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Abstract

This paper describes LIMSI’s submission
to the CoNLL 2017 UD Shared Task,
which is focused on small treebanks, and
how to improve low-resourced parsing
only by ad hoc combination of multiple
views and resources. We present our ap-
proach for low-resourced parsing, together
with a detailed analysis of the results for
each test treebank. We also report exten-
sive analysis experiments on model selec-
tion for the PUD treebanks, and on anno-
tation consistency among UD treebanks.

1 Introduction

This paper describes LIMSI’s submission to the
CoNLL 2017 UD Shared Task (Zeman et al.,
2017), dedicated to parsing Universal Dependen-
cies (Nivre et al., 2016) on a wide array of lan-
guages. Our team’s work is focused on small tree-
banks, under 1,000 training sentences. To improve
low-resourced parsing, we propose to leverage
base parsers, either monolingual or cross-lingual,
by combining them with a cascading method: each
parser in turn annotates some of the tokens, and
has access to previous predictions on other tokens
to help current prediction; in the end each token
is annotated by exactly one parser. Compared
to the official baseline, this combination method
yields significant improvements on several small
treebanks, as well as a few larger ones.

Overall, according to the official results, our
system achieves 67.72 LAS and is ranked 17th
out of 33 participants, while the baseline (UD-
Pipe 1.1) achieves 68.35 LAS and is ranked 13th.
This is mostly due to huge drops from the base-
line on a few languages, for which we submit-
ted one of the official baseline models. Analyzing
these drops (see §4.5) unveils that strong annota-

tion divergences remain among UD treebanks of
the same language. If for these treebanks we had
submitted the exact same models as the baseline
submission, our system would have been ranked
9th, achieving 68.90 LAS. In the unofficial, post-
evaluation ranking, it is ranked 12th.

In §2, we present the design of our system, the
base parsers we use and how we combine them.
Official results are reported in §3; the strategy
adopted for each group of treebanks is presented
in §4, along with per-treebank detailed analyses.

2 System overview

Our system consists of several strategies, sum-
marized in Figure 1: depending on the treebank
size, we build and compare several parsers with
various designs, and finally submit the parser or
parsers combination performing best on develop-
ment data. For a few languages, we also improve
preprocessing by correcting errors in the tokeniza-
tion predicted by UDPipe (Straka et al., 2016).

Most of the parsers we consider are based on the
literature or our previous works, but for some lan-
guages, we also experiment with a new method for
combining base parsers. This method is designed
to better leverage each available resource in a low-
resource context. Indeed, state-of-the-art methods
for low-resourced parsing generally focus on ex-
ploiting one type of resource (e.g. parallel data) to
build a model, neglecting the others. On the con-
trary, our approach aims at using all available re-
sources together, since when data is scarce, we can
hardly afford ignoring a given information source.

The main idea of our approach is that vari-
ous kinds of parsing algorithms and training data
(monolingual, cross-lingual, delexicalized, paral-
lel data) provide different, complementary views
on the dependency structure of the language at
hand. We intend to leverage this complementar-
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Figure 1: The various strategies contained in our
system. The strategies written in bold consist of a
single model, the others are combinations of mod-
els. For each language, the best strategy is selected
on development data.

ity with a selective combination of several base
parsers.

For instance, a cross-lingual delexicalized
parser intuitively provides insights on the main
syntactic structures, presumably shared because of
linguistic similarities (typically assessed using lin-
guistic knowledge), while a monolingual parser
can learn target-specific structures in target data.
On one hand, if monolingual data is too small,
it does not contain enough information on the
main syntactic structures, and the cross-lingual
parser will be more accurate; it should be pre-
ferred for this kind of dependencies. On the other
hand, knowing the main structure of the sentence
can help in identifying fine-grained, target-specific
structures; when it is not available in monolingual
data, we want the cross-lingual parser to provide
this information to the monolingual parser (e.g. as
additional features).

Hence, we propose that some part of the syn-
tax is preassigned to each base parser, which is
retrained to specialize on that part, and to make
use of the syntactic insights provided by other,
more generic parsers. We achieve this with a
cascading method (Alpaydin and Kaynak, 1998)
and preestimated competence regions (Kuncheva,
2004, Chapter 6): each component of the cascade
is assigned a competence region, i.e. a subset of
the tokens on which it is assumed a priori to per-
form well, it annotates only these tokens and the

subsequent parsers are only allowed to complete
this partial tree. In the cascade, each component
parser trains and annotates the input based on its
predecessors; this requires (a) parsers with partial
trees as output, (b) to predict parses that include
a given set of dependency constraints, and (c) to
train parsers to use such constraints. Figure 2 sum-
marizes the method.

The base parsers that we compare and combine
are introduced in §2.1, and §2.2 describes how the
cascades are implemented and the competence re-
gions are chosen. §2.3 and §2.4 address other tech-
nical aspects of our submission: model selection
among our multiple strategies, and input prepro-
cessing.

2.1 Base parsers

2.1.1 Training data

In our system, we do not distinguish languages
with or without development data, nor sur-
prise languages. For all languages, we use
train/tune/dev splits of the UD data (Nivre et al.,
2017a), following the splits provided with the of-
ficial baseline (Straka, 2017).1 We perform a sim-
ilar split for the surprise languages, retaining the
10 first sentences for the trainset and the 4 last sen-
tences for the devset.

We always use gold tokenization and segmen-
tation during training, but to improve robustness
to noisy tags, all models are trained on treebanks
with predicted tags, provided by the task organiz-
ers.2

We use the word embeddings provided by the
organizers, computed on monolingual data prepro-
cessed by UDPipe.3

Parallel data from the OPUS platform (Tiede-
mann, 2012) is preprocessed as follows: for each
pair, all corpora are concatenated, tokenized and
annotated by UDPipe, and word aligned with fast
align (Dyer et al., 2013).

2.1.2 Monolingual

We consider four monolingual parsers:

1However, in the case of Uyghur and Kazakh, whose tune-
sets are particularly small and can hinder our method, we re-
allocate sentences from trainsets to tunesets, to reach 15 tun-
ing sentences. Still, to prevent train-tune overlaps, the initial
tuneset is used when evaluating the official UDPipe model.

2Except for the sample treebanks of the surprise lan-
guages, for which only gold tags are released.

3We also compute such embeddings for the surprise lan-
guages, using the same process.
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Figure 2: Processing of an input sentence by a 3-component cascade. The cascade contains parsers P1,
P2 and P3, which have been respectively assigned the competence regions R1, R2 and R3; each token
belongs to exactly one region. On the input sentence, the white areas represent tokens whose head is
unknown, while the black areas represent tokens whose head has already been predicted.

UDPipe We apply the official UDPipe 1.1 base-
line models (Straka, 2017). For the surprise lan-
guages, we train our own model.4

PanParser This is an in-house implementa-
tion (Aufrant and Wisniewski, 2016) of a
transition-based parser, using the ArcEager sys-
tem and an averaged perceptron. Hyperparame-
ters to tune are the number of epochs, the use of
the universal morphological features, the use of
word embeddings concatenated to the feature vec-
tors, and the size of the beam (either 8 or 1, i.e.
greedy). In any case the parser trains with dy-
namic oracles, with the restart strategy of Aufrant
et al. (2017). Relation labels are predicted in a
second step, which enables to use features of the
whole parse tree for this prediction.

Delex This is the same as the PanParser models,
except that all lexicalized features are removed, in-
cluding word embeddings.

UDPipe+PanParser As relation labels are
sometimes better predicted by PanParser than
UDPipe, we also consider combining their outputs
at prediction time: we first annotate the input
with UDPipe, discard the predicted labels and
replace them with labels predicted by PanParser
on UDPipe trees.

4We use the same hyperparameters as the smallest UD
treebank (Kazakh), including word embeddings pretrained on
their trainsets.

2.1.3 Cross-lingual
For each treebank under 1,000 training sentences,
we apply cross-treebank techniques to build addi-
tional parsers.

First, for each target treebank, we transform ev-
ery source treebank by delexicalizing it and ap-
plying the WALS rewrite rules of Aufrant et al.
(2016). We then compute, for each such tree-
bank, its similarity to the target treebank, using the
KLcpos3 divergence metric (Rosa and Zabokrtsky,
2015).

We select the source among treebanks over
2,000 sentences, by retaining the languages re-
quiring the smallest number of rewrite rules (i.e.
the smallest number of divergent WALS features),
and then choosing the (transformed) treebank min-
imizing the KLcpos3 divergence.

When the selected source is of the same lan-
guage, we use domain adaptation techniques, oth-
erwise we turn to cross-lingual methods. How-
ever, domain adaptation was not used in the final
submission as it did not bring significant improve-
ments on the corresponding treebanks (French-
ParTUT, Galician-TreeGal and Czech-CLTT), and
is not detailed here.

We consider five cross-lingual parsers:

Project-en Based on parallel data with English,
we use the partial projection technique of Lacroix
et al. (2016). Similarly to Lacroix et al. (2016),
alignment links are filtered by PoS agreement and
non-projective parses are filtered out; for some
pairs there are not many trees with high coverage,
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so we adopt the following heuristic: we select all
trees with coverage over 20% if there are less than
5,000, trees with coverage over 80% if there are
more than 5,000 (up to 10,000), or the 5,000 trees
with highest coverage otherwise. Training on par-
tial trees is enabled by PanParser; PanParser hy-
perparameters are tuned on the target tuning data.

Project This model is the same as Project-en,
but using parallel data between the selected source
and the target. Depending on the language, the
language pair may be similar enough to compen-
sate for the reduced amount of parallel data.

X-Delex We train a delexicalized PanParser
model on the selected source treebank, trans-
formed by the WALS rules. In order to in-
crease train-test similarity, especially for Uyghur
and Kazakh whose tagging accuracy is particularly
low (under 70%), we also experimented with arti-
ficial noise added to the source tags (either random
or designed to match the error types of the target
tagger) but it was not conclusive. Hyperparame-
ters are tuned on the target tuning data.

Generic multi-source delex This language-
independent model first parses the input with all
Delex models, then computes the output tree as
a maximum spanning tree over all (unweighted)
candidate parses; relation labels result from a vote
of all Delex models, for each dependent token.

Multi-source delex This is a language-
dependent variant of the previous model, where
delexicalized models (excluding the target) are
trained on the transformed treebanks, and their
contributions to tree combination and vote on
labels are weighted by

(
1/KLcpos3

)4, following
Rosa and Zabokrtsky (2015). We experiment with
three heuristics to reduce the source set: retaining
only treebanks over 2,000 sentences, treebanks
that minimize the number of rewrite rules, and the
top 5 treebanks according to the KLcpos3 metric;
the best heuristic depends on the language and is
tuned on target data.

Most base parsers are trained in a few hours on
CPU, using a single thread (excluding hyperpa-
rameter tuning); exceptions are for instance Czech
and Russian-SynTagRus, whose treebanks are no-
tably large, and parser projection to Hungarian,
due to parallel data much larger than other pairs.

2.2 Cascade combination
Implementing a cascade parser relies on three fea-
tures of PanParser:

– Training parsers for partial output: training
data annotations are filtered according to the
competence region, and during training, the
model is penalized when it attaches unanno-
tated tokens.

– Predicting parses under constraints: the
search space is reduced at prediction time, ac-
cording to a partial tree.

– Training parsers under constraints: the search
space is reduced at training time, by preanno-
tating the training data with all previous com-
ponents of the cascade.

Hence, each component parser is retrained5 both
to specialize on its competence region, and to take
into account the knowledge provided by the previ-
ous components. To ensure that the final output is
complete, the last component trains on full parses
and annotates any remaining token.

As these features do not exist in UDPipe, we
do not retrain the UDPipe models, but still in-
clude them in the cascade by predicting without
constraints, filtering the output according to com-
petence regions, and restoring the constraint trees
as a postprocessing step. This way, they anno-
tate more tokens than needed, and do not use the
knowledge from previous components, but they
can still provide useful knowledge to later com-
ponents.

Confidence filtering Sometimes the output con-
tains a few noisy dependencies on top of the de-
pendencies belonging to the competence region.
To help distinguishing those, we add confidence
filtering with ensembling: for each component,
5 parsers are trained, and only the dependencies
predicted by at least 3 parsers are retained (using
maximum spanning tree techniques for combina-
tion).

Relation labels As in base PanParser models,
relation labels are predicted in a second step, us-
ing features from the whole predicted parse tree.
Since each label is predicted independently, the
competence regions are computed only after train-
ing, without retraining: at test time we simply
use the label predicted by the competent classifier.

5For each retrained component, hyperparameter values
are reused from the corresponding base parser.
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For each component separately, label prediction is
trained on full data, preannotated with parse trees
resulting from the whole cascade, and competence
regions are computed for these label classifiers.

Competence regions To compute the regions,
we group the dependencies into classes accord-
ing to the PoS of the child and parent (e.g. DETs
depending on NOUNs, or NOUNs depending on
VERBs), evaluate each base parser on tuning data,
and assign each ‘PoS-PoS’ class to the model that
annotates it best. We do not assign classes that
are too small (less than 5 occurrences) or have low
accuracy (under 0.2). By design, any unassigned
class defaults to the last component of the cascade,
which in our experiments is always the monolin-
gual PanParser model.

Choice of components We apply the cascade
combination method both in monolingual and in
cross-lingual configurations. In each case, we try
out several subsets of components, training cas-
cades for each subset, and tune this choice sepa-
rately for the heads and the labels.6

In monolingual configurations (denoted Cas-
cade), when the scores of UDPipe and PanParser
on tuning data are close enough, we hypothesize
that their views may complement one another, and
train cascades with the following component can-
didates: either UDPipe followed by PanParser, or
UDPipe alone, or PanParser alone. Hence, we
compare 3 cascades on the head prediction task,
and 3 computations of competence regions on the
label prediction task.

In cross-lingual configurations (denoted X-
Cascade), the cascades are trained with the best
projected parser (either Project or Project-en,
when they exist), followed by X-Delex, the target
UDPipe and the target PanParser. We try removing
one or both of X-Delex and UDPipe, thus compar-
ing 4 cascades.

2.3 Model selection

For each treebank, we compare all base and cas-
cade parsers, and retain the parser yielding the
best LAS on the provided development set (us-
ing gold tokenization). However, in some lan-
guages this dataset was particularly small and con-
sequently biased, which often led to selecting the
wrong model, as will be seen in §4.

6Depending on the data sizes, the cascades train in a few
hours to two days on CPU, using 5 threads.

For the PUD treebanks, i.e. extra test sets of
a UD language but which do not correspond to
a given UD treebank, when there are several UD
treebanks for the same language, we choose the
model whose LAS on own development data is the
highest. This corresponds in practice to choosing
the largest treebank (in number of sentences), ex-
cept for Swedish-LinES. This choice is analyzed
in detail in §4.5.

2.4 Preprocessing

For most languages, we rely solely on the UDPipe
preprocessing as provided by the organizers. To-
kenization is customized only for the 3 languages
with lowest tokenization accuracy on development
data: Vietnamese, Chinese and Japanese.

Vietnamese In the UD 2.0 guidelines, spaces
are allowed inside words. While in most tree-
banks such words are rare, in Vietnamese whites-
paces denote syllable boundaries as well as word
boundaries, and words containing spaces are con-
sequently much more frequent. The low tokeniza-
tion accuracy (F1=83.99) of the baseline UDPipe
is mostly due to errors on such words.

UDPipe’s tokenization is postprocessed to im-
prove the recognition of words containing spaces.
To achieve this, we use a PMI criterion, assuming
that pairs of tokens which mostly appear together
are very likely a single word. When two consecu-
tive (orthographic) tokens have a very high (resp.
low) PMI, they are joined into a single word (resp.
split, if UDPipe had joined them). We do not allow
words with more than 2 orthographic tokens; in
case of conflict the pair with highest PMI is joined.

PMI values are computed using the unigram
and bigram counts of orthographic tokens in the
crawled monolingual data (after UDPipe tokeniza-
tion, to segment punctuation); in case of OOV the
pair remains unchanged. We set the PMI lower-
and upperbounds to log 5 and log 400.

Chinese and Japanese We rely on UDPipe for
sentence segmentation, and then use KyTea (Neu-
big et al., 2011) to tokenize each sentence. KyTea
models are trained on UD Chinese and Japanese
training treebanks.

For all three languages, the newly tokenized in-
put is then morphologically annotated by UDPipe.
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3 Overall results

As part of the CoNLL 2017 UD Shared Task, we
evaluated our system on the TIRA platform (Pot-
thast et al., 2014). Evaluation runs on the virtual
machine took 10.5 hours on a single thread, using
up to 6GB RAM.

Table 1 presents our overall results as published
by the organizers, compared to the UDPipe 1.1
baseline.

Results rank our model first in tokenization and
second in morphological tagging, although these
improvements are due to our tokenization im-
provements on only 3 languages.

Regarding LAS, and according to the vari-
ous strategies that were adopted, our system
presents various behaviors depending on the tree-
bank group, and sometimes even among tree-
banks of the same group, e.g. surprise languages
(see §4.4).

However, the publication of the results, and
careful comparison with the baseline UDPipe sub-
mission, revealed huge unexpected drops on the
PUD treebanks, associated to differences in model
selection. Consequently, we also submitted an
additional, unofficial run, using the same heuris-
tic as the baseline submission: always retain the
model trained on the main treebank of the lan-
guage. The corresponding scores are reported in
Table 1 as ‘unoff.’. The score differences are
mostly explained by biases in PUD treebanks, to-
wards one of the UD treebanks of the given lan-
guage (see §4.5).

Consequently, our system is ranked below the
baseline in the official run, but above the baseline
when taking the PUD bias into account.

4 Analysis

In this section, we present the strategy that was
adopted for each treebank, along with detailed
analysis on the results. The analysis is conducted
separately for the treebanks with custom tokeniza-
tion, the large (over 10,000 training sentences),
medium and small (under 1,000 sentences) UD
treebanks, and for PUD treebanks.

Throughout the section, we report both official
results from the TIRA platform, and our own mea-
sures using the official evaluation script on the re-
leased test files (Nivre et al., 2017b). The latter are
displayed in italics.

UDPipe [off.] LIMSI [off.] LIMSI [unoff.]

F1/LAS Rank F1/LAS Rank F1/LAS Rank

Tokenization 98.77 8 98.95 ∗ 1 98.95 ∗

All tags 73.74 4 73.86 ∗ 2 73.86 ∗

All treebanks 68.35 13 67.72 17 68.90 ∗ 12
Big (55) 73.04 17 73.64 ∗ 13 73.64 ∗

PUD (14) 68.33 13 62.24 26 69.07 ∗

Small (8) 51.80 ∗ 15 51.71 16 51.71
Surprise (4) 37.07 11 37.57 ∗ 9 37.57 ∗

Table 1: Overall results of the shared task, as
published by the organizers. ‘*’ denotes the best
scores among the three systems. For each group
of treebanks, the number of treebanks it contains
is indicated in parentheses. The last column corre-
sponds to the unofficial ranking, which also takes
into account later improvements achieved by other
teams. The missing ranks are unknown.

4.1 Custom tokenization

For the languages with custom tokenization
(Japanese, Chinese and Vietnamese), we use the
UDPipe model for parsing. Table 2 displays our
improvements on tokenization and the resulting
improvements on LAS. It also reports the LAS of
the UDPipe models using gold tokenization and
sentence segmentation, which singles out the LAS
drop due to tokenization issues.

It appears that for all four treebanks, tokeniza-
tion is an important cause of errors, and that our
tokenization improvements (+2 to +4 on F1) result
in large LAS improvements (+2 to +8 on F1).

ja ja pud zh vi

Trainset size 6,805 3,797 1,330

UDPipe tokenization 89.68 91.06 88.91 82.47
LIMSI tokenization 93.82 94.93 91.35 87.30

UDPipe (gold seg.) 90.99 92.12 70.04 53.28

UDPipe LAS 72.21 76.28 57.40 37.47
LIMSI LAS 80.01 82.99 59.98 42.02

Table 2: Tokenization and LAS results on the tree-
banks with custom tokenization.

4.2 Treebanks over 10,000 sentences

Table 3 reports the scores obtained on the largest
treebanks, and the corresponding baselines. It in-
cludes evaluation of both UDPipe and PanParser
based on gold segmentation, for a better compar-
ison of parsers (as they were trained, tuned and
selected using gold segmentation), and an assess-
ment of the LAS drop due to segmentation errors.
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cs ru syntagrus cs cac la ittb no bokmaal fi ftb grc proiel fr es ancora la proiel

Trainset size 65,070 46,373 22,304 15,017 14,911 14,231 14,103 13,825 13,589 13,482
G S
O E
L G
D .

UDPipe 83.76 87.55 82.47 77.74 83.94 76.07 70.69 82.15 83.97 67.22
PanParser 78.65 82.41 79.80 74.78 83.38 75.49 69.03 81.33 83.50 65.36

T
I
R
A

UDPipe (F1) 82.87 86.76 82.46 76.98 83.27 74.03 65.22 80.75 83.78 57.54
LIMSI (F1) 82.87 86.76 82.46 76.98 83.27 74.04 65.22 80.75 83.78 57.51

es no nynorsk de hi ca it en nl fi grc

Trainset size 13,477 13,465 13,412 12,638 12,466 12,196 11,915 11,713 11,606 10,902
G S
O E
L G
D .

UDPipe 81.97 82.71 71.33 86.84 85.46 85.90 80.72 71.10 75.41 56.16
PanParser 80.58 81.04 72.98 85.88 84.55 85.25 79.64 70.10 73.87 52.45

T
I
R
A

UDPipe (F1) 81.47 81.56 69.11 86.77 85.39 85.27 75.84 68.90 73.75 56.04
LIMSI (F1) 81.47 81.56 70.89 86.82 85.39 85.28 75.84 68.31 73.75 56.04

Table 3: LAS results on the large treebanks. The models selected on development data are underlined.
For 3 languages, we selected other models: UDPipe+PanParser for la proiel, a monolingual Cascade
(using UDPipe and PanParser) for hi and it.

pt br bg sk pt ro hr sl pl ar nl lassysmall eu he fa id ko da

Trainset size 9,180 8,461 8,058 7,914 7,640 7,304 6,154 5,795 5,771 5,738 5,126 4,978 4,558 4,253 4,180 4,163

G S
O E
L G
D .

UDPipe 85.79 84.55 74.23 83.10 80.57 77.51 81.20 79.31 73.85 81.34 69.23 78.31 79.82 75.02 60.04 74.98
PanParser 84.38 84.13 75.90 81.72 80.55 78.21 81.64 80.42 74.20 81.54 67.45 77.83 79.33 74.34 62.19 75.24
Cascade 84.09 75.19 77.28 81.24 79.88 80.48 69.31 77.60 79.30 75.18 59.60 74.92

T
I
R
A

UDPipe (F1) 85.36 83.64 72.75 82.11 79.88 77.18 81.15 78.78 65.30 78.15 69.15 57.23 79.24 74.61 59.09 73.38
LIMSI (F1) 85.36 83.22 74.45 82.19 80.11 78.02 81.37 79.95 65.86 78.15 69.21 57.23 79.24 74.78 59.09 73.85

sv cu ur ru tr got sv lines en lines lv gl et fr sequoia sl sst el la en partut

Trainset size 4,087 3,916 3,840 3,657 3,500 3,217 2,601 2,601 2,197 2,162 2,149 2,119 1,816 1,578 1,133 1,035

G S
O E
L G
D .

UDPipe 77.28 72.56 76.74 74.45 55.93 68.98 74.94 73.64 61.15 77.46 59.87 82.10 55.22 79.92 43.81 74.08
PanParser 77.14 74.58 76.26 76.07 57.41 69.50 74.68 73.87 60.99 76.74 60.96 81.76 56.62 79.58 44.17 73.89
Cascade 76.99 72.67 75.69 75.17 57.59 69.69 73.98 72.91 59.85 59.37 82.62 55.49 80.05 43.67 72.80

T
I
R
A

UDPipe (F1) 76.73 62.76 76.69 74.03 53.19 59.81 74.29 72.94 59.95 77.31 58.79 79.98 46.45 79.26 43.77 73.64
LIMSI (F1) 76.73 65.64 76.65 75.65 55.23 60.94 74.29 72.94 59.81 77.31 59.80 80.55 46.71 79.38 43.55 73.60

Table 4: LAS results on the medium treebanks. The models selected on development data are underlined.
For pt, ro, sl, id, ur, sl sst and en partut, we rather selected UDPipe+PanParser.

In most cases, our submission is simply the base-
line UDPipe, as we did not focus on improving the
system for large treebanks. Thus, no improvement
is reported on these treebanks.

Model selection proves successful on all tree-
banks except Latin-PROIEL and Dutch. In partic-
ular, it detects that the German PanParser is signif-
icantly better than UDPipe; considering the Pan-
Parser LAS on the other large treebanks, this is
unexpected and remains to be investigated.

4.3 Treebanks from 1,000 to 10,000 sentences

The results for the medium treebanks are reported
in Table 4. Compared to Table 3, it also includes
gold segmentation evaluation of the monolingual
Cascades, when they were considered.

As treebank size reduces, PanParser is more and
more often the best parser; but with smaller devel-
opment sets, the number of failures to select the
best model increases (12 out of 32 treebanks).

The Cascade model provides significant gains
on several treebanks, outperforming both UD-
Pipe and PanParser; it is indeed able to extract
knowledge from the lowest parser and use it to
improve upon the best parser (see Basque, In-
donesian, Turkish, Gothic, French-Sequoia and
Greek). However, these gains are not consistent,
and despite confidence and tuning mechanisms,
the method still requires empirical validation.

4.4 Treebanks under 1,000 sentences

Table 5 presents the last group of UD treebanks,
the smallest ones, including surprise languages.

For each treebank, we report several scores,
now including Delex, which is a promising can-
didate to parse the smallest treebanks. When
cross-lingual methods are used, we indicate the
source treebank and the scores of the projected
base parsers (except for the surprise languages
lacking parallel data), X-Delex and their combi-
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nation X-Cascade.
For this group, since the development sets are

very small, model selection is not reliable and
misses the best model in 5 out of 12 cases. Ad-
ditionally, the even smaller tuning sets lead for
the cascades to poor estimation of competence re-
gions. But the main challenge faced by cascades is
noisy tags. Indeed, while preliminary experiments
on X-Cascade with gold tags were very promising,
turning to predicted tags makes the X-Delex mod-
els very unreliable (as their only features are unre-
liable), and they cannot provide useful insights to
the cascade anymore, in which case cascades lack
interest.

Regarding Uyghur, Kazakh and the surprise lan-
guages, for lack of data we decided to reduce the
training set in favor of the tuning set, in the hope
that better estimated cascades would compensate
for worse base parsers. This proves to be a bad
strategy in half the cases, and we end up underper-
forming the baseline by a large margin in Kazakh
and Buryat.

However, X-Cascades still achieve significant
improvements over their base parsers in Uyghur,
North Sámi and Buryat. This suggests that cas-
cading can indeed prove useful in cross-lingual
contexts; with the appropriate amount of data and
additional effort on estimation of competence re-
gions and on robustness to noisy tags, it may con-
vey much larger gains.

4.5 Model selection for PUD treebanks

The PUD treebanks are the additional test sets pro-
vided for 14 of the languages covered by the UD
treebanks. They have been annotated separately
and do not correspond to a given UD treebank.
As such, processing them with systems trained
on UD treebanks is prone to domain adaptation
issues: the PUD treebanks contain sentences ex-
tracted from newswire and Wikipedia, while UD
treebanks also cover several other domains. For
some of the PUD languages, several UD treebanks
are available, which raises the additional question
of choosing training data: either one of the UD
treebanks, or all of them.

For the PUD treebanks, we submitted baseline
UDPipe models in Czech, English, French, Span-
ish, Finnish, Portuguese, Russian and Swedish,
yet on 5 of these treebanks we suffered huge drops
(-9 to -34 LAS) from the official baseline submis-
sion. For these, the only difference with the base-

line is that we selected different treebanks. In or-
der to understand these drops, we performed a sys-
tematic evaluation of various preprocessing and
parser choices, comparing the same system with
different training data.

Table 6 reports, for each PUD treebank, the
results when applying each UDPipe pipeline on
gold segmentation, and when combining each UD-
Pipe preprocesser (segmentation and tagging) with
each UDPipe parser. Experiments with PanParser
yield consistent results.

In some cases, important drops seem due to
incompatible preprocessing between treebanks of
the same language: in English, Portuguese and
Swedish, the ‘main’ scores are much lower and
‘variant 1’ scores much higher when replacing
‘main’ preprocessing by ‘variant 1’. As the pre-
processing provided by the organizers was system-
atically produced by the ‘main’ UDPipe model,
this certainly affected our submission, which used
the provided preprocessing even when not using
the ‘main’ parser.

However, comparing results where treebank
choices are consistent, it appears that the ‘main’
treebank always outperforms the variants by a
large margin. This is not only due to differences
in tokenization, as this occurs also with gold seg-
mentation.

Additionally, in Table 6, the ‘All data’ results
are those obtained with a UDPipe model trained
on the concatenation of all treebanks of the lan-
guage. In most cases they underperform the
‘main’ model, which confirms that the variant tree-
banks add mostly noise to the model, from the
PUD perspective.

While there may be various explanations to
these accuracy differences, what is surprising here
is that the best treebank does not seem consistent
with common factors of high accuracy (treebank
size, domain similarity, treebank consistency). For
instance, Russian contains Wikipedia articles and
Russian-SynTagRus news (and Russian-PUD con-
sists of both Wikipedia articles and news), but
Russian-SynTagRus is much larger than Russian;
as such, parsers trained on Russian-SynTagRus
should be more accurate on Russian-PUD than
Russian, which they are not. Besides, Russian-
SynTagRus performs better than Russian on their
own test sets, indicating that the treebank does not
have strong self-consistency issues. For these rea-
sons, and the additional cue of incompatible pre-
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hu uk fr partut gl treegal ga cs cltt ug kk hsb kmr sme bxr

Trainset size 864 733 527 510 481 441 75 12 10 10 10 10

G
O
L
D

S
E
G
.

UDPipe 64.67 60.92 78.77 68.50 62.25 72.77 36.66 27.10 32.91 ∗ 27.93 ∗ 20.72 ∗ 12.88 ∗

PanParser 65.60 61.97 79.78 68.36 63.38 74.94 36.21 ∗ 23.48 ∗ 47.27 ∗ 39.38 ∗ 31.99 ∗ 28.59 ∗

Delex 61.97 59.79 74.14 66.01 59.44 66.42 36.54 ∗ 22.75 ∗ 46.44 ∗ 38.27 ∗ 32.84 ∗ 29.73 ∗

Cascade 65.46 61.64 79.13 68.75 62.55 73.51 35.83 ∗ 23.99 ∗ 46.55 ∗ 37.80 ∗ 31.35 ∗ 25.91 ∗

Source fi ftb sk fr sequoia gl id cs cac tr tr sl fa et et

Project-en 44.01 52.59 42.48 16.65 13.87 37.77
Project 36.61 55.52 38.46 23.27 23.08 43.27
X-Delex 41.42 54.75 38.80 22.89 25.63 62.20 43.32 37.58 26.16
X-Cascade 57.43 60.09 37.35 ∗ 22.35 ∗ 54.61 ∗ 40.26 ∗ 37.79 ∗ 30.13 ∗

Multi-source 68.78 41.52
T
I
R
A

UDPipe (F1) 64.30 60.76 77.38 65.82 61.52 71.64 34.18 24.51 53.83 32.35 30.60 31.50
LIMSI (F1) 65.18 61.68 78.30 65.85 61.94 73.49 34.70 20.94 57.79 35.59 31.03 25.86

Table 5: LAS results on the small treebanks. For the last 4 columns (surprise languages), ‘gold seg.’
results use gold segmentation and gold tagging. ‘*’ denotes parsers whose monolingual training data
is smaller than the data used by the UDPipe baseline, hence important score differences. The models
selected on development data are underlined. The Multi-source line reports the scores of two models:
‘Generic multi-source delex’ for sme, and ‘Multi-source delex’ for hsb, with the heuristic retaining
only treebanks over 2,000 sentences.

cs pud en pud fr pud es pud fi pud it pud pt pud ru pud sv pud ar pud de pud hi pud ja pud tr pud

G
O
L
D

S
E
G
.

UDPipe Main 81.10+ 79.58∗
+ 75.54+ 78.40 78.84+84.43+ 74.32 70.36 73.05+ 52.78+ 68.03+ 52.49+ 92.12+ 37.37+

UDPipe Variant 1 75.14 64.67 ∗ 68.20 74.38+ 48.70 ∗ 76.62 72.22+ 61.81+ 66.58 ∗

UDPipe Variant 2 44.67 ∗ 65.65 63.57

S
E
G
.

+

T
A
G

M
A
I
N

UDPipe All data 79.32 79.05 74.00 77.58 76.49 83.57 74.27 64.49 69.97
UDPipe Main 79.80 78.95 73.63 77.65 78.65 83.70 73.96 68.31 70.62 43.14 66.53 50.85 76.28 34.53
UDPipe Variant 1 76.58 47.30 68.31 68.40 44.99 80.35 59.50 52.36 49.41
UDPipe Variant 2 54.65 66.42 68.18

V
A
R
1

UDPipe Main 75.36 63.42 69.04 70.75 52.80 78.43 62.83 68.18 51.63
UDPipe Variant 1 73.03 64.28 66.08 71.30 47.27 75.75 69.82 59.87 65.11
UDPipe Variant 2 53.32 55.68 64.39

V
A
R
2

UDPipe Main 47.31 68.53 63.18
UDPipe Variant 1 46.10 45.28 59.20
UDPipe Variant 2 41.66 64.82 61.10

T
I
R
A

UDPipe 79.80 78.95 73.63 77.65 78.65 83.70 73.96 68.31 70.62 43.14 66.53 50.85 76.28 34.53
LIMSI 79.80 78.95 73.63 68.40 44.99 83.69 59.50 52.36 49.41 43.91 68.62 50.91 82.99 34.15

Table 6: LAS results on the PUD treebanks. For lang pud, ‘main’ denotes the lang treebank.
Variants 1 are cs cac, en lines, fr sequoia, es ancora, fi ftb, it partut, pt br,
ru syntagrus and sv lines. Variants 2 are cs cltt, en partut and fr partut.

For each language, the largest treebank is annotated with ‘+’ (considering numbers of tokens: fi ftb
contains more sentences than fi, but they are shorter), and ‘∗’ indicates treebanks with important domain
adaptation issues (i.e. that contain neither Wikipedia nor news data).

Underlined results denote the training treebanks that we used to annotate the PUD treebanks (not
necessarily with a UDPipe model). The baseline UDPipe submission corresponds to ‘main’+‘main’.

For instance, in the cs pud column, the 3rd row (‘gold’+‘variant 2’) corresponds to gold tokenization
and segmentation, tagging with the cs cltt UDPipe model, and parsing with the cs cltt UDPipe
model. The 8th row (‘var1’+‘main’) corresponds to tokenizing and tagging with the cs cac UDPipe
model, and parsing with the cs UDPipe model.
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processings, we speculate that the PUD treebanks
are indeed biased towards the main treebank of
each language, because of annotation scheme dis-
crepancies between treebanks. Such inconsisten-
cies may be due either to one treebank not fol-
lowing the guidelines, or to underspecified aspects
of the guidelines that have been interpreted differ-
ently by different teams.

Notably, Arabic and Hindi also present huge
drops from their scores on UD test sets, even
though they trained only on news; it is possible
that here as well, the drops are due only to annota-
tion inconsistencies.

Concluding on this hypothesis would require,
however, further analysis of the treebank domains:
the scores may still be partially explained by ac-
tual domain adaptation issues, e.g. the relative size
of each domain in multi-domain treebanks, or de-
tails of the domains (style, author, date...) that do
not appear in the coarse domain categories (news,
Wikipedia, fiction...).

Full examination of the annotation inconsisten-
cies is an ongoing work of the UD project, and
is out of the scope of this paper, but during our
manual analysis we already noticed that plain text
(both in the training data, and the raw input of the
test data) is in fact already partially preprocessed,
for some UD treebanks. For some, multitoken
words are already detected and annotated with ‘ ’
instead of spaces: this concerns at least Russian-
SynTagRus (phrasal conjunctions and numbers),
Finnish-FTB (numbers) and Greek (dates). For
others (Danish, Finnish-FTB), plain text is already
fully tokenized (except for multiword tokens).

This is not an issue in general, because the UD
treebanks are self-consistent on this convention,
but it affects the ability of the trained models to
process actual raw input. This partially explains
the PUD bias, since Russian and Finnish main
treebanks have actual raw text, as the PUD ones.

5 Conclusion

Our submission to the CoNLL 2017 UD Shared
Task focuses on low-resourced dependency pars-
ing. Our system is built upon base parsers, and
combines them using a cascading algorithm, in or-
der to leverage small and incomplete data.

This shared task was an opportunity to exper-
iment with this new cascading method in realis-
tic conditions; this is particularly interesting, since
this method addresses precisely realistic scenar-

ios where available data does not consist in either
large monolingual data or large parallel data, but
in various amounts of each resource type.

The method has proved useful in many cases,
with sometimes large improvements, but the gains
are not consistent enough to be reliable and still
require further work. The shared task conditions
have indeed uncovered several challenges faced
by the method: it lacks confidence mechanisms,
delexicalized models are too unreliable, and the
lack of development data hinders accurate estima-
tion of competence regions for the components of
the cascade.

The improvements we achieve are strongly di-
minished by huge unexpected drops on a few lan-
guages; while this affects our ranking in great pro-
portions, it also enables detailed analysis of the
new PUD treebanks, and on how and why they are
biased towards the main UD treebanks.
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Ophélie Lacroix, Lauriane Aufrant, Guillaume Wis-
niewski, and François Yvon. 2016. Frustratingly
Easy Cross-Lingual Transfer for Transition-Based
Dependency Parsing. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. Association for Compu-
tational Linguistics, San Diego, California, pages
1058–1063. http://www.aclweb.org/anthology/N16-
1121.

Graham Neubig, Yosuke Nakata, and Shinsuke Mori.
2011. Pointwise Prediction for Robust, Adapt-
able Japanese Morphological Analysis. In Proceed-
ings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies. Association for Computational Lin-
guistics, Portland, Oregon, USA, pages 529–533.
http://www.aclweb.org/anthology/P11-2093.
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Kira Droganova, Hěctor Martı́nez Alonso, Hans
Uszkoreit, Vivien Macketanz, Aljoscha Burchardt,
Kim Harris, Katrin Marheinecke, Georg Rehm,
Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde,
Jana Strnadova, Esha Banerjee, Ruli Manurung, An-
tonio Stella, Atsuko Shimada, Sookyoung Kwak,
Gustavo Mendonça, Tatiana Lando, Rattima Nitis-
aroj, and Josie Li. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics.

173


