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RESEARCH ARTICLE

Identification of copy number variation 
in French dairy and beef breeds using 
next-generation sequencing
Rabia Letaief1*, Emmanuelle Rebours1, Cécile Grohs1, Cédric Meersseman1,2, Sébastien Fritz1,3, Lidwine Trouilh4, 
Diane Esquerré5, Johanna Barbieri5, Christophe Klopp6, Romain Philippe2, Véronique Blanquet2, 
Didier Boichard1, Dominique Rocha1 and Mekki Boussaha1

Abstract 

Background: Copy number variations (CNV) are known to play a major role in genetic variability and disease patho-
genesis in several species including cattle. In this study, we report the identification and characterization of CNV in 
eight French beef and dairy breeds using whole-genome sequence data from 200 animals. Bioinformatics analyses to 
search for CNV were carried out using four different but complementary tools and we validated a subset of the CNV 
by both in silico and experimental approaches.

Results: We report the identification and localization of 4178 putative deletion-only, duplication-only and CNV 
regions, which cover 6% of the bovine autosomal genome; they were validated by two in silico approaches and/or 
experimentally validated using array-based comparative genomic hybridization and single nucleotide polymorphism 
genotyping arrays. The size of these variants ranged from 334 bp to 7.7 Mb, with an average size of ~ 54 kb. Of these 
4178 variants, 3940 were deletions, 67 were duplications and 171 corresponded to both deletions and duplications, 
which were defined as potential CNV regions. Gene content analysis revealed that, among these variants, 1100 dele-
tions and duplications encompassed 1803 known genes, which affect a wide spectrum of molecular functions, and 
1095 overlapped with known QTL regions.

Conclusions: Our study is a large-scale survey of CNV in eight French dairy and beef breeds. These CNV will be useful 
to study the link between genetic variability and economically important traits, and to improve our knowledge on the 
genomic architecture of cattle.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
For the first time in 2004, copy number variations (CNV) 
were reported as a new form of genomic alteration [1, 
2]. CNV are defined as gains or losses of DNA segments 
ranging from 50 bp to several megabases (Mb). CNV are 
considered to be polymorphic genetic markers and are 
inherited across generations [3]. At the genome level, 
CNV are less frequent than single nucleotide polymor-
phisms (SNPs) and small insertions and deletions (InDel), 
but they can have a greater functional and evolutionary 

impact. For example, by modifying the genome organiza-
tion, CNV can affect gene expression and therefore cer-
tain phenotypes of interest [4].

CNV and their impact have been extensively studied in 
several species, particularly in humans, in which they are 
known to cause several genetic diseases. For example, a 
2-kb deletion located upstream of the IRGM (immunity 
related GTPase M) gene is linked with Crohn’s disease 
[5], a CNV located within the TSPAN8 (tetraspanin 8) 
gene is associated with type 2 diabetes [6], and a duplica-
tion within the CCL3L1 (C–C motif chemokine ligand 3 
like 1) gene is involved in HIV susceptibility [7].

In domesticated animals, CNV are also linked with 
several phenotypic traits. For example, two duplications 
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that overlap with the KIT (KIT proto-oncogene receptor 
tyrosine kinase) and ASIP (agouti signaling protein) genes 
are responsible for white coat color in pigs and sheep, 
respectively [8, 9]. In chickens, the pea-comb phenotype 
is associated with a duplication within the SOX5 (SRY-
box 5) gene [10, 11]. In ridgeback dogs, a 133-kb dupli-
cation is located within the genomic region that contains 
the FGF3 (fibroblast growth factor 3), FGF4 (fibroblast 
growth factor 4), FGF19 (fibroblast growth factor 19), and 
ORAOV1 (oral cancer overexpressed 1) genes and causes 
both hair ridge and a predisposition to dermoid sinus 
[12]. In cattle, anhidrotic ectodermal dysplasia is induced 
by a deletion in the ED1 (anhidrotic ectodermal dyspla-
sia) gene [13], and polled and multisystemic syndrome is 
caused by a deletion that knocks out the ZEB2 (zinc fin-
ger E-box binding homeobox 2) gene [14].

Both array-based comparative genomic hybridization 
(CGH) and SNP arrays have long been widely used for 
the detection of CNV. However, these two approaches 
are not very efficient and lack the sensitivity needed to 
detect a wide range of CNV [15–18]. For example, the 
resolution of the array-based CGH approach depends on 
the number, size, and quality of the probes fixed on the 
array [15–18]. Thus, with a low-density array, it is diffi-
cult to detect all the small variants. Similarly, detection of 
CNV with SNP genotyping arrays depends on the nature 
of the SNPs included and their distribution within the 
genome and if the density of the SNP array is low, detec-
tion of small variants is unlikely.

The advent of whole-genome sequencing, coupled with 
major bioinformatics developments, have profoundly 
modified strategies used to detect CNV. Unlike array-
based CGH and SNP array platforms, the next-generation 
sequencing (NGS)-based approach can identify a wide 
range of CNV, ranging in size from tens of nucleotides to 
several Mb, with accurate localization of breakpoints.

In this study, we performed a genome-wide charac-
terization of CNV in cattle using four software pack-
ages based on three different approaches. We performed 
a bioinformatics search for CNV by exploring whole-
genome sequencing data from 200 animals that repre-
sented eight French dairy and beef breeds.

Methods
Animal ethics
Most whole-genome sequences used in this study were 
already available in our laboratory (see [19] for more 
details), and thus no animal experimentation was neces-
sary for this study. A small part of our dataset was gener-
ated from 23 genomic DNA samples that were obtained 
from muscle tissue collected at commercial slaughter-
houses. Five other genomic DNA samples were pre-
pared from sperm collected from semen straws that were 

provided by approved commercial artificial insemination 
stations as part of their regular semen collection process.

Genomic DNA extraction and whole‑genome sequencing
Details on the extraction of genomic DNA for 172 of 
the animals are in [19] and DNA extraction for the 
remaining 28 animals was performed using the Wizard 
Genomic DNA Purification kit (Promega, Charbon-
nières-les-Bains, France). Each purified DNA sample 
was quality-controlled by agarose gel electrophoresis. 
DNA concentration was then measured with a Nanodrop 
ND-100 instrument (Thermo Fisher Scientific, Ilkirch, 
France). Genomic DNA library construction and 
sequencing for the 200 animals were performed as pre-
viously described [20]. All sequences were then aligned 
to the UMD3.1 reference genome sequence with the Bur-
rows-Wheeler aligner (BWA) [21].

DNA sampling
Two hundred French cattle were selected for sequenc-
ing as representative of four main dairy, i.e. Brown Swiss, 
Holstein, Montbéliarde, and Normande and four main 
beef breeds, i.e. Blonde d’Aquitaine, Charolaise, Lim-
ousine, and Rouge des Prés (Table  1) and Table S1 (see 
Additional file 1: Table S1). Of these 200 animals, 14 were 
sequenced at least twice. In addition, two sire-dam-son 
trios (both Montbéliarde) and 16 sire-son pairs (six Nor-
mande, eight Montbéliarde, and two Holstein pairs) were 
included.

Detection of CNV
Computational approaches for searching CNV in whole-
genome sequence data involved four commonly used 
tools. CNVnator v0.3 [22] identified CNV using a read-
depth (RD) approach within genomic windows of 250 bp. 
BreakDancer v1.3.6 [23] was run with default parame-
ters to detect CNV with the paired-end mapping (PEM) 
approach. Both Pindel v2.5 [24] and DELLY v0.6.1 [25] 
software packages use a PEM-based strategy followed by 
a split-read (SR)-based approach to determine the type 
and the size of the predicted variant. Pindel and DELLY 
were used with default parameters.

Analysis of CNV
For each animal, first we excluded all variants for which 
the breakpoint positions were located within a 100-bp 
window that contained a gap in the reference sequence. 
Then, we filtered out all variants for which more than 
25% of the bases consisted of gaps. Information about the 
location of all unknown sequences within the UMD3.1 
reference genome sequence was downloaded from the 
NCBI database (ftp://ftp.ncbi.nlm.nih.gov/genomes/
Bos_taurus/Assembled_chromosomes/agp/). Finally, we 

ftp://ftp.ncbi.nlm.nih.gov/genomes/Bos_taurus/Assembled_chromosomes/agp/
ftp://ftp.ncbi.nlm.nih.gov/genomes/Bos_taurus/Assembled_chromosomes/agp/
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selected all variants that were supported by a minimum 
of three reads and retained only those that were pre-
dicted by at least two different tools. In addition, a vari-
ant that was predicted by both Pindel and DELLY was 
retained only if these two methods identified the corre-
sponding breakpoint positions that were within 100  bp 
of each other (i.e. the 5′ breakpoint indicated by Pindel 
was within 100 bp of the breakpoint identified by DELLY, 
and the same for the 3′ breakpoint). For all other com-
binations of tools, we applied a 90% reciprocal overlap 
(RO) threshold for defining CNV as belonging to the 
same region; otherwise, they were considered as distinct 
regions (Fig. 1).

Variants that passed these filtering criteria were sub-
sequently checked in other samples. A given CNV was 
defined as common to at least two samples when the pre-
dicted region in one sample had at least 70% reciprocal 
overlap with the CNV region predicted in another sam-
ple. The resulting overlapping variants were then used to 
define potential CNV regions (CNVR). The new break-
point positions and the size of these CNVR were defined 
as follows: (1) the 5′ and 3′ genomic positions of the 
CNVR corresponded respectively to the lowest 5′ and the 
highest 3′ positions of all overlapping variants identified 
in the previous steps; and (2) the size of the CNVR was 
defined as the interval between the new 5′ and 3′ break-
point positions.

Validation of CNV
Mendelian approach
CNV were validated by two in silico and two experi-
mental approaches. First, two family trios and 16 sire-
son pairs from our dataset were sequenced. Since CNV 
should be inherited from parent to son, we reported only 
CNV that were present in either of the parents and the 
offspring in trios or in both sire and son in sire-son pairs.

Twice‑sequenced approach
Second, we used 14 animals for which we had sequenc-
ing data generated from at least two different sequencing 
runs in order to estimate the number of shared predicted 
CNV between the two datasets. Theoretically, for a given 
animal, the same CNV should be present in each of the 
two independent sequences.

Array‑based CGH approach
The third validation approach involved array-based 
comparative genomic hybridization (CGH) analysis. In 
this study, CGH experiments were performed using the 
Agilent CGH array (SurePrint G3 Bovine CGH Micro-
array, 4 × 180 K), which contained 152,934 oligonucle-
otide probes, each 45 to 60 nucleotides long. Adjacent 
probes were on average 16,376 bp apart on the UMD3.1 
reference genome. DNA for 17 animals was analyzed 
using this CGH microarray, including DNA from Domi-
nette (the animal that was used to generate the bovine 
reference genome), which was used for normalization 
steps. The 17 animals were also sequenced in this study 
(the detailed protocol for array-based CGH is avail-
able in Additional file 2). Briefly, 600 ng of fragmented 
DNA was labeled with Cy3- or Cy5-labeled nucleotides 
(tested DNA and control DNA, respectively). Tested 
and control DNA were then co-hybridized in the Agi-
lent system and the array was scanned on the MS200 
scanner (TECAN) according to the manufacturer’s 
instructions and as performed in other studies [26, 27]. 
Fluorescence intensities were normalized and qual-
ity was checked using the Feature Extraction software 
v11.5.1.1 from Agilent. Then, the aberration detection 
method 2 (ADM-2) algorithm was applied using Agi-
lent Genomic Workbench software (v7.0.4.0) to detect 
variants. Potential variants were detected by analyzing 
aberrations in the normalized fluorescence intensities 

Table 1 Distribution of animals per breed and sequencing coverage

Breed Number of animals Coverage min–max Coverage mean Percentage of chimeric reads Breed type

Blonde d’Aquitaine 25 11–26 15 1.1 ± 0.1 Beef

Brown Swiss 3 9–12 10 0.3 ± 0.03 Dairy

Charolaise 25 11–25 15 1.3 ± 0.2 Beef

Holstein 56 8–21 13 0.8 ± 0.9 Dairy

Limousine 34 8–25 14 1.6 ± 0.8 Beef

Montbéliarde 31 9–28 15 1.6 ± 1.1 Dairy

Normande 23 8–33 12 2.3 ± 0.9 Dairy

Rouge des Prés 3 16–31 21 1.3 ± 0.1 Beef

Total 200 8–33 14.4 1.4 ± 1.5
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relative to the reference DNA sample, Dominette (log 
2 ratio). A CNV was retained if at least three consecu-
tive probes supported it. Finally, CNVR were defined by 
comparing identified CNV across samples. Two CNV 
belonged to the same CNVR if they shared at least 50% 
of their sequence.

Custom SNP genotyping approach
Finally, we selected 122 deletion-only, duplication-only, 
or CNV regions for testing in genotyping assays using 
the Illumina bovine low-density BeadChip  (Infinium® 
BovineLD v6.0: LDv6) [28]. In this chip, each variant 
was represented by at least three SNPs that were uni-
formly spaced. These SNPs were chosen from the SNP 
catalog published by Boussaha et al. [19]. Overall, 1008 
SNPs were genotyped for 14,082 animals from 18 differ-
ent breeds by LABOGENA SA (France), following the 
manufacturer’s recommendations. Total signal intensity 
(Log R Ratio: LRR) and allelic intensity ratio (B allele 
frequency: BAF) of the SNPs for each sample were col-
lected and then analyzed with PennCNV (2011Jun16 
version) [29] to identify CNV. Only samples with an LRR 
standard deviation less than 0.3 and a BAF drift less than 
0.01 were considered for detection. Then, the resulting 
variants were compared to those predicted with WGS 
data. As for the array-based CGH approach, two vari-
ants were considered as identical if at least 50% of their 

sequence were shared and if they passed all other in sil-
ico approaches.

Statistics
All reported statistics were calculated using R software. 
The Pearson method was used first to assess the corre-
lation between reported variants and coverage rate, and 
second to calculate the correlation between the number 
of variants and chromosome size. The Chi square test was 
used to evaluate within-breed genetic variability. This 
within-breed genetic variability was assessed by com-
paring the number of predicted variants to the expected 
number, which was calculated as the ratio between num-
ber of predicted variants and number of sequenced ani-
mals within each breed.

Comparison of CNVR with known bovine CNV
We compared our CNV dataset with those previously 
published for cattle [4, 20, 30–34] and with the publicly 
available Genomic Variants archive (DGVa) database of 
EMBL-EBI (http://www.ebi.ac.uk/dgva). These publicly 
available CNV were detected using array-based CGH 
[30], SNP genotyping arrays [31, 32], and whole-genome 
sequencing [4, 20, 33, 34]. The comparison was carried 
out using the Bedtools software package [35]. Given the 
differences between platforms, definitions of CNV, and 
methods of CNVR construction used, two CNV were 
considered as shared when there was at least 50% of 
reciprocal overlap between the two regions.

Gene content and gene ontology
First, functional elements that were located within or 
overlapping with deletion-only, duplication-only, and 
CNV regions were identified by using a custom python 
script (available upon request) that was coupled with the 
“intersectBed” option of the Bedtools package [35]. Gene 
content was analyzed by using the bovine Ensembl gen-
ebuild database (version 89) retrieved from the BioMart 
database (http://www.ensembl.org/biomart/). In total, 
24,616 bovine genes were downloaded. For each gene 
that was located within a CNVR or overlapping with a 
CNVR, we used Ensembl information to verify whether 
there were known paralogous genes.

Second, we used the public animal QTLdb database, 
release 32 [36], to check whether the variants included 
in our panel were located within or overlapped with pub-
licly available bovine quantitative trait loci (QTL).

Finally, gene ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analyses were per-
formed using the PANTHER classification system v11.1 
[37]. After Bonferroni correction, enriched GO terms 
within biological processes, cellular components, and 
molecular functions were identified.

DELLY

Common 
events within 
animal A

Common events 
between animals

Merge step 1: 
• No predic�on within “N” 

gaps
• Number of reads >=3
• RO>=90

• Breakpoints within ±101pb
*

Merge step 2:
• RO>=70
• 2 tools

Common 
events within 
animal B 

Common 
events within 
animal C

BAM file of animal A
CNV predic�on

CNVnatorBreakDancerPindel

Fig. 1 Flowchart of pipeline used to identify copy number varia-
tions (CNV). RO reciprocal overlap. *Only for the comparison of CNV 
between Pindel and DELLY. First, CNV were predicted separately by 
each tool within each sample. Second, only predictions supported by 
at least three reads and covered by less than 25% of their sequence of 
“N” gaps were retained. These filtered CNV were compared within the 
same sample to retain common CNV predicted by the different tools. 
CNV should share at least 90% of their sequence between two tools. 
Finally, CNV were identified by merging variants at 70% of reciprocal 
overlap across all samples

http://www.ebi.ac.uk/dgva
http://www.ensembl.org/biomart/
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Results and discussion
Sequencing data
One hundred seventy-two French beef and dairy animals 
were sequenced as described by Boussaha et al. [19] (see 
Additional file  1: Table S1). Sequencing details for the 
28 whole-genome sequences that were obtained for this 
study are in Table S1 (Additional file 1: Table S1). As in 
Hoze et al. [38], 180 sires of the 200 sequenced animals 
were chosen based on their marginal contribution to their 
population based on pedigree information, as defined 
by Boichard et  al. [39], and computed using the PEDIG 
software [40]. Eighteen of the remaining 20 animals were 
sons of some of these 180 selected sires. In addition, two 
mothers of some of the 18 sons were chosen.

Paired-end sequencing produced 71.51 billion paired-
ends read, of which 69.46 billion (96.5%) were correctly 
mapped to the UMD3.1 reference genome sequence. The 
average insert size was 321  bp and the average whole-
genome sequencing coverage was 14.4x, ranging from 
8× to 33× (see Additional file 1: Table S1).

Deletion, duplication, and CNV calls
Deletions, duplications, and CNV regions were predicted 
using four tools. To define potential CNVR, raw events 
predicted by all four tools were merged and further ana-
lyzed (Fig.  1). Overall, we detected 19,077 deletion and 
duplication events predicted by at least two tools (see 
Additional file 3: Table S2).

Validation of CNVR
Given the huge number of detected variants and the like-
lihood of a relatively high rate of false positives due to the 
number of approaches used, we decided to apply multi-
ple criteria to retain the most reliable variants. Thus, all 
detected variants were validated by applying four strate-
gies, in silico and experimentally, and only the validated 
ones were considered for further analyses.

Mendelian approach
Analysis of trios and parent–offspring pairs revealed that 
57% (4596 of 8088) of the identified variants were pre-
sent in at least one parent and one of its offspring (Fig. 2), 
Table S1 (see Additional file  1: Table S1) and Table S3 
(see Additional file 4: Table S3). Of these 4596 variants, 
almost 33% were present in all three members of the trio 
(sire, dam, and offspring) and in all offspring of a given 
sire (in cases in which a sire had several offspring). The 
percentage of variants that were transmitted from either 
of the parents to the offspring was highly variable, rang-
ing from 12 to 72%, and was highly correlated with 
sequencing depth (Pearson correlation score ρ = 0.75, p 
value = 1.6e−4) (see Additional file 5: Table S4).

Twice‑sequenced approach
Next, we compared the variants detected in whole-
genome sequence data generated from two or more 
sequencing runs of the same individual. In total, 7394 of 
the 9266 variants that were predicted for these 14 animals 
were found in both sets of sequence data by at least one 
CNV detection tool (see Additional file 6: Table S5). The 
overall concordance rate was around 80%. Of these 7394 
variants, 44% (3261) were validated in at least two dif-
ferent breeds, 38% were validated only in Montbéliarde, 
4% only in Charolaise, 6% only in Limousine, 4% only 
in Rouge des Prés, and 2% only in Blonde d’Aquitaine. 
Moreover, around 56% (4163) of these variants were also 
confirmed by the Mendelian strategy.

Array‑based CGH approach
Array-based CGH analysis of whole-genome sequence 
data from 17 individuals resulted in the identification of 
68 variants (see Additional file  7: Table S6). The detec-
tion of a given type of variants for one animal with the 
array-based CGH method was compared to that with 
the whole-genome sequence method (reciprocal over-
lap (RO)  ≥  50%); of these 68 variants, 34% (23 vari-
ants) were found by both approaches. In addition, when 
variants detected by array-based CGH were compared 
with raw variants data that were predicted using whole-
genome sequence data prior to merging, we retrieved 
18% (12 variants) more than in the analysis that used only 
merged variants. These 12 variants were mostly predicted 
with CNVnator (92%, 11 variants) (see Additional file 7: 
Table S6). Following this comparison, 22% (15 variants) 
of the remaining variants detected by array-based CGH 
were found in the whole-genome sequence dataset if we 
relaxed the RO threshold to 1%; the fact that these vari-
ants were excluded from the sequence approach showed 
the stringency of the criteria that we used to define vari-
ants (see Additional file 7: Table S6). The remaining 26% 
(18 variants) of the variants detected by array-based 
CGH not found with whole-genome sequence data were 
located in poorly sequenced regions. Among the 23 
variants detected by both array-based CGH and whole-
genome sequence approaches, eight were also found in 
animals sequenced in at least two sequencing runs, and 
three were also validated by the Mendelian approach.

Custom SNP genotyping approach
Finally, we used SNP genotyping assays to test 122 vari-
ants, which were found by the Mendelian and twice-
sequenced approaches. These variants were selected 
based on their frequency (≥  10%) in at least one of the 
three main French dairy breeds (Montbéliarde, Nor-
mande and Holstein). For each variant, we selected at 
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least three SNPs from a publicly available SNP dataset 
[19]. We validated 69 variants (56%) (see Additional file 8: 
Table S7). Eight additional variants were retained by 
applying a RO threshold of 20%. In total, 45 variants that 
were predicted from WGS data were not captured with 
the approach based on SNP genotyping data. These vari-
ants may have been excluded either during the filtering 
steps of the SNP genotyping quality control or during the 
CNV identification process, in which three SNPs were 
needed to retain the CNV.

Overall, we retained 4178 variants that were detected 
by both in silico approaches (Mendelian and twice-
sequenced approaches) and/or CGH. Of these 4178 vari-
ants, 83% (3464) were predicted by a minimum of three 
tools and 22.2% (927) were predicted by all four tools (see 
Additional file 9: Table S8). Most validated variants were 
predicted by both DELLY and BreakDancer (4075 vari-
ants, 97.5%). The smallest number of validated variants 
was identified by the combination of Pindel + CNVnator 
(1047 variants, 25%) (Table 2).

Analysis of the distribution of the percentage of vali-
dated variants per combination of tools shows that the 
Pindel  +  CNVnator combination yielded the highest 
percentage (1047 validated variants out of 2048 total pre-
dicted variants, 51.1%) followed by the DELLY + CNVna-
tor combination (44.2% i.e. 2139 validated variants out 
of 4840 total predicted variants). DELLY combined with 
BreakDancer predicted the largest number of variants but 
only 23.3% of these (4075 validated variants out of 17,479 
total predicted variants) were validated, which indicates 
that these tools have a high rate of false positives. This is 
consistent with previous reports that showed that DELLY 
outperforms the other tools in terms of discovery, but has 

a high rate of false positives [41, 42]. In contrast, all com-
binations of tools that included Pindel had a higher rate 
of validated variants (42%), which reflects the high degree 
of accuracy of this tool for predicting variants, which is 
likely due to Pindel using the split-read approach on one-
end anchor reads to identify, with high resolution, the 
breakpoint positions of a variant.

Distribution of variants
We retained 4178 variants that were validated by both in 
silico approaches and/or array-based CGH and, across all 
animals, they represented 6% (150  Mb) of the UMD3.1 
cattle genome assembly. These variants comprised 3940 
deletion-only regions, 67 duplication-only regions and 
171 CNVR (Table 3).

Analysis of the distribution of variants on the auto-
somes revealed a significant correlation between the 
number of predicted variants and chromosome size 
(Pearson correlation score ρ = 0.91, p value = 5.56e−12, 
Fig. 3a). Bos taurus chromosome 1 (BTA1), 6, and 5 car-
ried the largest number of variants (277, 232, and 231, 
respectively; (see Additional file  10: Table S9), whereas 
BTA25 had the smallest number (38). However, the 
correlations between number of predicted variants 
and proportion of each chromosome covered by vari-
ants were quite different (Fig.  3b). The highest percent-
age of sequence covered by CNV (30.2%) was found 
for BTA27, which was also the chromosome that was 
most covered by duplication-only regions (2.7  Mb, 
CNVR_11771). On the contrary, BTA3, 13 and 27 were 
the chromosomes that were most enriched in deletion-
only regions (15.2, 11.2 and 10.5 Mb, respectively). BTA3 
and 13 carried the largest deletions that we detected 

4,596
(57,8%)

4,344 DEL
66 DUP
186 CNVRs

432 206
1,500

Sire-Dam-Son Trios Sire-Several offsprings

Fig. 2 Number of variants supported by Mendelian inheritance. The total number of variants supported by Mendelian inheritance is indicated in 
the orange circle (two family trios and 16 sire-son pairs). The sire-dam-son trios legend represents the number of variants found in the offspring and 
in its parents. Sire-several offspring indicates the number of variants that were predicted for the sire and several of its offspring
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in our dataset i.e. 7.7  Mb (CNVR_13246) and 6.9  Mb 
(CNVR_3635), respectively. In addition, two large dele-
tions (CNVR_11676 and CNVR_11898) that together 
covered 8.6 Mb were identified on BTA27. BTA12 and 23 
carried the largest CNVR i.e. 6.3  Mb (CNVR_3252 and 
CNVR_3296) and 4.3 Mb (CNVR_10026), respectively.

In contrast, the lowest percentage of sequence covered 
by variants (0.6%) was found for BTA25 and for BTA1 
(1.1%) although this chromosome had the largest num-
ber of CNV (see Additional file  10: Table S9). The total 
length of CNV per chromosome was not correlated with 
chromosome length (Pearson correlation score ρ = 0.12, 
p value = 0.54).

On average, we identified 1132 variants per individual 
and this number ranged from 46 to 2957. These variants 
covered 0.06 to 4.45% of the genome of each animal, with 
an average and median proportion of 1.6%  ±  0.7 and 
1.4%, respectively (see Additional file  1: Table S1) and 
see Fig.  4. This observed variability across individuals 
can be partly explained by variations in coverage depth, 
which ranged from 8× to 33× (Fig. 5). Indeed, the small-
est number of detected deletions and duplications was 
found for animals with a low sequencing depth and this 
increased as sequencing depth increased (Pearson corre-
lation score ρ = 0.60, p value < 2.2e−16).

Analysis of the distribution of variant size revealed that 
75% of the deletion-only regions were shorter than 3.3 kb 
with a median size of 1.5 kb (Fig. 6), whereas 75% of the 
duplication-only regions were longer than 4.4 kb, with a 

median size of 8.7 kb. Likewise, about 75% of CNVR were 
longer than 45.7 kb, with a median size of 114 kb (Fig. 6).

This finding confirms the results of a previous study 
in cattle [43] and may be explained by technical and/or 
biological factors. For example, our study only predicted 
tandem duplications because dispersed duplications are 
difficult to confirm by applying the combination of CNV 
detection tools that we used, thus the smaller number of 
detected duplications. In addition, some studies [44, 45] 
reported that certain recombination mechanisms, such 
as non-allelic homologous recombination (NHAR), result 
in more deletions than duplications, which may also 
partly explain the larger number of deletions observed in 
this work compared to that of duplications.

Further work is necessary to better analyze the link 
between different recombination mechanisms and 
the type of variants produced. Moreover, SR and PEM 
approaches were more sensitive for the detection of small 
variants because of the relatively small size of the inser-
tions (321  bp on average). However, CNVnator, which 
uses an RD-based approach, is not limited by insert size, 
but in this study, we were constrained by the criterion 
that was set, i.e. that only variants predicted by at least 
two tools were retained. To balance this bias, future stud-
ies could use two RD tools to retain large-size variants. 
This technical bias could partly explain why the number 
of duplicated regions, which tend to be of larger size than 
deletions, was small compared to the number of deleted 
regions.

Frequency of variants across animals and breeds
The percentage of carriers for each variant varied 
from 0.5% (1 animal out of 200) to 97% (194 animals 
out of 200). Overall, 0.05% (two variants) were unique 
(observed in a single sample) (Fig. 7) and (see Additional 
file 9: Table S8), which suggests a very recent origin and 
confirms similar results that were reported in a study on 
Holstein [46]. The remaining 99.95% of detected variants 
(4176) were observed in at least 1% of the animals in our 
panel. These included variants that were shared among 
several animals within a single breed and variants that 
likely predated breed formation and were shared by two 
animal categories (beef and dairy).

Two variants located on BTA17 (CNVR_6167 
and CNVR_6267) and a third one located on BTA6 
(CNVR_15672) were observed in more than 90% of our 
population dataset. Analysis of the raw data for each 
tool revealed that the genome of the remaining 10% of 
the population also contained these CNV. However, 
they were discarded from the final results because they 
were detected with less than three reads, or predicted 
with only one tool, or did not pass the 70% reciprocal 
overlap filter. These CNV could also be specific to the 

Table 2 Percentage of validated variants per combination 
of tools

Combination of tools Number 
of variants 
before vali‑
dation

Number 
of variants 
after valida‑
tion

Validation 
rate (%)

Pindel + DELLY 7510 3169 42.2

Pindel + CNVnator 2048 1047 51.1

Pindel + BreakDancer 7364 3161 42.9

DELLY + CNVnator 4840 2139 44.2

DELLY + BreakDancer 17,479 4075 23.3

CNVnator + BreakDancer 6060 2327 38.4

Total 19,077 4178

Table 3 Number of predicted and validated variants

Type of variant Number of variants

Deletions 3940

Duplications 67

CNVR (deletion + duplication) 171

Total 4178
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Fig. 5 Link between the number of variants and the coverage rate for each animal
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individual that was used to produce the UMD3.1 refer-
ence sequence. Another explanation could be the pres-
ence of locally mis-assembled segments within the 
reference genome sequence. In addition, CNV predic-
tion based on whole-genome sequences depends strongly 
on the quality of the bovine reference genome, which is 
known to be less good than the human reference genome.

The distribution of deletion, duplication, and CNV 
regions across breeds revealed that only 2.1% were breed-
specific, 97.9% were observed in at least two breeds and 
17.2% (717) were predicted and validated in the eight 
breeds analyzed (see Additional file 9: Table S8). Of these 
717 variants, 92.5% (663) were deletion-only regions, 
6.8% (49) were CNVR and 0.7% (5) were duplication-only 
regions. Since the UMD3.1 reference genome sequence 
was obtained from a Hereford animal, these deletion-
only and duplication-only regions shared by all breeds 
could probably be Hereford- or even Dominette-specific 
events.

The distribution of variants across breeds was highly 
variable. Almost 96.12% of the variants (4016) were 
observed in both dairy and beef breeds, 0.17% (7) in only 
beef and 3.71% (155) in only dairy breeds (see Additional 
file 9: Table S8). The number of variants shared between 
breeds did not vary significantly (χ2 test, p value = 0.26). 
We observed a small difference in the number of vari-
ants detected in dairy breeds only (155) and in beef 
breeds only (7), which can be partly explained by differ-
ences in the number of animals in each breed type and 
the coverage rate of sequencing used in the Mendelian 
and twice-sequenced approaches. The 16 pairs and two 

sire-son-dam trios used in the Mendelian approach were 
all dairy animals. In the twice-sequenced approach, we 
explored data from five dairy and nine beef animals, but 
the coverage rate was much higher for dairy (from 23× to 
30× ) than for beef animals (from 9× to 13× ) (see Addi-
tional file 1: Table S1).

Most of the variants detected in beef breeds were 
shared by at least three breeds (3522 out of 4023, 86%), 
while 2872 out of 4171 (69%) were shared by a minimum 
of three dairy breeds (Fig.  8). The dairy breeds studied 
here have undergone strong selection to produce the best 
reproductive animals based on traits of interest; also, 
artificial insemination is frequently used in dairy breeds 
to disseminate the selected traits. Thus, each breed has 
a high degree of specialization, which may explain the 
small number of variants shared among dairy breeds 
(69%). On the contrary, the distribution of variants 
within the beef breeds was very heterogeneous, probably 
because artificial insemination is much less used in beef 
breeds.

Comparison of our dataset with previously described CNV
We compared all deletion, duplication, and CNV regions 
identified in our study to publicly available data. Overall, 
2278 regions (54.5%) including 2102 deletion regions, 
22 duplication regions, and 154 CNVR overlapped with 
publicly available results from seven published studies 
(Fig. 9).

Different factors related to the method used to iden-
tify CNV probably explain the relatively small propor-
tion of common variants. Among these are the platforms 
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and methods used for CNV calling, and/or the popula-
tion size and structure of the studied animal popula-
tions, and the criteria used to define a CNV region. In a 
previous study, an array-based CGH approach was used 
to predict CNV in 90 animals from Bos taurus, Bos indi-
cus and composite breeds [30] and found no small vari-
ants, i.e. the smallest identified CNV was 18,000 bp long. 
Whereas, in our study, the majority of variants were 
less than 18,000  bp long. In another study, Hou et  al. 
reported CNV predicted from 472 Angus animals that 
were genotyped using a medium SNP genotyping array 

(BovineSNP50) and they did not detect small variants 
(i.e. mean CNV size  =  174,844  bp) [32]. Since we did 
not include Angus cattle in our study, our results do not 
contain any Angus-specific CNV. Furthermore, 5.1 and 
8.4% of the variants reported by Hou et al. were unique to 
either an individual or a breed, respectively. This suggests 
that many bovine CNV are yet to be discovered.

Functional annotation of CNVR
Analysis of the gene content of deletion-only, duplica-
tion-only, and CNV regions revealed that 1100 of all the 
variants (1000 deletion-only, 21 duplication-only, and 79 
CNV regions) identified in our study contained or over-
lapped with 1803 genes (see Additional file  11: Table 
S10). Of these, 86% (1577 genes) corresponded to known 
protein-coding genes, 66 were pseudogenes, 87 genes 
were small nuclear and nucleolar RNA-coding genes, 26 
were microRNA-coding genes, 38 were ribosomal RNAs, 
and nine were miscellaneous RNA coding genes. Around 
81% (1460) of these genes had paralogs. In addition, 231 
variants resulted in the deletion of an entire gene, nine in 
the duplication of an entire gene and 69 CNVR encom-
passed an entire gene. Furthermore, 186 of the deletion 
regions removed either partially or entirely a gene, which, 
in cattle, are described as lacking a paralog; thus, their 
deletion can alter gene expression and disturb the path-
ways in which they are involved. Further studies could 
target homozygous animals to study the effect of these 
deleted regions.

In order to identify the cellular functions associ-
ated with genes located in deletions, duplications, and 
CNVR, we performed a gene ontology (GO) analysis with 

Fig. 8 Distribution of variants per breed. a Distribution of variants across dairy breeds. b Distribution of variants across beef breeds. BAQ Blonde 
d’Aquitaine, BWS Brown Swiss, CHA Charolaise, HOL Holstein, LIM Limousine, MON Montbéliarde, NOR Normande, RDP Rouge des Prés
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Fig. 9 Comparison of predicted variants with published studies. Our 
results were compared to studies derived from SNP arrays [31, 32], 
from CGH [30] and from whole-genome sequencing [4, 20, 33, 34]. 
In this study we analyzed a large panel of breeds (four beef and four 
dairy breeds) compared to the other studies
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PANTHER. The GO analysis classified 1442 genes into 
three GO categories: biological process, cellular compo-
nent, and molecular function. These genes were enriched 
in a variety of cellular functions such as cellular and met-
abolic processes, binding, catalytic capacity, response 
to stimulus and cell part (Fig.  10). Because this set of 
genes is involved in a wide range of molecular functions, 
changes in gene copy number could result in a range of 
potential phenotypic variations among animals.

The genomic positions of the detected variants were 
also compared to the positions of publicly available QTL 
[36]. Overall, 1095 variants overlapped with QTL regions 
that are associated with milk (10 QTL), production (43 
QTL), health (27 QTL), reproduction (26 QTL), or meat 
and carcass traits (73 QTL) (see Additional file 12: Table 
S11). In addition, 276 variants overlapped, partially or 
entirely, with both genes and QTL.

Several of the genes that were found to be located 
within the variants detected here are known to be associ-
ated with several important traits in cattle. One example 
is the Bardet-Biedl syndrome 7 (BBS7) gene, which is par-
tially deleted by the CNVR_15659, has no paralog in the 
bovine genome and is co-localized with a known bovine 
QTL for body weight (see Additional file 12: Table S11). 
This gene is also associated with body weight and male 
infertility in mouse [47]. We identified this CNVR_15659 
region in four dairy animals (one Holstein and three 
Montbéliarde) and nine beef animals (five Blonde 
d’Aquitaine, three Charolaise and one Limousine). Addi-
tional studies are needed to investigate the link between 
this deletion and the QTL for body weight.

A second CNVR_12945 region was found to entirely 
delete the HSD17B7 (hydroxysteroid 17-beta dehydro-
genase 7) gene, which is related to heifer conception 
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rate trait in Holstein cattle [48]. This region occurred at 
a higher frequency in beef than in dairy breeds; it was 
found in only four dairy animals (Montbéliarde) but in 32 
beef animals (eight Blonde d’Aquitaine, 11 Charolaise, 10 
Limousine and three Rouge des Prés). It would be very 
interesting to study the effect of this gene on heifer con-
ception rate in the Montbéliarde breed.

Another interesting region, CNVR_10026, which 
encompasses entirely the SUPT3H (SPT3 homolog) 
and RUNX2 (runt related transcription factor) genes, 
occurred at different frequencies in beef and dairy 
breeds; it was deleted in 11 dairy animals (four Hol-
stein, six Montbéliarde and one Normande) and 18 beef 
animals (seven Blonde d’Aquitaine, six Charolaise, four 
Limousine and one Rouge de Prés). Two more beef ani-
mals (one Blonde d’Aquitaine and one Rouge de Prés) 
had CNVR (both a duplication and deletion in the same 
region). SUPT3H and RUNX2 are associated with milk 
fat traits [49]. In addition, we found that RUNX2 overlaps 
with a QTL associated with 305-day milk yield and milk 
protein percentage [50] and SUPT3H is upstream of this 
same QTL.

The duplication CNVR_11771, which we detected in 
two Montbéliarde individuals, one Charolaise, one Lim-
ousine and one Rouge des Prés individual, overlapped 
with the transcription factor gene GTF2E2 (general 
transcription factor IIE subunit 2), which is known to be 
deregulated during Eimeria bovis infection [51].

In summary, we found that several of the variants 
detected in our study could potentially impact genes that 
are associated with important cattle traits. Future studies 
are needed to examine these variants in detail, together 
with phenotypic records, to confirm or infirm their 
effects.

Conclusions
Several recently developed NGS-based detection algo-
rithms have led to significant progress in CNV detec-
tion. Here, we identified and characterized deletions, 
duplications, and CNV in eight French cattle breeds. 
This study represents one of the largest efforts for 
applying a sequence-based approach to detect CNV 
in cattle (200 animals). By exploring different comple-
mentary approaches and applying a stringent merge 
strategy, we identified 4178 deletion-only, duplication-
only, and CNV regions in both dairy and beef ani-
mals. We found 4163 variants by using two in silico 
approaches (Mendelian inheritance and reproducible 
predictions from sequences from multiple sequenc-
ing runs of the same animal). Of these 4178 variants, 
69 were confirmed using SNP genotyping data and 
15 other variants were validated using an array-based 
CGH approach. Our analyses revealed that predictions 

were most accurate when using a combination of Pin-
del + CNVnator tools. Some of the variants identified 
here can potentially affect genes that are involved in 
economically important cattle traits, and further anal-
yses are necessary to investigate their possible effect. 
This study will contribute to drawing up a CNV map 
in French cattle and examining the potential impact of 
this kind of genetic variation on economically impor-
tant traits of interest.
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