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Scaling limit of dynamical percolation

on critical Erdös-Rényi random graphs.

Raphaël Rossignol∗

October 25, 2017

Abstract: Consider a critical Erdös-Rényi random graph: n is the number of vertices, each one of the
(

n
2

)

possible edges is kept in the graph independently from the others with probability n−1 + λn−4/3, λ being a
fixed real number. When n goes to infinity, Addario-Berry, Broutin and Goldschmidt [2] have shown that
the collection of connected components, viewed as suitably normalized measured compact metric spaces,
converges in distribution to a continuous limit Gλ made of random real graphs. In this paper, we consider
notably the dynamical percolation on critical Erdös-Rényi random graphs. To each pair of vertices is at-
tached a Poisson process of intensity n−1/3, and every time it rings, one resamples the corresponding edge.
Under this process, the collection of connected components undergoes coalescence and fragmentation. We
prove that this process converges in distribution, as n goes to infinity, towards a fragmentation-coalescence
process on the continuous limit Gλ. We also prove convergence of discrete coalescence and fragmentation
processes and provide Feller-type properties associated to fragmentation and coalescence.
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Keywords: Erdös-Rényi random graph, coalescence, fragmentation, dynamical percolation, scaling limit,
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1 Introduction

Consider G(n, p(λ, n)), the Erdös-Rényi random graph on n vertices inside the critical window, that is when
the probability of an edge is p(λ, n) := n−1 + λn−4/3. The largest components are of order n2/3, and their
diameter is of order n1/3, and this particular scaling of p with respect to n corresponds to what is called
the critical window associated to the emergence of a giant component. In this regime, we are particularly
interested in those large components, because in some sense, they contain all the complexity of the graph.
There is a clean procedure to capture the behaviour of those components in the large n limit: if one assigns
mass n−2/3 to each vertex and length n−1/3 to each edge, this graph converges to a random collection of
real graphs Gλ (see Theorem 2.30 below, or Theorem 24 in [2] for a more precise statement).

Now, put the following dynamic on G(n, p(λ, n)): each pair of vertices is equipped with an independent
Poisson process with rate γn and every time it rings, one refreshes the corresponding edge, meaning that
one replaces its state by a new independent one: present with probability p(λ, n), absent with probability
1 − p(λ, n). This procedure corresponds to dynamical percolation on the complete graph with n vertices, at
rate γn. A natural question now is “At which rate should we refresh the edges in order to see a non trivial
process in the large n limit ?”. In this question, it is understood that one keeps getting interested in the
same scaling as before concerning masses and lengths.

A moment of thought suggests that a good choice should be γn = n−1/3. Indeed, since large components
are of size Θ(n2/3), in a pair of components there are Θ(n4/3) pairs of vertices which after refreshment lead
to Θ(n4/3p(λ, n)) = Θ(n1/3) edges added. Thus, choosing γn = Θ(n−1/3) will lead large components to
coalesce at rate Θ(1). Furthermore, on those large components typical distances are of order Θ(n1/3). An
edge will be destroyed at rate γn(1 − p(λ, n)) so the geometry inside such a component will be affected at
rate Θ(n1/3γn(1 − p(λ, n))), which is again of order Θ(1) when γn = Θ(n−1/3). This scaling is already
present in the work of Aldous [5] where he studied the evolution of the collection of rescaled masses of the
components when one coalesce components at a rate proportional to the product of their mass. This is the
so-called multiplicative coalescent. Of course, instead of refreshing the edges, one may decide to only add
edges, or to only destroy edges. In the first case, one will assist to coalescence of components and in the
second case, to fragmentation. Once again, one may ask the same question as before: what is the good
rate in order to obtain a non trivial process in the large n limit, and what is this limit process. One of the
main purposes of this article is to give an answer to these questions for the three cases that we just defined
informally: dynamical percolation, coalescence and fragmentation. The limit processes will be dynamical
percolation, coalescence and fragmentation processes acting on the limit Gλ obtained in [2]. Furthermore,
we will show that coalescence is the time-reversal of fragmentation on this limit. The method we use is
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to provide Feller-type properties for coalescence and fragmentation, which we hope will be useful in the
future to study scaling limits of similar dynamics on other critical random graphs. Notice that the study of
coalescence of graphs is a central tool in the work of [7] to show convergence of a number of critical random
graphs to Gλ (configuration models, inhomogeneous random graphs etc.).

Since an important amount of notations is needed in order to make such statements precise we will switch
to the presentation of notations in section 2 and then announce the main results and outline the plan of the
rest of the article in section 3.

We finish this section by mentioning a few related works. Dynamical percolation was introduced in [12],
and studied in a number of subsequent works by various authors. In the context of [12], only the edges of some
fixed infinite graph are resampled while in the definition above, we resample the edges of a finite complete
graph. The scaling limit of dynamical percolation for critical percolation on the two dimensional triangular
lattice was obtained in [11], with techniques quite different from the one used in the present paper. More
related to the present paper is the work [17], where dynamical percolation on critical Erdös-Rényi random
graphs, as introduced above, is studied notably at rate 1. The authors show that the size of the largest
connected component that appears during the time interval [0, 1] is of order n2/3 log1/3 n with probability
tending to one as n goes to infinity. They also study “quantitative noise-sensitivity” of the event An that
the largest component of G(n, p(λ, n)) is of size at least an2/3 for some fixed a > 0 (see Proposition 2.2 in
[17]). The results in the present paper can be used to find the precise scaling of quantitative noise-sensitivity
for events talking about the sizes of the largest components (like An for instance). However, we leave this
question and precise statements for future work.

2 Notations and Background

2.1 General notations

If (X, τ) is a topological space, we denote by B(X) the Borel σ-field on X .
If ψ is a measurable map between (E, E) and (F,F), and µ is a measure on (E, E), then we denote by

ψ♯µ the push-forward of µ by ψ: ψ♯µ(A) = µ(ψ−1(A)) for any A ∈ F .
We shall frequently use Poisson processes. Let (E, E , µ) be a measurable set with µ σ-finite, denote by

Leb(R+) the Lebesgue sigma-field on R+, lebR+ the Lebesgue measure on R+ and let γ ≥ 0. If P is a Poisson
random set with intensity γ on (E×R+, E ×Leb(R+), µ× lebR+) (that is with intensity measure γµ⊗ lebR+)
we shall denote by Pt the points of P with birthtime at most t:

Pt := {x ∈ E : ∃s ≤ t, (x, s) ∈ P} .
When (X, d) is a Polish space andD([0,∞), X) is the set of càdlàg functions from R+ to X , we shall always

put on D([0,∞), X) the topology of compact convergence (also known as topology of uniform convergence
on compact sets) (see chapter V and notably section V.5 in [16]). Recall that this topology is metrizable
and complete (although not separable in general), finer than Skorokhod’s topology and that a sequence
ωn = (ωn(t))t∈R+ in D([0,∞), X) converges in this topology to ω∞ = (ω∞(t))t∈R+ if and only if for every
T > 0,

sup
t∈[0,T ]

|ωn(t) − ω∞(t)| −−−−−→
n→+∞

0 .

Notice a slight subtelty: we shall prove convergence in distribution of a sequence of processes ((Xn(t))t≥0)n≥1

towards (X(t))t≥0 by exhibiting couplings showing that the Lévy-Prokhorov distance between the distribu-
tions of Xn and X goes to zero as n goes to infinity. This implies convergence in distribution (there is no
need for separability or completeness in this direction).

Finally, we shall use the notation N := N ∪ {+∞}.

2.2 Discrete graphs and dynamical percolation

We will talk of a discrete graph to mean the usual graph-theoretic notion of an unoriented graph, that is a
pair G = (V,E) with V a finite set and E a subset of

(

V
2

)

:= {{u, v} : u 6= v ∈ V }. Often, E is seen as a
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point in {0, 1}(V2), where 0 codes for the absence of the corresponding edge and 1 for its membership to E.
For a positive integer n and p ∈ [0, 1], the Erdös-Rényi random graph (or Gilbert random graph) G(n, p)

is the random graph with vertices [n] := {1, . . . , n} such that each edge is present with probability p,
independently from the others. Alternatively, one may see it as a Bernoulli bond percolation with parameter
p on the complete graph with n vertices Kn = ([n],

(

[n]
2

)

). It amounts to put the product of Bernoulli

measures with parameter p on {0, 1}([n]
2 ).

Let γ+ and γ− be non-negative real numbers. If G = ([n], E) is a discrete graph on n vertices, define a
random process Nγ+,γ−(G, t) = (G,Et), t ≥ 0 as follows on the set of subgraphs of the complete graph Kn.

To each pair e ∈
(

[n]
2

)

, we attach two Poisson processes on R+: P+
e of intensity γ+ and P−

e of intensity γ−.

We suppose that all the
(

[n]
2

)

Poisson processes are independent. Each time P+
e rings, we replace Et− by

Et− ∪ {e}, and each time P−
e rings, we replace Et− by Et− \ {e}. The letter N is reminiscent of “noise”. If

one wants to insist on the Poisson processes, we shall write N(G, (P+,P−)t) instead of Nγ+,γ−(G, t), with
an implicit definition for the map N .

One may take only P+ or only P− into account: write N+(G,P+
t ) for N(G, (P+, ∅)t) and N−(G,P+

t ) for
N(G, (∅,P−)t). Then, N+(G,P+

t ) will be referred as the discrete coalescent process of intensity γ+ started
at G and N−(G,P+

t ) as the discrete fragmentation process of intensity γ+ started at G.
Now, dynamical percolation of parameter p and intensity γ, as described in the introduction, corresponds

to the process Nγp,γ(1−p), and is in its stationary state when started with G(n, p) (independently of the
Poisson processes used to define the dynamical percolation).

All these processes will have continuous couterparts in the scaling limit, which will be defined in sec-
tions 2.6 and 2.8.

2.3 The multiplicative coalescent

The main tool to analyze our coalescent and fragmentation processes will be a refinement of Aldous’ work [5]
on the multiplicative coalescent. In this section, we recall what we will use of his work.

Let us define:

ℓ2+ :=







x ∈ (R+)N
∗

:
∑

i≥1

x2i <∞







,

ℓ2ց := {x ∈ ℓ2+ : x1 ≥ x2 ≥ . . .} .
Let (Ni,j)i,j∈N∗ be independent Poisson point processes on the real line with intensity 1. Denote by Ti,j,n
the n-th jump-time of Ni,j . For x ∈ ℓ2+, let MG(x, t) denote the multigraph (with loops) with vertex set

N and edge set ∪n∈N{{i, j} ∈
(

N

2

)

s.t. Ti,j,n or Tj,i,n ≤ t
2xixj}. If one forgets loops and transforms any

multiple edge into a single edge, MG(x, t) becomes W(x, t), the nonuniform random graph of section 1.4
of [5]. Denoting by X(x, t) the sequence of sizes, listed in decreasing order, of the connected components of
W (x, t), Aldous proved in [5], Proposition 5, that X(x, t) defines a Markov process on ℓ2ց which posseses the
Feller property. Following Aldous, we denote by S(x, t) the sum of squares of the masses of the components
of MG(x, t).

We shall use later the following lemmas.

Lemma 2.1 ([5], Lemma 20). For x in l2ց,

P(S(x, t) > s) ≤ tsS(x, 0)

s− S(x, 0)
, s > S(x, 0) .

Lemma 2.2 ([5], Lemma 23). Let (zi, 1 ≤ i ≤ n) be strictly positive vertex weights, and let 1 ≤ m < n.
Consider the bipartite random graph B on vertices {1, 2, . . . ,m} ∪ {m + 1, . . . , n} defined by: for each pair
(i, j) with 1 ≤ i ≤ m < j ≤ n, the edge (i, j) is present with probability 1 − exp(−tzizj), independently for
different pairs. Write α1 =

∑m
i=1 z

2
i , α2 =

∑n
i=m+1 z

2
i . Let (Zi) be the sizes of the components of B. Then,

εP(
∑

i

Z2
i ≥ α1 + ε) ≤ (1 + t(α1 + ε))2α2, ε > 0 .
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Remark 1. As noticed in [5], page 842, Lemma 2.2 extends to z ∈ ℓ2.

In [5], this lemma is used in conjunction with the following one

Lemma 2.3 ([5], Lemma 17). Let G̃ be a graph with vertex weights (x̃i). Let G be a subgraph of G̃ (that is,
each edge of G is an edge of G̃) with vertex weights xi ≤ x̃i. Let ã and a be the decreasing orderings of the
component sizes of G̃ and G. Then

‖ã− a‖2 ≤
∑

i

ã2i −
∑

i

a2i

provided
∑

i a
2
i <∞.

Finally, we shall need the following lemma.

Lemma 2.4. Let G = (V,E) be a multigraph whose vertices have weights (xi)i∈V . If W ⊂ V and E′ ⊂ E,
let comp(W,E′) denote the set of connected components of the graph (W,E′ ∩

(

W
2

)

) and define

S(W,E′) :=
∑

m∈comp(W,E′)

(

∑

i∈m
xi

)2

.

Now, let W ⊂ V be such that for any m1 ∈ comp(W,E) and m2 ∈ comp(V \W,E), there is at most one
edge of E between m1 and m2. Then, for any E′ ⊂ E

S(V,E) − S(W,E) ≥ S(V,E′) − S(W,E′) ,

provided S(W,E) <∞.

Proof. For i and j in V and E′ ⊂ E, we denote by i ∼
E′
j the fact that i and j are distinct and connected

by a path in (V,E′). The hypothesis on W implies that for any E′ ⊂ E, two vertices of W are in the same
component of (V,E′) if and only if they are in the same component of (W,E′ ∩

(

W
2

)

):

∀i, j ∈W, i ∼
E′
j ⇔ i ∼

E′∩(W
2 )
j . (1)

Now,

S(V,E′) =
∑

i∈V
x2i +

∑

i,j∈V
i∼
E′
j

xixj

= S(W,E′) +
∑

i∈V \W
x2i +

∑

i,j∈V
i∼
E′
j

xixj −
∑

i,j∈W
i ∼
E′∩(W

2 )
j

xixj

= S(W,E′) +
∑

i∈V \W
x2i +

∑

(i,j)∈V 2\W 2

i∼
E′
j

xixj +
∑

(i,j)∈W 2

i∼
E′
j

xixj −
∑

i,j∈W
i ∼
E′∩(W

2 )
j

xixj

= S(W,E′) +
∑

i∈V \W
x2i +

∑

(i,j)∈V 2\W 2

i∼
E′
j

xixj

because of (1). The two sums on the right of the last equation are increasing in E′, and this shows the
result.
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2.4 Measured semi-metric spaces

The main characters in this article are the connected components of Erdös-Rényi random graphs and their
continuum limit, each one undergoing the updates due to dynamical percolation. One task is therefore to
define a proper space where those characters can live, and first to precise what we mean by “the connected
components of a graph” seen as a single object. One option is to order the components by decreasing order
of size1, as in [2], or in a size-biased way, as in [5], and thus see the collected components of a graph as a
sequence of graphs. However, this order is not preserved under the process of dynamical percolation. Also,
looking only at the mass to impose which graphs are pairwise compared between two collections of graphs
might lead to a larger distance than what one would expect. Indeed, suppose that (G1, G2) and (G′

1, G
′
2) are

two pairs of graphs, with G1 (resp. G′
1) having slightly larger mass than G2 (resp. G′

2). One might have G1

close to G′
2 and G2 close to G′

1 in some topology (the Gromov-Hausdorff-Prokhorov topology to be defined
later), but G1 far from G′

1 in this topology. For all these reasons, I found it somewhat uncomfortable to
work with such a topology in the dynamical context. The topology we will use will be defined in section 2.5,
and the story begins with the definition of a semi-metric space.

One way to present the connected components of a graph is to consider the graph as a metric space using
the usual graph distance, allowing the metric to take the value +∞ between points which are not in the same
connected component, as in [8], page 1. In addition, the main difficulty in defining dynamical percolation on
the continuum limit will be in defining coalescence. In this process some points will be identified, and one
clear way to present this is to modify the metric and allow it to be equal to zero between different points
rather than performing the corresponding quotient operation. This type of space is called a semi-metric
space in [8], Definition 1.1.4, and we shall stick to this terminology.

Definition 2.5. A semi-metric space is a couple (X, d) where X is a non-empty set and d is a function
from X2 to R+ ∪ {+∞} such that for all x, y and z in X:

• d(x, z) ≤ d(x, y) + d(y, z),

• d(x, x) = 0,

• d(x, y) = d(y, x).

A semi-metric space (X, d) is a metric space if in addition

• d(x, y) = 0 ⇒ x = y.

A metric or semi-metric space (X, d) is said to be finite if d is finite.

Of course, when thinking about a semi-metric space (X, d), one may visualize the quotient metric space
(X/d, d) where points at null distance are identified. X and X/d are at zero Gromov-Hausdorff distance
(defined in section 2.5 below). Notice that (X, d) is not necessarily a separated metric space, but (X/d, d)
always is. Furthermore, (X, d) is separable if and only if (X/d, d) is separable.

Definition 2.6. If (X, d) is a semi-metric space, the relation R defined by:

xRy ⇔ d(x, y) <∞

is an equivalent relation. Each equivalence class is called a component of (X, d) and comp(X, d) denotes
the set of components. We denote by diam(X) the diameter of (X, d):

diam(X) = sup
x,y∈X

d(x, y)

and by supdiam(X) the supremum of the diameters of its components:

supdiam(X) = sup
m∈comp(X,d)

diam(m) .

1It requires some device to break ties, but those disappear in the continuum limit, for the Erdös-Rényi random graphs at
least.
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Definition 2.7. A measured semi-metric space (m.s-m.s) is a triple X = (X, d, µ) where (X, d) is a
semi-metric space and µ is a measure on X defined on a σ-field containing the Borel σ-field for the topology
induced by d.

An m.s-m.s (X, d, µ) is said to be finite if (X, d) is a finite totally bounded semi-metric space and µ is
a finite measure.

Finally, we define comp(X) := comp(X, d) and

masses(X) := (µ(m))m∈comp(X) .

Notice that a finite m.s-m.s has only one component.

Remark 2. One might feel more comfortable after realizing the following. Let π denote the projection from
(X, d) to X ′ := X/d, B′ the Borel σ-field on X ′ and B the Borel σ-field on X. Then, π−1(B′) = B and the
image measure π♯µ on X ′ is a Borel σ-finite measure.

2.5 The Gromov-Hausdorff-Prokhorov distance

In the introduction, we mentioned that G(n, p(λ, n)) converges in distribution, but we did not mention
precisely the underlying topology. The main topological ingredient in [3] is the Gromov-Hausdorff-Prokhorov
distance between two components of the graph, and we shall use this repeatedly. To define it, we need to
recall some definitions from [3].

If X = (X, d, µ) and X ′ = (X ′, d′, µ′) are two measured semi-metric spaces a correspondance R between
X and X ′ is a measurable subset of X ×X ′ such that:

∀x ∈ X, ∃x′ ∈ X ′ : (x, x′) ∈ R

and
∀x′ ∈ X ′, ∃x ∈ X : (x, x′) ∈ R .

We let C(X,X ′) denote the set of correspondances between X and X ′. The distortion of a correspondance
R is defined as

dis(R) := inf{ε > 0 : ∀(x, x′), (y, y′) ∈ R, d(x, y) ≤ d′(x′, y′) + ε and d′(x′, y′) ≤ d(x, y) + ε}

The Gromov-Hausdorff distance between two semi-metric spaces (X, d) and (X ′, d′) may be defined as:

dGH((X, d), (X ′, d′)) := inf
R∈C(X,X′)

1

2
dis(R) .

We denote by M(X,X ′) the set of finite Borel measures on X ×X ′. For π in M(X,X ′), we denote by
π1 (resp. π2) the first (resp. the second) marginal of π. For any π ∈ M(X,X ′), and any finite measures µ
on X and µ′ on X ′ one defines:

D(π;µ, µ′) = ‖π1 − µ‖ + ‖π2 − µ′‖
where ‖ν‖ is the total variation of a signed measure ν.

The Gromov-Hausdorff-Prokhorov distance is defined as follows in [3].

Definition 2.8. If X = (X, d, µ) and X
′ = (X ′, d′, µ′) are two m.s-m.s, the Gromov-Hausdorff-Prokhorov

distance between them is defined as:

dGHP (X,X ′) = inf
π∈M(X,X′)
R∈C(X,X′)

{D(π;µ, µ′) ∨ 1

2
dis(R) ∨ π(Rc)} .
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It is not difficult to show that dGHP satisfies the axioms of a semi-metric. Let us give a bit more intuition
to what the Gromov-Hausdorff-Prokhorov distance measures. On a semi-metric space (X, δ), let us denote
by δH the Hausdorff distance and by δLP the Lévy-Prokhorov distance. Let us recall their definition. For
B ⊂ X and ε > 0, let

Bε := {x ∈ X : ∃y ∈ B, d(x, y) < ε} .
Now, for A and B subsets of X ,

δH(A,B) := inf{ε > 0 : A ⊂ Bε and B ⊂ Aε}

and for finite measures µ and ν on X ,

δLP (µ, ν) := inf{ε > 0 : ∀B ∈ B(X), µ(B) ≤ ν(Bε) + ε and ν(B) ≤ µ(Bε) + ε} ,

where Bε = {x ∈ X : ∃y ∈ B, d(x, y) < ε}.
The following lemma shows that the Gromov-Hausdorff-Prokhorov distance measures how well two mea-

sured semi-metric spaces can be put in the same ambient space so that simultaneously their measures are
close in Prokhorov distance and their geometry are close in the Hausdorff distance. It shows that the defi-
nitions of [2] and [1] are equivalent, and its proof is a small variation on the proof of Proposition 6 in [15],
where only probability measures were considered.

Lemma 2.9. If X = (X, d, µ) and X ′ = (X ′, d′, µ′) be two measured separable semi-metric spaces, let

d̃GHP (X,X ′) := inf
δ
{δH(X,X ′) ∨ δLP (µ, µ′)}

where the infimum is over all semi-metric δ on the disjoint union X ∪X ′ extending d and d′. Then,

1

2
d̃GHP (X,X ′) ≤ dGHP (X,X ′) ≤ d̃GHP (X,X ′) .

Proof. Let ε > 0 and suppose that
d̃GHP (X,X ′) < ε .

Let
R := {(x, x′) ∈ X ×X ′ : δ(x, x′) ≤ ε} ,

so that R is a correspondance in C(X,X ′) with distortion at most 2ε. Suppose without loss of generality
that µ′(X ′) ≤ µ(X). Since δP (µ, µ′) ≤ ε, for any closed set B in the disjoint union X ∪X ′,

µ(B) ≤ µ′(Bε) + ε

µ(B)

µ(X)
≤ µ′(Bε)

µ′(X ′)
+

ε

µ(X)

Thus, Strassens’s theorem (Theorem 11.6.2 in [9]) asserts that there exists a coupling π0 ∈ M(X,X ′) such
that:

π0
1 =

µ

µ(X)
, π0

2 =
µ′

µ′(X ′)
and π(Rc) ≤ ε

µ(X)
.

Let π := µ(X)π0. Then, π(Rc) ≤ ε and

‖π1 − µ‖ = 0, ‖π2 − µ′‖ = µ(X) − µ′(X ′) ≤ ε .

Thus, dGHP (X,X ′) ≤ ε and this proves the second inequality.
Suppose now that dGHP (X,X ′) < ε, and let R ∈ C(X,X ′) and π ∈M(X,X ′) be such that

dis(R) ≤ 2ε, π(Rc) ≤ ε and D(π;µ, µ′) ≤ ε .
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Then, define a semi-metric δ on the disjoint union X ∪X ′ as follows:

δ(x, x′) := inf
(y,y′)∈R

{d(x, y) + ε+ d′(y′, x′)}

it is proved in [15] Proposition 6 that δ is a metric on X ∪ X ′, which extends d and d′. Furthermore, if
(x, x′) ∈ R, then δ(x, x′) = ε. Clearly, δH(X,X ′) ≤ ε and for any Borel set B in X ∪X ′,

µ(B) ≤ ‖π1 − µ‖ + π1(B)

≤ ‖π1 − µ‖ + π2(Bε) + π(Rc)

≤ ‖π1 − µ‖ + ‖π2 − µ′‖ + µ′(Bε) + π(Rc)

≤ 2ε+ µ′(Bε)

Thus, δP (µ, µ′) ≤ 2ε and this proves the second assertion.

It is easy to see that two m.s-m.s X and X ′ are at zero dGHP -distance if and only if there are two
distance and measure preserving maps φ and φ′ such that φ is a map from X to X ′ and φ′ a map from
X ′ to X. Let C denote the class of finite measured semi-metric spaces and R the equivalence relation on C
defined by XRX ′ ⇔ dGHP (X,X ′) = 0. Even though there is no set of finite measured semi-metric spaces
(see for instance [8] Remark 7.2.5 and above), C/R can be considered as a set in the sense that there exists
a set of representatives of elements of C.

Definition 2.10. Let U to be the universal Urysohn space and consider the set P of finite measured metric
subspaces of U. We denote by M the quotient P/R of P by the equivalence relation R, where:

XRX
′ ⇔ dGHP (X,X ′) = 0 .

By abuse of language, we may call M the “set of equivalence classes of finite measured semi-metric spaces,
equipped with the Gromov-Hausdorff-Prokhorov distance dGHP ”.

M is a set of representatives of elements of C. Indeed, since every separable metric space is isometric to
a metric subspace of U, every member of C will be at zero dGHP -distance from some element of P , and even
at zero dGHP -distance from some compact element of P . Thus, for every member X of the class C, there is
an element [X ′] of M such that for any X ′′ ∈ [X], dGHP (X,X ′′) = 0. Abusing notation, we shall denote
by [X] the member of M whose elements are at zero dGHP -distance from X.

For our purpose, it is in fact not crucial to have Definition 2.10, and one could reformulate all the results
in this article in terms of sequences of random variables, at the expense of much more heavy statements.

The following is shown in [1].

Theorem 2.11. (M, dGHP ) is a complete separable metric space.

Now, the Gromov-Hausdorff-Prokhorov distance in Definition 2.8 is too strong for our purpose when
applied to m.s-m.s which have an infinite number of components: it essentially amounts to a uniform control
of the dGHP distance between paired components. We are interested in a weaker distance which localizes
around the largest components. We shall restrict to countable unions of finite semi-metric spaces with the
additional property that for any ε > 0, there are only a finite number of components whose size exceeds
ε. To formulate the distance, it will be convenient to view those semi-metric spaces as a set of counting
measures on M.

Definition 2.12. For any ε > 0, let

M>ε = {[(X, d, µ)] ∈ M s.t. µ(X) > ε} .

For any counting measure ν on M, denote by ν>ε the restriction of ν to Mε. Denote by N the set of
counting measures ν on M such that for any ε > 0, ν>ε is a finite measure and such that ν does not have
atoms of mass 0, that is:

ν({[(X, d, µ)] ∈ M s.t. µ(X) = 0}) = 0

9



When X is a measured semi-metric space whose components are finite, we denote by νX the counting measure
on M defined by

νX :=
∑

m∈comp(X)

δ[m]

Abusing notations, we shall say that X ∈ N if νX belongs to N , and we shall denote by X>ε the disjoint
union of components of X whose masses are larger than ε.

Notice that X is in N if and only if it has an at most countable number of components, each one of its
components has positive mass and for any ε > 0, X>ε is the disjoint union of a finite number of components,
each one being totally bounded and equipped with a finite measure.

To define a Gromov-Hausdorff-Prokhorov distance between elements of N , let first ρLP be the Lévy-
Prokhorov distance on the set of finite measures on the metric space (M, dGHP ). Recall that

ρLP (ν, ν′) = inf{ε > 0 : ∀B ∈ B(M), ν(B) ≤ ν′(Bε) + ε and ν′(B) ≤ ν(Bε) + ε}

where Bε = {X ∈ M : dGHP (X, B) < ε} and B(M) is the Borel σ-algebra on (M, dGHP ). Then, for any
k ≥ 1, let

fk :



















M → R

[(X, d, µ)] 7→











1 if µ(X) ≥ 1
k

k(k + 1)
(

µ(X) − 1
k+1

)

if µ(X) ∈
[

1
k+1 ,

1
k

[

0 if µ(X) < 1
k+1

The following distance is an analogue of the distance in Lemma 4.6 of [14] where it is used to metrize the
vague topology on boundedly finite measures.

Definition 2.13. Let ν and ν′ be counting measures on M. Then, we define the Gromov-Hausdorff-

Prokhorov metric LGHP between ν and ν′ as:

LGHP (ν, ν′) :=
∑

k≥1

2−k{1 ∧ ρLP (fkν, fkν
′)} .

Remark 3. LGHP makes sense even between counting measures whose atoms are semi-metric spaces.

Remark 4. Notice that if X = (X, d, µ), then:

ρLP (νX , 0) ≤ # comp(X)

and thus
LGHP (νX , 0) ≤ 22−(supm∈comp(X) µ(m))−1

.

One sees thus that if X(n) is a sequence of m.s-m.s such that supm∈comp(X(n)) µ(m) goes to zero as n goes to
infinity, and whatever the diameters of the components are, then νX(n) converges to zero for LGHP , which
can be seen as an empty collection of measured metric spaces.

The following proposition is analogue to similar results concerning vague convergence of boundedly finite
measures (see section 4 of [14]).

Proposition 2.14. (N , LGHP ) is a complete separable metric space, and if νn, n ≥ 0 and ν are elements
of N , (νn)n≥0 converges to ν if and only if for every ε > 0 such that ν({[(X, d, µ)] ∈ M : µ(X) = ε}) = 0,

ρLP (ν
(n)
>ε , ν>ε) goes to zero as n goes to infinity.

Proof. The fact that LGHP is a metric is left to the reader. Let D be a countable set dense in {[(X, d, µ)] ∈
M : µ(X) 6= 0}. Let D := {∑m

k=1 δXk
: m ∈ N, X1, . . . ,Xm ∈ D}. It is easy to show that D is dense in

(N , LGHP ). This shows separability.
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Now, suppose that ν(n) is a Cauchy sequence for LGHP . Then, for any k ≥ 1, fkν
(n) is a Cauchy sequence

of finite measures for ρLP . From the completeness of the Lévy-Prokhorov distance on finite measures on a
Polish space we get that for each k, there is some measure νk such that

ρLP (fkν
(n), νk) −−−−→

n→∞
0 .

Notice that if 2 ≤ k ≤ l, νk = νl on M> 1
k−1

. Define

ν = sup
k≥0

1M 1
k+1

νk+2

so that for any k ≥ 1, fkν = νk. Then, ν is an element of N and

LGHP (ν(n), ν) −−−−→
n→∞

0 ,

showing the completeness of (N , LGHP ).
Finally, suppose that LGHP (ν(n), ν) goes to zero as n goes to infinity and let ε > 0 be such that

ν({[(X, d, µ)] ∈ M : µ(X) = ε}) = 0. Then, for any α > 0, let k be such that

1

k
≤ ε

let N be such that

∀n ≥ N, ∀A ∈ B(M), fkν(A) ≤ fkν
(n)(Aα) + α and fkν

(n)(A) ≤ fkν(Aα) + α .

Then, for n ≥ N and B ∈ B(M>ε),

ν>ε(B) ≤ ν(B ∩M>ε+α) + ν(M>ε \M>ε+α)

= fkν(B ∩M>ε+α) + ν(M>ε \M>ε+α)

≤ fkν
(n)((B ∩M>ε+α)α) + α+ ν(M>ε \M>ε+α)

= ν
(n)
>ε ((B ∩M>ε+α)α) + α+ ν(M>ε \M>ε+α)

≤ ν
(n)
>ε ((B)α) + α+ ν(M>ε \M>ε+α)

where we used the fact that (B ∩ M>ε+α)α ⊂ M>ε and fk equals 1 on M>ε. Also, for n ≥ N and
B ∈ B(M>ε),

ν
(n)
>ε (B) = fkν

(n)(B)

≤ fkν(Bα) + α

≤ ν(Bα) + α

≤ ν(Bα ∩M>ε) + ν(M>ε−α \M>ε)

= ν>ε((B)α) + ν(M>ε−α \M>ε)

To finish the proof, note that since ν({[(X, d, µ)] ∈ M : µ(X) = ε}) = 0, then

ν(M>ε \M>ε+α) + ν(M>ε−α \M>ε) −−−→
α→0

0 .

Notice that any m.s-m.s of N is at zero LGHP -distance of an m.s-m.s whose components are compact
metric spaces. In this article, we really are interested in equivalence classes of m.s-m.s for the equivalence
relation “being at zero LGHP -distance”, although in order to define random processes such as coalescence
and fragmentation, it will be convenient to have in mind a particular representative of such a class.

We shall always use the following lemmas to bound LGHP from above.
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Lemma 2.15. Let X = (X, d, µ) and X ′ = (X ′, d′, µ′) belong to N and ε > 0. Suppose there exists two
injective maps

σ : comp(X>ε) → comp(X ′) and σ′ : comp(X ′
>ε) → comp(X)

such that:
∀m ∈ comp(X>ε), dGHP (m,σ(m)) ≤ α

and
∀m′ ∈ comp(X ′

>ε), dGHP (m′, σ′(m′)) ≤ α .

Then,
LGHP (νX , νX′) ≤ α(1 + 8# comp(X>ε−α)) + 16ε ,

and if ε > α, for p > 0,

LGHP (νX , νX′) ≤ α

(

1 + 8

∑

m∈comp(X) µ(m)p

(ε− α)p

)

+ 16ε ,

Proof. Consider any ε0 ≥ ε. For a component m in comp(X>ε0), the difference between the masses µ(m)
and µ′(σ(m)) is at most α, and the same holds between m′ and σ′(m′) when m′ ∈ comp(X ′

>ε0). Thus σ′

sends comp(X ′
>ε0) in comp(X>ε0−α) and

#{m ∈ comp(X ′
>ε0)} ≤ #{m ∈ comp(X>ε0−α)} .

Now, let k be such that
1

k + 1
≥ ε .

Let B ∈ B(M> 1
k+1

). Then, for any m ∈ comp(X> 1
k+1

) ∩ B, σ(m) ∈ comp(X ′) ∩ Bα. Notice that fk is

k(k + 1)-Lipschitz.

fkνX(B) =
∑

m∈comp(X
> 1

k+1
)∩B

fk(m)

≤
∑

m∈comp(X
> 1

k+1
)∩B

fk(σ(m)) + αk(k + 1)# comp(X> 1
k+1

)

≤
∑

m′∈comp(X′)
m′∈Bα

fk(m′) + αk(k + 1)# comp(X> 1
k+1

)

= fkνX′(Bα) + αk(k + 1)# comp(X> 1
k+1

)

and symmetrically
fkνX′(B) ≤ fkνX(Bα) + αk(k + 1)# comp(X ′

> 1
k+1

)

Thus, for any k such that 1
k+1 ≥ ε,

ρLP (fkνX , fkνX′) ≤ α(1 + k(k + 1)# comp(X> 1
k+1

) ∨ # comp(X ′
> 1

k+1
))

≤ α(1 + k(k + 1)# comp(X> 1
k+1−α))

≤ α(1 + k(k + 1)# comp(X>ε−α))

Thus,

LGHP (νX , νX′) ≤ α



1 + # comp(X>ε−α)
∑

k< 1
ε−1

2−kk(k + 1)



+
∑

k≥ 1
ε−1

2−k

≤ α(1 + 8# comp(X>ε−α)) + 16ε
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If X and X ′ are two m.s-m.s with a finite number of finite components, one may measure their distance
with dGHP (using Definition 2.8), with LGHP (using Definition 2.13) or with

1 ∧ inf
σ

sup
m∈comp(X)

dGHP (m,σ(m)) = 1 ∧ ρLP (νX , νX′)

where the infimum is over bijections σ between comp(X) and comp(X ′). Those three distances do not
necessarily coincide, and the following lemma clarifies the links between them.

Lemma 2.16. Let X = (X, d, µ) and X ′ = (X ′, d′, µ′) be two m.s-m.s in N with a finite number of
components.

(i) If dGHP (X,X ′) <∞, then there is a bijection σ from comp(X) to comp(X ′) such that:

∀m ∈ comp(X), dGHP (m,σ(m)) ≤ 2dGHP (X,X ′) ,

and thus,
LGHP (X,X ′) ≤ 2dGHP (X,X ′)(1 + 8# comp(X)) .

(ii) If there exists a bijection σ from comp(X) to comp(X ′) such that:

sup
m∈comp(X)

dGHP (m,σ(m)) <∞ ,

then,
dGHP (X,X ′) ≤ sup

m∈comp(X)

dGHP (m,σ(m))# comp(X) ,

and
LGHP (X,X ′) ≤ sup

m∈comp(X)

dGHP (m,σ(m))(1 + 8# comp(X)) .

Proof. (i) Suppose that dGHP (X,X ′) < ε <∞. Let R ∈ C(X,X ′) and π ∈M(X,X ′) be such that

D(π;µ, µ′) ∨ 1

2
dis(R) ∨ π(Rc) ≤ ε .

Since R has finite distortion,

∀(x, x′), (y, y′) ∈ R, d(x, y) = +∞ ⇔ d′(x′, y′) = +∞

which shows that each component m of X (resp. X ′) is in correspondance through R with exactly
one component σ(m) of X ′ (resp. X). σ is thus a bijection, and R∩m× σ(m) ∈ C(m,σ(m)) and has
distortion at most 2dGHP (X,X ′). Furthermore,

π|m×σ(m)((R∩m× σ(m))c) = π(Rc ∩m× σ(m)) ≤ ε .

Finally, for any A ∈ B(m),

|π|m×σ(m)(A× σ(m)) − µ|m(A)| ≤ |π(A×X ′) − µ(A)| + π(A× σ(m)c)

≤ ε+ π(Rc)

≤ 2ε

and similarly, for any A′ ∈ B(σ(m)),

|π|m×σ(m)(m×A′) − µ′|σ(m)(A
′)| ≤ 2ε .

Thus,
∀m ∈ comp(X), dGHP (m,σ(m)) ≤ 2ε ,

and the consequence on LGHP (X,X ′) comes from Lemma 2.15.
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(ii) Suppose that there exists a bijection σ from comp(X) to comp(X ′) such that:

sup
m∈comp(X)

dGHP (m,σ(m)) ≤ ε <∞ .

Then, for any m, let Rm ∈ C(m,σ(m)) and πm ∈M(m,σ(m)) be such that

D(πm;µ|m, µ|′σ(m)) ∨
1

2
dis(Rm) ∨ πm(Rc

m) ≤ ε .

Let π =
∑

m∈comp(X) πm and R = ∪m∈comp(X)Rm. Then, R is a correspondance between X and X ′,

1

2
dis(R) ≤ 1

2
sup
m

dis(Rm) ≤ ε ,

π(Rc) =
∑

m

πm(Rc
m) ≤ # comp(X)ε .

Furthermore, for any A ∈ B(X),

|π(A×X ′) − µ(A)| ≤
∑

m∈comp(X)

|π((A ∩m) ×X ′) − µ(A ∩m)|

=
∑

m∈comp(X)

|π((A ∩m) × σ(m)) − µ(A ∩m)|

≤ # comp(X)ε

and symetrically, for any A′ ∈ B(X ′),

|π(X ×A′) − µ′(A′)| ≤ # comp(X)ε

Thus
D(π;µ, µ′) ≤ # comp(X)ε ,

and we get
dGHP (X,X ′) ≤ # comp(X)ε .

The statement on LGHP (X,X ′) follows from the hypothesis and Lemma 2.15 applied for any ε > 0
small enough, and letting ε go to zero.

2.6 Gluing and coalescence

2.6.1 Gluing and δ-gluing

If (X, d) and (X ′, d′) are two semi-metric spaces, the disjoint union semi-metric on X∪X ′ is the semi-metric
equal to d on X2, to d′ on (X ′)2 and to +∞ on (X×X ′)∪ (X ′×X). Gluing corresponds to identification of
points which can belong to the same semi-metric space or to different semi-metric spaces. A formal definition
is as follows (see also [8], pages 62–64).

Definition 2.17. Let (X, d) be a semi-metric space and R be an equivalence relation on X. The gluing of

(X, d) along R, is the semi-metric space (X, dR) with semi-metric defined on X2 by

dR(x, y) := inf{
k
∑

i=1

d(pi, qi) : p0 = x, qk = y, k ∈ N
∗}

where the infimum is taken over all choices of {pi} and {qi} such that (qi, pi+1) ∈ R for all i = 1, . . . , k− 1.
If (X ′, d′) is another semi-metric space and R̃ ⊂ X ×X ′, let R be the equivalence relation generated by

R̃ on the disjoint union X ∪ X ′. The gluing of (X, d) and (X ′, d′) along R̃ is the gluing of (X ∪ X ′, d′′)
along R, where X ∪X ′ is the disjoint union of X and X ′ and d′′ is the disjoint union semi-metric.

14



Now, we shall define the δ-gluing of a semi-metric space X along a subset R̃ of X2 as the operation of
joining every couple (x, x′) ∈ R by a copy of the interval [0, δ].

Definition 2.18. Let (X, d) be a semi-metric space, R̃ ⊂ X2 and δ ≥ 0. Then, the δ-gluing of (X, d)
along R̃, (XR,δ, dR,δ), is the semi-metric space which is the result of gluing an isometric copy of [0, δ]

between each couple (x, x′) belonging to R̃.
When X = (X, d, µ) is a measured semi-metric space, we equip the δ-gluing of (X, d) along R̃ with the

restriction of the measure µ to X, we still denote this measure µ and denote the resulting semi-metric space
by Coalδ(X, R̃) = (XR,δ, dR,δ, µ).

Remark 5. (i) When δ = 0, the δ-gluing of (X, d) along R̃ can be seen as the gluing of (X, d) along the
equivalence relation generated by R̃.

(ii) For any (x, y) ∈ X2,

dR,δ(x, y) = inf{(k − 1)δ +

k
∑

i=1

d(pi, qi) : p0 = x, qk = y, k ∈ N
∗} .

where the infimum is taken over all choices of {pi} and {qi} such that (qi, pi+1) ∈ R for all i =
1, . . . , k − 1.

(iii) If δ > 0, one may like to consider the space X with metric δR,δ, which corresponds to forget the interior
of the intervals [0, δ] that have been added in XR,δ. If (X, d, µ) ∈ N , for any k,

LGHP ((X, dR,δ, µ),Coalδ(X, R̃)) ≤ δ .

2.6.2 The coalescence processes

When (X, d, µ) is a measured semi-metric space, there is a natural coalescence process (of mean-field type)
which draws pairs of points (x, y) with intensity µ(dx)µ(dy) (and unit intensity in time) and identifies points
x and y, changing the metric accordingly. To describe the process of addition of edges during the dynamical
percolation on Erdös-Rényi random graph, one needs to replace the identification of x and y by the fact that
the distance between x and y drops to 1/n (if x 6= y). This leads to the following definition.

Definition 2.19. Let X = (X, d, µ) be an m.s-m.s with µ sigma-finite and δ ≥ 0. Let P+ be a Poisson
random set on X2 ×R+ of intensity measure 1

2µ
2 × lebR+ . The coalescence process with edge-lengths

δ started from X, denoted by (Coalδ(X, t))t≥0, is the random process of m.s-m.s (Coalδ(X,P+
t ))t≥0.

Notice that this process inherits the strong Markov property from the strong Markov property of the
Poisson process, and the fact that for A,B ⊂ X2, Coalδ(X, A ∪B) = Coalδ(Coalδ(X, A), B).

When δ > 0, if one wants to keep the space fixed and change only the metric, Remark 5 (iii) shows that
one can do so at the price of an LGHP -distance at most δ. In this paper, one wants typically to understand
scaling limits of N+(Gn,P+

t ) with P+ of intensity γn and Gn a discrete graph equipped with the distance
dn which is the graph distance mutliplied by some δn > 0 going to zero as n goes to infinity. See for instance
Theorem 3.1 below. If one equips Gn and N+(Gn,P+

t ) with their counting measures multiplied by
√
γn,

N+
γn(Gn, t) is at LGHP -distance at most δn from (Coalδn((Gn, dn, µn), t))t≥0, so the scaling limits will be

the same. We shall want to identify the limit itself as (Coal(Gλ, t))t≥0, and part of our work will consist in
showing that it is a nicely behaved process. In order to accomplish this task, we need to define some subsets
of N .

Definition 2.20. For p > 0, we define Np to be the set of elements ν =
∑

m∈I δm of N such that

∑

m∈I
µ(m)p <∞ .
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For ν in Np, we let masses(ν) to be the sequence in ℓpց of masses µ(m) listed in decreasing order and define,
for ν and ν′ in Np.

Lp,GHP (ν, ν′) = LGHP (ν, ν′) ∨ ‖masses(ν) − masses(ν′)‖p .

Again we shall abuse language, saying that (X, d, µ) is in Np when νX ∈ Np and write Lp,GHP (X,X ′)
for Lp,GHP (νX , νX′ ). We let the reader check that (Np, Lp,GHP ) is a complete separable metric space.

It is easy to see that if (X, d, µ) belongs to N1, then almost surely, for every t ≥ 0, Coalt,δ(X, d, µ) is in
N1. We even have the Feller property on N1, which will be proved in section 4.1. A consequence of the Feller
property of the multiplicative coalescent in ℓ2 is that if X = (X, d, µ) belongs to N2, then almost surely for
every t ≥ 0

∑

m∈comp(Coalδ(X,t)) µ(m)2 < ∞. However, one cannot guarantee that components stay totally

bounded, and thus that Coalδ(X, t) and even Coal0(X, t) belongs to N2. One will thus have to restrict to
a subclass of N2, which will fortunately contain Gλ with probability one.

Definition 2.21. We define S to be the class of m.s-m.s X = (X, d, µ) in N2 such that

∀t ≥ 0, supdiam(Coal0(X≤η, t))
P−−−→

η→0
0 (2)

It will be shown in Lemma 4.9 that if X ∈ S, then almost surely, for any t ≥ 0, Coal0(X, t) ∈ N2. Of
course, I suspect that S has a more intrinsic definition, and that there is a convenient topology which turns
it into a Polish space, however I could not prove this for the moment. Let us mention that there are elements
in N2 \ S, see Remark 9.

Let us finish this section by a description of the coalescence at the level of components. When X and P
are as in Definition 2.19, one may associate to them a process of multigraphs with vertices comp(X) which
we denote by MG(X, t). It is defined as follows: there is an edge in MG(X, t) between m and m′ if there is
a point (x, y, s) of P with s ≤ t, x ∈ m and y ∈ m′. If x = masses(X), this multigraph is of course closely
related to the multigraph MG(x, t) defined in section 2.3.

When A is a measurable subset of X , let A = (A, d|A×A, µ|A). There is an obvious coupling between
(Coal(X, t))t≥0 and (Coal(A, t))t≥0: just take the restriction of the poisson process P to A2 × R. We shall
call it the obvious coupling. We shall use several times the following easy fact.

Lemma 2.22. Under the obvious coupling, if MG(X, t) is a forest, then for every x, y in A and every s ≤ t
the distance between x and y in (Coal(A, s)) is equal to the distance between x and y in (Coal(X, s)).

2.7 R-graphs

We refer to [3] for background on the definitions and statements in this section.

Definition 2.23. An R-tree is a geodesic and acyclic finite metric space. An R-graph is a totally bounded
geodesic finite metric space (G, d) such that there exists R > 0 such that for any x ∈ G, (BR(x), d|BR(x)) is
an R-tree, where BR(x) is the ball of radius R and center x.

For a semi-metric space (X, d), we shall say that it is an R-graph if the quotient metric space (X/d, d)
is an R-graph.

Remark 6. The definition above differs slightly from Definition 2.2 in [3], where an R-graph (X, d) is
defined as a compact geodesic metric space such that for any x ∈ G, there exists ε = ε(x) > 0 such that
(Bε(x), d|Bε(x)) is an R-tree, where Bε(x) is the ball of radius ε and center x. When (X, d) is compact, the
two definitions agree: one direction is obvious, whereas the other follows from the arguments at the beginning
of section 6.1 in [3]. One advantage of working with precompact spaces instead of compact ones is that one
may avoid completion to recover an R-graph after fragmentation.

The degree dG(x) of a point x in a graph (G, d) is the number of connected components of Bε(x)(x)\ {x}.
A branchpoint x is a point with degG(x) ≥ 3. A leaf x is a point with degree one. We denote by leaves(G)
the set of leaves of G. An R-tree or an R-graph is said to be finite if it is compact and has a finite number
of leaves.
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An R-graph (G, d) is naturally equipped with a length measure, which assigns for instance its length to
the image of a geodesic. We shall denote it by ℓG, it is a sigma-finite diffuse measure.

The structure of an R-graph is explained thoroughly2 in [3]. The core of (G, d), denoted by core(G) is the
union of all simple arcs with both endpoints in embedded cycles of G. It is also the maximal compact subset
of G having only points of degree at least 2 (cf. Corollary 2.5 in [3], where one needs to replace “closed”
by “compact” in our precompact setting). The core of a tree is empty, that of a unicyclic graph is a cycle.
When G is neither a tree nor unicyclic, there is a finite connected multigraph ker(G) = (k(G), e(G)) called
the kernel of G such that the core of G may be obtained from ker(G) by gluing along each edge an isometric
copy of the interval [0, l], for some l > 0. The surplus of G is defined as 0 when G is a tree, 1 when G is
unicyclic, and in general as:

surplus(G) = |e(G)| − |k(G)| + 1 ,

which is then at least two.
Using the existence of the core, one gets the following equivalent definition of an R-graph, where an

R-graph is obtained as a “tree with shortcuts”, to employ the expression of [7]. We leave the proof to the
reader.

Lemma 2.24. A metric space (X, d) is an R-graph if and only if there exists a totally bounded R-tree
(T, d) and a finite set A ⊂ T 2 such that (X, d) is isomorphic to the quotient metric space obtained from
Coal0((T, d), A).

Definition 2.25. Let Pgraph denote the set of metric subspaces of the Urysohn space U that are R-graphs.
Let Mgraph denote the set of equivalence classes on Pgraph under the equivalence relation of being at zero
dGHP -distance.

Define N graph (resp. N graph
p , resp. Sgraph) from Mgraph in the same way that N (resp. Np, resp. S)

was defined from M.
If X = (X, d, µ) and X ′ = (X ′, d′, µ′) belong to Mgraph, we let surplus(X) denote the surplus of any

graph in the equivalent class of X and define

dsurplusGHP (X,X ′) := dGHP (X,X ′) ∨ | surplus(X) − surplus(X ′)| .

Finally, define LsurplusGHP and Lsurplusp,GHP in the same way that LGHP and Lp,GHP were defined, but replacing

dGHP by dsurplusGHP .

Thanks to Lemma 2.24, it is clear that if X ∈ N graph and P ⊂ X2 is finite, then for any δ ≥ 0,
Coalδ(X,P) still belongs to N graph. Furthermore, it will be shown in Lemma 4.9 that if X ∈ Sgraph, then

almost surely, for any t ≥ 0, Coal0(X, t) ∈ N graph
2 .

Additional notations concerning R-graphs will be introduced when needed, in section 5.1.

2.8 Cutting, fragmentation and dynamical percolation

Definition 2.26. Suppose that X = (X, d, µ) is an m.s-m.s whose components are length spaces and P− is a

subset of X. Then, the cut of X along P−, denoted by Frag(X,P−) is the m.s-m.s (X \P−, dFragP , µ|X\P−))
where

dFragP (x, y) := inf
γ
{ℓX(γ)}

and the infimum is over all paths γ from x to y disjoint from P.

Remark 7. (i) Frag(X, ∅) is the same as X precisely because the components of (X, d) are length spaces.

(ii) Notice that if (X, d) is complete, Frag((X, d, µ),P) is generally not complete anymore, but its completion
is at zero LGHP -distance from (X, d, µ).

2Although our definition differs slightly, the proof of Proposition 6.2 in [3] can be adapted straightforwardly.
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Definition 2.27. Let X = (X, d, µ) be an m.s-m.s whose components are length spaces. Let ℓ be a diffuse
σ-finite Borel measure on X. Let P− be a Poisson random set on X×R+ of intensity measure ℓ⊗lebR+ . The
fragmentation process started from X, denoted by (Frag(X, t))t≥0, is the random process of m.s-m.s
(Frag(X,P−

t ))t≥0. When X ∈ N graph, we shall always take ℓ to be ℓX , the length-measure on X.

Remark 8. (i) A similar fragmentation on the CRT is considered in [6].

(ii) Since ℓ is a diffuse measure, almost surely µ(P−
t ) = 0 for any t ≥ 0. Thus we shall abuse notation and

consider that Frag(X,P−
t ) is still equipped with µ, instead of µ|X\P−

t
.

(iii) Notice that this process inherits the strong Markov property from the strong Markov property of the
Poisson process, and the fact that for A,B ⊂ X, Frag(X, A ∪B) = Frag(Frag(X, A), B).

Now, one wants to define dynamical percolation on measured length spaces by performing independently
and simultaneously coalescence and fragmentation. One needs to be a bit careful here: when (X, d) is a
geodesic space, A ⊂ X2 and B ⊂ X , even if B ∩ {x ∈ X : ∃y ∈ X, (x, y) or (y, x) ∈ A} = ∅, one cannot
guarantee that Coal0(Frag(X,B), A) = Frag(Coal0(X,A), B). Indeed, let X = [0, 1] with the usual metric,
let B = { 3

2n , n ≥ 2} and A = {( 1
2n+1 ,

1
2n ), n ≥ 1}. Then, there are two components in Coal0(Frag(X,B), A):

{0} and ]0, 1] \B, whereas there is only one component in Frag(Coal0(X,A), B): [0, 1] \B. However, it will
be shown in Lemma 4.9 that if X ∈ Sgraph, P+ is as in Definition 2.19, P− as in Definition 2.27 then almost
surely,

∀t ≥ 0, Coal0(Frag(X,P−
t ),P+

t ) = Frag(Coal0(X,P+
t ),P−

t ) . (3)

This will rely on the following property. Hereafter, we say that a path γ in Coal(X,A) takes a shortcut (a, b)
in A ⊂ X2 if (a, b) ∈ A and γ ∩ {a, b} 6= ∅.

Lemma 2.28. Let (X, d) be a length space and A ⊂ X2 an equivalent relation. Suppose that for any
(x, y) ∈ X2, every simple rectifiable path in Coal(X,A) from x to y takes only a finite number of shortcuts
in A. Then, for any B ⊂ X such that B ∩ {x ∈ X : ∃y ∈ X, (x, y) or (y, x) ∈ A} = ∅,

Coal0(Frag(X,B), A) = Frag(Coal0(X,A), B) .

Proof: Let ℓX(γ) denote the length of a path γ in X . Let dfragcoal (resp. dcoalfrag, resp. dfrag) denote
the distance of Frag(Coal0(X,A), B) (resp. Coal0(Frag(X,B), A), resp. Frag(X,B)) on X \B. We want to
show that dfragcoal = dcoalfrag. First, it is always true that dfragcoal ≤ dcoalfrag. Indeed, let {pi} and {qi},
i = 1, . . . , k be such that (qi, pi+1) ∈ A for all i = 1, . . . , k − 1 and p0 = x, qk = y. Then, the concatenation
of (k− 1) paths γi in X , i = 1, . . . , k− 1 such that γi goes from pi to qi and each path avoids B gives a path
in Coal(X,A) from x to y avoiding B. Thus, for any x and y in X \B,

dfragcoal(x, y) ≤ inf
k,{pi},{qi}
γi:pi→qi
γi∩B=∅

(

k
∑

i=1

ℓX(γi)

)

= inf
k,{pi},{qi}

(

k
∑

i=1

dfrag(pi, qi)

)

= dcoalfrag(x, y) .

Let us show now that dcoalfrag ≤ dfragcoal. Let x and y be in X \ B and let γ be a rectifiable simple path
from x to y in Coal(X,A) such that γ ∩B = ∅. Then, γ takes only a finite number of shortcuts in A. Thus,
there exists {pi} and {qi}, i = 1, . . . , k and paths γi, i = 1, . . . , k − 1 such that (qi, pi+1) ∈ A and γi is a
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path from pi to qi in X and γ is the concatenation of γ1, . . . , γk. Thus, γi ∩B = ∅ for any i and

ℓCoal(X,A)(γ) =

k
∑

i=1

ℓX(γi)

≥
k
∑

i=1

dfrag(pi, qi)

≥ dcoalfrag(x, y)

Taking the infimum over rectifiable simple paths γ from x to y in Coal(X,A) such that γ ∩B = ∅ gives that
dcoalfrag ≤ dfragcoal. �

Definition 2.29. Let X = (X, d, µ) be an m.s-m.s whose components are length spaces. Let ℓ be a diffuse σ-
finite Borel measure on X. Let P− be a Poisson random set on X×R+ of intensity measure ℓ⊗lebR+ and P+

be a Poisson random set on X2×R+ of intensity measure 1
2µ

2×lebR+ . The dynamical percolation process

started from X, denoted by (CoalFrag(X, t))t≥0, is the stochastic process (Coal0(Frag(X,P−
t ),P+

t ))t≥0.

Property (3) (when it holds !) shows that (CoalFrag(X, t))t≥0 inherits the strong Markov Property from
that of the Poisson process.

2.9 The scaling limit of critical Erdös-Rényi random graphs

The scaling limit of critical Erdös-Rényi random graphs was obtained in [2], Theorem 24, for the Gromov-
Hausdorff topology, and the result is extended to Gromov-Hausdorff-Prokhorov topology in [3], Theorem 4.1.

Let Gn, λ denote element of N graph
2 obtained by replacing each edge of G(n, p) by an isometric copy of a

segment of length n−1/3 (notably, the distance is the graph distance divided by n1/3) and choosing as measure
the counting measure on vertices divided by n2/3. Theorem 4.1 in [3] and Corollary 2 in [5] easily imply the
following.

Theorem 2.30 ([2],[3]). Let λ ∈ R and p(λ, n) = 1
n + λ

n4/3 . There is a random element Gλ of N graph
2 such

that

Gn,λ
(d)−−−−→

n→∞
Gλ ,

where the convergence in distribution is with respect to the Lsurplus2,GHP -topology.

We refer to [2] for the precise definition of the limit Gλ and to [4] for various properties of Gλ.

3 Main results

The main results concerning Erdös-Rényi random graphs are the following. Notice that the fact that
(Coal0(Gλ, t))t≥0 and (CoalFrag(Gλ, t))t≥0 are well-defined processes in Sgraph will be part of the proofs,
see section 4.3 and Remark 10. Recall that every convergence of a process stated in this article is with
respect to the topology of compact convergence (associated to L1,GHP , Lsurplus1,GHP , L2,GHP or Lsurplus1,GHP ), see
section 2.1.

Theorem 3.1. Let Gn,λ,+(t), t ≥ 0 be the discrete coalescence process of intensity n−4/3, started at
G(n, p(λ, n)), equipped with the graph distance multiplied by n−1/3 and the counting measure on vertices
multiplied by n−2/3. Then, (Gn,λ,+(t))t≥0 converges to (Coal0(Gλ, t))t≥0 for L2,GHP .
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Theorem 3.2. Let Gn,λ,−(t), t ≥ 0 be the discrete fragmentation process of intensity n−1/3 started at
G(n, p(λ, n)), equipped with the graph distance multiplied by n−1/3 and the counting measure on vertices

multiplied by n−2/3. Then, (Gn,λ,−(t))t≥0 converges to (Frag(Gλ, t))t≥0 for Lsurplus2,GHP .

Theorem 3.3. Let Gn,λ(t), t ≥ 0 be the dynamical percolation processes of parameter p(λ, n) and inten-
sity n−1/3 started with G(n, p(λ, n)), equipped with the graph distance multiplied by n−1/3 and the counting
measure on vertices multiplied by n−2/3. Then, (Gn,λ(t))t≥0 converges to (CoalFrag(Gλ, t))t≥0 for L2,GHP .

In the course of proving those results, I tried to obtain more general results, such that one could apply the
same technology to other sequences of random graphs, for instance those belonging to the basin of attraction
of Gλ (see [7] for this notion). This is reflected in what I called below Feller or almost Feller properties for
coalescence (Lemma 4.11), fragmentation (Proposition 5.5), and dynamical percolation (Proposition 6.2).
Note that those are variations on the Feller property, often weaker than a true Feller property in the sense
that I need to add some condition in order to ensure convergence, but also a bit stronger in the sense that I
added in the results the convergence of the whole process in the sense of the topology of compact convergence.

Let me describe the rest of the article. Section 4 is devoted to the proofs of the (almost) Feller property for
coalescence and of Theorem 3.1. It contains notably the fact that (Coal0(Gλ, t))t≥0 and (CoalFrag(Gλ, t))t≥0

are processes in Sgraph. Probably the most important work lies inside Lemma 4.5, which is a statement
about the structure of the graph W (x, t) in Aldous’ multiplicative coalescent. It allows notably to reduce
the proof of the Feller property from N2 to N1, where it is much easier to prove. Section 5 is devoted to
the proofs of the Feller property for fragmentation and of Theorem 3.2. We shall also show that for Gλ,
coalescence is the time-reversal of fragmentation, see Proposition 5.13. Finally, section 6 is devoted to the
proofs of the (almost) Feller property for dynamical percolation and of Theorem 3.3.

4 Proofs of the main results for coalescence

4.1 The Coalescent on N1

On N1, coalescence behaves very gently since there is a finite number of coalescence events in any finite
time interval. Notably, for X ∈ N1, (Coal(X, t))t≥0 is clearly càdlàg. The aim of this section is to prove
Proposition 4.3, which is essentially a Feller property.

Lemma 4.1. Let ε ∈]0; 1[, X = (X, d, µ) and X ′ = (X ′, d′, µ′) be two m.s-m.s with a finite number of finite
components. Suppose that P = {(xi, yi), 1 ≤ i ≤ k} are pairs of points in X and P ′ = {(x′i, y

′
i), 1 ≤ i ≤ k}

are pairs of points in X ′. Suppose that there exists π ∈M(X,X ′) and R ∈ C(X,X ′) such that:

D(π;µ, µ′) ∨ π(Rc) ∨ 1

2
dis(R) ≤ ε

and that for any i ≤ k, (xi, x
′
i) ∈ R and (yi, y

′
i) ∈ R. Then, for any δ, δ′ > 0,

dGHP (Coalδ(X, P ),Coalδ′(X
′, P ′)) ≤ (2ε+ |δ − δ′|)(k + 1)

Proof. This is essentially3 Lemma 21 in [2] and Lemma 4.2 in [3], thus we leave the details to the reader.

Lemma 4.2. Let ε ∈]0; 1[ and δ > 0, X = (X, d, µ) and X ′ = (X ′, d′, µ′) be two m.s-m.s with a finite
number of finite components. If there exists π ∈M(X,X ′) and R ∈ C(X,X ′) such that:

D(π;µ, µ′) ∨ π(Rc) ∨ 1

2
dis(R) ≤ ε

then, one may couple two Poisson processes: P of intensity 1
2µ

⊗2 ⊗ leb[0,T ] and P ′ of intensity 1
2 (µ′)⊗2 ⊗

leb[0,T ], such that with probability larger than 1−Tε(10 + 8µ(X) + 8µ′(X ′))−
√

2ε+ |δ − δ′|, for any t ≤ T ,

dGHP (Coalδ(X,Pt),Coalδ′(X
′,P ′

t)) ≤ (Tµ(X) + 1)
√

2ε+ |δ − δ′| .
3 In [3], Lemma 4.2 is stated for trees and for δ = 0.
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Proof. Let P(µ) denote the distribution of a Poisson random set of intensity measure µ. Using the coupling
characterization of total variation distance and the gluing lemma (cf [18] page 23), one may construct three
Poisson random sets on the same probability space, P , P̃ and P ′ such that:

• P = (Xi, Yi, ti)i=1,...,N has distribution P(µ⊗2 × leb[0,T ]) on X2 × [0, T ],

• P ′ = (X ′
i, Y

′
i , t

′
i)i=1,...,N ′ has distribution P((µ′)⊗2 × leb[0,T ]) on (X ′)2 × [0, T ],

• P = (X̃i, X̃
′
i, Ỹi, Ỹ

′
i , t̃i)i=1,...,Ñ has distribution P(π⊗2 × leb[0,T ]) on (X ×X ′)2 × [0, T ],

• P[(Xi, Yi, ti)i=1,...,N 6= (X̃i, Ỹi, t̃i)i=1,...,Ñ ] ≤ ‖P(µ⊗2 × leb[0,T ]) − P(π⊗2
1 × leb[0,T ])‖

• P[(X ′
i, Y

′
i , t

′
i)i=1,...,N ′ 6= (X̃ ′

i, Ỹ
′
i , t̃i)i=1,...,Ñ ] ≤ ‖P((µ′)⊗2 × leb[0,T ]) − P(π⊗2

2 × leb[0,T ])‖

Now, for any T > 0,

‖P(µ⊗2 × leb[0,T ]) − P(π⊗2
1 × leb[0,T ])‖ ≤ 2‖µ⊗2 × leb[0,T ] −π⊗2

1 × leb[0,T ] ‖
= 2T ‖µ⊗2 − π⊗2

1 ‖
≤ 4T (µ(X) + π1(X))‖µ− π1‖
≤ 4Tε(2µ(X) + ε)

by hypothesis. Similarly,

‖P((µ′)⊗2 × leb[0,T ]) − P(π⊗2
2 × leb[0,T ])‖ ≤ 4Tε(2µ′(X ′) + ε) .

Furthermore, (X̃i, X̃
′
i, t̃i)i=1,...,Ñ and (Ỹi, Ỹ

′
i , t̃i)i=1,...,Ñ both have distribution P(π ⊗ leb[0,T ]). Thus,

P(∃i ≤ Ñ , (X̃i, X̃
′
i) 6∈ R) ≤ Tπ(Rc) ≤ Tε

and
P(∃i ≤ Ñ , (Ỹi, Ỹ

′
i ) 6∈ R) ≤ Tε .

Let E be the event that N = N ′ and for any i, (X̃i, X̃
′
i) ∈ R and (Ỹi, Ỹ

′
i ) ∈ R. Altogether, we get that E

has probability at least 1 − Tε(10 + 8µ(X) + 8µ′(X ′)).
Since the distortion of R is at most 2ε, we get using Lemma 4.1 that on the event E , for any t ≤ T

dGHP (Coalδ(X,Pt),Coalδ′(X
′,P ′

t)) ≤ (N + 1)(2ε+ |δ − δ′|)

Since N has distribution P(µ(E)T ),

P

(

N ≥ Tµ(E)
√

2ε+ |δ − δ′|

)

≤
√

2ε+ |δ − δ′|

this gives the result.

In the Proposition below, recall from section 2.1 that convergence of processes uses the topology of
compact convergence (here for the metric space (N1, L1,GHP )).

Proposition 4.3. Let Xn = (Xn, dn, µn), n ≥ 0 be a sequence of elements in N1 and (δn)n≥0 a sequence
of non-negative real numbers. Suppose that:

(a) (Xn)n≥0 converges (for L1,GHP ) to X∞ = (X∞, d∞, µ∞) as n goes to infinity

(b) δn −−−−→
n→∞

δ∞

Then,
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(i) (Coalδn(Xn, t))t≥0 converges in distribution to (Coalδ(X
∞, t))t≥0,

(ii) if tn −−−−→
n→∞

t, Coalδn(Xn, tn) converges in distribution to Coalδ(X
∞, t).

Proof. Let us fix ε ∈]0, 1[. Let ε0 ∈]0, ε/2[ be such that ε0 6∈ masses(X∞) and

µ(X∞
≤ε0) ≤ ε .

Proposition 2.14 shows that ρLP (Xn
>ε0 ,X

∞
>ε0) goes to zero as n goes to infinity. Let n be large enough so

that

ρLP (Xn
>ε0 ,X

∞
>ε0) ≤

(

ε ∧ ε0
1 + 2Tµ(X∞)

)4

|δn − δ∞| ≤
(

ε ∧ ε0
1 + 2Tµ(X∞)

)4

and
‖masses(Xn) − masses(X∞)‖1 ≤ ε .

Let k := # comp(X∞
>ε0) and notice that

k ≤ µ(X∞)

ε0
.

Lemma 2.16 shows that

dGHP (Xn
>ε0 ,X

∞
>ε0) ≤

(

ε ∧ ε0
1 + 2Tµ(X∞)

)4
µ(X∞)

ε0
.

Notice also that:
µ(Xn

≤ε0) ≤ µ(X∞
≤ε0) + ‖masses(Xn) − masses(X∞)‖1 ≤ 2ε .

Thus, using Lemma 4.2, one may couple the coalescence on Xn and X∞ in such a way that with probability
larger than 1−2εT no point of the Poisson processes touches X∞

≤ε0 or Xn
≤ε0 and with probability larger than

1 − Tε(10 + 8µ(Xn) + 8µ∞(X∞)) −
√

(ε ∧ ε0)3), for any t ≤ T ,

dGHP (Coalδn(Xn
>ε0 , t),Coalδ(X

∞
>ε0 , t)) ≤

√

(ε ∧ ε0)3 .

Using Lemma 4.2 and Lemma 2.15, this implies that

LGHP (Coalδn(Xn, t),Coalδ(X
∞, t)) ≤ C

√
ε

for some finite constant C depending only on µ(X∞). Furthermore, since the multigraphs MG(X∞, t) and
MG(Xn, t) are the same for any t ≤ T in this coupling,

‖masses(Coalδn(Xn, t)) − masses(Coalδ(X
∞, t))‖1

≤ ‖masses(Coalδn(Xn
>ε0 , t)) − masses(Coalδ(X

∞
>ε0 , t))‖1

+‖masses(Coalδn(Xn
≤ε0 , t)) − masses(Coalδ(X

∞
≤ε0 , t))‖1

≤ ‖masses(Xn
>ε0 , t) − masses(X∞

>ε0 , t)‖1 + µ(Xn
≤ε0) + µ(X∞

≤ε0)

≤ 4ε .

This shows (i). To obtain (ii), notice that for any s and η > 0,

P(∃t ∈ [s, s+ δ] : Coalδ∞(X∞, t) 6= Coalδ∞(X∞, s)) ≤ µ(X∞)2η .

Thus, (ii) is a simple consequence of (i).
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We shall need the following variation of Proposition 4.3 when studying simultaneous coalescence and
fragmentation in section 6.

Proposition 4.4. Let Xn = (Xn, dn, µn), n ∈ N be a sequence of random variables in N graph
1 and (δn)n≥0

a sequence of non-negative real numbers. Suppose that:

(a) (Xn)n≥0 converges in distribution for Lsurplus1,GHP to X∞ as n goes to infinity,

(b) δn −−−−→
n→∞

δ.

Then,

(i) (Coalδn(Xn, t))t≥0 converges in distribution (for the topology of compact convergence associated to

Lsurplus1,GHP ) to (Coalδ(X
∞, t))t≥0,

(ii) if tn −−−−→
n→∞

t, Coalδn(Xn, tn) converges in distribution to Coalδ(X
∞, t) for Lsurplus1,GHP .

Proof: Notice first that when X belongs to N graph
1 , then with probability one, Coalδ(X

n, t) is in N graph
1

for any t ≥ 0. Indeed, since X has finite mass, there is with probability one a finite number of points in the
Poisson process P+

t on X2 for any t ≥ 0.
Now, the proof is esentially the same as the one of Proposition 4.3, except that since (Xn)n≥0 converges

to X∞ for Lsurplus1,GHP , one may use dsurplusGHP instead of dGHP . The fact that the multigraphs MG(Xn, s) and
MG(X∞, s) are the same for any s ≤ T , and that no point of the Poisson processes touches Xn

≤ε0 or X∞
≤ε0

imply that for each component of Coalδn(Xn
≥ε0 , s), its surplus is the same as the surplus of the corresponding

component in Coalδ(X
∞
≥ε0 , s). �

4.2 Structural result for Aldous’ multiplicative coalescent

Recall the definition of the multigraph MG(x, t) for x ∈ ℓ2 in section 2.3. We shall use notations analogous
to Definition 2.12. For instance, for x ∈ ℓ2+, x≤ε denotes the element in ℓ2+ defined by:

∀i ∈ N, x≤ε(i) = x(i)1x(i)≤ε .

Also, for i ∈ N, x \ {i} denotes the element in ℓ2 defined by:

∀j ∈ N, (x \ {i})(j) = x(j)1j 6=i .

Notice that at time 0, the components of MG(x, 0) are the singletons {i} for i ∈ N. Let us fix some ε > 0
and say that components of MG(x, t) are significant if they are larger than ε. We shall derive three scales
(at time 0), namely, Large, Medium and Small such that with high probability (as ε goes to zero), every
significant component of MG(x, t) is made of a heart made of Large or Medium components of MG(x, 0) to
which are attached hanging trees of small or medium components of MG(x, 0) such that the component of
the trees attached to the heart are small components (see Figure 1) and the mass contained in the hanging
trees is at most medium. Furthermore, these scales depend on x, ε and t through the functions α 7→ ‖x≤α‖2
and K 7→ P(S(x, t) ≥ K).

Lemma 4.5. Let x ∈ ℓ2(N), T ≥ 0 and 0 < ε < 1. Suppose that:

(i) K ≥ 1 is such that:

P(S(x, T ) ≥ K) ≤ ε

100
,

(ii) ε1 ∈ (0, ε) is such that:

S(x≤ε1 , 0) ≤ ε2

100(1 + T +KT 2)
,
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(iii) ε2 ∈ (0, ε1) is such that:

S(x≤ε2 , 0) ≤ 2ε21ε
2

100(1 + T (K + 2))2
.

Then with probability larger than 1 − ε, the following holds for any t ≤ T ,

(a) every component of MG(x, t) of size larger than ε contains a component of MG(x, 0) of size larger than
ε1.

(b) MG(x≤ε1 , t) is a forest.

(c) for each component m of MG(x≤ε1 , t) and each component m′ of MG(x>ε1 , t), there is at most one edge
between m and m′ in MG(x, t).

(d) S(x, t) − S(x>ε2 , t) ≤ 2ε21.

(e) for any component {i} of MG(x, 0) of size larger than ε1, the difference between the sizes of the component
containing i in MG(x, t) and the one containing i in MG(x>ε2 , t) is less than ε1.

The picture depicted before Lemma 4.5 is then a simple corollary. We state it uniformly on a convergent
sequence in ℓ2ց because it will be convenient to prove the almost Feller property on S, Lemma 4.11.

Corollary 4.6. Let xn be a sequence in ℓ2ց converging to x∞ in ℓ2. Then, for any ε > 0, and any T > 0

there exists ε1 and ε2 such that for any n ∈ N, with probability at least 1 − ε the following holds for any
t ∈ [0, T ]:

(a) every significant component of MG(xn, t) is made of a connected heart made of Large or Medium com-
ponents of MG(xn, 0) to which are attached hanging trees (each one attached by a single edge to the
heart) of Small or Medium components of MG(xn, 0) such that the components of the trees attached to
the heart are Small components and the mass contained in the hanging trees is less than ε1,

(b) no Medium or Small component of MG(x, 0) belongs to a cycle in MG(x, t),

(c) S(x, t) − S(x>ε2 , t) ≤ 2ε21,

where a component is significant if it has size larger than ε, Large if it has size larger than ε1, Medium for
a size in (ε2, ε1] and Small for a size not larger than ε2.

The proof of Lemma 4.5 relies essentially on Aldous’ analysis of the multiplicative coalescent.

Proof. (of Lemma 4.5)
If for some t ≤ T there exists a significant component of MG(x, t) which does not contain any large

component of x, then S(x≤ε1 , t) > ε2 and thus S(x≤ε1 , T ) > ε2. Thus Lemma 2.1 shows that the probability
of (a) is larger than 1 − ε/4, as soon as hypothesis (ii) of Lemma 4.5 holds.

Let {i} be a component of MG(x, 0) and define the event

Ai = {there exists at least two edges of MG(x, t) connecting i to a same component of MG(x \ {i}, t)}.

Then,

P(Ai|MG(x \ {i}, t)) ≤
∑

m c.c.of MG(x\{i},t)
(xi
∑

j∈m
xjt)

2 ,

= t2x2iS(x \ {i}, t) ,

thus,

P(Ai ∩ {S(x, t) ≤ K}) ≤ E[P(Ai|MG(x \ {i}, t))1S(x\{i},t)≤K ] ,

≤ Kt2x2i . (4)
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Figure 1: The structure of a significant component

We obtain thus:
P(∪i∈Ns.t. xi≤ε1Ai) ≤ Kt2S(x≤ε1 , 0) + P(S(x, t) > K) ,

which shows that the probability of (b) is at least 1 − ε/4 as soon as hypotheses (i) and (ii) of Lemma 4.5
hold.

The proof of (c) is similar. Let

B = {there exists at least two edges of MG(x, T ) connecting a component m of MG(x≤ε1 , T ) to a
component m′ of MG(x>ε1 , T )}.

Then,

P(B|MG(x>ε1 , T ),MG(x≤ε1 , T )) ≤
∑

m c.c.of MG(x≤ε1
,T )

∑

m′ c.c.of MG(x>ε1 ,T )

(
∑

i∈m
xi
∑

j∈m′

xjT )2 ,

= T 2S(x≤ε1 , T )S(x>ε1 , T ) .

Thus,

P(B) ≤ ε

5
+ P(S(x, T ) ≥ K) + P(S(x≤ε1 , T ) ≥ ε

5KT 2
) ,

which shows using Lemma 2.1 that the probability of (c) is at least 1− ε/4 as soon as hypotheses (i) and (ii)
of Lemma 4.5 hold.

Now, let Y be the supremum, over Large components {i} of MG(x, 0), of the difference between the
sizes of the component containing i in MG(x, t) and the one containing i in MG(x>ε2 , t). Notice that if
Y ≥ α, then S(x, t) ≥ S(x>ε2 , t) + 2ε1α, which implies S(x, T ) ≥ S(x>ε2 , T ) + 2ε1α when (c) holds, thanks
to Lemma 2.4. Thus points (e) and (d) will be proved if we show that S(x, T ) > S(x>ε2 , T ) + 2ε21 with
probability at most ε/4.

Define the event
C = {S(x, T ) > S(x>ε2 , T ) + 2ε21} .
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Lemma 2.2 shows that:

P(C and S(x, T ) ≤ K and S(x≤ε2 , T ) ≤ β})

≤ (1 + T (K + 2ε21))
2 β

2ε21
.

Thus,

P(C) ≤ (1 + T (K + 2))2
β

2ε21
+ P(S(x≤ε2 , T ) > β) + P(S(x, T ) > K) ,

which is less than ε/4 if hypotheses (i), (ii) and (iii) of Lemma 4.5 hold.

Proof. (of Corollary 4.6) Since xn converges to x∞ in ℓ2,

sup
n∈N

‖xn≤ε‖2 −−−→
ε→0

0 .

Also, the Feller property implies that the distributions of the sizes of (MG(xn, T ))n∈N
form a compact family

of probability measures on ℓ2. Thus,

sup
n∈N

P(S(xn, T ) ≥ K) −−−−−→
K→+∞

0 . (5)

This shows that for any T and ε, one may find K, ε1 and ε2 such that the three hypotheses of Lemma 4.5
hold for xn uniformly over n ∈ N.

Now suppose that x, t, ε, ε1 and ε2 are such that (a), (b), (e) and (c) of Lemma 4.5 hold. Let m
be a significant component of MG(x, t). It contains a large component {i} of MG(x, 0) by point (a). Let
σ(m) denote the component of MG(x>ε2 , t) containing {i}. Point (e) implies that two large components of
MG(x, 0) are connected in MG(x, t) if and only if they are connected in MG(x>ε2 , t), that is only through
Large or Medium components. This shows that σ(m) does not depend on the choice of the large component
{i} included in m and that there cannot be any large component in m\σ(m). Let us define the heart of m as
σ(m). It is made of Large or Medium components, and m\σ(m) is a graph of medium or small components.
Now if a medium component in m \ σ(m) was directly connected to some component of σ(m), it would be
connected to m in MG(x>ε2 , t), and thus would belong to σ(m). Thus, the exterior boundary of σ(m) in
m is made of small components. Point (b) shows that m \ σ(m) is a forest, and point (c) shows that each
tree of this forest is attached by a single edge to σ(m), and also that no Medium or Small component of
MG(x, 0) belongs to a cycle in MG(x, t).

A useful by-product of the proof of Lemma 4.5 and Corollary 4.6 is the following simple lemma.

Lemma 4.7. For x ∈ ℓ2, ε > 0 and T > 0 let A(x, ε, T ) be the event that for any t ≤ T :

• MG(x≤ε, t) is a forest and

• there is at most on edge betweeen every connected component of MG(x≤ε, t) and every component of
MG(x>ε, t).

Suppose that xn converges to x∞ in ℓ2ց as n goes to infinity. Then, for any T > 0

inf
n∈N

P(A(xn, ε, T )) −−−→
ε→0

1 .

Remark 9. Let us give an example of an m.a-m.s which is in N2 but not in S. Let Ii, i ≥ 1 be disjoint copies
of the interval [0, 1], with its usual metric, and equip Ii with the measure 1

i (δ0 + δ1). Then, X ∈ N2 \ S. In
fact, thanks to Lemma 4.5, for any ε > 0 and t > 0 every component of Coal((X)>ε, t) is unbounded since
it contains a forest of an infinite number (since the sizes are not in ℓ1) of components of diameter 1.
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4.3 The Coalescent on S
The aim of this section is to prove the following theorem, and a Feller-like property (in Lemma 4.11).

Theorem 4.8. Let X = (X, d, µ) belong to S. Then, (Coal0(X, t))t≥0 defines a strong Markov process with
càdlàg trajectories in S.

The proof of this result is divided in three lemmas. The last one, Lemma 4.11 will be useful in its own
to show convergence of discrete coalescence processes.

Lemma 4.9. Let X be an m.s-m.s.

(i) If X ∈ S (resp. to Sgraph) then, almost surely, for any t ≥ 0, Coal0(X, t) belongs to N2 (resp. to

N graph
2 ).

(ii) If X ∈ Sgraph, almost surely the commutation (3) holds.

(iii) If the components of X are R-graphs then, almost surely, for any t ≥ 0, the components of Frag(X, t)
are R-graphs.

Proof. (i) Suppose that X belongs to S and let us show that if X ∈ N2, then with probability one,
Coal0(X, t) has totally bounded components for any t ≥ 0. Let α > 0 be fixed and let

B(ε) := {supdiam(Coal(X≤ε, T )) ≤ α} .

Since X satisfies (2),
P(B(ε)c) −−−→

ε→0
0

Let A(ε) be the event that the conclusion of Corollary 4.6 holds. This corollary shows that

P(A(ε)c) −−−→
ε→0

0

Then, on A(ε)∩B(ε), we have that for any t ∈ [0, T ], any component of size larger than ε of Coal(X, t)
can be covered with a finite number of balls of radius 2α. Indeed, if m is such a component, one may
first cover the heart with a finite number of balls of radius α since the heart of m is composed of a
finite number of totally bounded components of X glued together, and then if we increase the radius
to 2α, those balls will cover the whole component m because we are on B(ε). Making ε go to zero, we
see that with probability one, for any t ∈ [0, T ] every component of Coal(X, t) can be covered with a
finite number of balls of radius 2α. Then, letting α go to zero, we see that with probability one, for
any t ∈ [0, T ] every component of Coal(X, t) is totally bounded, so Coal(X, t) ∈ N2.

Notice also that if the components of X are R-graphs and m is a component as above, then on A(ε),
m is an R-graph. Letting ε go to zero, this shows that if X ∈ Sgraph, then with probability one, for
any t ∈ [0, T ], Coal(X, t) ∈ N graph

2 .

(ii) If X ∈ Sgraph, using the same notations as above, one sees that on A(ε), for any x and y in a component
of mass larger than ε, there is only a finite number of simple paths from x to y, and every such simple
path takes a finite number of shortcuts of the Poisson process P+

t . Letting ε go to zero, this holds
almost surely for any component of Coal(X,P+

t ). Furthermore, since ℓX is diffuse and P− and P+ are
independent, almost surely one has, for any t,

P−
t ∩ {x ∈ X : ∃y ∈ X, (x, y) or (y, x) ∈ P+

t } = ∅ .

Thus, Lemma 2.28 shows that (ii) holds.
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(iii) Using Lemma 2.24, X is isometric to Coal(X ′, A) where X ′ is an m.s-m.s whose components are real
trees, and A ⊂ ⋃m∈comp(X′)m

2 is finite on any m2. Again, since ℓX is diffuse, almost surely, for any t,

P−
t ∩ {x ∈ X : ∃y ∈ X, (x, y) or (y, x) ∈ A} = ∅ .

Thus, Lemma 2.28 shows that

Frag(X,P−
t ) = Frag(Coal(X ′, A),P−

t ) = Coal(Frag(X,P−
t ), A) .

The components of Frag(X,P−
t ) are totally bounded R-trees, thus the components of Coal(Frag(X,P−

t ), A)
are R-graphs.

Remark 10. If X ∈ N and P is as in Definition 2.26, it may happen that Frag(X,P) has a component of
mass zero. In this case, Frag(X,P) does not belong to N , stricly speaking. However, Frag(X,P) is at zero
LGHP -distance from an element of N , which is Frag(X,P)|∪ε>0M>ε . In fact, we could have defined N as
the quotient of the set of counting measures on M with respect to the equivalence relation defined by being at
zero LGHP -distance. This space is isometric to N modulo the addition of components of null masses. Then
Frag(X,P) would have always belong to N . But I feel that it would have obscured the definition of N . In
the sequel, we shall keep in mind that components of null masses are neglected. Thus, Lemma 4.9 shows that
if X belongs to N graph

2 , then almost surely, for any t ≥ 0, Frag(X, t) belongs to N graph
2 and if X belongs to

Sgraph then almost surely, for any t ≥ 0, Coal0(X, t) and CoalFrag(X, t) belong to N graph
2 .

Lemma 4.10. Let Xn = (Xn, dn, µn), n ≥ 0 be a sequence of random variables in S and (δn)n≥0 be a
sequence of non-negative real numbers. Suppose that:

(i) (Xn) converges in distribution for L2,GHP to X∞ = (X∞, d∞, µ∞) as n goes to infinity,

(ii) δn −−→
n∞

0,

(iii) For any α > 0 and any T > 0,

lim sup
n∈N

P(supdiam(Coalδn(Xn
≤ε, T )) > α) −−−→

ε→0
0 .

Then, with probability 1, Coal0(X∞, t) belongs to S for any t ≥ 0.

Proof. First, the Feller property of the multiplicative coalescent, Proposition 5 of [5], shows that masses(Coalδn(Xn, T ))
converges in distribution (in ℓ2ց) to masses(Coal0(X∞, T )). Together with Prokhorov theorem and Lemma 4.7,
this implies that:

P[MG(X∞
≤ε, T ) is not a forest ]

ε→0−−−→ 0 . (6)

Notice that under the obvious coupling, when MG(X∞, t+ s) is a forest, Lemma 2.22 implies that:

supdiam(Coal0(Coal0(X∞, t)≤η, s)) ≤ supdiam(Coal0(X∞
≤η, t+ s) .

Thus, thanks to Lemmas 4.7 and 4.9 it is enough to show that with probability one, X∞ satisfies (2) for
any t ≥ 0.

Let PX∞ be the distribution of X∞. Then for PX∞ -almost every X and every t ∈ [0, T ] and α > 0,

lim sup
ε→0

P[supdiam(Coal0(X≤ε, t)) > α]

= lim sup
ε→0

P[supdiam(Coal0(X≤ε, t)) > α and MG(X≤ε, T ) is a forest]

≤ lim sup
ε→0

P[supdiam(Coal0(X≤ε, T )) > α and MG(X≤ε, T ) is a forest]
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Thus,

PX∞({X ∈ N 2 : ∃t ∈ [0, T ]∃α > 0 lim sup
ε→0

P[supdiam(Coal0(X≤ε, t)) > α] > 0)

= sup
α>0

PX∞({X ∈ N 2 : lim sup
ε→0

P[supdiam(Coal0(X≤ε, T )) > α] > 0)

= sup
α>0

PX∞({X ∈ N 2 : inf
ε

sup
0<ε′≤ε

P[supdiam(Coal0(X≤ε′ , T )) > α] > 0)

= sup
α>0

sup
η>0

lim
ε→0

PX∞({X ∈ N 2 : P[∃ε′ ∈]0, ε] : supdiam(Coal0(X≤ε′ , T )) > α] > η)

≤ sup
α>0

sup
η>0

lim
ε→0

1

η
P[∃t ∈ [0, T ], ∃ε′ ∈]0, ε] : supdiam(Coal0(X∞

≤ε′ , t)) > α]

where we used the obvious coupling in the next to last step.
Thus, it is sufficient to prove:

∀T ≥ 0, ∀α > 0, P[∃t ∈ [0, T ], ∃ε′ ∈]0, ε] : supdiam(Coal0(X∞
≤ε′ , t)) > α] −−−→

ε→0
0 .

Notice that thanks to Lemma 2.22:

P[∃t ∈ [0, T ], ∃ε′ ∈]0, ε] : supdiam(Coal0(X∞
≤ε′ , t)) > α and MG(x∞≤ε, T ) is a forest ]

= P[supdiam(Coal0(X∞
≤ε, T )) > α and MG(x∞≤ε, T ) is a forest ]

≤ P[supdiam(Coal0(X∞
≤ε, T )) > α]

Thus, it remains to show that:

P(supdiam(Coal0(X∞
≤ε, T )) > α) −−−→

ε→0
0 (7)

Let x∞ := masses(X∞). Notice first that there exists a decreasing sequence of positive numbers (εp)p≥0

going to zero and such that:
∀p ∈ N, P[εp ∈ x∞] = 0 .

Fix ε′ ≥ ε and choose the sequence so that ε0 ≤ ε′. Then, using the obvious coupling and Lemma 2.22,
P(supdiam(Coal0(X∞

≤ε, T )) > α and MG(x∞≤ε′ , T ) is a forest) is nondecreasing in ε, for ε ≤ ε′. We then
have:

lim
ε→0

P(supdiam(Coal0(X∞
≤ε, T )) > α and MG(x∞≤ε′ , T ) is a forest)

= lim
m→∞

P(supdiam(Coal0(X∞
≤εm , T )) > α and MG(x∞≤ε′ , T ) is a forest) .

Furthermore, define Xm,p := (X≤εm)>εp for m ≤ p. Then,

P(supdiam(Coal0(X∞
≤εm , T )) > α and MG(X∞

≤ε′ , T ) is a forest)

= lim
p→∞

P(supdiam(Coal0(X∞
m,p, T )) > α and MG(X∞

≤ε′ , T ) is a forest)

Now, Proposition 4.3 implies that (Coalδn(Xn
m,p, T ) converges in distribution to (Coal0(X∞

m,p, T ) for any
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m ≤ p. Thus, for any m ≤ p,

P(supdiam(Coal0(X∞
m,p, T )) > α)

≤ lim sup
n∞

P(supdiam(Coalδn(Xn
m,p, T )) > α)

≤ lim sup
n∞

P(supdiam(Coalδn(Xn
m,p, T )) > α and MG(Xn

≤ε′ , T ) is a forest)

+ lim sup
n∞

P(MG(Xn
≤ε, T ) is not a forest))

≤ lim sup
n∞

P(supdiam(Coalδn(Xn
≤εm , T )) > α and MG(Xn

≤ε′ , T ) is a forest)

+ lim sup
n∞

P(MG(Xn
≤ε′ , T ) is not a forest))

≤ lim sup
n∞

P(supdiam(Coalδn(Xn
εm , T )) > α)

+ lim sup
n∞

P(MG(Xn
≤ε′ , T ) is not a forest))

Then, using Lemma 4.7 and the hypothesis on supdiam(Coalδn(Xn
ε , T )) on sees that the right-hand side

above goes to zero when we make p, then m and then ε′ go to zero. This ends the proof of (7).

At this point, we know that if X = (X, d, µ) belongs to S, then, (Coal0(X, t))t≥0 defines a strong Markov
process on S.

Lemma 4.11 (Almost Feller property). Let Xn = (Xn, dn, µn), n ≥ 0 be a sequence of random variables
in N2 and (δn)n≥0 a sequence of non-negative real numbers. Suppose that:

(a) (Xn) converges in distribution (for L2,GHP ) to X∞ = (X∞, d∞, µ∞) as n goes to infinity

(b) δn −−→
n∞

0

(c) For any α > 0 and any T > 0,

lim sup
n∈N

P(supdiam(Coalδn(Xn
≤ε, T )) > α) −−−→

ε→0
0

Then,

(i) (Coalδn(Xn, t))t≥0 converges in distribution to (Coal0(X∞, t))t≥0,

(ii) if tn −−→
n∞

t, Coalδn(Xn, tn) converges in distribution to Coal0(X∞, t) (for L2,GHP ).

Proof. Let tn −−→
n∞

t and let T = supn t
n. Let us fix ε ∈]0, 1[ and let (xn)n∈N∪{∞} := (masses(Xn))n∈N∪{∞}.

We know that xn converges in distribution to x∞. Using the Skorokhod representation theorem, Corollary 4.6
and (5), we obtain that there exists ε1 ∈]0, ε6[ and ε2 ∈]0, ε1[ such that for every n ∈ N, with probability
larger than 1− ε the event An holds, where An is the event that points (a), (b) and (c) of Corollary 4.6 hold
for any t ∈ [0, T ] and S(xn, T ) ≤ 1√

ε1
.

Let δ∞ := 0. On this event An, the Gromov-Hausdorff-Prokhorov distance4 between a significant compo-
nent of Coalδn(Xn, t) (at any time t ≤ T ) and its heart is at most α := δn+supdiam(Coalδn(Xn

≤ε1 , T ))+ε1.
Let σ be the application from comp(Coalδn(Xn, t)>ε+α) to comp(Coalδn(Xn

>ε2 , t)) which maps a compo-
nent to its heart, and let σ′ denote the application from comp(Coalδn(Xn

>ε2 , t))>ε+α to comp(Coalδn(Xn, t))
which maps a component to the (unique, on An) component of comp(Coalδn(Xn, t)) which contains it. Those

4In fact, here we could talk simply of Hausdorff-Prokhorov distance since there is a trivial embedding of one measured
semi-metric space into the other.
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applications satisfy the hypotheses of Lemma 2.15, with ε replaced by ε + α. This shows that on An, we
have for every time t ≤ T and every ε′2 ≤ ε2:

LGHP (Coalδn(Xn, t),Coalδn(Xn
>ε′2

, t))

≤ α

(

1 + 8
S(xn, t)

ε2

)

+ 16(ε+ α) ,

≤ 17(δn + supdiam(Coalδn(Xn
≤ε1 , T )) + ε1)

(

1 +
1√
ε1ε2

)

+ 16ε .

Now, recall that ε1 ≤ ε6 and that from Lemma 4.10,

P(supdiam(Coalδ∞(X∞
≤ε, T )) > α) −−−→

ε→0
0 .

Thus, using the hypothesis on supdiam, one may choose ε2 small enough to get that for every n large enough
(possibly infinite), with probability larger than 1 − 2ε, we have for every time t ≤ T and every ε′2 ≤ ε2:

LGHP (Coalδn(Xn, t),Coalδn(Xn
>ε′2

, t)) ≤ 40ε .

Furthermore, since (c) of Corollary 4.6 holds on An,

‖masses(Coalδn(Xn, t)) − masses(Coalδn(Xn
>ε2 , t))‖22 ≤ S(x(n), t) − S(x

(n)
>ε2 , t) ≤ ε ,

where the first inequality comes from Lemma 2.3. This shows that

lim
ε2→0

lim
N→∞

sup
n≥N
n∈N

P(sup
t≤T

L2,GHP (Coalδn(Xn, t),Coalδn(Xn
>ε2 , t)) > ε) = 0 . (8)

Now, let (αp)p≥0 be a decreasing sequence of positive numbers going to zero such that:

∀p ∈ N, P[αp ∈ x∞] = 0 .

For any p, Xn
>αp

converges to X
∞
>αp

in distribution for L1,GHP . Proposition 4.3 implies that (Coalδn(Xn
>αp

, t))t≤T
converges to (Coal0(X∞

>αp
, t))t≤T for the topology of compact convergence associated to L2,GHP . Together

with (8), this proves (i).
Furthermore, Proposition 4.3 implies that Coalδn(Xn

>αp
, tn)) converges in distribution to Coal0(X∞

>αp
, t)

as n goes to infinity for L1,GHP , and thus for L2,GHP . Together with (8) we obtain that Coalδn(Xn, tn)
converges to Coal0(X∞, t) in distribution for L2,GHP . This proves (i).

Remark 11. Notice that if δn > 0 and Xn ∈ N2 \ N1, Coal(Xn, t) is not in N2 for t > 0 since the
components are not totally bounded. Thus, the terms “convergence in distribution for L2,GHP ” should be
understood in a larger space, where components are allowed not to be totally bounded.

However, we do not insist on this because we shall always use Lemma 4.11 with Xn ∈ N1 for any n ∈ N,
in which case Coal(Xn, t) is in N1 for any t.

Now, we can end the proof of Theorem 4.8. Let X = (X, d, µ) belong to S. We only need to
show that (Coal0(X, t))t≥0 is almost surely càdlàg. Let Xn := X> 1

n
. Then, Lemma 4.11 shows that

(Coal0(Xn, t))t≥0 converges to (Coal0(X, t))t≥0 (in the topology of compact convergence associated to
L2,GHP ). Since (Coal0(Xn, t))t≥0 is càdlàg, so is (Coal0(X, t))t≥0.
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4.4 Convergence of the coalescent on Erdös-Rényi random graphs

In this section we prove Theorem 3.1. Recall that Gn,λ is the element of N graph
2 obtained from G(n, p(λ, n))

by assigning to each edge a length n−1/3 and to each vertex a mass n−2/3. We know by Theorem 2.30 that
Gn,λ converges in distribution (for L2,GHP ) to Gλ. In view of Lemma 4.11, it is sufficient to prove that for
any T and α > 0:

lim sup
n→∞

P(supdiam(Coaln−1/3((Gn,λ)≤ε, T )) > α) −−−→
ε→0

0 .

Let us denote by hn,λ the height process associated to the depth-first exploration process on Gn,λ as
defined in [2] sections 1 and 2, and let hn,λ be its rescaled version:

hn,λ(x) :=
1

n1/3
hn,λ(xn2/3) .

Each interval I inside an excursion interval of hn,λ (away from 0) corresponds to a connected subgraph of
G(n, p(λ, n)) and the diameter of this subgraph is bounded from above by 2 supx,y∈I |hn,λ(x) − hn,λ(y)|.

Let us denote by An(ε) the event that there is a connected component of Coal1/n((Gn,λ)≤ε, T ) which

is connected by at least two edges to a component of Coal1/n((Gn,λ)>ε, T ). Thanks to Lemma 4.7, using

Skorokhod representation theorem in ℓ2 for the convergeing sequence masses(Gn,λ), we know that

lim sup
n→∞

P(An(ε)) −−−→
ε→0

0 .

Now let us consider the depth-first exploration process of Coal1/n((Gn,λ), T ). When P+
T has intensity γ,

N+(G(n, p),P+
T ) is equal in distribution to G(n, p′) with:

p′ = p+ (1 − p)(1 − e−γT )

When γ = n−4/3, p′ = p(λ′n, n) with
λ′n −−−−→

n→∞
λ+ T

and Coal1/n((Gn,λ), T ) is equal, in distribution, to Gn,λ′
n
. The difference between λ′n and λn + T is unessen-

tial for us (for instance using Lemma 4.7, supdiam(Coaln−1/3((Gn,λ)≤ε, T ) is essentially nondecreasing in
T ), so let us pursue as if λ′n = λ + T . On the event An(ε), the vertices of a connected component C
of Coal1/n((Gn,λ)≤ε, T ) are explored either consecutively (if the exploration process of the component of

Coal1/n((Gn,λ), T ) containing C starts outside C) either in two time intervals (which may happen if the

exploration process of the component of Coal1/n((Gn,λ), T ) containing C starts inside C). Thus, on An(ε),

supdiam((Coal1/n((Gn,λ)≤ε, T )) ≤ 4 sup
x,y∈R

+

|x−y|≤ε

|hn,λ+T (x) − h
n,λ+T

(y)| ,

where the supremum is restricted to couples (x, y) such that x and y belong to the same excursion of h
n,λ+T

above zero.
Thus, it only remains to prove that for any α > 0,

lim sup
n→∞

P






sup

x,y∈R
+

|x−y|≤ε

|hn,λ+T (x) − h
n,λ+T

(y)| > α






−−−→
ε→0

0 , (9)

with the supremum restricted to couples (x, y) such that x and y belong to the same excursion of h
n,λ+T

above zero.
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Let Bλ be a Brownian motion with quadratic drift, defined by Bλt = Bt + λt − t2

2 with B a standard
Brownian motion. Let Wλ be Bλ reflected above its current minimum:

Wλ
t := Bλt − min

0≤s≤t
Bλs .

Then (9) is a consequence of the fact that h
n,λ+T

converges in distribution to Wλ in the uniform topology.
It seems however that this convergence is not written in the literature, so in order to use only available
sources, one may rest on the work done in [2] as follows. One may separate the analysis of the supremum
on the N largest excursions and on the others. Let BN,n(ε) be the event that the maximal height of some
i-th largest component in Gn,λ+T for i > N exceeds ε. The equation p.402 below equation (24) in [2] shows
that for any ε > 0,

lim
N→∞

lim sup
n→∞

P(BN,n(ε)) = 0 . (10)

Choose N large enough so that lim supn→∞ P(BN,n(ε)) ≤ ε. Then, for a fixed N , one may argue as in
the proof of Theorem 24 of [2], p.398: conditionally on the sizes, the rescaled height processes associated
to those components are independent and each one converges in distribution (for the uniform topology)
to a continuous excursion (a tilted Brownian excursion). Together with the convergence of the sizes and

Skorokhod representation theorem, this proves that the N largest excursions of h
n,λ+T

converges as a vector
in C([0,+∞[)N to a random vector of continuous functions with bounded support. This implies that (9)
holds when the supremum is restricted to couples (x, y) such that x and y belong to one of the N largest

components of h
n,λ+T

. Finally, let Nn(ε) be the number of components of Gn,λ+T which are larger than ε.
For each ε > 0, (Nn(ε))n≥1 is a tight sequence, as follows from the convergence (in distribution) in ℓ2ց of

the sizes of Gn,λ+T . Thus, we obtain (9) and this ends the proof of Theorem 3.1.

5 Proofs of the results for fragmentation

The main goal of this section is to prove the Feller property for fragmentation on N graph
2 , Proposition 5.5

and to apply it to prove Theorem 3.2. It is very close to the work performed in [3], which proves a continuity
result for a fragmentation restricted to the core of a graph (and stopped when you get a tree). The main
difference is that we want in addition to perform fragmentation on the tree part of the graphs. Another
technical difference will be detailed at the beginning of section 5.4. Unfortunately, those differences force us
to make substantial modifications to the arguments of [3].

5.1 Notations

We need to introduce a few more definitions to deal with fragmentation of R-graphs. For more details, we
refer to [3].

Let G be an R-graph. When there is only one geodesic between x and y in G, we denote by [x, y] its
image. Recall the notion of the core of G defined in section 2.7. If S is a closed connected subset of G
containing core(G), then for any x ∈ G, there is a unique shortest path γx going from x to S. We denote by
pS(x) the unique point belonging to γx ∩ S. When G is not a tree and S = core(G), we let αG(x) := pS(x).

For any η > 0, let

Rη(G) := core(G) ∪ {x ∈ G s.t. ∃y : x ∈ [y, αG(y)] and d(y, x) ≥ η} .

When (T, ρ) is a rooted R-tree, we let Rη(T ) be defined as above, with αG(y) replaced by the root ρ and
core(G) replaced by {ρ}. Thus the definition of Rη(G) extends the definition of Rη(T ) for a rooted R-tree
(T, ρ) in [10]. Notably, Lemma 2.6 (i) in [10] shows that for any η > 0, Rη(G) is a finite graph.

A multigraph with edge-lengths is a triple (V,E, (ℓ(e))e∈E) where (V,E) is a finite connected multigraph
and for every e ∈ E, ℓ(e) is a strictly positive number. It may be viewed as a finite R-graph with no leaf by
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performing on V (seen as as a metric sapce as the disjoint union of its elements) the ℓ(e)-gluing along e for
each edge e ∈ E.

The ε-enlargement of a correspondance R ∈ C(X,X ′) is defined as:

Rε := {(x, x′) ∈ X ×X ′ : ∃(y, y′) ∈ R, d(x, y) ∨ d(x′, y′) ≤ ε .

It is a correspondance containing R with distortion at most dis(R) + 4ε.
If R ∈ C(X,X ′), two Borel subsets A ⊂ X and B ⊂ X ′ are said to be in correspondance through R if

R∩ (A×B) ∈ C(A,B).
Let ε > 0. If X and X ′ are R-graphs with surplus at least 2, an ε-overlay is a correspondance R ∈

C(X,X ′) with distortion less than ε and such that there exists a multigraph isomorphism χ between the
kernels ker(X) and ker(X ′) satisfying:

1. ∀v ∈ k(X), (v, χ(v)) ∈ R,

2. For every e ∈ e(X), e and χ(e) are in correspondance through R and |ℓX(e) − ℓX′(χ(e))| ≤ ε.

If X and X ′ have surplus one, an ε-overlay is a correspondance with distortion less than ε such that the
unique cycles of X and X ′ are in correspondance and the difference of their lengths is at most ε. If X and
X ′ are trees, an ε-overlay is simply a correspondance with distortion less than ε.

We let N tree
2 be the set of elements X ∈ N graph

2 whose components are trees.

5.2 Reduction to finite graphs

The following lemma allows to reduce the proof of the Feller property on finite graphs. This will be useful
to adapt the arguments of [10].

Lemma 5.1. Let η ∈ (0, 1] and T > 0. Let G belong to N graph
2 . Let S be a closed connected subset of

G such that Rη(G) ⊂ S ⊂ G. Suppose that for each component H of G, S ∩ H is a connected R-graph.
Let S := (S, d|S×S , pS♯µ). Then, with probability at least 1 − Tη1/7, for any t ∈ [0, T ], under the obvious
coupling,

Lsurplus2,GHP (Frag(G, t),Frag(S, t)) ≤ 34η1/7(1 +
∑

H∈comp(G)

µ(H)2)2 .

Proof. Let P be a poisson random set of intensity measure ℓG⊗ leb+
R

on G×R+ and let us use it to perform
the fragmentation on S and G. Define:

Gηt := {x ∈ G \ S s.t. ∃y ∈ Pt ∩ (G \ S) ∩ [x, α(x)]} .

Notice that a component m of Frag(S, t) is endowed with the distance d|m×m and the measure (pS♯µ)|m,
while a component m of Frag(G, t) is endowed with the distance d|m×m and the measure µ|m.

If m is a component of Frag(G, t) such that m∩S = ∅ then m ⊂ Gηt . Notably, if t ∈ [0, T ], H ∈ comp(G),
m is a component of Frag(G, t) included in H and µ(m) > µ(GηT ∩H), then m must intersect S. Furthermore,
if m ∩ S 6= ∅ then m ∩ S is a component of Frag(S, t).

Let H ∈ comp(G). For any component m of Frag(H,Pt) such that m ∩ S 6= ∅, we claim that

dGHP (m,m ∩ S) ≤ η ∨ µ(GηT ∩H) (11)

Indeed, let R := {(x, pS(x)) : x ∈ m}, which has distortion at most 2η, and define π := (Id⊗pS)♯µ|m×m∩S .
Then, π(Rc) = 0 and

D(π;µ|m, (pS♯µ)|m) = sup
A∈B(m∩S)

µ(p−1
S (A) \m)

= µ(p−1
S (m) \m)

≤ µ(Gηt ∩H)

≤ µ(GηT ∩H) .
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This shows (11). Furthermore,

‖masses(Frag(G, t)) − masses(Frag(S, t)‖22 ≤
∑

m∈Frag(G,t)
m∩S 6=∅

µ(p−1
S (m) \m)2 +

∑

m∈Frag(G,t)
m∩S=∅

µ(m)2

≤ 2
∑

H∈comp(G)

µ(Gηt ∩H)2

≤ 2
∑

H∈comp(G)

µ(GηT ∩H)2 . (12)

Using Fubini’s theorem,
E[µ(GηT ∩H)2] ≤ µ(H)2(1 − e−ηt) ≤ µ(H)2ηT .

Thus,

P





∑

H∈comp(G)

µ(GηT ∩H)2 ≥ η6/7
∑

H∈comp(G)

µ(H)2



 ≤ Tη1/7 .

Now, let us place ourselves on the event

E := {
∑

H∈comp(G)

µ(GηT ∩H)2 < η6/7
∑

H∈comp(G)

µ(H)2}

and define α := η3/7
√

1 +
∑

H∈comp(G) µ(H)2. Notice that on E , we have for any H ∈ comp(G):

µ(GηT ∩H) ≤
√

∑

H∈comp(G)

µ(GηT ∩H)2 ≤ α .

Let σ assign to each component of Frag(S, t) the component of Frag(G, t) which contains it, and let σ′ assign
to a component m of comp((Frag(G, t))>α1/3+α) the component m ∩ S of comp(Frag(S, t)). From (11) we
deduce that for any component m of Frag(S, t),

dGHP (m,σ(m)) ≤ α

and notice that m and σ(m) have the same surplus. Also, for any component m′ of Frag(G, t),

dGHP (m′, σ′(m′)) ≤ α ,

and m′ and σ′(m′) have the same surplus. According to Lemma 2.15 this shows that on the event E :

LsurplusGHP (Frag(G, t),Frag(S, t) ≤ α

(

1 + 8

∑

m∈comp(Frag(G,t)) µ(m)2

α2/3

)

+ 16(α1/3 + α)

≤ 17α+ α1/3



16 + 8
∑

H∈comp(G)

µ(H)2



 .

And, thanks to (12),

‖masses(Frag(G, t)) − masses(Frag(S, t)‖22 ≤ η6/7
∑

H∈comp(G)

µ(H)2

which shows the result.

Since Rη(G) has finite length measure for each η > 0 when G is a totally bounded graph, Lemma 5.1
easily implies the following continuity result.

Proposition 5.2. Let G belong to N graph
2 . Then, Frag(G, t) converges in probability (for L2,GHP ) to G

when t goes to zero.
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5.3 The Feller property for trees

The following lemma is a slight extension of Lemma 6.3 in [10] designed to take measures into account.

Lemma 5.3. Let T = (T, d, µ) be a measured finite real tree, ρ ∈ T and ε > 0. There exists δ > 0 (depending
on T , ρ and ε) such that if T ′ = (T ′, d′, µ′) is a measured finite real tree and drootGHP ((T , ρ), (T ′, ρ′)) < δ,
then there exist subtrees S ⊂ T and S′ ⊂ T ′ such that ρ ∈ S, ρ′ ∈ S′ and:

(i) dH(S, T ) < ε and dH(S′, T ′) < ε,

(ii) there is a bijective measurable map ψ : S → S′ that preserves length measure and has distortion at
most ε,

(iii) ψ(ρ) = ρ′,

(iv) the length measure of the set of points a ∈ S such that {b ∈ S : ψ(a) ≤ b} 6= ψ({b ∈ S : a ≤ b}) (that
is, the set of points a such that the subtree above ψ(a) is not the image under ψ of the subtree above a)
is less than ε.

(v) there is a correspondance R ∈ C(S, S′) and a measure π ∈M(S, S′) such that:

(a) ∀x ∈ S (x, ψ(x)) ∈ R
(b) π(Rc) ≤ ε

(c) D(π; pS♯µ, pS′♯µ′) ≤ ε

(d) dis(R) ≤ 2ε.

Proof. Suppose that drootGHP ((T , ρ), (T ′, ρ′)) < δ (δ will be chosen small enough later). Then, there exists a
correspondance R0 ∈ C(T, T ′) and a measure π0 ∈M(T, T ′) such that:

(a) (ρ, ρ′) ∈ R0

(b) π0(Rc
0) ≤ δ

(c) D(π0;µ, µ′) ≤ δ

(d) dis(R) ≤ 2δ.

Now, one performs the proof of Lemma 6.2 in [10] and shall use their notations. First, let f(ρ) := ρ′ and then
for each x ∈ T , one chooses f(x) ∈ T ′ such that (x, f(x)) ∈ R0 (notice that this can be done in a measurable
way). Then, letting x1, . . . , xn to be the leaves of T one defines x′i = f(xi) and let T ′′ be the subtree of
T ′ spanned by ρ′, x′1, . . . , x

′
n. Finally, f(x) is defined to be the closest point from f(x) on T ′′. Notice that

x′i = f(xi). The proof of Lemma 6.2 in [10] shows that T ′′ has leaves x′1, . . . , x
′
n (and root ρ′ = f(ρ)), that

dH(T, T ′′) < 3δ and that the function f from T to T ′′ has distortion at most 8δ. It is easy to see that

∀x ∈ T, d′(f(x), f(x)) ≤ 4δ . (13)

Then, they take y1 ∈ [ρ, x1] and y′1 ∈ [ρ′, x′1] such that d(ρ, y1) = d′(ρ′, y′1) = d(ρ, x1) ∧ d′(ρ′, x′1) and
define ψ from S1 := [ρ, y1] to S′

1 := [ρ′, y′1] in the obvious way. The proof then proceeds inductively, defining
zk+1 (resp. z′k+1) as the closest point from xk+1 on Sk (resp. from x′k+1 on S′

k), letting yk+1 ∈]zk+1, yk+1]
and y′k+1 ∈]z′k+1; yk+1] be such that

d(zk+1, yk+1) = d′(z′k+1, y
′
k+1) = d(zk+1, xk+1) ∧ d′(z′k+1, x

′
k+1)

defining ψ from ]zk+1, yk+1] to ]z′k+1; yk+1] in the obvious way and gluing ]zk+1, yk+1] to Sk to get Sk+1

(resp. ]z′k+1, y
′
k+1] to S′

k to get S′
k+1). Finally, S := Sn and S′ := S′

n. They prove then that:

dis(ψ) < 280δ, dH(S, T ) < 56δ dH(S′, T ′) < 58δ ,
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which shows that ψ, S and S′ satisfy (i) − (iii) above if δ is chosen small enough. Meanwhile, they show
that for any k, d(xk, yk) ∨ d′(x′k, y′k) ≤ 12δ (see inequality (6.28) in [10]).

Now, let us show that:
∀x ∈ S, d′(f(x), ψ(x)) ≤ 56δ. (14)

Let x ∈]zk, yk], then d′(ψ(x), y′k) = d(x, yk) (recall that ψ(yk) = y′k). Then, |d(x, yk) − d(x, xk)| ≤ 12δ and
|d′(ψ(x), y′k) − d′(ψ(x), x′k)| ≤ 12δ. Since f has distortion at most 8δ, |d(x, xk) − d′(f(x), x′k)| ≤ 8δ. We get

|d′(ψ(x), x′k) − d′(f(x), x′k)| ≤ 32δ .

Let z be the closest point to f(x) on [ρ′, x′k]. Then,

d′(f(x), z) =
1

2
[d′(f(x), ρ′) + d′(f(x), x′k) − d′(ρ′, x′k)]

≤ 3

2
dis(f) +

1

2
[d(x), ρ) + d(x, xk) − d(ρ, xk)]

≤ 12δ ,

since x ∈ [ρ, xk]. Finally, since ψ(x) ∈ [ρ′, x′k],

d′(f(x), ψ(x)) = d′(f(x), z) + d′(z, ψ(x))

= d′(f(x), z) + |d′(x′k, ψ(x)) − d′(x′k, z)|
≤ 2d′(f(x), z) + |d′(x′k, ψ(x)) − d′(x′k, f(x))|
≤ 24δ + 32δ .

This shows (14).
Now, let R be defined by:

R := {(x, x′) ∈ S × S′ : ∃(y, y′) ∈ T × T ′, (y, y′) ∈ R0, d(x, y) ≤ 100δ, d′(x′, y′) ≤ 100δ} ,

and define π := (pS ⊗ pS′)♯π0. It remains to prove point (v). First, recall that (x, f(x)) ∈ R0 for any x ∈ T .
Thus (v)(a) is satisfied thanks to (14) and (13). This shows also that R is a correspondance on S × S′.

Then,
dis(R) ≤ dis(R0) + 400δ

which is less than ε and shows (v)(d) if δ is chosen small enough. Since dH(S, T )∨ dH(S′, T ′) < 58δ, we see
that for any x ∈ T and x′ ∈ T ′,

d(x, pS(x)) < 58δ and d(x′, pS′(x′)) < 58δ .

Thus, if (x, x′) ∈ R0, then (pS(x), pS(x′)) ∈ R and this gives

π(Rc) ≤ π0(Rc
0) ≤ δ ,

which shows (v)(b) if δ is chosen small enough. Finally, since π = (pS⊗pS′)♯π0 one sees thatD(π; pS♯µ, pS′♯µ′) ≤
D(π0, µ, µ

′) < δ.

Now, let us prove the Feller property.

Proposition 5.4. Let (X(n))n≥0 be a sequence in N tree
2 converging to X (in the L2,GHP metric) and t ≥ 0.

Then (Frag(X(n), s))s≥0 converges in distribution to (Frag(X, s))s≥0 for L2,GHP .

Proof. First, we argue that one may without loss of generality suppose that to X(n) and X contain a
single component. Indeed, fix ε > 0. Since masses(X(n)) converges to masses(X) in ℓ2, one may choose
ε′ 6∈ masses(X) such that:

‖masses(X≤ε′)‖22 ∨ sup
n∈N

‖masses(X
(n)
≤ε′)‖22 ≤ ε .
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Then, since X
(n)
>ε′ converges to X>ε′ as n goes to infinity, they have the same number of components for n

large enough. Call this number K. One may list them as T
(n)
i (resp. Ti), i = 1, . . . ,K be the components

of X(n) (resp. of X) in such a way that for any i, T
(n)
i converges to T (n). Then, for any coupling between

(Frag(X, s))s∈[0,t] and (Frag(X(n), s))s∈[0,t], one has:

‖masses(Frag(X, s)) − masses(Frag(X(n), s))‖22

≤
K
∑

i=1

‖masses(Frag(Ti, s)) − masses(Frag(T
(n)
i , s))‖22 + ‖masses(X≤ε′)‖22 + ‖masses(X

(n)
≤ε′)‖22

and

LGHP (Frag(X, s),Frag(X(n), s)) ≤
K
∑

i=1

LGHP (Frag(Ti, s),Frag(T
(n)
i , s)) + 16ε .

Thus, it is sufficient to prove that for any fixed i and n, one may find a coupling such that

sup
s∈[0,t]

LGHP (Frag(T
(n)
i , s),Frag(Ti, s))

P−−−−→
n→∞

0 .

In the sequel, we suppose that X(n) =: T (n) (resp. X =: T ) contains a single component.
Now, Lemma 5.1 implies that it is enough to consider T

(n) and T to be finite trees. Let us fix ε > 0.
We know (cf. Proposition 2.1 in [3]) that we can take ρ (resp. ρ(n)) a root in T (resp. T (n)) such that
drootGHP ((T , ρ), (T (n), ρ(n))) goes to zero as n goes to infinity. For n large enough, drootGHP ((T , ρ), (T (n), ρ(n)))
is small enough so that one may apply Lemma 5.3.

Let us call (T ′, ρ′) = (T (n), ρ(n)) for such a large n, in order to lighten the notations. Notice that one
may suppose that µ′(T ′) ≤ µ(T ) + ε. Let S, S′, ψ, R and π be as in Lemma 5.3. Define

S := (S, d|S×S , pS♯µ)

and
S

′ := (S′, d|S′×S′ , pS′♯µ′) .

Let t > 0. Lemma 5.1 ensures that with probability at least 1 − 2tε1/7, for any s ∈ [0, t],

L2,GHP (Frag(T , s),Frag(S, s)) ≤ 7ε1/7(1 + µ(T ))4 ,

and
L2,GHP (Frag(T ′, s),Frag(S′, s)) ≤ 7ε1/7(1 + µ′(T ′))4 ≤ 7ε1/7(1 + µ(T ) + ε)4 .

For any z ∈ S (resp. z′ ∈ S′) we let Sz (resp. S′
z′) be the subtree above z (resp. above z′):

Sz := {x ∈ S : z ∈ [ρ, x]} .

Let us define
Bad := {a ∈ S : Sψ(a) 6= ψ(Sa)}

so that Lemma 5.3 ensures that ℓS(Bad) ≤ ε.
Now, let P be a Poisson random set of intensity ℓS ⊗ lebR+ on S × R+. Then, for any s, ψ(Ps) is a

Poisson random set of intensity sℓS on S (since ψ is a measure-preserving bijection), and we want to show
that for any s ≤ t, the fragmentation of S along Ps, Frag(S,Ps) and that of S′ along ψ(Ps), Frag(S′, ψ(Ps))
are close in LGHP -distance with large probability.

Notice first that Frag(S,Ps) and Frag(S′, ψ(Ps)) have the same number of components. If m is a

component of Frag(S,Ps), it can be written as Szs \
⋃k
i=1 Szi,s for some points zs, z1,s, . . . zk,s in Ps ∪ {ρ}

(we identify Sz \ {z} and Sz since it is at zero dGHP -distance). If Pt ∩ Bad = ∅, then for any s ≤ t,

ψ(m) = ψ(Szs) \⋃ki=1 Sψ(zi,s) and this is a component of Frag(S′, ψ(Ps)).
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Thus, let us place ourselves on the event E1 := {Pt ∩Bad = ∅} and define σ (which depends on s) to be
the bijection from Frag(S,Ps) to Frag(S′, ψ(Ps)) which maps a component m to ψ(m). Since R contains
the couples (x, ψ(x)) for x ∈ S, R|m×ψ(m) is a correspondance between m and ψ(m) with distortion at most
ε. Furthermore π|m×ψ(m) is a measure on m× ψ(m) which satisfies

π|m×ψ(m)(R|cm×ψ(m)) ≤ π(Rc) ≤ ε .

It remains to bound D(π|m×ψ(m); (pS♯µ)|m, (pS′♯µ′)|ψ(m)) from above. For any Borel subset A of m,

|π|m×ψ(m)(A× ψ(m)) − pS♯µ(A)|
≤ |π(A× S′) − pS♯µ(A)| + π(A× S′) − π(A× ψ(m))

≤ |π(A× S′) − pS♯µ(A)| + π({(x, x′) ∈ S × S′ : x ∈ m, x′ 6∈ ψ(m)}) .

A symmetric inequality holds for A′ Borel subset of ψ(m), and we get:

D(π|m×ψ(m);µ|m, µ′|ψ(m)) ≤ D(π; pS♯µ, pS′♯µ′) + π(m× ψ(m)c) + π(mc × ψ(m)) .

Now, notice that for any x ∈ S,

x ∈ m and x′ 6∈ ψ(m) ⇒ [ψ(x), x′] ∩ ψ(Pt) 6= ∅

and
x 6∈ m and x′ ∈ ψ(m) ⇒ [ψ(x), x′] ∩ ψ(Pt) 6= ∅ ,

where [ψ(x), x′] is the geodesic between ψ(x) and x′. Thus,

π(m× ψ(m)c) + π(mc × ψ(m)) ≤ π{(x, x′) ∈ S × S′ : [ψ(x), x′] ∩ ψ(Pt) 6= ∅} .

Let us denote by E2 the event

E2 :=
{

π{(x, x′) ∈ S × S′ : [ψ(x), x′] ∩ ψ(Pt) 6= ∅} ≤ √
ε
}

.

On E1 ∩ E2, we get, for any s ≤ t and any component m of Frag(S,Ps):

D(π|m×ψ(m); pS♯µ|m, pS♯µ′|ψ(m)) ≤ ε +
√
ε .

Furthermore,

‖masses(Frag(S,Ps)) − masses(Frag(S′, ψ(Ps)))‖22
≤

∑

m∈comp(Frag(S,Ps))

(pS♯µ(m) − pS′♯µ′(ψ(m)))2

≤ sup
m∈comp(Frag(S,Ps))

|pS♯µ(m) − pS′♯µ′(ψ(m))|
∑

m∈comp(Frag(S,Ps))

pS♯µ(m) + pS′♯µ′(ψ(m))

≤ sup
m∈comp(Frag(S,Ps))

D(π|m×ψ(m); pS♯µ|m, pS♯µ′|ψ(m))(µ(T ) + µ′(T ′))

≤ (ε+
√
ε)(2µ(T ) + ε)

Thus, on E1 ∩ E2, we obtain:

L2,GHP (Frag(S,P),Frag(S′, ψ(P))) ≤ (ε +
√
ε) ∨

√

(ε +
√
ε)(2µ(T ) + ε) .

It remains to bound from above the probability of (E1 ∩ E2)c. Since Bad has length measure at most ε,

P(Ec1) ≤ tε .
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Notice that since R contains (x, ψ(x)) for any x ∈ S and has distortion less than 2ε,

π{(x, x′) ∈ S × S′ : d′(ψ(x), x′) > 2ε} ≤ π(Rc) < ε

Then, using Fubini’s theorem,

E[π{(x, x′) ∈ S × S′ : [ψ(x), x′] ∩ ψ(P) 6= ∅}]

≤ ε+ E[π{(x, x′) ∈ S × S′ : [ψ(x), x′] ∩ ψ(P) 6= ∅ and d′(ψ(x), x′) ≤ 2ε}]

= ε+

∫

S×S′

P([ψ(x), x′] ∩ ψ(P) 6= ∅)1d′(ψ(x),x′)≤2ε dπ(x, x′)

≤ 2tεπ(S × S′)

≤ 2tε(µ(T ) + ε) .

Thus, by Markov inequality,
P(Ec2) ≤ 2t

√
ε(µ(T ) + ε) ,

which ends the proof.

5.4 The Feller property for graphs

We now want to prove the analog of Proposition 5.4 for graphs. However, this cannot be true without
strengthening the metric LGHP . For instance, consider the situation depicted in Figure 2. There Gn
converges to G for dGHP , but the probability that a is separated from b in Gn when fragmentation occurs
(until a fixed time t > 0) is asymptotically 0, whereas the probability that this event occurs in G is strictly
positive. However, if we impose that the surplus of Gn converges to the surplus of G, such a situation cannot
hapen anymore, and one may recover the Feller property.

a

a

b

b...
...

...×n2
...×n2

...×n2· · · µn = 1
2 (δa + δb)

µ = 1
2 (δa + δb)

diam(Gn) = diam(G) = 1

Gn :

G :

length 1
n

Figure 2: Gn is composed of n graphs in series each one made of n2 intervals of length 1/n in parallel. Gn
converges to G for dGHP when n goes to infinity, but Frag(Gn, t) will not converge to Frag(G, t) for t > 0.

Let us notice that this problem was treated a bit differently in [3]: they recover continuity (in probability)
of fragmentation by imposing that Gn and G live on some common subspace Ar some some r > 0, where Ar

contains the graphs which have surplus and total length of the core bounded from above and minimal edge
length of the core bounded from below (see section 6.4 in [3] for a precise statement). When one wants to
have Feller-type properties, this seems to us less natural than imposing convergence of the surplus. In fact,
the work below shows that if Gn converges to G in the Gromov-Hausdorff topology while having the same
surplus for n large enough, then there is some r > 0 such that for n large enough, Gn and G belong to Ar.
The converse statement is also true and is a consequence of Proposition 6.5 in [3].
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Proposition 5.5. Let (G(n))n≥0 be a sequence in N graph
2 converging to G in the Lsurplus2,GHP metric. Then,

for any t ≥ 0, (Frag(G(n), t))t≥0 converges in distribution to (Frag(G, t))t≥0 (for Lsurplus2,GHP ).

To prove this result, we first notice that the proof of section 5.3 extends to the case where one replace
trees by graphs having the same core.

Lemma 5.6. Let G = (G, d, µ) be a measured finite R-graph which is not a tree. Let (G(n))n≥0 be a
sequence of measured finite R-graphs such that for each n, there is a correspondence R(n) ∈ C(G,Gn), a
measure π(n) ∈M(G,Gn) and a homeomorphism ψ(n) : core(G) → coreG(n) such that:

• ψ(n) preserves the length-measure,

• ∀x ∈ core(G(n)) (x, ψ(n)(x)) ∈ R(n),

• dis(R(n)) ∨ π(n)((R(n))c) ∨D(π(n), µ, µ(n)) −−−−→
n→∞

0.

Then, (Frag(G(n), t)t≥0 converges in distribution to (Frag(G, t))t≥0 for Lsurplus2,GHP .

Proof. It is a straightforward extension of the arguments of section 5.3, replacing roots by cores and using
ψ(n) to map fragmentation on core(G(n)) to fragmentation on core(G).

To prepare the proof of Proposition 5.5, we shall need the following lemmas.

Lemma 5.7. Let (G, d) and (G′, d′) be R-graphs and R ∈ C(G,G′). Let (a, a′) ∈ R, (b, b′) ∈ R and
(c, c′) ∈ R. Suppose that a belongs to a geodesic between b and c. Let γa′,b′ (resp. γa′,c′) be a geodesic from
a′ to b′ (resp. from a′ to c′). Then,

∀a′′ ∈ γa′,b′ ∩ γa′,c′ , d′(a′′, a′) ≤ 3 dis(R) .

Proof. Let a′′ ∈ γa′,b′ ∩ γa′,c′ . Then,

d′(a′, a′′) = d′(a′, b′) + d′(a′, c′) − d′(a′′, b′) − d′(a′′, c′)

≤ d′(a′, b′) + d′(a′, c′) − d′(b′, c′)

≤ d(a, b) + d(a, c) − d(b, c) + 3 dis(R)

= 3 dis(R)

where we used the triangular inequality in the second step and the fact that a belongs to a geodesic between
b and c in the last step.

The following should be compared to Proposition 5.6 in [3].

Lemma 5.8. Let G be an R-graph and ε > 0. There exists δ depending on ε and G such that if G′ is an
R-graph with the same surplus as G and if R0 ∈ C(G,G′) is such that dis(R0) < δ, then there exists an
ε-overlay R ∈ C(G,G′) containing R0.

Proof. If G has surplus 0, there is nothing to prove. In the sequel, we suppose that G has surplus at least
2, the easier proof for unicyclic G is left to the reader. Furthermore, to lighten notations and make the
argument clearer, we shall suppose that the vertices of ker(G) are of degree 3, leaving the adaptation to the
general case to the reader.

Let η := mine∈e(G) ℓ(e). One may view core(G) as a multigraph with edge-lengths. However, not all the
edges of this graph correspond to geodesics in G. Divide each edge of core(G) into five pieces of equal length,
introducing thus four new vertices of degree 2 for each edge (all degrees will be relative to the core). The
new graph obtained satisfies the following:

(i) all the edges remain of length larger than η/5,
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(ii) every edge e is the unique geodesic between its two endpoints, and for any path γ which does not
contain e, ℓ(γ) − ℓ(e) > η/5,

(iii) for every three vertices a, b, c such that b ∼ a and a ∼ c, a belongs to a geodesic between a and c.

Let us call ˜core(G) this new graph (it is indeed a graph, not merely a multigraph), which has the same
surplus as G, and write x1, . . . , xn for its vertices, which are of degree 2 or 3.

Let G′ be an R-graph with the same surplus as G and R0 ∈ C(G,G′). Let x′1, . . . , x
′
n be elements of

G′ such that (xi, x
′
i) ∈ R0. Now, we shall build a subgraph of G′ by mapping recursively edges adjacent to

a given vertex in ˜core(G) to a geodesic in G′. Suppose for instance that x1 has degree 3 (the argument is
analogous for vertices with degree 2). Let xi, xj and xk be its neighbours in ˜core(G), with i < j < k. Choose
a geodesic γx′

1,x
′
i

between x′1 and x′i, then choose a geodesic γ between x′1 and x′j , and let z11 be the point

of γx′
1,x

′
i
∩ γ which is the furthest of x′1 (see Figure 3). Let us call γz11,x′

j
the subpath of γ from z11 to x′j .

Notice that the path using γx′
1,x

′
i

from x′1 to z11 and γ from z11 to x′j is a geodesic. Finally choose a geodesic

γ between x′1 and x′k and let z21 be the point of (γx′
1,x

′
i
∪ γx′

1,x
′
j
) ∩ γ which is the furthest of x′1. Let us call

γz21,x′
k

the subpath of γ from z21 to x′k. Let S′
1 := γx′

1,x
′
i
∪ γz1i ,x′

j
∪ γz21,x′

k
. Define x′′1 be the one between z11

and z21 which is the furthest from x′1. If x1 is of degree 2, there is only one point z11 defined and x′′1 is this
one.

x1

xi
xj

xk

x′1

x′i

x′j

x′k

γx′
1,x

′
i

γz11,x′
j

γz21 ,x′
k

z11

z21=x
′′
1

Figure 3: One maps core(G) to core(G′) by first mapping the neighborhood of each vertex of core(G) to a
subset of G′. Here x′′1 is a vertex of ker(G′).

Then, we proceed similarly for r = 2, . . . , n: we inspect the neighbours of xr. Notice that we do not need
to choose a new geodesic between x′r and a neighbour x′j for j < r, we just keep the one already built. Doing
this, we obtain S′

r the union of the geodesics chosen going from x′r to the points associated to the neighbours
of xr, we get two points z1r and z2r if xr is of degree 3 and only one point z1r if xr is of degree 1. We define
x′′r to be the one between z1r and z2r which is the furthest from x′r.

Finally, let S′ = ∪ni=1S
′
i, with all the vertices zbi and x′i which is a graph with edge-lengths (notice that

the edges have pairwise disjoint interiors). Some edge-lengths might be zero. Thanks to point (ii) above
and Lemma 5.7, we know that:

d′(z1i , x
′
i) ≤ 3 dis(R0) ,

and when x′i is of degree 3,
d′(z2i , x

′
i) ≤ 3 dis(R0) .

Thus, for any b, b′ ∈ {1, 2} and any i 6= j,

d′(zbi , z
b′

j ) ≥ d′(x′i, x
′
j) − 6 dis(R0)

≥ η − 7 dis(R0) .

Thus, if dis(R0) < η/7, two points zbi and zb
′

j are always distinct. This shows that S′ has the same surplus as
core(G). Since G′ has the same surplus as G, we deduce that S′ contains core(G′). Let S′′ be the subgraph
of S′ spanned by x′′1 , . . . x

′′
n, in the sense that we forget the vertices z1i when xi is of degree 3, and we remove

the semi-open path going from x′i to z1i . Notice that S′′ has positive edge-lengths and its edges have pairwise

42



disjoint interiors. S′′ has the same surplus as S′, so it contains again core(G′). But all the vertices in S′′

have degree 2 or 3, so S′′ = core(G′) as a set.
Now, consider S′′ as a graph with edge-lengths and with vertices x′′i , i = 1, . . . , r. The map χ0 from

˜core(G) to S′′ which maps xi to x′′i is a graph isomorphism, and from the computation above, for any edge
e of ˜core(G),

|ℓ(e) − ℓ′(χ0(e))| ≤ 6 dis(R0)| .
We shall denote by [x′′i , x

′′
j ] the path in S′′ from x′′i to x′′j and which does not contain any other vertex x′′k

for k 6∈ {i, j}. Then, let γ be a path from x′′i to x′′j which does not contain [x′′i , x
′′
j ]. Using point (ii) above,

we see that
ℓ′([x′′i , x

′′
j ]) ≤ ℓ′(γ) − η

5
+ 8 dis(R0)

Thus, if dis(R0) < η/80, [x′′i , x
′′
j ] is the unique geodesic between i and g geodesic for any i and j and every

path γ from x′′i to x′′j which does not contain [x′′i , x
′′
j ] satisfies:

ℓ′(γ) > ℓ′([x′′i , x
′′
j ]) +

η

10
. (15)

Let us define R′ by adding to R0 the couples (xi, x”i) for i = 1, . . . , r. Then, dis(R′) ≤ 7 dis(R0). Let R
be the 3 dis(R0)-enlargement of R′. It has distortion at most 19 dis(R0). Let x belong to an edge [xi, xj ] of

˜core(G) and let x′ be such that (x, x′) ∈ R0. Let γx′,x′′
i

(resp. γx′,x′′
j
) be a geodesic between x′ and x′i (resp.

between x′ and x′′j ). Then, let γ be the path from x′′ to x′′j obtained by concatenating γx′,x′′
i

and γx′,x′′
j
. We

have

ℓ′(γ) ≤ d′(x′′i , x
′) + d′(x′, x′′j ) ,

≤ d(xi, x) + d(x, xj) + 2 dis(R′) ,

= d(xi, xj) + 2 dis(R′) ,

≤ ℓ′([x′′i , x
′′
j ]) + 3 dis(R′) .

Thus, if dis(R′) ≤ 7 dis(R0) < η
10 , we deduce from (15) that γ contains [x′′i , x

′′
j ]. Thus, defining x′′ to be the

furthest point to x′ on γx′,x′′
i
∩γx′,x′′

j
, we see that x′′ belongs to the geodesic [x′′i , x

′′
j ]. Lemma 5.7 ensures that

d′(x′, x′′) ≤ 3 dis(R′). Thus, (x, x′′) ∈ R. Similarly, one shows that for every x′′ in [x′′i , x
′′
j ] there is an x in

[xi, xj ] such that x ∈ R. We have shown that for each edge e of ˜core(G), e and χ0(e) are in correspondance
via R.

Now, notice that the multigraph with edge-lengths S′′ obtained by keepin only vertices of degree 3 is
core(G′) seen as a multigraph with edge-lengths. The isomorphism χ0 induces an isomorphism χ between
core(G) and core(G′) (by restricting χ0 on vertices of degree 3), and we have (since every edge of core(G)
was divided into five parts):

|ℓ(e) − ℓ′(χ(e))| ≤ 30 dis(R0) .

Furthermore, the same correspondance R as before is suitable to have that for each edge e of core(G), e and
χ(e) are in correspondance via R.

This ends the proof by taking dis(R0) ≤ δ for δ small enough, namely less than ε
40 ∧ η

80 .

Lemma 5.9. Let (G, d) and (G′, d′) be R-graphs and R ∈ C(G,G′). Suppose that core(G) and core(G′) are
in correspondance through R. Let (v, v′) and (x, x′) ∈ R with v ∈ core(G) and v′ ∈ core(G′). Then,

d(αG(x), v) ≤ d′(αG′(x′), v′) + 5 dis(R) .

Proof. Since core(G) and core(G′) are in correspondance through R, one may find y ∈ core(G) and y′ ∈
core(G′) such that:

(y, αG′(x′)) ∈ R and (αG(x), y′) ∈ R .

Let us distinguish two cases.
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• d(y, v) ≥ d(αG(x), v). Then,

d(αG(x), v) ≤ d(y, v) ≤ d′(αG′(x′), v′) + dis(R)

and the result follows.

• d(y, v) < d(αG(x), v). Then,

d(x, v) = d(x, αG(x)) + d(αG(x), v)

≥ d(x, αG(x)) + d(y, v)

≥ d′(x′, y′) + d′(αG′(x′), v′) − 2 dis(R)

= d′(x′, αG′(x′)) + d′(αG′(x′), y′) + d′(αG′(x′), v′) − 2 dis(R)

= d′(x′, v′) + d′(αG′(x′), y′) − 2 dis(R)

≥ d(x, v) + d′(αG′(x′), y′) − 3 dis(R) .

Thus,
d′(αG′(x′), y′) ≤ 3 dis(R)

which implies:
d(y, αG(x)) ≤ 4 dis(R)

Finally,

d(αG(x), v) ≤ d(αG(x), y) + d(y, v)

≤ 4 dis(R) + d(y, v)

≤ 5 dis(R) + d′(αG′(x′), v′)

Let us introduce some notations for the following lemmas (see Figure 4).

uu
vv

v−bev−be v−aev−ae

G G
(e,a,b)

glued

Figure 4: G(e,a,b) is the (a, b)-shortening of G along e = (u, v).

Definition 5.10. For any graph G, for each oriented edge e = (u, v) ∈ ker(G) and each η ∈ [0, ℓ(e)], we
denote by v − ηe the point at distance η from v on the edge (u, v), on core(G). For a < b ∈ [0, ℓ(e)] let
]v − be, v − ae[ be the open oriented arc between v − be and v − ae in (u, v).

We define G
(e,a,b) the (a, b)-shortening along e as the measured R-graph (H, dH , µH) obtained from G as

follows:

• H = G \ α−1
G (]v − be, v − ae[),

• dH is obtained from (H, d|H×H) by gluing it along (v − be, v − ae),

• µH is the restriction of µ on H.
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Notice that G(e,a,b) has the same surplus as G.

Lemma 5.11. Let G be an R-graph, and define:

γG(η) := sup
e=(u,v)∈ker(G)

diam(α−1
G (]v − ηe, v[)) .

Then,
γG(η) −−−→

η→0
0 .

Proof. Suppose on the contrary that γG(η) −−−→
η→0

γ > 0 . Then, one may find a subsequence of couples

(xn, yn)n∈N in α−1
G (]v − e, v[) such that:

d(αG(xn), v) ∨ d(αG(yn), v) −−−−→
n→∞

0 ,

∀n ∈ N, d(xn, yn) ≥ γ ,

and
d(αG(xn), v) ∧ d(αG(yn), v) > 0 .

Let zn ∈ {xn, yn} be such that d(zn, v) = d(xn, v) ∨ d(yn, v). Up to extracting a subsequence, one may also
suppose that d(αG(zn), v) is strictly decreasing and that for any n, d(αG(zn), v) < γ/4. This implies that
for n 6= m,

d(zn, zm) ≥ d(zn, αG(zn))

= d(zn, v) − d(αG(zn), v)

≥ γ

2
− d(αG(zn), v)

≥ γ

4
.

This contradicts the precompacity of G.

Lemma 5.12. Let G = (G, d, µ) be a measured R-graph with surplus at least one, let e be an edge of core(G)
and a < b ∈ [0, ℓ(e)]. Let:

γ̃G(ε) :=
∑

e=(u,v)∈ker(G)

µ(α−1
G (]v − εe, v[)) .

Then, under the natural coupling between (Frag(G, s))s∈[0,t] and (Frag(G(e,a,b), s))s∈[0,t] we have, with prob-
ability at least 1 − t(b− a), for any s ∈ [0, t],

Lsurplus2,GHP (Frag(G, s),Frag(G(e,a,b), s)) ≤ (γ̃G(b) ∨ 3γG(b))(3 + 4µ(G))

Proof. Let e = (u, v), and P be a Poisson random set of intensity ℓG × lebR+ on (G, d). Then, P ′ :=
P \ α−1

G (]v − be, v − ae[) × R+ is a Poisson random set of intensity ℓG′ × lebR+ on G′ × R+ with G′ :=
G \ α−1

G (]v − be, v − ae[). Let t > 0 be fixed and let E denote the event

E := {Pt∩]v − be, v − ae[= ∅} ,

and let us suppose that E holds. Let ε > 0 be such that

ε ≥ µ(α−1
G (]v − be, v − ae[) .

Let us take s ≤ t and let m be a component of Frag(G,Ps). Then,

• if m ⊂ α−1
G (]v − be, v − ae[), then µ(m) ≤ ε,
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• if m ∩ α−1
G (]v − be, v − ae[) = ∅, then m is a component of Frag(G′,P ′

s),

• if m ∩ α−1
G (]v − be, v − ae[) 6= ∅ but m 6⊂ α−1

G (]v − be, v − ae[), then m is the unique component of
Frag(G,Ps) which intersects ]v−be, v−ae[, and m\α−1

G (]v−be, v−ae[) is a component of Frag(G′,P ′
s).

This shows that the application σ from comp(Frag(G,Ps)>ε to comp(Frag(G′,P ′
s)) which maps m to

m \ α−1
G (]v − be, v − ae[) is well defined and injective. This shows also that the application σ′ from

comp(Frag(G′,P ′
s))>ε to comp(Frag(G,Ps)>ε which maps m′ to the unique m which contains it is well

defined and injective.
Now, let m ∈ comp(Frag(G,Ps)>ε and let m′ = σ(m) = m \ α−1

G (]v − be, v − ae[). Let

Rm := {(x, x) : x ∈ m′} ∪ {(x, v) : x ∈ m ∩ α−1
G (]v − be, v − ae[}

and πm be the measure in M(m,m′) defined by:

πm(C) = µ({x ∈ m′ : (x, x) ∈ C}) .

Let d′ be the distance on m′. Notice that for any x, y in m′,

|d(x, y) − d′(x, y)| ≤ b

Thus,
dis(Rm) ≤ b+ 2 diam(α−1

G (]v − be, v − ae[)) ≤ 3γG(b) .

Also,
πm(Rc

m) = µ|m′({x ∈ m′ : (x, x) ∈ Rc
m}) = 0 ,

For A a Borel subset of m,
π(A×m′) = µ(A ∩m′)

and for A′ a Borel subset of m′,
π(m×A′) = µ(A′)

Thus,
D(π;µ|m, , µ|m′) ≤ µ(α−1

G (]v − be, v − ae[) ≤ γ̃G(b) .

Using Lemma 2.15 with
α = γ̃G(b) ∨ 3γG(b)

and
ε =

√
α+ α

we have shown that as soon as E holds, for any s ∈ [0, t],

LGHP (Frag(G,Ps),Frag(G(e,a,b),P ′
s)) ≤ 17(γ̃G(b) ∨ 3γG(b)) + (16 + µ(G))

√

γ̃G(b) ∨ 3γG(b) .

Furthermore,
‖masses(Frag(G,Ps)) − masses(G(e,a,b),P ′

s)‖22 ≤ 2γ̃G(b)2.

Also, for any m in comp(Frag(G,Ps)>ε, m and σ(m) have the same surplus (recall the gluing in Defini-
tion 5.10). The same is true for m′ and σ′(m′). Thus,

Lsurplus2,GHP (Frag(G,Ps),Frag(G(e,a,b),P ′
s)) ≤

[

17(γ̃G(b) ∨ 3γG(b)) + (16 + µ(G))
√

γ̃G(b) ∨ 3γG(b)
]

∨ 2γ̃G(b)2 .

Finally, notice that E has probability at least exp−t(b−a) ≥ 1 − t(b− a).
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Now, we shall prove Proposition 5.5. Let us explain the idea of the proof. If G(n) is close enough from G,
Lemma 5.8 shows that their cores are homomorphic multigraphs with edges having almost the same length.
One may then shorten some edges of the core of G and other edges of the core of G(n) in such a way that the
two cores become homeomorphic as metric spaces with a length measure. Lemma 5.12 shows that one does
not loose too much doing this. Finally, Lemma 5.6 show then that the fragmentation on the two graphs are
close.

Proof. (of Proposition 5.5)
The argument at the beginning of the proof of Proposition 5.4 shows that it is sufficient to prove the

result when G(n) and G have a single component. Let G = (G, d, µ) be a measured R-graph and let ε > 0.
We want to show that Frag(G′, t) converges in distribution to Frag(G, t) when G′ converges to G while
having the same surplus.

Let δ < δ(ε,G) be given by Lemma 5.8 and let G′ be such that dGHP (G,G′) < δ (we will take δ small
enough later). Thus, there is a correspondance R0 ∈ C(G,G′) and a measure π0 ∈M(G,G′) such that:

dis(R0) ∨ π0(Rc
0) ∨D(π0;µ, µ′) < δ

Lemma 5.8 shows that there exists an ε-overlay R ∈ C(G,G′) containing R0. Let us denote by χ the
multigraph isomorphism from ker(G) to ker(G′) given by this overlay. For any edge e ∈ ker(G), |ℓ(e) −
ℓ′(χ(e))| < ε.

We define two graphs G̃ and G̃′ obtained from G and G′ as follows. For each oriented edge e = (u, v) ∈
ker(G), denoting (u′, v′) = χ(e),

• if ℓ(e) is smaller than ℓ′(e′) by an amount η, we replace G′ by its (6ε− η, 6ε)-shortening along e′ (cf.
Definition 5.10),

• if ℓ′(e′) is smaller than ℓ(e) by an amount η, we replace G by its (6ε− η, 6ε)-shortening along e.

Let us denote by (G̃, d̃) and (G̃′, d̃′) the resulting R-graphs, let µ̃ := µ|G̃, µ̃′ := µ′|G̃′ and define G̃ := (G̃, d̃, µ̃),

G̃′ := (G̃′, d̃′, µ̃′).
Recalling the notation in Lemma 5.11, let

κ := γG(11ε) + 12ε

and define R1 the κ-enlargement of R. We will show that

G̃ and G̃′ are in correspondance through R1. (16)

If x ∈ G̃ and (x, x′) ∈ R with x′ 6∈ G̃′, then, x′ ∈ α−1
G′ (]v′ − 6εe′, v′ − (6ε− η)e′[) for some edge e′ = (u′, v′)

of ker(G′) and η < ε. Lemma 5.9 shows that

0 < 6ε− η − 5 dis(R) ≤ d(αG(x), v) ≤ 6ε+ 5 dis(R) ≤ 11ε . (17)

and thus
d(x, v) ≤ γG(11ε) + 11ε .

Thus,
d′(x′, v′) ≤ γG(11ε) + 12ε ≤ κ . (18)

This shows that (x, v′) ∈ R1. Now, let x′ ∈ G̃′ and (x, x′) ∈ R with x 6∈ G̃. Then, x ∈ α−1
G (]v − 6εe, v −

(6ε− η)′[) for some edge e = (u, v) of ker(G) and η < ε. Notice that:

d(x, v) ≤ γG(6ε) + 6ε ,

and
d′(x′, v′) ≤ d(x, v) + dis(R) ≤ γG(6ε) + 7ε ≤ κ .
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Thus (v, x′) ∈ R1. This ends the proof of (16).
Notice that

dis(R1) ≤ ε+ 4κ .

Let R2 := R1|G̃×G̃′ ∈ C(G̃, G̃′). Let K be the number of edges in ker(G). Notice that

∀(x, y) ∈ G̃, |d(x, y) − d̃(x, y)| < Kε

and
∀(x′, y′) ∈ G̃′, |d′(x′, y′) − d̃′(x′, y′)| < Kε .

Thus,
dis(R2) < (K + 13)ε+ 4γG(11ε) . (19)

Clearly, there exists a homeomorphism ψ from core(G̃) to core(G̃′) which preserves the length-measure.
For each oriented edge e = (u, v) ∈ ker(G), denoting (u′, v′) = χ(e), ψ satisfies ψ(v) = v′. Furthermore,
since e and e′ are in correspondance through the overlay R, we have, for each x ∈ [u, v], that there exists
x′ ∈ [u′, v′] such that:

|d(x, u) − d′(x′, u′)| < ε .

If furthermore x ∈ core(G̃), we know that d(x, u) = d′(ψ(x), u′), so

|d′(ψ(x), u′) − d′(x′, u′)| < ε .

Since x′ and ψ(x) belong to [u′, v′],

d′(ψ(x), x′) = |d′(ψ(x), u′) − d′(x′, u′)| < ε ,

which shows that for every x ∈ core(G̃),

(x, ψ(x)) belongs to R2 , (20)

the restriction to G̃× G̃′ of the κ-enlargement of R.
Now, let π := π0|G̃×G̃′ ∈M(G̃, G̃′). First,

π(Rc
2) = π(Rc

1) ≤ π0(Rc
0) < ε . (21)

Then,
D(π; µ̃, µ̃′) ≤ 2D(π0;µ, µ′) + µ(G \ G̃) ∨ µ′(G′ \ G̃′) .

Now, define

γ̃G(ε) :=
∑

e=(u,v)∈ker(G)

µ(α−1
G (]v − εe, v[))

which goes ot zero as ε goes to zero. We have

µ(G \ G̃) ≤ γ̃G(6ε) .

Furthermore, recall inequality 17 which shows that if x′ ∈ G′ \G̃′, then for every x ∈ G such that (x, x′) ∈ R,

x ∈
⋃

e=(u,v)∈ker(G)

α−1
G (]v − 11εe, v[) .
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Thus,

µ′(G′ \ G̃′) ≤ π0(G× (G′ \ G̃′)) +D(π0;µ, µ′)

≤ π0((G× (G′ \ G̃′)) ∩R) + π0(Rc) + ε

≤ π0





⋃

e=(u,v)∈ker(G)

α−1
G (]v − 11εe, v[) ×G′



+ 2ε

≤ µ





⋃

e=(u,v)∈ker(G)

α−1
G (]v − 11εe, v[)



+D(π0;µ, µ′) + 2ε

≤ γ̃G(11ε) + 3ε . (22)

Thus,
D(π; µ̃, µ̃′) ≤ 5ε+ γ̃G(11ε) . (23)

Gathering (20), (19), (21) and (23) shows that one may apply Lemma 5.6, in the sense that there is a func-
tion fG(ε) going to zero as ε goes to zero such that the Lévy-Prokhorov distance (for the topology of compact

convergence associated to Lsurplus2,GHP ) between the distributions of (Frag(G̃, s))s∈[0,t] and (Frag(G̃′, s))s∈[0,t] is
less than fG(ε).

On the other hand, inequality (18) shows that

γG′(ε) ≤ 2[γG(11ε) + 12ε]

and inequality (22) shows that
γ̃G′(ε) ≤ γ̃G(11ε) + 3ε .

Then, Lemma 5.12 shows that there is a function fG(ε) going to zero as ε goes to zero such that the
Lévy-Prokhorov distance between the distributions of (Frag(G, s))s∈[0,t] and (Frag(G̃, s))s∈[0,t] is less than

fG(ε) and the Lévy-Prokhorov distance (for the topology of compact convergence associated to Lsurplus2,GHP )

between the distributions of (Frag(G′, s))s∈[0,t] and Frag(G̃′, s))s∈[0,t] is less than fG(ε). This ends the proof
of Proposition 5.5.

5.5 Application to Erdös-Rényi random graphs

In this section, we prove Theorem 3.2. Let us first compare the discrete fragmentation process and the
continuous one. Let P− be a Poisson process driving the discrete fragmentation on G(n) := G(n, p(λ, n)).

Recall that N−(G(n),P−
t ) for the state of this process at time t, seen as member of N graph

2 . Let Q− be a
Poisson process of intensity ℓn⊗ lebR+ on Kn×R+ where Kn is the complete graph on n vertices seen as an
R-graph where the edge lengths are δn = n−1/3 and ℓn is its length measure. Then, one may suppose that
P− is obtained as follows:

P− = {(e, t) : ∃x ∈ Kn, (x, t) ∈ Q−} .
Then, for any t, N−(G(n),P−

t )) is at L2,GHP -distance at most n−1/3 from Frag(G(n),Q−
t ) (cf. for in-

stance Propositions 3.4 in [3]). Recall that by Theorem 2.30, Gn,λ (which is G(n)with edge length δn
and vertex weights n−2/3) converges in distribution to Gλ for Lsurplus2,GHP . Thus Proposition 5.5 implies that

(Frag(G(n),Q−
t ))t≥0, and thus (N+(G(n),P−

t )))t≥0 converges to (Frag(Gλ, t))t≥0 as n goes to infinity (in the

topology of compact convergence associated to Lsurplus2,GHP ). This shows Theorem 3.2.
An interesting consequence of this result is the fact that on (Gλ)λ∈R, fragmentation is the time-reversal

of coalescence.

Proposition 5.13. For any λ ∈ R and s ∈ R+, (Gλ,Coal(Gλ, s)) and (Frag(Gλ+s, s),Gλ+s)) have the same
distribution.
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Proof. Take P+
t of intensity γ = n−4/3. Notice that the states of the edges are independent and identically

distributed in (G(n, p), N+(G(n, p),P+
t )). Let (X,Y ) be the joint distribution of the state of one edge.

Denoting by 0 the state “absent” and 1 the state “present”, it is easy to compute this distribution:

P((X,Y ) = (0, 0)) = (1 − p)e−γt P((X,Y ) = (0, 1)) = (1 − p)(1 − e−γt)
P((X,Y ) = (1, 0)) = 0 P((X,Y ) = (1, 1)) = p

Now, take P−
t of intensity µ = n−1/3 and let (X ′, Y ′) be the joint distribution of the state of one edge in

(N−(G(n, p′),P−
t′ ), G(n, p′)). Then,

P((X ′, Y ′) = (0, 0)) = (1 − p′) P((X,Y ) = (0, 1)) = p′(1 − e−µt
′

)

P((X ′, Y ′) = (1, 0)) = 0 P((X ′, Y ′) = (1, 1)) = p′e−µt
′

Thus, if one chooses

t =
1

γ
ln

1 − p

1 − p′
and t′ =

1

µ
ln
p′

p
,

then (G(n, p), N+(G(n, p),P+
t )) and (N−(G(n, p′),P−

t′ ), G(n, p′)) have the same distribution. Now, take
p = p(λ, n), p′ = p(λ+ s, n). We have:

t = n4/3 ln

(

1 +
s

n4/3(1 − p′)

)

−−−−→
n→∞

s .

We consider that G(n, p) is equipped with edge lengths n−1/3 and vertex weight n−2/3. Thus Theorem 3.1
shows that (G(n, p), N+(G(n, p),P+

t )) converges in distribution to (Gλ,Coal(Gλ, s)). Also,

t′ = n1/3 ln
1 + λ+s

n1/3

1 + λ
n1/3

−−−−→
n→∞

s

thus Theorem 3.2 and Proposition 5.2 show that (N−(G(n, p′),P−
t′ ), G(n, p′)) converges in distribution to

(Frag(Gλ+s, s),Gλ+s)). Thus (Gλ,Coal(Gλ, s)) and (Frag(Gλ+s, s),Gλ+s)) have the same distribution.

Notice a curious fact: in [6], Theorem 3, it is shown that the sizes of the components of a fragmentation
on the CRT are the time-reversal (after an exponential time-change) of the standard additive coalescent. It
would be intersting to make a direct link between additive and multiplicative coalescent in the context of
framgentation on Gλ.

6 Combining fragmentation and coalescence: dynamical percola-

tion

6.1 Almost Feller Property

For an R-graph G with length measure ℓG, define

suplength(G) := sup{ℓG(γ) : γ injective path in G} .

For a member G of N graph, we let

suplength(G) := sup
m∈comp(G)

suplength(m) .

The following lemma is a simple variation on the proof of (7).

Lemma 6.1. Let Xn = (Xn, dn, µn), n ≥ 0 be a sequence of random variables in N graph
2 and (δn)n≥0 be a

sequence of non-negative real numbers. Suppose that:
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(i) (Xn) converges in distribution (for L2,GHP ) to X∞ = (X∞, d∞, µ∞) as n goes to infinity

(ii) δn −−→
n∞

δ

(iii) For any α > 0 and any T > 0,

lim sup
n∈N

P(suplength(Coalδn(Xn
≤ε, T )) > α) −−−→

ε→0
0

Then, for any α > 0 and any T > 0,

P(suplength(Coalδ(X
∞
≤ε, T )) > α) −−−→

ε→0
0 .

Proof. The situation is simpler than in the proof of (7), since suplength is non-decreasing under coalesence.
Using the notations of the proof of (7),

P(suplength(Coal0(X∞
≤εm , T )) > α)

= lim
p→∞

P(suplength(Coal0(X∞
m,p, T )) > α)

Now, Proposition 4.3 implies that (Coalδn(Xn
m,p, T ) converges in distribution to (Coal0(X∞

m,p, T ) for any
m ≤ p. Thus, for any m ≤ p,

P(suplength(Coal0(X∞
m,p, T )) > α)

≤ lim sup
n∞

P(suplength(Coalδn(Xn
m,p, T )) > α)

≤ lim sup
n∞

P(suplength(Coalδn(Xn
≤εm , T )) > α),

which goes to zero when m goes to infinity.

Proposition 6.2. Let (X(n))n≥0 be a sequence of random variables in N graph
2 converging in distribution to

X(∞) in the Lsurplus2,GHP metric. Suppose also that for any α > 0 and any T ≥ 0,

lim
ε1→0

lim sup
n→+∞

P(suplength(Coal0(X
(n)
≤ε1 , T )) > α) = 0 . (24)

Then, (CoalFrag(X(n), t))t≥0 converges in distribution to (CoalFrag(X(∞), t))t≥0 in the topology of compact
convergence associated to L2,GHP .

Proof. First, we will reduce the problem on N graph
1 using a variation on the proof of Lemma 4.11. Let us

study first Frag(Coalδn(X(n),P+
t ),P−

t ) with P+ and P− as in Definitions 2.19 and 2.27. Let us fix ε > 0 and
0 ≤ t ≤ T . Any component of size at least ε in Frag(Coalδn(X(n),P+

t ),P−
t ) has to belong to a component

of size at least ε in Coalδn(X(n),P+
t ). Let xn := masses(Xn) for n ∈ N.

As in the proof of Lemma 4.11, we obtain that there exists ε1 ∈]0, ε[ and ε2 ∈]0, ε1[ such that for every
n ∈ N, with probability larger than 1− ε the event An holds, where An is the event that points (a), (b) and

(c) of Corollary 4.6 hold for any t ∈ [0, T ] and S(xn, T ) ≤ ε3

ε1
.

Let us place ourselves on An. Then, for a significant component at time t, notice that fragmentation
on the hanging trees of components does change neither the mass neither the distance in the heart of a
component. Thus, the same proof as that of Lemma 4.11 shows that on An, we have for every time t ≤ T
and every ε′2 ≤ ε2:

LGHP (Frag(Coalδn(Xn,P+
t ),P−

t ),Frag(Coalδn(Xn
>ε′2

,P+
t ),P−

t ))

≤ 3ε

10
+ δn + supdiam(Frag(Coalδn(Xn

≤ε1 ,P+
T ),P−

t )) .
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A slight difference occurs here: supdiam(Frag(Coalδn(Xn
≤ε1 ,P

+
T ),P−

t )) is not necessarily decreasing in t.
However, the supremum of the lengths of injective paths clearly decreases under fragmentation. Thus,

LGHP (Frag(Coalδn(Xn,P+
t ),P−

t ),Frag(Coalδn(Xn
>ε′2

,P+
t ),P−

t ))

≤ 3ε

10
+ δn + suplength(Coalδn(Xn

≤ε1 ,P+
T ) .

Let V = comp(Frag(Xn,P−
t )) and W = comp(Frag(Xn,P−

t )) ⊂ V . Let E′ denote the set of edges on V
such that i ∼ j if and only if i and j are at finite distance in Frag(Coalδn(Xn,P+

t ),P−
t ). Let E denote the

set of edges on V such that i ∼ j if and only if i and j are at finite distance in Coalδn(Xn,P+
t ). Lemma 2.3

shows that

‖masses(Frag(Coalδn(Xn,P+
t ),P−

t )) − masses(Frag(Coalδn(Xn
>ε′2

,P+
t ),P−

t ))‖22
≤ ‖masses(Frag(Coalδn(Xn,P+

t ),P−
t ))‖22 − ‖masses(Frag(Coalδn(Xn

>ε′2
,P+

t ),P−
t ))‖22

then, using Lemma 2.4,

‖masses(Frag(Coalδn(Xn,P+
t ),P−

t ))‖22 − ‖masses(Frag(Coalδn(Xn
>ε′2

,P+
t ),P−

t ))‖22
≤ S(x(n), t) − S(x

(n)
>ε2 , t)

≤ ε

since (c) of Corollary 4.6 holds on An. Now, let us take δn = 0. Using the hypothesis on suplength and
Lemma 6.1, we get that for any ε > 0,

lim
ε1→0

sup
n∈N

P[ sup
t∈[0,T ]

L2,GHP (Frag(Coal0(Xn,P+
t ),P−

t ),Frag(Coal0(Xn
>ε1 ,P+

t ),P−
t )) > ε] = 0 . (25)

which means
lim
ε1→0

sup
n∈N

P[ sup
t∈[0,T ]

L2,GHP (CoalFrag(Xn, t),CoalFrag(Xn
>ε1 , t)) > ε] = 0 .

Thus, it is sufficient to show the Theorem for Xn converging to X in L1,GHP with Xn and X being m.s-
m.s with a finite number of finite components which are finite R-graphs. We shall only sketch the proof,
since it is a variation on the arguments of the proofs of Propositions 4.4 and 5.5. For any n large enough,
the proof of Proposition 5.5 show that one may couple a Poisson process P−,n on Xn × R+ with intensity
measure ℓXn ⊗ lebR+ with a Poisson process P− on X × R+ with intensity ℓX ⊗ lebR+ and one may find
πn ∈ M(X,Xn) and Rn ∈ C(X,Xn) such that there is an event En in the σ-algebra of (P−,n

t ,P−
t ) and a

sequence εn such that:

(i) P(Ecn) ≤ εn

(ii) εn
0−−−−→

n→∞

(iii) on En for any s ≤ t, Rn ∩ (X \ P−
s ) × (Xn \ P−,n

s ) ∈ C(X \ P−
s , X

n \ P−,n
s ) and

D(π|(X\P−
s )×(Xn\P−,n

s );µ|X\P−
s
, µXn\P−,n

s
) ∨ πn((Rn)c) ∨ diss(Rn) ≤ εn

where diss is the distortion of R as a correspondance between the semi-metric spaces Frag(X,P−
s ) and

Frag(Xn,Ps).

Then, one may use the proof of Lemma 4.2 to couple a Poisson process P+,n on (Xn)2 ×R+ with intensity
measure 1

2 (µn)⊗ ⊗ lebR+ with a Poisson process P+ on (Xn)2 × R+ with intensity 1
2 (µn)⊗ ⊗ lebR+ in such

a way that there is an event E ′
n, a sequence ε′n such that:

(i) P(Ecn) ≤ εn
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(ii) εn
0−−−−→

n→∞

(iii) on E ′
n, for any s ≤ t,

D(π|(X\P−
s )×(Xn\P−,n

s );µ|X\P−
s
, µXn\P−,n

s
) ∨ πn((Rn)c) ∨ dis′s(Rn) ≤ ε′n

where dis′s is the distortion of R as a correspondance between the semi-metric spaces Coal(Frag(X,P−
s ),P+

s )
and Coal(Frag(Xn,Ps),P+

s ).

Using Lemma 2.16, this ends the proof of the convergence in the sense of LGHP . Convergence of the sizes
in L1 is disposed of noticing, for instance, that if X and Xn have the same, finite, number of components,

‖masses(Coal(Frag(X,P−
t ),P+

t )) − masses(Coal(Frag(Xn,P−,n
t ,P+,n

t ))‖1
≤ ‖masses(Frag(X,P−

t )) − masses(Frag(Xn,P−,n
t ))‖1 ,

and one may thus use Proposition 5.5.

Remark 12. In Proposition 6.2, the initial convergence is in Lsurplus2,GHP and the conclusion is in L2,GHP . This

is unavoidable since convergence in Lsurplus2,GHP does not prevent the sequence X
(n) of having components with

masses going to zero but positive surplus. These components can at positive time be glued to large components,
augmenting their surplus significantly. One could recover Lsurplus2,GHP in the conclusion if one added to (24) the
following condition

lim
ε1→0

lim sup
n→+∞

P



 sup
m∈comp(X

(n)

≤ε1
)

{surplus(m)} 6= 0



 = 0 .

Notice however that this condition is not satisfied by the connected components of critical Erdös-Rényi
random graphs.

6.2 Application to Erdös-Rényi random graphs

Now, we want to prove Theorem 3.3. Intuitively, the dynamical percolation process on the complete graph
Kn should be very close to the process CoalFrag(Kn, .), but such a statement needs some care, essentially
because N+ and N− do not commute: some pairs of vertices might be affected by the two Poisson processes
P+ and P− in a time interval [0, T ]. Furthermore, the typical number of such edges is of order n1/3. It
turns out that those edges will not be important for the LGHP -metric, but it requires to adapt the proof of
Proposition 6.2.

Proof. (of Theorem 3.3). Let G∞ = Gλ. Let p = p(λ, n), let G(n) be the graph G(n, p) seen as a measured

R-graph, with edge-lengths δn := (1−p)n−1/3 ∼ n−1/3 and measure the counting measure times
√

pn−1/3 ∼
n−2/3. Let P+ (of intensity pn−1/3) and P− (of intensity (1 − p)n−1/3) be the two Poisson process driving
the dynamical percolation on G(n). Let us write N(G(n), (P+,P−)t) for the state of this process at time

t, seen as member of N graph
2 . Let us fix ε > 0 and 0 ≤ t ≤ T . Any component of size at least ε in

N(G(n), (P+,P−)t) has to belong to a component of size at least ε in N(G(n), (P+, ∅)t), which is nothing
else but Coalδn(G(n),P+

t ). Now, we claim that

lim sup
n∈N

P(suplength(Coalδn(Gn
≤ε, T )) > α) −−−→

ε→0
0 . (26)

Indeed, if G is a discrete graph with height function bounded from above by h and surplus bounded from
above by s,

suplength(G) ≤ 2h(1 + s) .
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Thus, (26) is a consequence of (10) and the fact that the maximal surplus in G(n) form a tight sequence (see
for instance sections 13 and 14 in [13]). Then, (26) and Lemma 6.1 show that for any α > 0 and T > 0,

P(suplength(Coal0(G∞
≤ε, T )) > α) −−−→

ε→0
0 .

The arguments leading to (25) show that:

lim
ε1→0

lim sup
n∈N

P[ sup
t∈[0,T ]

L2,GHP (N(G(n), (P+,P−)t), N(G
(n)
>ε1 , (P+,P−)t)) > ε] = 0 .

and
lim
ε1→0

P[ sup
t∈[0,T ]

L2,GHP (CoalFrag(G∞, t),CoalFrag(G∞
>ε1 , t)) > ε] = 0 .

Thus, it is sufficient to show that for any ε1 > 0, (N(G
(n)
>ε1 , (P+,P−)t))t≥0 converges to (CoalFrag(G∞

>ε1 , t))t≥0

in the topology of compact convergence associated to L2,GHP . Let Yn denote the number of discrete co-

alescence events of P+
T occurring on G

(n)
>ε1 . Since the masses of G

(n)
>ε1 form a tight sequence, (Yn) is a

tight sequence. Since δn goes to zero, the probability that P−
T touches an edge from P+

T in G
(n)
>ε1 goes to

zero as n goes to infinity. Thus, with probability going to one, for any t ∈ [0, T ] N(G
(n)
>ε1 , (P+,P−)t) =

N(Coalδn(G
(n)
>ε1 ,P+

t ), (∅,P−)t). Furthermore, since Yn is a tight sequence,

sup
t∈[0,T ]

L2,GHP (N(Coalδn(G
(n)
>ε1 ,P+

t ), (∅,P−)t), N(Coal0(G
(n)
>ε1 ,P+

t ), (∅,P−)t))
P−−−−→

n→∞
0 .

Let Q− be a Poisson process of intensity ℓn ⊗ lebR+ on Kn × R+ where Kn is the complete graph on n
vertices seen as an R-graph where the edge lengths are δn and ℓn is its length measure. Then, one may
suppose that P− is obtained as follows:

P− = {(e, t) : ∃x ∈ Kn, (x, t) ∈ Q−} .

Then, for any t, N(Coal0(G
(n)
>ε1 ,P+

t ), (∅,P−)t) is at L2,GHP -distance at most δn from Frag(Coal0(G
(n)
>ε1 ,P+

t ),Q−
t )

(cf. for instance Propositions 3.4 in [3]). Altogether, we get:

sup
t∈[0,T ]

L2,GHP (N(G
(n)
>ε1 , (P+,P−)t,Frag(Coal0(G

(n)
>ε1 ,P+

t ),Q−
t ))

P−−−−→
n→∞

0 ,

and (Frag(Coal0(G
(n)
>ε1 ,P+

t ),Q−
t ))t≥0 is distributed as CoalFrag(G

(n)
>ε1 , t)t≥0. Now Proposition 6.2 shows

that (CoalFrag(G
(n)
>ε1 , t))t≥0 converges to (CoalFrag(G∞

>ε1 , t))t≥0 for the topology of compact convergence
associated to L2,GHP , which finishes the proof.
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Probab. Stat., 33(4):497–528, 1997.

[13] Svante Janson, Donald E. Knuth, Tomasz  Luczak, and Boris Pittel. The birth of the giant component.
Random Struct. Algorithms, 4(3):233–358, 1993.

[14] Olav Kallenberg. Random measures, theory and applications. Cham: Springer, 2017.

[15] Grégory Miermont. Tessellations of random maps of arbitrary genus. Ann. Sci. Éc. Norm. Supér. (4),
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e-prints, October 2016.

[18] Cédric Villani. Optimal transport. Old and new. Berlin: Springer, 2009.

55


	Introduction
	Notations and Background
	General notations
	Discrete graphs and dynamical percolation
	The multiplicative coalescent
	Measured semi-metric spaces
	The Gromov-Hausdorff-Prokhorov distance
	Gluing and coalescence
	Gluing and -gluing
	The coalescence processes

	R-graphs
	Cutting, fragmentation and dynamical percolation
	The scaling limit of critical Erdös-Rényi random graphs

	Main results
	Proofs of the main results for coalescence
	The Coalescent on N1
	Structural result for Aldous' multiplicative coalescent
	The Coalescent on S
	Convergence of the coalescent on Erdös-Rényi random graphs

	Proofs of the results for fragmentation
	Notations
	Reduction to finite graphs
	The Feller property for trees
	The Feller property for graphs
	Application to Erdös-Rényi random graphs

	Combining fragmentation and coalescence: dynamical percolation
	Almost Feller Property
	Application to Erdös-Rényi random graphs


