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Abstract

Elastic gridshells are structures made of flat two-way grids which are de-

formed elastically before they are braced and which afterwards mechanically

behave like continuous shells. Gridshells present some advantages in terms

of manufacturing, lightness and time of assembly. Their covering remains

however a technical issue. The present article proposes hence an alterna-

tive method to cover them by planar quadrilateral facets, which could also

be used as natural bracing if connected properly. It relies on the duality

between a certain family of circular meshes with a unique radius and some

Tchebycheff nets. The approach is versatile and allows for the design of a

large variety of shapes from two curves in space. Real time numerical tools

are developed for open and closed curves as well as a strategy for umbilical

points. The relaxation of the Tchebycheff net shows finally that an equilib-

rium configuration can be found in the vicinity of the planar quadrilateral

mesh (PQ-Mesh) which confirm the practical feasibility of elastic gridshells

covered with planar facets.
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1. Structural morphogenesis of elastic gridshells

One of architecture’s latest paradigms is the design of complexly-shaped

structures based on a large formal freedom, usually called free-form struc-

tures. However the physical constraints in terms of constructability and

mechanical performances still are a limitation to such innovative creation [1].5

To tackle this issue, two fundamentally opposite philosophies emerged:

• the top-down approach which consists in some post-rationalisation pro-

cess of a grid or a mesh mapped on a pre-defined surface through dif-

ferent optimisation methods;

• the bottom-up approach which consists in direct construction processes10

of the discrete objects (grid or mesh) without preliminary knowledge

of the surface through purely geometrical methods or mixing geometry

and physics in so-called form-finding methods.

In the latter case, the surface and the mesh are generated simultaneously

which, to our opinion, gives more insight to the designer on the structure15

and envelop that he is sketching. There is a lack for such methods for elastic

gridshells and this paper intends at remedying this shortfall.

The specificity of elastic gridshells relies in their construction process. In-

deed they are made of flat two-way grids which are deformed elastically before

they are braced and which afterwards mechanically behave like continuous20

shells [2, 3]. This deformability of the grid is insured by:

• the absence of shear rigidity of the grid, which is conferred by its strict
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regularity or the parallelism of the beams in each way,

• the deformability of the individual members in bending which is linked

to their slenderness.25

The first condition is slightly flexible in practice [4, 5] but, theoretically,

the kinematic condition for deployability of elastic gridshells is that the grid

is made of equilateral quadrangles. Mathematically this is equivalent saying

that the grid is a Tchebycheff net on the surface.

The most common technique to define such meshes on a given surface is30

the so-called compass method [2, 6]. Given a surface, a step length and two

intersecting curves on this surface, it is theoretically possible to locally draw

a Tchebycheff net starting from the point of intersection. This geometrical

construction, which may be achieved with a compass, gives few control on

the mesh and, until recently [7, 8], one could not say what surface can be35

meshed with the method. There are indeed some theoretical limitations

linked with the curvature and the existence of a Tchebycheff net is only

guaranteed for surfaces whose absolute Gaussian curvature is less than 2π [8].

Notice that another technique to find a mesh that fits a surface is to proceed

as for material forming by using the finite element method to simulate the40

deformation of an elastic grid pressed on a surface [9]. Contrary to the

compass method which is purely geometrical, this method has the advantage

of including the bending stiffness of the members in the form-finding process.

The bottom-up approach proposed in this paper is another purely geo-

metrical method. It relies on the duality between a certain family of circular45

meshes with a unique radius, called isoradial meshes in the following, and

some Tchebycheff nets (see section 2.1). A circular mesh is composed of
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planar quadrilateral faces which are all inscribed in circles [10]. The interest

of circular meshes for architecture has been shown, for example in [11] and

relies on two key properties:50

• they admit non-trivial offsets with a constant vertex height [10],

• circular meshes generated over a surface are discrete analogue of net-

works of principal curvature lines [12].

Moreover, it has been shown in [13], that, in many usual cases (such as

structures under uniform normal loads) the curvature lines can be very close55

to principal stress lines, so that circular meshes provides a relevant lay-out

for structural performance.

The proposed method allows for the design of a large variety of shapes

from two curves in space. It is inspired by many design strategies which are

abundantly used for architecture like translation surfaces [14], scale-trans60

surfaces [15], Monge and moulding surfaces [16], canal surfaces [17], etc.

Actually, translation surfaces built from two curves with equal length subdi-

visions provide already a tool for the intuitive design of Tchebycheff nets with

planar facets. However, their formal vocabulary is limited and, contrary to

the proposed method, the associated PQ-mesh has no particular offset prop-65

erties and is not linked with principal curvature direction which might lead

to high curvatures in the members.

The paper is thus organised as follows. The first section gave a picture

of the state-of-art on the morphogenesis of elastic gridshells. The second

section will detail the new methodology for the generation of isoradial meshes70

and their dual Tchebycheff net. Starting with one open directrix and one

generatrix, the method will be extended to closed directrix and non-regular
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meshes with a strategy to deal with umbilical points. The third section will

then illustrate these methods and provide an overview of the potential of the

developed tools for surfaces from two curves. Section four will emphasise75

an alternative strategy for the treatment of singularities and section five

will investigate the influence of the mechanical behaviour of the grid on the

geometry of the Tchebycheff net and the planarity of the facets.

2. Method for the generation of isoradial meshes and the associated

Tchebycheff nets80

2.1. Duality of isoradial meshes and Tchebycheff nets

At the start of the proposed methodology, there is a remarkable obser-

vation on the duality between regular isoradial meshes (i.e. circular meshes

with unique radius) and certain Tchebycheff nets. Indeed by joining the cen-

tre of each circle to the vertices of the quadrangle this circle circumscribes,85

one gets a quadrangular mesh in which the edges length are equal since all

radius are equal. This generation process of the dual mesh of an isoradial

mesh is illustrated on a plane example in Figure 1, but it works as well with

circular meshes in space.

It must be noticed here that circular meshes constitutes a discrete equiv-90

alent of principal curvature network on smooth surfaces [18]. Hence the

Tchebycheff net generated with this process goes through the curvature lines

defined by the isoradial mesh and avoids thus the maximal curvature direc-

tions. Therefore, qualitatively, building an elastic gridshell with members

following the lines of the Tchebycheff net, one would naturally minimise the95

bending stresses in the members. (Quantitatively, the precise evaluation of
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Figure 1: Local construction of a dual Tchebycheff net from an isoradial mesh.

the members curvature in the Tchebycheff net must take into account the

geodesic curvature of lines which is not directly minimised by the generation

process.) Furthermore, in the case of surfaces with positive Gaussian cur-

vature, this method offers a natural way to brace an elastic gridshell since100

the minimal curvature lines are immediately accessible through the isoradial

mesh. In the case of surfaces with negative Gaussian curvature, the bracing

is more complex, as the minimal curvature lines may have bending energy.

Figure 2: Local construction of a circular mesh from a planar Tchebycheff net.
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The duality described in the previous paragraph is even more peculiar

when the meshes are planar. It has been studied in fields like statistical me-105

chanics [19] where the rigidity of planar isoradial graphs is well understood,

but has not been extended to R3. It is indeed possible to transform a planar

Tchebycheff net into an isoradial mesh (cf Figure 2). Consider a Tchebycheff

net, a net composed of rhombi only. Their diagonals intersect thus perpen-

dicularly. The quadrangles resulting from the union of two neighbouring110

quarters of rhombi are therefore quadrilaterals with two opposite right an-

gles. Yet a remarkable property of co-cyclic quadrangles is that the sum of

opposite angles is always π. The preceding quadrangle are thus inscribed in

circles and their diameter is the length of the lin segment that faces the two

right angles. Since this length is the same for all rhombi in the Tchebycheff115

net, all circles that circumscribe those quadrilaterals share the same radius.

The dual mesh of a planar Tchebycheff net constructed with this procedure

is hence an isoradial mesh (Figure 3). It is noticed that this dual circular

mesh is not identical to the previous one where center points of the circle

were vertices of the Tchebycheff net. The limit of both circular meshes when120

the radius becomes zero is however the same smooth surface.

2.2. Generation of open isoradial meshes by propagation

In the proposed methodology, the vertices of a circular mesh are defined

step by step as points of intersection of consecutive circles, so that the gen-

eration of the whole mesh is a recursive generation of circular strips one125

along the other. This general procedure is detailed in the following with

corresponding design parameters.
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(a) Tchebycheff net and its diagonals

(b) Dual isoradial mesh

(c) Isoradial circles

Figure 3: Example of a dual isoradial mesh constructed from a planar Tchebycheff net.
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2.2.1. Generation of a circular strip

As explained in the introduction, the proposed methodology relies on

the generation of a circular mesh along two curves: the generatrix and the130

directrix. To generate a circular strip, one must first define a subdivision of

the directrix. This subdivision can be chosen arbitrarily, provided that the

edge length is lower than the desired diameter 2R of the circles. From the

first two points (P0
0 and P0

1 on Figure 4) and the radius R, a torus can be

generated. The intersection of this torus and the generatrix defines then the135

third point P1
0 and the first circle C1 (the practical calculation is detailed in

section 2.2.3). The next circle C2 is then given by the intersection of the first

circle C1 and the torus generated with the second and third points of the

directrix, P0
1 and P0

2 respectively. And so on, until the last circle of the strip

is generated. The fourth point on the last circle (P1
4 on Figure 4) can then140

be chosen freely provided that the quadrangle is not degenerated.
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P0
2

P1
2

P0
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Figure 4: A strip of circles with the two rows of points (propagation from left to right).

It must be noticed here that the subdivision of the generatrix cannot be

chosen arbitrarily but that it results from the construction method of the
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mesh and the successive intersection of the first circle of each strip and the

generatrix.145

2.2.2. Generation of a circular mesh

Once the first strip has been generated, the curve defined by the second

row of points constituted of points P1
i can be considered as a new discrete

directrix and the procedure which has just been defined can be repeated.

And so on, until the algorithm stops, either because the whole generatrix150

is meshed or because the mesh cannot be propagated further for the chosen

directrix subdivision and the chosen radius. It can be seen in Figure 5 that

there is one degree of freedom on the position of the last point of the row

in the first strip and that the location of this point has an influence on all

the circles in the diagonal sector above it. This is directly related to the155

propagative nature of the mesh generation process. Particular care must

thus be taken in the definition of the last points of each strip.

To satisfy the co-cyclicity constraint, the last point of each row must be

on the last generated circle (the one passing through the last two points of the

previous row and the penultimate one of the last). Its position is therefore160

controlled by one independent parameter. One may try to use this parameter

to fit a third curve passing through the last point of the directrix in order

to control the aspect of the end of the generated surface as well. The fitting

would however be generally poor as the plane of the last circle in the row

is determined by the propagation algorithm and is generally not equal to165

the tangent plane of the third curve. Imposing a less restrictive criterion is

thus often preferable, like for example fitting a given plane passing through

the last point of the directrix. Symmetry conditions are also particularly

10



Directrix

Generatrix

Figure 5: Areas of influence of the last point of the second row: circles affected (dashed

lines) and circles independent (continuous lines).

interesting (see section 2.3.1). Another possibility is to consider that the

last point of the row is defined to maximise the global smoothness of the170

final surface which can be evaluated with help of distortion energy (defined

in section 4.1). This smoothness criterion can also be used to optimise the

subdivision of the directrix.

2.2.3. Practical generation of an intersecting circle of given radius

The generation of an isoradial strip requires thus a method to generate175

a circle of given radius passing through two existing points. This is actually

the main technical point of this method. It is depicted in Figure 6a. The

circle known from the previous step Ci is drawn in light orange and the points

A, B and C on the directrix are shown in dark blue. We are looking for a
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circle Ci+1 of radius R which intersects twice Ci and which passes through180

the point B and C on the directrix. To this end, we first characterize which

circles of radius R go through B and C and then study among these circles

which ones intersect twice the circle Ci.

Family of circles with a given radius. The circles we are looking for go

through B and C and have a given radius R. Consider now a point P185

on such a circle that is diametrically opposed to B. The distance BP is

equal to 2R and basic geometry tells us that the triangle BCP is a right

triangle. The locus of the points diametrically opposed to B is therefore the

intersection of a sphere of radius 2R centred in B and a plane normal to BC

going through C (see Figure 6a). This is the circle CC of radius Rloc defined190

as follows:

Rloc =
√

4R2 −BC2 (1)

Circle passing through a point and a given circle. The circle Ci and the pre-

scribed point C on the directrix define a sphere (or a plane) S. By definition,

all circles intersecting twice the circle Ci and going through C belong to this

sphere. Therefore the circle Ci+1 is on S represented in Figure 6b).195

Intersection of the two subsets. From the two preceding paragraph, it follows

that the admissible circles can be defined by three points: B, C and the point

diametrically opposed to B which necessarily belongs to the circle CC and to

the sphere S. The intersection of S and CC is generally a set of two points

which is not difficult to determine (indeed, the problem involving only spheres200

and circles, it can be simplified performing an inversion centred in B and by

there quickly solved analytically). Among these two points, one can see on
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Figure 6: Generation of an intersecting circle of given radius.
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Figure 6 that point E forms a convex quadrangle ADEB (Figure 6b) and

point E′ forms a degenerated quadrangle ADE′B (Figure 6c). The convexity

of the quadrangle provides thus simple criterion for the algorithm to choose205

among the two points.

2.2.4. Principle of the algorithm

The algorithm steps are thus the following:

1. Define a subdivision of the directrix and a radius R for the circles.

2. Construct the first circle of the strip from the first two points of the210

row and a third point on the generatrix.

3. Construct the next circle:

(a) Determine the points of intersection between the current circle and

the two potential following ones, choose the circle that creates a

convex quadrangle.215

(b) If no intersection can be found, go back to iteration 1.

4. Iterate 3 until the end of the directrix is reached.

5. Choose the last point of the row on it.

6. Iterate 2 until the end of the generatrix is reached.

An illustration of the shapes that can be generated with this method is220

shown in Figure 7. The subdivision of the directrix is here uniform and the

choice of the last points in the row maximise the area of the last quadri-

laterals. The dual Tchebycheff net is then obtained by dualisation, i.e. by
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joining the vertices of the isoradial mesh to the centre of each circle as in

Figure 1. Note here that since individual circular strips define curvature lines225

of the discrete surface, choosing the directrices in the normal plane of the

generatrices will lead smoother and more intuitive meshes. Note also that

this perpendicularity condition is however not necessary for the propagation

algorithm to give valid isoradial meshes.

Figure 7: Generation of isoradial circles for given directrix (blue) and generatrix (orange).

2.3. Generation of closed meshes230

The proposed methodology can be directly extended to closed directrix

with a plane of symmetry. Its extension to any closed geometry requires

however some modifications to insure a closing condition as will be seen in

the following.

2.3.1. Closed directrix with a plane of symmetry235

A curve with a plane of symmetry can be decomposed into two curves, one

being the mirror image of the other. Considering this property and choosing
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one of these curves as open directrix and a curve in the plane of symmetry

as generatrix, the algorithm of section 2.2.4 allows for the generation of an

isoradial mesh. Imposing for the choice of the last point of the row at step 5240

that it is set as the second point of intersection of the last circle and the plane

of symmetry, one can easily insure that the line formed by the last points of

the row lays in the plane of symmetry. Joining then this isoradial mesh with

its mirror image in the plane of symmetry, one gets a valid isoradial mesh

built on a symmetric closed curve. A valid Tchebycheff net is also directly245

obtained by taking the dual of the isoradial mesh. Note that the directrix

must not necessarily be planar. An example of closed dual meshes is shown

in Figure 8.

2.3.2. Closed directrix

In the general case, the proposed propagation algorithm does not insure250

that the last circle of each strip intersects the first one and it must therefore be

adapted. To this end, the cases where the first and last circles are cospherical

and the other cases must be distinguished.

Cospherical circles. Indeed, if the first and the penultimate circles of the strip

are cospherical (possibly coplanar), every circle that intersects the first one255

also intersects the penultimate. The regular procedure for the construction

of the next circle can thus be used to build the last circle of the isoradial

strip. However, the choice of the fourth point of the last circle is not free

but defined by the second point of intersection of the first and last circle. To

insure the closing of the strip, the last point of the row must also be the first260

point of the row which can therefore not be defined freely at the beginning
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(a) Symmetric isoradial mesh

(b) Symmetric Tchebycheff net

Figure 8: Isoradial mesh and its dual Tchebycheff net with a plane symmetry.
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but only a posteriori. Practically, simply changing step 2 of the algorithm

into “Construct the first circle of the strip from the first two points of the

row and its centre so that its plane approximates the rectifying plane of the

generatrix” insures hence the closing condition in this case.265

Cn-1
C0Cn

A B C
D

Figure 9: Design of the last circle of a closed strip as the intersection of two spheres.

Non-cospherical circles. In the case of Figure 9 where the first circle C0 and

the penultimate circle Cn−1 of the strip are not cospherical, the regular pro-

cedure can no more be used. Defining by B the last point of the row and

C the first one, an easy way for constructing the last circle of the strip is to

consider the sphere which contains C0 and B, and the sphere which contains270

Cn−1 and C. By construction, the intersection of these two spheres is a circle

Cn that passes through B and C and intersects both circles C0 and Cn−1. The

radius of the circle Cn is however arbitrary and therefore generally different

from all the others. Like previously, the first and last point of the row are

again defined a posteriori and step 2 must be modified similarly by: “Con-275
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struct the first circle of the strip from the first two points of the row and its

centre so that its plane approximates the rectifying plane of the generatrix.”

Limits and consequences on Tchebycheff nets. The solution proposed here for

the construction of the closing circle creates a vertical strip of circles whose

radii are different from the given radius of the rest of the mesh. First of all,280

these differences must not necessarily be visible as in the mesh illustrated

in Figure 10 which is generated by a uniform subdivision of the directrix

with a significant curvature. Then, considering the fact that the rationale of

isoradial meshes is their link with Tchebycheff nets and the possibility that

these meshes hence offer for the construction of elastic gridshells covered285

with planar quadrangular panels, this local irregularity is not necessarily

prohibitive. Indeed, in terms of constructability of elastic gridshells, this

vertical strip offers a well-defined area where beams lengths can be adjusted

through a cut allowing the flattening of the whole grid (Figure 10).

The proposed method for the generation of “quasi” isoradial meshes from290

a closed directrix is general, but it might sometimes lead degenerated meshes

where the radius of the last circle of a row becomes much larger than that of

the rest of the mesh. This issue has been addressed in [20] who proved that

parallel transport is linked to the notion of offset of polyhedral surfaces. In

practice, it is sufficient for the directrix to be quasi-spherical. This concept295

of advanced differential geometry describes a closed curve which is parallel

to a closed curve on a sphere. Planar curves and curves with two planes of

symmetry are simple examples of quasi-spherical curves.
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(a) Isoradial mesh

(b) Tchebycheff net

(c) Flattened Tchebycheff net

Figure 10: Vertical strip of circles of different radii (in blue) and their usage for the

flattening of the associated Tchebycheff net.
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2.4. Meshing singularities and umbilical points

Formally, this first extension of the proposed method to closed surfaces300

like tori constitutes a real enrichment of the formal universe of elastic grid-

shells, as none of the published built projects features closed loops. This

formal universe can however be extended further, as the method can also be

adapted to surfaces with umbilical points like the trinoid shown in Figure 11.

This example is chosen for the simplicity of the discussion, but the method305

is general and do not require symmetry.

Figure 11: Generation of an isoradial mesh on a trinoid: directrices in blue, generatrices

in orange.

The basic idea here relies on two colourability of meshes, i.e. the fact that

the mesh can be filled with two colours like a checker board (see for example

the mesh in Figure 12). Indeed, such meshes can be subdivided into one

independent family of strips (three strips in the example shown in Figure 11)310

[21]. Each strip can then be seen as an open mesh with a directrix along the

common edges and a generatrix at the end of each strip. The compatibility

of the meshes in the different strips is ensured by two issues: first the use of
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a unique radius for the whole mesh and then the use of the same subdivision

of the directrix for each strip.315

Figure 12: Two-colourable Tchebycheff net with a 6-valence singularity: upper layer in

orange and lower layer in blue.

From a constructional point of view, elastic gridshells are made of flat

grids built with two superimposed layers. For the Tchebycheff nets in the

different strips of a mesh with singularity to be compatible, it is thus neces-

sary that consistent upper and lower layers can be assigned on the whole

net. This compatibility condition is mathematically similar to the two-320

colourability condition (see for example the mesh in Figure 12). Therefore

the two-colourability of the isoradial mesh ensures the buildability of the

elastic gridshell from a two layers grid, except at the singularities where dis-

continuities in the members layer must be introduced through Tailor made

connections. It is also worth remarking here that the resulting grid cannot325

be flatten as a whole. Therefore splitting strategies would have to be devel-

opped in further research to define subgrids that can be flatten, for example

following the independant strips shown in Figure 11).
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An example of trinoid meshed with such a technique is shown in Figure 13.

The valence of the central node or umbilical point is six. The three directrices330

are straight coplanar lines which are separated with an angle of 2π/3. The

generatrices are identical quarters of circle which are set in the bisecting

plane of the directrices. Accounting for symmetries, meshing only one sixth

of the total surface is sufficient, the rest is obtained by mirroring objects.

(a) Isoradial mesh (b) Tchebycheff net

Figure 13: Valence-6 singularity with a regular subdivision.

It can be seen on Figure 13 that the singularity of the mesh translates into335

a singularity in the curvature or tangent of the directrix. This singularity

is “propagated” along the diagonal of the mesh, creating six visible lines

of distortion in the mesh with rhombic facets in the isoradial mesh. (The

meshes remain exact isoradial and Tchebycheff meshes, although they are

not smooth.) These lines of distortion in the isoradial mesh correspond to340

curvature concentration in the Tchebycheff net whose lines change suddenly

direction when they cross the diagonals (see orange lines in Figure 13b). The

curvature concentration might be inacceptable in practice for the realisation

23



of an elastic gridshell and therefore an alternative strategy to smoothen the

net has been developed in section 4.1.345

3. Surfaces from two curves

3.1. Shape exploration

The algorithm described in the previous section allow us to generate sur-

faces defined by two curves: a generatrix and a directrix. Although very

simple, this propagation method has a large potential for the generation of350

usual shapes of elastic gridshells, as illustrated by Figures 14 and Figure 15.

The first ones shows a structure inspired by Edward Cullinan’s Weald and

Downland Gridshell built in 2002 [22, 23] and the second a structure simi-

lar to the roof by Glen Howells’ Savill Building built in 2006 [23, 24]. The

method not only reproduces the lay-out of the existing wooden grid but it355

supplies a lay-out for its covering with planar quadrangular facets which

might have been of interest in one case or the other. The pattern created by

the Tchebycheff net is far from obvious and would be hard to obtain with

the compass method on the smooth surface. This illustrates the interest of

using the dual of the Tchebycheff net for the construction of the surface.360

Shifting now to closed directrix, the algorithm is proved to be quite effi-

cient for the design of stadium. The one represented in Figure 16 is inspired

by Jean-Michel Wilmotte’s football stadium, the Allianz Riviera in Nice,

France. The actual structure is not an elastic gridshell but a rigid one whose

wooden structure is well represented by the Tchebycheff net on the right,365

while its ETFE envelop could be efficiently replaced by planar quad cover

based on the circular mesh shown on the right. Domes with oculus can also

24



(a) Main structural grid (b) Cover with planar quadrangular panels

Figure 14: Elastic gridshell inspired by the Weald and Downland Museum, UK.

Figure 15: An elastic gridshell inspired by the Savill Building, UK.
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be designed with this process. The one represented in Figure 17 is inspired

by Denis Montel’s domes designed for Hermès in Paris, France in 2010. The

realisation of these “basket” structures was of huge complexity [25] and could370

have been simplified if an elastic gridshell solution had been explored.

(a) Main structural grid (b) Cover with planar quadrangular panels

Figure 16: Stadium inspired by the Allianz Riviera in Nice, France.

Figure 17: Dome with occulus.

3.2. Remeshing

The mesh size of an elastic gridshell might be subject to changes over

the course of a project, due to mechanical or constructive requirements. It

is therefore necessary to be able to change the mesh size without changing375
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the overall shape, which is set during early stages of the project. In the

proposed method, the generation of Tchebycheff nets proceeds from its dual,

from the setting of the subdivision of the directrix and the reference radius.

Yet, it can be remarked that this is equivalent to fixing the angles between

the Tchebycheff nets and the directrix. Indeed, one can see on Figure 18380

that, once the radius is fixed, it is equivalent to set the points Ai or the

angles αi.

Figure 18: Angles of a Tchebycheff net.

Both sets of variables are linked by equation 2 which evidences the fact

that, for a given subdivision of the directrix, an increase in the radius will

decrease the angles of the Tchebycheff net.385

sin
αi

2
=
AiAi+1

2R
. (2)

This relation between the angle of the net and the subdivision of a line

of the dual is at the basis of the method used by [8] for the proof of the

meshability of surfaces by Tchebycheff net. In the tools developed here how-

ever, the points on the directrix remain the primary variables and the angles

secondary variables with no direct control by the user.390

From equation (2), it appears hence that, varying simultaneously the ra-

dius and the edge lengths so that the characteristic angles of the Tchebycheff
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net is constant, will let the underlying smooth surface unchanged. The iso-

radial meshes generated with this constraint will all be discrete analogue of

networks of principal curvature of the same surface. Consider for example395

Figure 19. The mesh on the left has been generated from a uniform subdivi-

sion of the directrix while the mesh on the right has been generated from the

same directrix multiplying by 2 the number of subdivisions and halving the

reference radius. Hence, for uniform subdivision, if n denotes the number of

subdivisions, any mesh generated with the same value of n · R on these two400

curves will lead to a discretisation of the same surface.

(a) Coarse mesh (b) Dense mesh

Figure 19: Two isoradial meshes generated from the same generatrix and directrix with

the same value of n ·R.

3.3. Curvature and subdivision of the directrix

Looking now at Figure 20, it is remarked that, in some areas, quadrangles

on the last strip have become very flat which indicates that the angle between

the two directions of the Tchebycheff net is close from π (this issue is well-405

known in practice from users of the compass method). As a matter of fact, the

mesh could not be propagated further: the algorithm had stop at that row.

It is also remarked that these area belong to curvature lines which start in
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the portions of the directrix where the curvature are the highest. Yet the fact

that the meshability of a surface is linked to its total curvature is well known410

and we are facing here the reverse problem as we are generating the surface

together with the Tchebycheff net on it. The proof of this assertion is beyond

the purpose of this article and would need further researcher. However we

will show that in practical cases this problem can be dealt by adapting the

mesh density to the curvature of the directrix.415

Figure 20: Tchebycheff net limited by the flattening of quadrangle.

Consider for example Figure 20, the directrix is an ellipse and the gener-

atrix is a parabola. The curvature variations of the directrix are substantial

and its subdivisions are uniform. It is noticed that the algorithm cannot

mesh the whole generatrix and stops because rhombi in areas of high curva-

ture tend to become flat.420

A first strategy to overcome this problem will be to increase the refer-

ence radius so that, according to equation (2), the starting angles of the

Tchebycheff net will be sharper, postponing hence the moment where they

become flat and allowing the algorithm to mesh the whole generatrix. This

however will not change the fact that uncontrolled distortion in the mesh425
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will appear in the area of high curvature. A second strategy is thus proposed

here by meshing the directrix with edge length inversely proportional to the

curvature as shown in Figure 21).

(a) Uniform subdivision (b) Subdivision with curvature

Figure 21: Uniform and non-uniform subdivisions of an ellipse.

Generating then the Tchebycheff net based on this new subdivision, one

obtains Figure 22. The generatrix is completely meshed and the mesh looks430

uniform and regular. Moreover, the overall shape of the mesh resemble what

one would have expected generating a surface by sweeping the generatrix

along the directrix in a 3d-modeller. This strategy seems thus to lead intuitive

results in terms of shape generation and is therefore recommended.

Figure 22: Tchebycheff net based on the same data as Figure 20 with a subdivision adjusted

to the directrix curvature.
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4. Optimisation around umbilical points435

It has been seen in section 2.4, that the curvature discontinuity of the

directrix around an umbilical point is propagated diagonally through the

mesh (cf. Figure 13) which causes:

• diagonal sets of distorted panels in the isoradial mesh (see hatched

quadrangles on Figure 23);440

• curvature discontinuities in one direction of the Tchebycheff net which

is actually the dual counterpart of the local distortion of the mesh.

From a constructional point of view, this curvature singularity corresponds

to unacceptable bending stresses in the members of the elastic gridshells.

An alternative strategy based on mesh relaxation is thus proposed in the445

following.

4.1. Mesh relaxation

The strategy of mesh relaxation consists in opening a hole around the

singularity by disconnecting locally the strips of the mesh. Doing so, the

directrices become smoother and valid isoradial and Tchebycheff meshes can450

be generated on each strip. For example, in the case shown in Figure 11

with a single singularity and three independent strips, one might chose to

disconnect three points on each branch plus the umbilicus point (see blue

dots in Figure 23) and to relax the mesh to remove distorted panels. A

temporary change in the mesh topology is hence accepted during the mesh455

relaxation phase, the initial topology will be recovered afterwards during the

hole filling phase described in section 4.2.

To evaluate the relevance of this strategy, the quality of the generated
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(a) Initial mesh (distorted panels

hatched)

(b) Relaxed mesh

Figure 23: Mesh relaxation by local opening around the umbilicus.

mesh should be estimated. This could be done through the bending energy

of the Tchebycheff net given by equation 5 or through a kind of distortion460

energy of the isoradial mesh. This energy Ed measures the gap between the

current quadrangle and a rectangle through its actual angles α, β, γ, δ:

Ed =
(
α− π

2

)2
+
(
β − π

2

)2
+
(
γ − π

2

)2
+
(
δ − π

2

)2
(3)

As the quadrangles are all inscribed in circle, opposite angles are supplemen-

tary and the expression of this distorsion energy reduces to:

Ed = 2

((
α− π

2

)2
+
(
β − π

2

)2)
(4)

From our experience, it results that minimising the distortion of the circular465

mesh minimises also the bending energy of the Tchebycheff net while the

contrary is not necessarily true. For this reason, comparisons of the mesh
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performances in the following will be done on the distortion energy in the

mesh.

To determine what the optimum size of the opening is, four symmetric470

options have been tested, varying the number of disconnected points in the

area of the singularity. Each time, the distortion energy is minimised vary-

ing the positions of the disconnected points in the plane of the singularity.

The algorithm for minimisation is here BFGS. The resulting optimal config-

urations are then compared in Figure 24. It can be seen that it decreases475

significantly with the number of points but reaches a plateau around 7 dis-

placed points (the case illustrated in Figure 23 corresponds to 10 displaced

points: 3 in each sector plus the singularity). For this configuration, the dis-

tortion energy has been divided by 150 compared to the energy of the mesh

without hole E∗d . The regularization strategy is thus efficient and local, as480

few points are necessary to drastically improve mesh quality.

Figure 24: Normalised distortion energy with the number of disconnected points.
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4.2. Hole filling

The strategy proposed in the preceding section leads to the opening of

a polygonal hole in the mesh around the umbilical point (see Figure 23)

which needs to be filled. To this end, like for closed directrix in section 2.3.2,485

we propose a solution for the hole filling which locally violated the isora-

dial condition of the mesh (actually the panels in the neighbourhood of the

umbilicus are not even circular). This solution consists in three successive

optimisations:

1. Choose the width of the hole and minimise the distortion energy as in490

section 4.1.

2. Reconnect the points along the directrices and optimise their positions

in space, so that the quadrangle tends to planar facets (coloured panels

on Figure 25).

3. Optimise the location of the crossing points of the Tchebycheff net495

in those panels, so that the bending energy of the Tchebycheff net is

minimal.

The first optimisation has just been presented in previous section. The

second one is an optimisation over the coordinates of the reconnected points

in order to minimise the planarity energy of the mesh which is here evaluated500

from the volume of the tetrahedra formed by each face. It appears in Table 1

that this energy tends to increase with the number of disconnected points

(or with the width of the hole). The warping of the panels remains however

satisfactory and the mesh can be called a PQ-mesh.
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(a) Relaxed mesh (b) Final mesh

Figure 25: Reconnection of the points in the area of the singularity after mesh relaxation.

Number of Eplanarity Eplanarity

points before optimisation after optimisation

1 4 · 10−3 2 · 10−5

4 7 · 10−2 2 · 10−3

7 5 · 10−2 1 · 10−2

10 5 · 10−2 8 · 10−3

Table 1: Comparison of the mean planarity energy in function of the number of discon-

nected points.
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Figure 26: Variation of the normalised bending energy of the Tchebycheff net with the

number of disconnected points in each sector.

In the third optimisation, the points corresponding to the centre of the505

circle in the regular mesh are created in the non-circular quadrangles and

their positions in space is chosen, so that the bending energy of the now

”quasi-Tchebycheff” net is minimum. This energy is given by equation 5 and

decreases significantly with the width of the hole (see Figure 26). The gain

with this last optimisation is of approximately 5 in the present example. The510

results of these three optimisations for the example of Figure 13 is shown in

Figure 27.

5. Mechanical optimisation of the Tchebycheff net

In the preceding sections, the dual Tchebycheff nets were generated from

the vertices of the isoradial meshes and the centre of the corresponding cir-515

cles. Although this theoretically allows for the realisation of the gridshell

from a planar two-way grid, the final form of the Tchebycheff net does not

correspond to a state of mechanical equilibrium. On the contrary, the pro-

posed procedure for the generation of the Tchebycheff net leads to stress
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(a) Mesh relaxation

(b) Hole filling and planarity optimisation

(c) Bending energy optimisation

Figure 27: Mesh relaxation and hole filling of a valence-6 singularity.
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concentration in the members each time they cross a vertex of the isoradial520

mesh and change faces. Indeed, one can see on Figure 28 (which represents

the bending moments in the mesh shown in Figure 7) a clear alternation of

high and low values of the bending moments in the beam.

Figure 28: Bending moments in the Tchebycheff net directly derived from the isoradial

mesh of Figure 7 (high values in red and low in green).

To overcome this sub-optimal configuration from a mechanical point of

view, three strategies can be implemented:525

• a purely geometrical offset of circle centres,

• a mechanical offset with priority to the planarity of the faces,

• a mechanical offset with priority to the regularity of the grid.

The three strategies will be developed in the following subsections and finally

compared in terms of bending energy of the Tchebycheff net or planarity of530

the panels. The bending energy of the Tchebycheff net measures the discrete

curvature of the lines. It can be defined as the sum of the square of the

angles αi made by successive segments of the Tchebycheff net:

Eb =
∑

α2
i (5)

In practical cases where the structure is made of circular tubes (like for
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example in [26, 27, 28]), this energy is proportional to the true bending535

energy of the grid members: it has thus the same minima.

5.1. Geometrical offset

The regularity of the Tchebycheff net comes from the fact that every

segment of the grid has the size of the circle radius. However, moving the

centres O of all circles by the same offset along the local normal of each540

circle will also lead to valid Tchebycheff nets (cf. Figure 29). An infinity

of dual Tchebycheff nets can hence be associated to a single isoradial mesh.

Considering the fact that these Tchebycheff nets can be used as a reference

geometry for the practical realisation of elastic gridshells, it is interesting to

associate a bending energy to the net and to optimise the offset OO′, so that545

this bending energy is minimal.

Figure 29: Offset of the Tchebycheff net along the normal.

The offset being done along the normal of each circle, its direction lines are

completely defined by the isoradial mesh. Its value can be chosen freely, but

must be constant along the mesh to ensure that the dual mesh is a Tcheby-

cheff net. The relative value is however unconstrained and we choose to set550

it locally according to the mean curvature. To this end, the two principal
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curvatures in the neighbourhood of the circle are evaluated and compared.

Then the local value of the offset is defined, so that the Tchebycheff net

“pops up” in the direction of the highest curvature.

In practice, considering a common circle of the net C0 and its four neigh-555

bour C1 to C4 on Figure 30, the two principal direction are defined by the

strip C1, C0, C3 and the strip C2, C0, C4. The mean curvature in one direction

can be defined as the average radius of the two spheres containing [C1, C0]

and [C0, C3]. The evaluation of the radii of these sphere is straight forward,

considering two successive circles, both of radius R (see Figure 30). Their560

intersection defines an angle β between their tangents and an angle α be-

tween their normals. The radius r of the sphere containing these two circles

is given by:

r = R

√
1 + cos β

1− cosα
(6)

(a) Neighbouring circles (b) Characteristic angles

Figure 30: Determination of the curvature in the neighbourhood of a circle.

Once the relative direction of each offset as been locally defined, the
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bending energy of the whole mesh can be evaluated with equation (5) and565

minimised. The resulting length increase ∆lgeom is easily deduced from the

offset value h by Pythogora’s theorem:

∆lgeom =
√

1 + (h/R)2 − 1 (7)

5.2. Form-finding with priority to the cover planarity

The second strategy is inspired by the construction process of some recent

projects [22, 24, 29] where the grid has been assembled on a gigantic scaf-570

folding while its elastic deformation was monitored with hundreds of props.

In those cases, the final form is obtained by bracing the grid while it is still

lying on the scaffolding, locking in the stresses induced by the props. The

removing of the scaffolding then does not alter significantly the form as it is

fixed by the bracing. With this complex process, the designer can impose a575

form to the grid.

Supposing hence that a prop is set at each vertex of the isoradial mesh,

one can impose the form of the mesh to the grid. Yet to diminish the bending

moments in the members, one can imagine a form-finding step based on these

boundary conditions where the member lengths are unknown and driven by580

the bending forces. This is easily done with the dynamic relaxation method

by arbitrary lowering the axial stiffness of the members and relaxing the

mesh in a similar way to what was done in [30]. Once the equilibrium has

been reached, a new grid can be defined based on the lengths in the final

configuration. This grid is irregular, but, tuning the relative bending/axial585

stiffness, this irregularity can be kept sufficiently low, so that in practice the

grid can be easilly assembled as demonstrated in [5]. After this form-finding
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step, one gets hence a slightly irregular grid with smooth bending moments

(see Figure 31) supporting a cover with perfectly planar quadrangular panels.

The resulting members irregularity ∆lplanar is estimated by the relative gap590

between the maximal length lmax and the average length which is equal to

the isoradial mesh radius R:

∆lplanar =
lmax −R

R
(8)

Figure 31: Smooth bending moments in the Tchebycheff net after relaxation of the length

constraint in the grid of Figure 28 (high values in red and low in green).

5.3. Form-finding with priority to the grid regularity

The third strategy is inspired by the construction process of smaller scale

realisations by the authors [26, 27, 28] but similar to the largest gridshell ever595

built in Mannheim [31]. The grid here has been assembled on the ground and

then lifted by cranes, controlling the form by the sole positions of the mem-

bers’ ends. In those cases, the final form is obtained by the static equilibrium

of the grid under self-stresses induced by bending. The bracing only stabilises

the form. This process is practically less demanding on the field, but allows600

less control of the form which is the results of mechanical constraints.
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Supposing hence that the geometry of the flat two-way grid is known and

elastically brought in the configuration obtained by duality of the isoradial

mesh, supposing also that the ends of each member are fixed to the ground,

an equilibrium position can be found by relaxing this configuration using605

dynamic relaxation or any other non-linear method [32, 33]. Considering

then that small variations of the prestress in the initial configuration can be

obtained by increasing the ratio of the rest length of the members over the

length in the initial configuration which is equal to the mesh radius (lrest/R),

an optimisation can be conducted on this ratio in order to minimise the610

warping of the cover panels in the relaxed configuration. The relative length

increase ∆lgrid is here directly given by:

∆lgrid =
lrest −R

R
(9)

Admissible warping for glass cover are given by [34] with a limit of 1/175th

of the diagonal length. One can see on Figure 32 that the number of warped

panels is reduced (8 among 200), so that this construction process seems also615

very appropriate for the construction of elastic gridshell with planar panels.

Figure 32: Warping of the panels after relaxation of the planarity constraint in the grid

of Figure 28; only the 8 panels in dark blue exceed the warping criterion.
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5.4. Comparison of the offsetting strategies

The comparison of these three offsetting strategies is based on three sur-

faces: an anticlastic surface and a synclastic surface with circular directrices

and generatrices (shown in Figure 33) and the open surface with alternate620

positive and negative Gaussian curvature shown in previous section. For the

three surfaces, we analyse how the different strategies converge and the op-

timal offset values. The main characteristics of each strategie are recalled in

Table 2.

(a) Anticlastic surface (b) Synclastic surface

Figure 33: Double curved surfaces used for offset optimisation.

Starting with the first strategy, it can be seen on Figure 34 that an optimal625

offset value exists for all surfaces and that this value relatively to the radius

of the mesh (i.e. the ratio OO′ over OA in Figure 29) varies from one surface

to another (from 3% to 6%). The decrease of the total energy varies then

from 12% until 40%. The benefit is thus limited but, as the optimisation is

carried out on a single value (with Newton’s method for example), it is done630

in almost real time for the three meshes studied here which have 100 and 200

faces respectively.
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Strategy Parameters Characteristics Comp. time

Geometric

•Regular grid

Offset size •Planar panels Low

•Not in mechanical equilibrium (250 ms)

DR Planar

panels

•Quasi-regular grid

ES •Planar panels Low

•Constrained mech. equilibrium (1.2 s)

DR Regular

grid

•Regular grid

lrest/R •Quasi-planar panels Medium

•True mech. equilibrium (25 s)

Table 2: Optimal offsets for the three strategies.
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Figure 34: Influence of the relative size of the offset on the bending energy using the purely

geometric strategy.
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For the second strategy, the form-finding parameters must be tuned, so

that the bending forces in the members can modify their lengths. To this end,

the axial stiffness ES is decreased progressively while keeping the bending635

stiffness EI constant and equal to 1.10−8. The resulting grid irregularity is

measured through the ratio of the maximum length over the average length

of the members. The variations of the normalised bending energy with the

irregularity is shown in Figure 35. It is remarkable how the curves of the three

surfaces reach a plateau. The minimal grid irregularity corresponding to this640

plateau is limited as its maximum value is below 1% of the radius. This value

is generally obtained for ES = 1.10−7. Note that the average length variation

for the plateau is approximately half of the maximum length variation for

the three surfaces.
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Figure 35: Influence of the grid irregularity on the bending energy with the second strategy.

Considering now the third strategy for which the optimisation parameter645
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is the ratio of the rest length over the initial length and the optimisation

criteria is the number of warped panels. Based on [34] which recommends

that the gap remains below l/175th, it is found that in general, the equilibrium

configuration is close to the initial configuration, so that the criteria is fulfilled

for almost all panels. Actually, for any value of the ratio lrest−linit

linit
below 1%,650

the criteria is always fulfilled for the two simple structures, and for 98% of

the panels of the complex shape.

To analyse more precisely the influence of lrest/linit, two criteria have been

studied: the number of panels with a warping exceeding l/500th and the

normalised warping energy of the panels. These two criteria being strongly655

correlated in practice, the results will be presented in terms of normalised

warping energy only (see Figure 36). It is observed that the variations of

the warping energy with lrest/linit are not monotonous but that its minimum

approximately coincides with the ratio that would give an equivalent offset

value similar to the one minimising the bending energy in the first strategy.660

Besides, it is observed that the absolute values of the bending energy

in the two form-finding processes are equivalent. It can thus be concluded

that, from a mechanical point of view, both relaxation strategies are equally

valuable and lead similar elastic prestresses in the deformed grid.

It is also worth remarking that, after the form-finding under planarity665

constraint, the average length extension under regularity constraint ∆lgrid is

similar to the optimal value of the geometrical optimisation ∆lgeom, which

is slightly lower than the optimal value obtained after relaxation under pla-

narity constraint ∆lplanar. For this reason, we suggest that in a first step

the optimal value of the geometrical offset is determined by a purely real-670

47



time geometrical process and then that this value is used to relax the grid in

the neighbourhood of the isoradial mesh which will result in a structure at

equilibrium with a very limited warping of the panels.Figure 3
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Figure 36: Influence of the relative length increase on the warping energy.

Strategy Criterion Complex Anticlastic Synclastic

Geometric ∆lgeom 1.8h 0.3h 1.0h

Planarity ∆lplanar 3.9h 0.6h 2.4h

Regularity ∆lgrid 2.1h 0.4h 1.2h

Table 3: Optimal offsets for the three strategies.

6. Conclusion

A new bottom-up approach in the design of free-form structures is pro-675

posed in this paper. It allows the construction of Tchebycheff nets from
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particular circular meshes which are built with unique radii. A practical

consequence is that it is then possible to build elastic gridshells which can

be covered with planar facets and whose bracing is naturally optimised in

the case of surfaces with a positive Gaussian curvature, through a purely680

geometrical method. The influence of the different parameters on the shape

generation have been illustrated. It has been seen that the formal universe of

the proposed framework is wide and includes various topologies of surfaces:

open and closed surfaces from two curves as well as meshes with simple sin-

gularities, for which an original procedure optimising the mesh distortion and685

the bending energy of the Tchebycheff net has also been detailed. Finally,

in the last section, it has been shown that the Tchebycheff net generated

by the method is very close from the static equilibrium configuration of an

elastic grid, so that the method is reliable for the practical construction of

an elastic gridshell covered with planar facets. The shape generation method690

proposed here opens also new possibilities for bracing elastic gridshells with

planar panels and thereby opens new applications for these structures beyond

temporary buildings.

Beyond further exploration of the formal possibilities offered by the method,

it would be interesting to investigate analytically the duality between Tcheby-695

cheff nets and lines of curvature, which is the smooth counterpart of the

method presented in this article. It would probably give more insight on

some difficulties encountered here, like the problem of closed isoradial meshes

for any curve.
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