCNTs

gathering into ropes with an average size of ca. 20 nm. After

treatment with BrF3 or F2, this size decreases to about 10 nm

and, moreover, in the latter sample many nanotubes are indi-

vidual or combined into thin ropes (Figure 2d). CF4 plasma

treatment does not result in nanotube separation (Figure 2b).

Repulsion of fluorine atoms attached to the walls of neigh-

boring nanotubes induces a splitting of ropes especially during

Figure 3: XPS C 1s spectra for pristine DWCNTs (1) and DWCNTs

fluorinated with CF4 plasma (2), BrF3 (3) and F2.

sonication in a solution [24], which was done for the prepara-

tion of TEM specimens. The higher degree of splitting achieved

for the F2-fluorinated DWCNTs may testify a higher fluori-

nation yield of this technique.

XPS C 1s spectra detected changes in the chemical state of car-

bon after the DWCNT fluorination (Figure 3). Compared to

the spectrum of the initial sample, the spectra of the fluorinated
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Table 1: Composition (CFx) of fluorinated DWCNT samples, energy positions (eV) of components of XPS C 1s spectra, and ratio of integral intensi-

ties of the C–CF and C–F components.

fluorinating agent composition EC EC–CF EC–F SC–CF/SC–F

CF4 CF0.17 284.5 285.2 288.0 3:1

BrF3 CF0.22 284.5 285.4 288.2 2:1

F2 CF0.33 284.5 285.7 288.5 1:1

samples exhibit an enhanced intensity in the ranges of

285.2–285.7 eV and 288.0–288.5 eV. The latter is associated

with covalent C–F bonds, while the former one corresponds to

carbon atoms located next to CF groups [25,26]. The spectra

were fitted using a combination of three components with a

Gaussian–Lorentzian peak shape with a Doniach–Sunjic high-

energy tail [27]. The integral intensities of the components were

used to estimate the sample composition (Table 1). The highest

surface coverage with fluorine occurs when F2 gas is used as a

fluorinating agent. The composition of the sample, CF0.33, is

close to that determined in [3]. But in our case the exposure

time was significantly shorter (10 min versus 5 h), due to a cata-

lytic effect of HF present in the fluorine gas [16]. The CF4

plasma treatment resulted in the lowest fluorination degree. The

XPS C 1s spectra of the fluorinated samples show different

energy positions for the CF component as well as for the C–CF

component (Table 1). These components gradually move away

from the sp2-hybridized carbon component with increased fluo-

rine loading. This observation fully agrees with the prediction

of C 1s peak separations made using the quantum-chemical

calculations of fluorinated CNT models with C2F, C3F, and C4F

compositions [28]. A ratio of the areas under the C–CF and C–F

components (Table 1) gives an average number of bare carbon

atoms per CF group. The number grows from 1 to 2 to 3, re-

spectively, when F2, BrF3, and CF4 plasma is used as fluori-

nating agent. Based on these results, we suppose distinct fluo-

rine patterns in the DWCNTs fluorinated by different tech-

niques.

To reveal a dominating pattern of fluorine addition on the

DWCNT surface during a particular fluorination procedure, we

carried out simulations of the NEXAFS spectra of the fluori-

nated samples. NEXAFS spectroscopy is widely used for

probing the surface chemical functionalities and the electronic

structure of CNTs and related nanomaterials [29]. A spectrum

arises as a result of core-level electrons being excited into

partially filled and empty states, thus providing information

about the unoccupied density of states of the X-ray absorbing

elements. We consider the F K-edge spectra because they

showed a considerable variation of the pre-edge features

depending on the fluorination method [21]. Actually, at

energies lower than those of the *-adsorption edge, the spec-

trum of plasma-fluorinated DWCNTs has a weak peak A at

ca. 686.9 eV and shoulders B and C at ca. 689.6 and

ca. 691.3 eV (Figure 4a, curve 1). The spectrum of DWCNTs

fluorinated with BrF3 exhibits two peaks D and E at ca. 687.1

and ca. 689.5 eV with almost equal intensities (Figure 4a, curve

2), whereas the spectrum of DWCNTs fluorinated with F2 is

dominated by a peak F around 688.3 eV (Figure 4a, curve 3).

Features A and B observed in the F K-edge spectrum of plasma-

fluorinated DWCNTs have energies close to peaks D and E, re-

spectively, in the spectrum of BrF3-treated DWCNTs. However,

the origin of the peaks from each pair may be different. Earlier,

we have suggested that the low-energy features correspond to

the interaction of fluorine with carbon atoms situated around the

CF group, while the high-energy intensity is formed by -type

anti-bonding interactions between fluorine and carbon atoms

within the CF group [19]. Obviously, position and relative in-

tensity of these features are determined by the local surround-

ing of the CF groups. The high intensity of the pre-edge peak in

the NEXAFS F K-edge spectrum of multiwalled CNTs fluori-

nated with a F2/HF mixture at 420 °C is likely due to two-sided

fluorination of the shells under such harsh conditions [30].

Nine models with different quantity and distribution of fluorine

atoms (seven of them are shown in Figure 4c) on the outer sur-

face of a CNT were taken for simulation of the NEXAFS F

K-edge spectra. A single F atom (model I), a pair of fluorine

neighbors (model II), and a –CF3 group (model III) have been

attached to the convex surface segment of a CNT. The latter

species was considered since the plasma of CF4 produces CF3

radicals, which may bind to the carbon surface [31]. Four F

atoms formed an armchair (model IV) or zigzag (model V)

chain or were in (1,2) position (model VI) or (1,4) position rela-

tive to each other. We also constructed a pattern with the alter-

nation of C=C and CF–CF bonds and a CF region of six F

neighbors on one tube side (model VII). A shift required for the

alignment of the theoretical spectra to the experimental energy

scale was evaluated by comparing the spectrum calculated for

an outer central fluorine atom of a CNT segment fluorinated on

both sides (Figure S1, Supporting Information File 1) with the

NEXAFS F K-edge spectrum for fully fluorinated graphite

measured under the same conditions as the spectra of fluori-

nated DWCNTs. Theoretical F K-edge spectra showed a strong
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Figure 4: (a) Experimental F K-edge NEXAFS spectra for DWCNTs fluorinated with CF4 plasma (1), BrF3 (2) and F2 (3). (b) Theoretical F K-edge

spectra calculated for all F atoms in models (c) distinguished by fluorination pattern. The curve above the theoretical spectra plotted for models I, II

and III is their combination in a ratio of 2:1:1.

dependence of the spectral shape on the distribution of fluorine

atoms (Figure S2, Supporting Information File 1).

Figure 4b presents theoretical F K-edge spectra, which in our

view best fit the obtained experimental spectra. The choice was

made by considering the number of peaks at energies below the

*-edge, the distances between these peaks and their relative in-

tensities. The *-edges in the calculated spectra are the least

intense peaks, the energies of which are larger in the experi-

mental spectra. This is due to limitation of the (Z + 1) approach

used for the simulation of NEXAFS spectra, which basically

reproduces well only the peaks above the absorption edge [32].

The spectrum of DWCNTs fluorinated by F2 well agrees with

the spectrum calculated for fluorine atoms, which form a dense

cluster in model VI. However, to reproduce a width of the main

peak F in the NEXAFS spectrum, contributions from other fluo-

rine patterns such as, for example, that in model VII would be

helpful. It is interesting that the spectrum for model VII is simi-

lar to the spectrum calculated for CNT surfaces fluorinated on

both sides (Figure S1, Supporting Information File 1). Both the-

oretical spectra are dominated by a single peak at lower ener-

gies than the *-edge and this shape is characteristic for the

NEXAFS F K-edge of fully fluorinated graphite (CF)n. A de-

crease of the relative intensity of this peak in the spectrum of

partially fluorinated graphite (C2.5F)n was related to a coexis-

tence of sp2- and sp3-hybridized carbon atoms [33]. That spec-

trum almost coincides with the spectrum of the F2-fluorinated

DWCNTs. Thus, we conclude the formation of small CF

regions with fluorine atoms located on one or two sides of the
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nanotube shell when DWCNTs are fluorinated by elemental

fluorine at elevated temperature.

The spectrum of DWCNTs fluorinated with BrF3 is in good

correspondence with the spectrum calculated for the four-atom

armchair chain (model IV). At energies below the edge, the

spectrum of this model has two peaks, the separation and rela-

tive intensity of which agree with those for the peaks D and E in

the experimental spectrum. The correspondence could be im-

proved by taking into account other fluorine patterns such as,

for example, that in model V.

Regarding the DWCNTs fluorinated with CF4 plasma, we were

not able to find an appropriate model, of which the spectrum

would suit to the experimental F K-edge spectrum. Possibly, the

method produces many different fluorine distributions without

any dominant pattern. We speculate that a superposition of the

spectra for a single F atom (model I), for a pair of fluorine

atoms in the (1,2) position (model II), and for a –CF3 group

could give a correlation with the experiment. Actually,

summing these spectra in a ratio of 2:1:1 gives a profile (top

curve in Figure 4b, left part), which well reproduces the spec-

tral features at energies below the *-edge. The lack of –CF3

groups in the XPS C 1s spectrum (Figure 3, curve 2) might be

related to a substantial difference between the ionization cross-

sections of C 1s electrons of bare carbon atoms and of fluori-

nated carbon atoms when they are excited at an energy close to

the ionization threshold. The cross-section decrease for the

latter kind of electrons could results in low XPS intensities,

especially for –CF2 and –CF3 groups. Actually, these species

were detected in the spectrum measured at 1486.6 eV (Figure

S3, Supporting Information File 1). A similar behavior, particu-

larly, a growth of the CF peak intensity with an increase of the

excitation energy has been previously observed in the XPS C 1s

spectra of fluorinated SWCNTs [34].

The realization of different fluorination patterns on the

DWCNT surface through the CF4 plasma technique is con-

firmed by XPS data of the F 1s levels (Figure 5). The spectrum

of this sample has two components, while the F 1s spectra of

the two other samples are presented by symmetric single peaks.

Moreover, a larger width of the main component in the former

spectrum is indicative of more fluorine bonding configurations

in the plasma-fluorinated DWCNTs. The component at ca.

685.5 eV is often observed in the XPS F 1s spectra of plasma-

fluorinated CNTs [13,35,36] and assigned to semi-ionic C–F

bonds. We attribute this binding energy to fluorine atoms very

distant from other fluorine atoms. Actually, the quantum-chemi-

cal calculations of fluorinated graphene models have revealed a

decrease of the F 1s level energy with a C–F bond elongation

[37]. The predicted shift of the F 1s level of single fluorine rela-

tive to that of the (1,2) fluorine pair is ca. 2 eV. This suits well

the distance between the components in the F 1s spectrum of

plasma-fluorinated DWCNTs and two fluorination patterns

chosen from the modelling of NEXAFS F K-edge.

Figure 5: XPS F 1s spectra of DWCNTs fluorinated with CF4 plasma,

BrF3, and F2.

Despite difference of almost 100% in fluorine content between

the DWCNT samples fluorinated with CF4 plasma and F2

(Table 1), the main peaks in their XPS F 1s spectra have the

same energy (Figure 5). The position of the F 1s peak in the

spectrum of the DWCNTs fluorinated with BrF3 is shifted to a

lower binding energy by about 0.7 eV. In incompletely fluori-

nated graphitic materials, fluorine may interact with the elec-

tron density of the next neighboring bare carbon atoms, which

causes an increase of the polarization of the C–F bond [38] and,

consequently, a decrease of the F 1s electron binding energy.

This is in line with the hyperconjugation mechanism involving

interactions of electron density from C–F bonds with the -elec-

tron system of graphene areas [39]. Hence, the lower binding

energy of the F 1s peak in the spectrum of BrF3-fluorinated

DWCNTs supports the chosen preferable model of short CF

chains at the nanotube surface. In such chains, fluorine atoms

interact with two or three bare carbon atoms.

FTIR spectra of the fluorinated samples confirm the difference

of the dominating fluorine bonding for DWCNTs treated with

the three different fluorination techniques (Figure 6). In the
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range of C–F stretching vibrations, the FTIR spectrum of the

F2-fluorinated sample is dominated by a doublet peak split at

1170 and 1210 cm 1, whereas the BrF3-fluorinated sample

shows instead two more separated peaks at 1125 and

1220 cm 1. Additionally, both spectra have a prominent

shoulder at ca. 1046 cm 1. The spectrum of plasma-fluorinated

DWCNTs exhibits the lowest intensity of C–F bond vibrations,

which is likely due to the preferred fluorination of DWCNT

ropes as it follows from Raman scattering and TEM data. More-

over, the exposure of DWCNTs to CF4 plasma has almost no

effect on the absorption of the carbon lattice, while after treat-

ment with F2 and BrF3 the intensity of the band at 1535 cm 1

strongly increases. This change is caused by a disruption of the

uniformity of the -system due to attachment of fluorine atoms

to the CNT surface [40].

Figure 6: IR spectra of pristine DWCNTs (1) and DWCNTs fluorinated

with CF4 plasma (2), BrF3 (3), and F2 (4).

The appearance of a set of C–F absorption bands in the FTIR

spectra reflects a co-existence of various types of bonds in sam-

ples. Chamssedine et al. identified three types of C–F bonding

for fluorinated SWCNTs with vibration frequencies at 1220,

1100, and 1050 cm 1 [41]. The weakening of a covalent bond in

this series was explained by a hyperconjugation with the -elec-

tron system. Asanov et al. selected four bands for the fluori-

nated graphite spectrum, which were assigned to vibrations of a

CF group surrounded by three CF neighbors (1230 cm 1), two

CF neighbors and one bare carbon atom (1132 cm 1), one CF

neighbor and two bare carbon atoms (1095 cm 1), and three

bare carbon atoms (1045 cm 1) [42]. Evidently, the vibration of

a certain bond may change its frequency depending of the

curvature and type of surface fluorination (on one side or on

two sides) [43]. However, high absorption intensities around

1210 cm 1 in the FTIR spectrum of the F2-fluorinated

DWCNTs support the formation of small CF regions. Such a

close position of fluorine atoms can be provided by the relative-

ly small diameter of nanotubes and/or the penetration of some

fluorine atoms between the layers, as we intended from Raman

scattering in the RBM region. The dominating band at

1125 cm 1 in the spectrum of the BrF3-treated sample hints to a

chain-like fluorination pattern.

The different bonding behavior is consistent with our under-

standing of the three fluorination processes. CF4 fluorination is

known to give reactive CF3, CF2 and F fragments, which can

then bind directly with the surface [44,45]. In contrast F2 fluori-

nation is expected to result in (1,2) ortho- or (1,4) para-addi-

tion, depending on the amount of HF catalyst [16]. There is

little known in the literature concerning the mechanism of BrF3

fluorination, so we performed a series of DFT calculations to

clarify this point. Importantly, we find that a decomposition of

BrF3 over pristine graphene to give BrF2 and surface-bound F is

endothermic (+0.25 eV) with a reaction barrier of 0.27 eV.

However, F deposition from BrF3 to a site neighboring a pre-

existing surface fluorine atom is highly exothermic ( 0.46 eV)

with a similarly low barrier of 0.26 eV. This suggests that

fluorination from BrF3 will proceed systematically from pre-

existing fluorinated areas in a similar way to F2 fluorination,

rather than distributing uniformly at low density across the sur-

face as seen for CF4 plasma. These fluorination models are

consistent with the experimentally observed distribution and

characterization of the fluorination described above.

The fact that the pattern of fluorine addition to the CNT surface

is determined by the chosen fluorination technique and is less

dependend on the synthesis condition is also confirmed by a

comparison of the NEXAFS F K-edge spectra for DWCNT

samples with different fluorine content. The spectra of the sam-

ples treated with CF4 plasma for 10 and 0.5 min have the same

shape, while the intensity of peak A is reduced for the sample

with lower fluorine content (Figure S4a, Supporting Informa-

tion File 1). From the calculation results, responsible for this

peak is a pair of fluorine atoms in the (1,2)-position (Figure 4c).

The F K-edge spectra of the samples fluorinated using different

concentrations of BrF3 in the reaction volume are also mainly

distinguished by the intensity of the low-energy peak (Figure

S4b, Supporting Information File 1). This peak D arises from a

compact armchair fluorine chain (Figure 4c) and is slightly en-

hanced in the spectrum of the DWCNTs with higher fluorine

loading. Thus, the fluorination pattern is determined by the par-

ticular reaction mechanism, which has also been shown for

SWCNTs fluorinated by gaseous F2 or XeF2 [46].

Conclusion
DWCNTs have been fluorinated using three different agents:

fluorine gas at 200 °C, gaseous BrF3 at room temperature, and

CF4 plasma under mild working conditions. It was found that
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the resultant composition and fluorination patterning of the

sample depend on the fluorination method. In the case of two

latter samples, Raman spectroscopy unambiguously indicated a

fluorination of the outer DWCNT shell only. In the spectrum of

the F2-treated sample, RBMs of the inner tubes were very weak

and this may be a sign of fluorine penetration between the

layers. XPS C 1s spectra detected that not every carbon atom of

the outer shells was bonded with fluorine. The average number

of bare carbon atoms surrounding a CF group progressively

grows from 1 to 3 with the use of F2, BrF3, and CF4 plasma.

These numbers are close to the C–(CF)/CF ratios in the models

selected to describe the dominating fluorination patterns for

each case by comparing the NEXAFS spectra measured at the F

K-edge of fluorinated DWCNTs with theoretical spectra from

quantum-chemical calculations. The most probable models are

small compact CF areas produced from a fast F2 action at high

temperature, and the short armchair or zigzag CF chains, which

are formed from BrF3 at room temperature over a few days, i.e.,

under conditions promoting the attachment of fluorine atoms

one by one. For the DWCNTs treated with CF4 plasma we

suppose fluorination of the rope surfaces only, since the plasma

deposition is directional and the sample exposure time was rela-

tively short. This did not allow us to choose a single model well

suited to all observed experimental spectroscopy data. More-

over, the XPS F 1s spectrum showed a coexistence of at least

two fluorine bonding configurations and this could be single

fluorine atoms, CF pairs, and –CF3 groups. Thus, by applica-

tion of different fluorination methods it is possible to synthe-

size fluorinated DWCNTs with different fluorination patterns,

which should in turn be distinct in electronic properties and re-

activity. Similar results are expected for other closed-shell car-

bon structures such as single- and multi-walled CNTs, nano-

horns and onion-like carbon.

Experimental
Materials
DWCNTs were produced by catalytic chemical vapor deposi-

tion (CCVD) using CH4 (18 mol %) in H2 at 1000 °C and an

Mg1 xCoxO solid solution as catalyst [23]. High-resolution

transmission electron microscopy (HRTEM) showed that a

typical sample consists of ca. 80% DWCNTs, 20% SWCNTs,

and a few triple-walled nanotubes. The diameter distribution of

the DWCNTs ranged from 0.5 to 2.5 nm for the inner tubes and

from 1.2 to 3.2 nm for the outer tubes. DWCNTs were purified

by heating the sample in air at 450 °C for 1 h followed by treat-

ment with concentrated HCl to dissolve metal oxides [47].

Fluorination of DWCNTs using a mixture of F2 and HF, pro-

duced by electrolysis of a KF·2HF melt, was conducted at

200 °C for 10 min. Fluorination with gaseous BrF3 was carried

out at room temperature in a Teflon flask, where the sample was

held over a 10 wt % solution of BrF3 in Br2 for seven days.

Plasma fluorination was performed by exposing DWCNTs to a

CF4 plasma (frequency of 13.56 MHz and power of 15 W) for

10 min at a working pressure of 0.1 Torr. The details of the syn-

thesis are described elsewhere [21,48].

Instrumentation
The structure of pristine and fluorinated DWCNTs was studied

using TEM on a JEOL-2010 microscope and Raman scattering

using a Triplemate spectrometer (excitation wavelength

488 nm). The samples for TEM examination were prepared by

ultrasonic dispersion of powder suspended in ethanol on lacey

carbon film grids. The nature of the surface groups was charac-

terized by Fourier transform IR (FTIR) spectroscopy using a

Nicolet 510P spectrometer.

The XPS and NEXAFS experiments were performed at the

Berliner Elektronenspeicherring für Synchrotronstrahlung

(BESSY) using monochromatic radiat ion from the

Russian–German beamline. XPS C 1s spectra were measured at

an energy of 350 eV with a resolution of 0.2 eV (full width at

half maximum (FWHM)). As the kinetic energy varied from 35

to 50 eV the mean free path of photoelectrons was about

0.2–0.6 nm [49], allowing us to probe the electronic state of car-

bon mainly from the surface layers of the fluorinated CNTs.

Binding energies of the fluorinated samples were calibrated to

the pristine DWCNT C 1s peak at 284.5 eV. XPS F 1s spectra

were recorded on a SpecsLab PHOIBOS 150 spectrometer with

Al K  (1486.6 eV) excitation. In the spectrum analysis, the

background signal was subtracted by Shirley’s method.

NEXAFS spectra near the F K-edges were acquired in the total-

electron yield mode with a typical probing depth of a few nano-

meters [50]. The spectra were normalized to the primary photon

current from a gold-covered grid recorded simultaneously.

Before the experiments, the samples have been annealed at

70 °C for 12 h in vacuum.

Calculations
Quantum-chemical calculations were carried out using the

three-parameter hybrid functional of Becke [51] and

Lee–Yang–Parr correlation functional [52] (B3LYP method)

included in the Jaguar package [53]. Atomic orbitals were de-

scribed by the 6-31G* basis set. The CNT surface was modeled

by a segment of an armchair (12,12) tube with C106H28 compo-

sition, where hydrogen atoms saturated dangling bonds of

boundary carbon atoms. Central part of the convex segment sur-

face was decorated with fluorine atoms for modeling possible

addition patterns in DWCNTs. Positions of carbon and hydro-

gen atoms at the segment edges were frozen during optimiza-

tion, which was conducted using an analytical method to the

gradient of 5·10 4 atomic units for atom displacements.
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Theoretical NEXAFS F K-spectra were constructed within the

(Z + 1) approximation [54], which accounts for the effect of a

final core hole created in the absorption process on the spectral

profile. To model a core hole, the exciting atom was replaced

by the element being next in the periodic table and, in the case

of fluorine, this is neon. For compensation of the extra electron,

the calculating system was charged positively. Compared to the

full core-hole calculations, the (Z + 1) approximation requires

significantly less computer resources and well fits NEXAFS C

K-spectra of fullerene C60, CNTs and their fluorinated deriva-

tives [32,55,56]. Intensities of spectral lines were obtained by

summing the squared coefficients at Ne 2p orbitals and broad-

ened with Lorentzian functions of a width of 0.7 eV. X-ray tran-

sition energies were determined as a difference between

Kohn–Sham eigenvalues of virtual molecular orbitals of a

model calculated within the (Z + 1) approximation (excited

system) and the 1s-level energy of fluorine in the ground state

of that model.

An interaction of BrF3 with the graphene surface was studied

using the DFT code AIMPRO [57-59] by fitting the charge den-

sity to plane waves with an energy cutoff of 300 Ha. Rela-

tivistic pseudopotentials generated by Hartwigsen, Goedecker

and Hutter [60] were used. Correspondingly, 38, 44, and 28 in-

dependent Gaussian-based functions presented basis sets for

carbon, bromine, and fluorine. Electronic level occupation was

obtained using Fermi occupation function with kT = 0.04 eV.

Absolute energies were converged in the self-consistency cycle

to better than 10 9 Ha. The surface decomposition of BrF3 was

modeled using a spin-averaged LDA for large C128 graphene

cells (8 × 8 supercells). Migration barriers were determined

using the nudged elastic band method.

Supporting Information

Supporting Information contains the experimental

NEXAFS F K-edge spectrum of graphite fluoride (CF)n in

comparison with the calculated spectrum; NEXAFS F

K-edge spectra plotted for different fluorine distributions

on carbon nanotube surfaces; the XPS C 1s spectrum of

plasma fluorinated DWCNTs measured at 1486.6 eV;

NEXAFS FK-edge spectra for DWCNTs fluorinated

with CF4 plasma for different periods as well as

DWCNTs fluorinated using different concentration of BrF3

vapors.

Supporting Information File 1

Additional experimental data.

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-8-169-S1.pdf]
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