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Sound Attenuation with metaporous materials
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A metamaterial composed of a set of periodic rigid resonant inclusions embedded in a porous lining is inves-
tigated to enhance the sound attenuation in an acoustic duct at low frequencies. A transmission loss peak is
observed on the measurements and corresponds to the crossing of the lower two Bloch modes of an infinite
periodic material. Numerical parametric studies show that the optimum modal attenuation can be achieved
at the exceptional point in the parameter plane of inclusion position and frequency, where the two lower
modes merge.

The following article appeared in J. Acoust. Soc. Am. 142, 2288 (2017) and may be found at http:
//asa.scitation.org/doi/10.1121/1.5007851.

PACS numbers: 43.20.Mv, 43.50.Gf, 43.28.Py
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I. INTRODUCTION

Acoustic treatments are often used to limit noise prop-
agation in acoustic waveguides such as ventilation sys-
tems, exhaust devices, and aircraft engines. In the last
situation, the acoustic liners are generally made with a
perforated sheet backed by a honeycomb1. This kind of
material has good attenuation properties only in a nar-
row frequency band, but their main advantages are their
mechanical robustness and their capability to resist to
harsh conditions i.e., they constitute the reference solu-
tion in a turbofan engines.

For the future aircrafts, there is a need for efficient
treatments at low frequencies with small thickness. That
is why other materials, like micro-perforated plate2,3, ex-
tended Helmholtz resonator4 or slow sound materials5–7,
which uses folded side branch quarter wavelength res-
onators to reduce the effective compressibility of the fluid,
have been used to enhance sound attenuation in a duct
with a grazing flow.

For some other applications, porous materials are often
used8–13 to reduce the noise emission, e.g., in the venti-
lation systems and the Auxiliary Power Units (APU) of
aircrafts. Porous materials generally offer a wider ab-
sorption/attenuation band14 and the recent progresses
of metallic foam open the door for porous materials so-
lution in an aggressive environment. Nonetheless, they
suffer from a lack of absorption efficiency at low frequen-
cies, comparing to their efficiency at higher frequencies.
The usual way, to solve that problem for absorbing panel,
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is by multi-layering15,16. Other alternative solution is
to embed periodic inclusions17,18 or subwavelength res-
onators19–23 to create metaporous materials (resonant in-
clusions embedded in a porous matrix). Thanks to this
approach, it is possible to get a total absorption24 be-
low the quarter wavelength frequency and to widen the
absorption in a specified frequency range. The principle
is that the energy is trapped and dissipated between the
rigid inclusions and the rigid backing or in the inclusions
themselves.

To the best of authors’ knowledge, such metaporous
materials have not been tested for duct applications.
The multimode incidence of sound waves which depends
on the duct dimensions makes the design of appropriate
acoustic treatments more complex and less understood
than for panels dedicated to room acoustic corrections.

The aim of this paper, is i) to illustrate the potential-
ities of periodic rigid inclusions embedded in a porous
material for waveguide attenuation and ii) to link the
optimal modal attenuation with higher modes interac-
tion such as double roots of the dispersion equation25–27

or exceptional points28–35. The interest of such configu-
rations has been shown in a preliminary numerical work
36 for basic 2D inclusions. We focus here on a 3D setup
from both experimental and numerical point of view.

The present paper is organized as follows. After pre-
senting Bloch wave and the finite element (FE) formula-
tion in Sec. II, a description of the experimental protocol
is presented in Sec. III, and finally results are compared.
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FIG. 1. Geometry of the problem.

II. BLOCH WAVE IN A DUCT

A. Problem statement

We consider time harmonic acoustic wave propagation
(e−iωt) in a 3D infinite periodic waveguide Ωa of height
ha lined with a porous material Ωp of height hp with em-
bedded rigid inclusions, as described Fig. 1. It is note-
worthy that air cavity is present inside the inclusion (see
sec. III C). The unit cell is a rectangular parallelepiped of
height H = ha+hp and width d. The elementary cells are
aligned on a regular d-periodic grid with d = [d, d, 0]t.

The skeleton of the porous material is supposed to
be infinitely rigid, thus the Johnson-Champoux-Allard
(JCA) equivalent fluid model15 is used to get the equiv-
alent bulk modulus Kp(ω) and density ρp(ω) (see Ap-
pendix A for details). The sound speed is then given by

the ratio cp(ω) =
√
Kp(ω)/ρp(ω). In the air, the density

is taken as ρa = 1.2 kgm−3 and sound speed is ca = 340
ms−1.

In this study only no mean flow case is considered. In
each domain Ωα (α = a, p), the pressure field is governed
by the Helmholtz equation

∆pα + k2
αpα = 0, (1)

with the wavenumber kα = ω/cα, defined as the ratio
between the angular frequency ω and the acoustic wave
sound speed cα.

Air and porous media are coupled together at the in-
terface Γc between the two waveguides and the interface
at the inclusion opening. Here we ensure the continuities
of the pressure pα and the normal velocity vα · n where

vα =
1

iωρα
∇pα. (2)

On the rigid walls Γw and Γinc, the normal velocity van-
ishes vα · n = 0 (α = a, p).

B. Bloch modes computation

As the governing equations, the boundary conditions,
and the geometry are d-periodic, it follows from the
Bloch theorem that the solutions are Bloch waves,

pα(x) = p̂α(x)eikB ·x, (3)

i.e. the pressure field can be split into a d-periodic field
p̂α(x) modulated by a plane wave involving the Bloch
wavevector kB . The real part of kB measures the change
in phase across the cell and its imaginary part the at-
tenuation. We put kB = kBκ where the unit vector
κ = kB/kB stands for the propagation direction and kB
is the wavenumber. In the following, κ is supposed to be
aligned on the waveguide axis and is fixed to [1, 0, 0]t.
This decomposition holds if the real and imaginary parts
of kB are collinear.

Combining with the homogeneous problem from Eq.
(1), this yields an eigenvalue problem for the Bloch wave
and the Bloch wavenumber kB ,

∆p̂α + 2ikBκ · ∇p̂α + (k2
α − k2

B)p̂α = 0. (4)

The associated weak formulation is obtained after mul-
tiplying Eq. (4) by a periodic test function q̂α (α = a, p)
and integrating by parts over a unit cell, namely

1

ρα
×
{
−
∫

Ωα

∇q̂α · ∇p̂α dΩ + k2
α

∫
Ωα

q̂α p̂α dΩ

+ikB

∫
Ωα

(
−∇q̂α · (κp̂α) + (κq̂α) · ∇p̂α

)
dΩ

−k2
B

∫
Ωα

p̂α q̂α dΩ

+

∫
∂Ωα

q̂α

(
∂p̂α
∂n

+ ikB(κ · n)p̂α

)
dΓ

}
= 0.

(5)

The global formulation is obtained by summing the weak
formulations of both domains α = a, p.

The normal derivative of the pressure vanishes on the
rigid surfaces Γinc and Γw. Equation (2) implies that

∂p̂α
∂n

+ ikB(κ · n)p̂α = 0, for x ∈ (Γinc ∪ Γw), (6)

thus the boundary terms vanish on these surfaces. The
boundary term pairs on the lateral boundaries also vanish
because of the periodicity of p̂α and q̂α and due to the fact
that the normal vectors point in opposite directions. The
normal velocity continuity Eq. (2) on Γc is automatically
accounted for by removing the boundary integral.

The resolution is generally performed by fixing kB
(real) with ω the eigenvalue. Propagating modes cor-
respond to real frequencies whereas evanescent modes
(i.e., band gap) correspond to complex frequencies. How-
ever, all the coefficients in porous medium are frequency
dependent, which makes the eigenvalue problem highly
non-linear in ω. Therefore, it is preferable to solve the
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quadratic eigenvalue problem at fixed ω with kB as eigen-
value37,38.

Once the terms involving the power of kB have been
collected, we get the following quadratic eigenvalue prob-
lem expressed in kB ,

D(kB) ≡ K0 +K1kB +K2k
2
B = 0. (7)

The operators Ki (i = 0, . . . , 2) are combinations of bi-
linear operators involving the periodic test function and
the periodic pressure field. Their definitions are given in
appendix B. Due to the fact that the porous material pa-
rameters are complex, the operatorsKi (i = 0, . . . , 2) are
not hermitian but simply complex symmetric or complex
skew symmetric39. With or without inclusion, this kind
of system is closely related with the existence of non-
hermitian degeneracies31 called exceptional points28–30

(EPs). At each EP, both the eigenvalues and the right
eigenvectors of two modes coalesce at a branch point in
the parameters plane. The parameters can be a mate-
rial property, such as density, dimension, position or the
frequency etc. The EPs are different from the degenera-
cies encountered for hermitian operators where only the
eigenvalues coalesce, while the corresponding eigenvec-
tors are still orthogonal (e. g., classical geometrical sym-
metry degeneracies). One example about the existence of
EP appears in duct acoustics with impedance boundary
condition33. When the impedance (parameter) is tuned
to the Cremer’s optimum impedance25–27, this leads to
the highest modal attenuation. This degeneracy has also
been observed in computational acoustic provided that
the normalization of the lined duct modes with respect
to the bi-orthogonality relation fails40. Lawrie et al.9,41

have related this norm to the derivative of the dispersion
relation which vanishes for double roots.

C. Implementation details

The meshes are performed with Gmsh42. The compu-
tations are carried out using Lagrange quadratic finite
elements with FreeFEM++43 FE implementation. The
first twenty eigenvalues of smallest magnitudes are solved
with Two-level Orthogonal Arnoldi (TOAR) algorithm
dedicated to polynomial eigenvalue problem without ex-
plicitly creating matrices of the linearized problem and
suitable for non hermitian problems. The implementa-
tion is provided by SLEPc44 (Scalable Library for Eigen-
value Problem Computations). The numerical method
has been validated with analytical solution for a homo-
geneous waveguide (air/porous).

III. EXPERIMENTAL APPROACH

A. Experimental setup
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FIG. 2. A 2D schematic view of the experimental setup. The
measured sample, of length L = 200 mm, contains 8 unit cells.
xc is the center of the rigid inclusion.

The test facility45 used in this study is schematically
depicted in Fig. 2. A two sources method is used: the
acoustic waves are produced by two loudspeakers and
propagate in a rectangular duct (width along y direction
W =100 mm, height ha=15 mm). Two anechoic termi-
nations are used to avoid resonant conditions in the duct.
Note that the test material is put in a big rigid cavity.

The acquisition of signals is performed by Agilent VXI
1432 hardware platform which drives the source exci-
tation synchronously with the acoustic pressure signals
recording. A swept-sine over the frequency range 30–
3500 Hz is used with a frequency increment of 10 Hz.

Two series of four microphones (B&K 4938 1/4”,
preamplifier B&K 2670 with Nexus) mounted in the up-
stream (ui, i = 1, . . . , 4) and downstream (di) of the
test material section are used to measure the acoustical
pressure. The use of 2×4 microphones allows an over-
determination of the transmitted and reflected waves on
both sides of the test material and avoids the problems
in the precision of measurement when the acoustic wave-
length is close to half the distance between two micro-
phones. Those microphones are located at the positions:
xu1−xu2 = xd1−xd2 = 63.5 mm, xu1−xu3 = xd1−xd3 =
211.5 mm, and xu1 − xu4 = xd1 − xd4 = 700 mm.

In the frequency range 0–3400Hz, only 2 acoustic
modes can propagate in the rigid ducts: the plane wave
and the first-order mode along dimension W . The mi-
crophones are located just at the center of dimension W ,
which means that the second mode is not measured and
only the plane waves is captured.

B. Measuring technique

The aim of the experimental apparatus is to measure
the transfer matrix or the scattering matrix of a test ma-
terial. The scattering matrix for the plane wave relates
the scattered pressure amplitudes p+

2 and p−1 (see Fig. 2)
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to the incident pressure amplitudes p+
1 and p−2 by(

p−1

p+
2

)
=

[
R+ T−

T+ R−

](
p+

1

p−2

)
= S

(
p+

1

p−2

)
, (8)

where T+ and T− are the anechoic transmission coeffi-
cients, R+ and R− are the anechoic reflection coefficients,
and superscripts ± indicate the direction of wave propa-
gation along the x axis, and the subscripts ‘1, 2’ indicate
the upstream and downstream of the duct. The method
of measurement used in the present study is called “the
2 sources method”. Two measurements are made in two
different states of the system. These different states are
obtained by switching on the upstream source, the down-
stream source being switched off (measurement I), and
vice versa (measurement II) (see Ref. 45 for details).

C. Description of the configurations

The porous material is a metallic foam (RECEMAT,
NC4753.05 nickel-chromium alloy) that has been chosen
to avoid any skeleton vibrations. It is supplied as plate
of thickness 5 mm, and machined to the setup dimen-
sion. One layer of this metallic foam plate will be la-
belled by “P” in the following. The JCA parameters of
the metallic foam used in the fluid equivalent model have
been measured on another setup. The values are poros-
ity φ = 0.99, tortuosity α∞ = 1.17, viscous characteris-
tic length Λ = 1× 10−4 m, thermal characteristic length
Λ′ = 2.4× 10−4 m, and air flow resistivity σ = 6.9× 103

N m−4s. Five layers “P” of this porous material are as-
sembled together to form a 25 mm thick uniform porous
material, labeled by “5P” in the following. This configu-
ration represents a reference homogeneous porous liner.

The inclusions are metallic hollow cylinders with one
closed end and one open end, as illustrated in Fig. 3(a)
and embedded in the porous material as in Fig. 3(c). The
cylinder we considered in this work is with external di-
ameter 22 mm, wall thickness 0.5 mm, bottom thickness
2 mm, and the total height 15 mm, as shown in Fig. 3(a).
Here xc is the center of the cylinder and indicates the in-
clusion position in the unit cell. Configurations with two
different inclusion orientations are investigated. If the
closed ends of all the cylinders are on the bottom and
direct towards the rigid backing, it’s labeled by “t”; in-
versely, “u” when all the closed ends are on the top and
direct towards the duct (see e.g. a 2D view in Fig. 2).
In order to embed the inclusions in the porous material,
holes are drilled in three metallic foam layers, as we can
see from Figs. 3(b) and (c). To keep the same height on
all the configurations, one layer of metallic foam “P” is
added both on the top and bottom of the inclusions, lead-
ing to the configurations P-u-P and P-t-P mentioned in
the following.

Acoustic measurements have been performed with
cylinders embedded in the center of the cells xc =
(0, 0, −hp/2) (see in Fig. 2).

FIG. 3. Pictures of (a) an open cylinder inclusion (filled with
air), (b) zoom of the drilled metallic foam layers of height 5
mm, and (c) a whole sample with cylinders (Fig. 3(a)) em-
bedded in an alternated way.

IV. RESULTS AND DISCUSSION

A. Comparisons between the model and the
measurements

The measured scattering matrix coefficients are given
in Fig. 4. Comparisons between the measured Transmis-
sion Loss TL = −20 log |T | for 8 unit cells and FE Bloch
mode attenuation25 for a length L

att(kB) = 8.68 · Im kBL, (9)

are shown in Fig. 5.
The oscillations in the reflection coefficient in Fig. 4(b)

are linked to the wave reflection at the ends of the mate-
rial (see Fig. 2). The reflection coefficient modulus oscil-
lates around |R| = 0.45 which is close to the approxima-
tion (1 − r)/(1 + r) = 0.45, valid at low frequencies for
an expansion with the height ratio r = ha/(ha + hp) and
without porous material13. The first frequencies where
the reflection coefficient is minimum (fn ≈ nca/(2L), n
integer) can also be estimated with an empty expansion
chamber model46.

These oscillations, due to the interface discontinuities,
can also be observed in the transmission coefficient (see
Fig. 4(a) ) and in the measured TL (see Fig. 5). They
can also explain the differences between the measured TL
and Bloch mode attenuation in Fig. 5. The latter gener-
ally has a smaller attenuation value because the reflected
waves at discontinuities send back the sound intensity to
upstream. Nonetheless, the main trends are perfectly re-
covered with the least attenuated Bloch mode, especially
for the attenuation peak frequency observed in Fig. 5(c).

From Fig. 4, the transmission coefficient or more con-
veniently the measured TL, reveals that below 500 Hz
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FIG. 4. Measured scattering matrix coefficients for the three
configurations: 5P ( ), P-t-P ( ), and P-u-P ( ).
(a) Absolute value of transmission coefficient T+ and (b) ab-
solute value of reflexion coefficient R+.

neither the tested inclusion shape nor its orientation are
important because the pressure in the liner is nearly con-
stant for the first mode. The TL depends mainly on the
porous material volume, which is bigger for the configu-
ration 5P, due to the air enclosed in the cylinders.

Above 500 Hz, the inclusion orientation starts to be-
come significant. The measured TL of configuration P-t-
P is quite similar to the one of 5P. This is also true for the
Bloch mode attenuation curves, as shown in Figs. 5(a)
and (b). When the cylinders are reversed, i.e., for config-
uration P-u-P, a TL peak can be observed, see Fig. 5(c).
As TL is driven by the least attenuated mode, the peak
appears when the first and the second mode attenuation
curves cross. The frequency of the TL peak is closely re-
lated to the effective height h′p, illustrated in the inserts
of Figs. 5(b) and (c), respectively and which corresponds
to an estimation of the longest tortuous path within the
liner. With the presence of the inclusion, h′p > hp and

the liner behaves like a thicker one. When the cylinder
is in the u orientation, the effective height h′p appears to
be larger than when the cylinder is in the t orientation
and the second mode becomes nearly cut-on at lower fre-
quency. Similar effects have also been observed in Ref. 18
for a 2D absorption problem.

B. Exceptional points

The crossing of the two Bloch mode attenuations ob-
served in Fig. 5(c) is closely related to the existence of
an EP. When periodic inclusions are embedded, new pa-
rameters can be used to tune the EP, for example the
shape, the size or the position of the inclusion.

To illustrate the existence of the EP in the parameter
plane of frequency and inclusion position, the cylinder
center xc is moved above (δ is positive) or below (δ is
negative) the center of the unit cell, as illustrated in the
insert of Fig. 6. The effect on the Bloch mode attenua-
tions is then investigated numerically.

By changing δ, the inclusion behaves as a quarter wave-
length resonator or as a Helmholtz resonator, when the
distance between the inclusion and the rigid wall be-
comes small. This parametric study has been performed
on weak contrasted waveguides, when hp ≈ ha, corre-
sponding to experimental setup, and on strong contrast
waveguide when hp � ha corresponding more to prac-
tical situations. The latter configuration makes also the
dispersion curves interpretation easier.

1. Weak contrast hp ≈ ha

Modal attenuations for the lower two Bloch modes as a
function of frequency at different inclusion positions are
given in Fig. 6. We can see that crossing (e.g. δ = 2) and
avoided crossing (e.g. δ = −4.7) for the two mode atten-
uations are observed. With moving the cylinder center
xc below the center of the unit cell, the amplitude of the
mode attenuations is getting larger until the appearance
of an avoided crossing, e.g., the amplitude is smaller at
δ = −4.70 mm than at δ = −4.61 mm. This means
that there exists a critical value of δ∗ where the maximal
modal attenuation for the least attenuated mode can be
achieved, leading us to the optimization of the acoustic
liner. The enhancement may be significant since for the
nominal value δ = 0 the computed attenuation at about
2 kHz is around 20 dB (see Fig. 5(c)) and for the optimal
value δ∗ the attenuation is around 40 dB. This maximal
value corresponds to a degenerated case where the lower
two Bloch modes coalesce to form a double root.

Double root of the dispersion equation has already
been observed for a waveguide lined with locally reacting
liner. It has been shown by Tester25 that Cremer’s op-
timum impedance27 corresponds to a double root of the
eigenvalue problem and is an EP in complex impedance
(admittance) plane33.
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FIG. 5. Comparisons between the Bloch mode attenuation
computed using Eq. (9) (· · · ) and the measured transmission
loss ( , , , respectively) with 8 unit cells for
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FIG. 6. Mode attenuations for the lower two Bloch modes
as a function of frequency at different inclusion positions δ.
δ is positive when the cylinder centre xc is moved above the
center of the cell, and negative when xc is moved below the
center of the cell.

To illustrate the existence of the EP near the (avoided)
crossing in Fig. 6 and the importance of its role on the
sound attenuation optimization, we plot in Fig. 7 the real
and imaginary parts of the lower two Bloch wavenum-
bers kB as a function of frequency at two different in-
clusion positions δ = −4.63 and δ = −4.61 mm. When
δ = −4.63 mm, there is a crossing for Re kB and an
avoided crossing for Im kB (see “+” in Fig. 7 (a) and
(b)), while for δ = −4.61 mm, there is an avoided cross-
ing for Re kB and a crossing for Im kB (see “×” in Fig. 7
(a) and (b)). The type change of the avoided crossings
shows that there exists a critical value δ∗, for which the
two wavenumbers kB will cross at a critical value of fre-
quency f∗35. Thus, (δ∗, f∗) ∼(-4.62 mm, 1570 Hz) is
called an EP in the parameter plane of (δ, f), where the
lower two Bloch modes in Fig. 7 will coalesce. This EP
leads to the maximal sound attenuation for the least at-
tenuated mode, as it can be observed in Fig. 6.

Nonetheless, this interpretation must be tempered. In-
deed, when two modes tend to merge into a single one,
a typical linear growth of the pressure field with respect
to the axial coordinate occurs: the underlying beating
phenomenon can be understood as the sum of two waves
with infinitely close wavenumber. The EP will lead to
the optimal sound attenuation if the linear growth re-
mains negligible with respect to the exponential modal
attenuation. For a finite liner, the global efficiency will
be also strongly conditioned by the matching efficiency
at the inlet/outlet of the silencer.

Using a Taylor expansion as in Refs. 25 and 26 in the
vicinity of the double root k∗B and assuming that there is
no higher multiplicity root, the dispersion equation can
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be approached by

D(kB , δ, f) ≈ D∗+(kB−k∗B)
∂D∗

∂kB
+

1

2
(kB−k∗B)2 ∂

2D∗

∂k2
B

+ (δ − δ∗)∂D
∗

∂δ
+ (f − f∗)∂D

∗

∂f
. (10)

where D∗ ≡ D(k∗B , δ
∗, f∗) for the sake of conciseness. On

the modal branches, D(kB , δ, f) vanishes. Recalling that
k∗B is a double root of the dispersion equation, D∗ and
∂D∗
∂kB

also vanish, Eq. (10) leads to

kB − k∗B ≈ ±

[(
−1

2

∂2D∗

∂k2
B

)−1(
(δ − δ∗)∂D

∗

∂δ
+

(f − f∗)∂D
∗

∂f

)]1/2

.

(11)

Each mode corresponds to different Riemann sheets of

FIG. 8. Riemann sheet of the real (a) and imaginary (b) part
of the lower attenuated Bloch wavenumber. The line
indicates the crossing of the different sheets.

wavenumber and the two modes are connected by a
square root branch point25,26,29 in the (δ, f)-parametric
space (here the parameters are real) as shown in Fig. 8.
The branch point singularity is responsible for the cross-
ing or the avoided crossing depending on the followed
path in the (δ, f)-parametric space.

2. Strong constrast hp � ha

In this section, all dimensions remain unchanged ex-
cept that the airway height is set as ha = 135 mm. As
in the previous case the existence of an EP can be ex-
hibited in the (δ, f) parametric space for the least at-
tenuated mode. In Fig. 9, the real and imaginary parts
of the lower two Bloch wavenumbers kB are plotted as a
function of frequency for two different inclusion positions
δ = −4.0 and δ = −3.9 mm. When δ = −4.0 mm, there
is a crossing for Re kB and an avoided crossing for Im kB
(see “+” in Fig. 9 (a) and (b)), while for δ = −3.9 mm,
there is an avoided crossing for Re kB and a crossing for
Im kB (see “×” in Fig. 9 (a) and (b)). The type change
of the avoided crossings shows that there exists an EP at
(δ∗, f∗) ∼ (-4 mm, 1380 Hz). Comparing to the different
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value of EP (-4.62 mm, 1570 Hz) obtained in the previ-
ous section when hp ≈ ha, it can be noted that the EP
(δ∗, f∗) depends on the ratio between hp and ha.

The complete dispersion curves for this configuration
are given in Fig. 10. For the higher order modes, the
coupling between the two waveguides becomes smaller
and the present configuration is comparable to the limit
cases of uncoupled waveguides. Hence, when hp � ha,
it becomes easier to analyze the eigenvectors behavior in
the presence of an EP.

At low frequency, the first mode labeled m0 couples
strongly the air and porous domains and the pressure is
nearly constant across the height. Moreover, the disper-
sion curves of the higher order modes in the airway can
be well approximated by rigid wall boundary condition
on Γc (see the curves in Fig. 10). In the meantime,
a mode localized in the liner can be seen. It can be well
approximated by assuming pp = 0 boundary condition on
the coupling interface Γc and solving the problem (7) in
the liner alone (see mL with + markers in Fig. 10). The
Dirichlet boundary condition is quite natural because the
characteristic impedance of the porous material in diffu-
sive regime tends to infinity ∝

√
σ/ω as the frequency

goes to 0 (see appendix A). The rough approximation
of the 1D reflection coefficient at the interface Γc is then
1 from the airway to the porous, and -1 inversely. This
explains that the modal behavior of the coupled system
is close to the Neumann-Neumann problem in the air-
way and to the Dirichlet-Neumann problem in the liner
respectively.

When the frequency increases, this asymptotic behav-
ior is no longer valid. In the vicinity of the EP, the cou-
pling between the two waveguides is strong. The system
is also very dispersive and the Bloch wavenumbers are
very sensitive to small frequency shift. The eigenvalues
of the modes labeled m1 and m0 merge. As mentioned
previously, it can be seen that the two eigenvectors also
merge and the pressure field is localized in the liner. The
more the pressure field is localized in the porous mate-
rial, the more the attenuation increases. Close to the
EP, the two lower attenuated modes are confined in the
liner, hence it explains why the modal attenuation is the
highest.

After the EP, the two modes become again differ-
ent. For one of them, labeled mS , the pressure field re-
mains localized inside the liner and this mode becomes
more and more attenuated. At higher frequency (keep-
ing kB � π/d) the mode behavior is well approximated
by the Dirichlet-Neumann mode mL in the liner alone.
Once projected on the frequency-Re kB plane, the EP
occurs at a frequency near the crossing between the first
mode of the rigid duct and the mL mode. It can be
noticed that similar qualitative results are obtained by
using air characteristic impedance ρaca boundary condi-
tion or Dirichlet boundary condition on Γc.

It is noteworthy that the group velocity of mS is
smaller comparing to the sound speed in homogeneous
the porous material cp. It can be explained by the tor-
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FIG. 9. Crossing and avoided crossing of (a) real and (b)
imaginary parts of the lower two Bloch wavenumbers when
ha = 135 mm with “+” for δ = −4.0 mm and “×” for δ =
−3.9 mm

tuous path of the wave in the liner due to the inclusion.

The localized mode inside the liner is equivalent to a
quasi-surface wave along the impedance wall as observed
theoretically by Bi and Pagneux in Ref. 34. They use an
analogy with resonance trapping phenomenon in open
quantum system to shed the light on the EP and waveg-
uide mode behaviors.

For the other mode, above the EP frequency, the eigen-
vector is becoming similar to the mode m1 (1 nodal line).
This mode is labeled m′1 and everything happens as if
the quasi constant mode m0 has switched with the first
higher mode m1 at low frequency, as shown in Fig. 10.
The group velocity tends to ca when the frequency in-
creases, indicating that this mode becomes a perturba-
tion of a rigid duct mode.
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FIG. 10. Dispersion curves for the Bloch wavenumber when
ha = 135 mm and δ = −4.0 mm a) 3D view, b) projection
in the frequency-Re kB plane, c) projection in the frequency-
Im kB plane. The markers · present the numerical solutions
for the air duct with metaporous liner, the lines corre-
spond to modes in a rigid acoustic waveguide of height 135
mm and the markers + represent the solution for the liner
alone (with Dirichlet b.c. on top). The inserted pictures
show the (O, x, z)-cut of the modulus of the right eigenvec-
tors at 100, 1375, 1385 and 2000 Hz. The eigenvectors are
normalized such the maximum value is red (=1) and blue is
0.

V. CONCLUSIONS

In this paper porous material with embedded periodic
rigid resonant inclusions has been investigated experi-
mentally and numerically to enhance the sound attenua-
tion at low frequency for acoustic ducts. Good agree-
ments have been observed between the measurements
and the predicted results. The measured transmission
loss peak observed in the partially lined acoustic duct
can be explained by the crossing (or avoided crossing)
of the lower two Bloch mode attenuations in the infinite
periodic waveguide.

It has been shown that the embedded inclusions can
greatly enhance the sound attenuation in a partially lined
duct if the inclusion shape and position are carefully cho-
sen. Due to the existence of the exceptional point (EP)
in the parameter space of the inclusion position and fre-
quency, different types of crossing and avoided crossing
are observed for the Bloch wavenumber. At the EP,
where both the eigenvalues and the eigenvectors of the
lower two Bloch modes coalesce, a maximal sound atten-
uation can be achieved because of a localized mode in
the liner.

This paper opens the way to the understanding of
the design of metaporous materials or metamaterials for
waveguide attenuation. The inclusion position can be
easily used to tune the material and to get close to an
EP. The EP based design generalizes to non locally re-
acting material the concept of optimal impedance25–27,33

developed initially by Cremer and Tester. Work is on
going to identify the conditions leading to EP and its ef-
ficiency on finite length configuration as it has been done
for impedance boundary condition2,3,33.
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Appendix A: Rigid frame equivalent model

Porous materials with rigid skeleton (and quite regu-
lar pore shape), such as the porous material involved in
this study, are well described by the Johnson-Champoux-
Allard 15 (Chap. 5) equivalent fluid model. This equiva-
lent fluid has the equivalent density (e−iωt).

ρp =
α∞ρa
φ

[
1 + i

σφ

ωρaα∞
GJ(ω)

]
, (A1)
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and the bulk modulus,

Kp =
γPa/φ

γ − (γ − 1)

[
1 + i 8η

Λ′2 Pr ωρa

(
1− iρa

ωPr Λ′2

16η

)1/2
]−1 .

(A2)

Here, GJ(ω) =
√

1− 4iα2
∞ηρaω

σ2Λ2φ2 , φ is the porosity, σ is

the flow resistivity, Λ is the vicious length, Λ′ is the ther-
mal length, α∞ is the tortuosity. Moreover, γ is the air
specific heat ratio and Pa is the atmospheric pressure,
Pr is the Prandtl number and η is the dynamic viscos-
ity. It is important to note, the viscosity is taken into
account in the porous material pore but is neglected in
the surrounding fluid.

If ω � ωb = σφ
ρaα∞

, viscous forces are dominant and the

effective parameters can be replaced by the low-frequency
approximations at first order12

ρp ≈ iρa
α∞
φ

ωb
ω
, (A3)

and

Kp ≈
Pa
φ
. (A4)

Appendix B: Operators details

Here, are detailed the bilinear operators listed in Eq.
(7) arising from Eq. (5):

K0 =
1

ρa
×
[
−
∫

Ωa

∇q̂a · ∇p̂a dΩ + k2
a

∫
Ωa

q̂a p̂a dΩ

]
+

1

ρp
×

[
−
∫

Ωp

∇q̂p · ∇p̂p dΩ + k2
p

∫
Ωp

q̂p p̂p dΩ

]
,

K1 =
i

ρa

∫
Ωa

(
−∇q̂a · (κp̂a) + (κq̂a) · ∇p̂a

)
dΩ

+
i

ρp

∫
Ωp

(
−∇q̂p · (κp̂p) + (κq̂p) · ∇p̂p

)
dΩ,

K2 = −

[
1

ρa

∫
Ωa

p̂a q̂a dΩ +
1

ρp

∫
Ωp

p̂p q̂p dΩ

]
.
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