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Abstract. In the last century, differential geometry has been expressed
within various calculi: vectors, tensors, spinors, exterior differential forms
and recently Clifford algebras. Clifford algebras yield an excellent repre-
sentation of the rotation group and of the Lorentz group which are the
cornerstones of the theory of moving frames. Though Clifford algebras
are all related to quaternions via the Clifford theorem, a biquaternion
formulation of differential geometry does not seem to have been formu-
lated so far. The paper develops, in 3D Euclidean space, a biquaternion
calculus, having an associative exterior product, and applies it to dif-
ferential geometry. The formalism being new, the approach is intended
to be pedagogical. Since the methods of Clifford algebras are similar in
other dimensions, it is hoped that the paper might open new perspectives
for a 4D hyperbolic differential geometry. All the calculi presented here
can easily be implemented algebraically on Mathematica and numeri-
cally on Matlab. Examples, matrix representations, and a Mathematica
work-sheet are provided.

Keywords: Clifford algebras, quaternions, biquaternions, differential geometry,
rotation group SO(3), hyperquaternion algebra

1 Introduction

Much of differential geometry is still formulated today within the 3D vector
calculus which was developed at the end of the nineteenth century. In recent
years, new mathematical tools have appeared, based on Clifford algebras [1–
10] which give an excellent representation of groups, such as the rotation group
SO(3) or the Lorentz group, which are the cornerstones of the theory of moving
frames. Since the methods of Clifford algebras can easily be transposed to other
dimensions, the question naturally arises of whether it is possible to rewrite dif-
ferential geometry within a Clifford algebra in order to open new perspectives for
4D modeling. Such an extension might proceed as follows. A 4D tetraquaternion
calculus has already been presented in [7, 8]. A moving surface OM = f(t, u, v)
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can be viewed as a hypersurface (with normal n) in a 4D pseudo-euclidean space.
The invariants are then obtained by diagonalizing the second fundamental form
via a rotation around n combined with a Lorentz boost along n, generalizing the
methods presented here. Though Clifford algebras can be presented in various
ways, the originality of the paper lies in the use biquaternions. We shall first
introduce quaternions and Clifford algebras together with a demonstration of
Clifford’s theorem relating Clifford algebras to quaternions. Then, we shall de-
velop the biquaternion calculus (with its associative exterior product) and show
how classical differential geometry can be reformulated within this new algebraic
framework.

2 Clifford algebras: historical perspective

2.1 Hamilton’s quaternions and biquaternions

In 1843, W. R. Hamilton (1805-1865) discovered quaternions [11–17] which are
a set of four real numbers:

a = a0 + a1i+ a2j + a3k (1)

= (a0, a1, a2, a3) (2)

= (a0,
−→a ) (3)

where i, j, k multiply according to the rules

i2 = j2 = k2 = ijk = −1 (4)

ij = −ji = k (5)

jk = −kj = i (6)

ki = −ik = j. (7)

The conjugate of a quaternion is given by

ac = a0 − a1i− a2j − a3k. (8)

Hamilton was to give a 3D interpretation of quaternions; he named a0 the scalar
part and −→a the vector part. The product of two quaternions a and b is defined
by

ab = (a0b0 − a1b1 − a2b2 − a3b3)

+(a0b1 + a1b0 + a2b3 − a3b2)i

+(a0b2 + a2b0 + a3b1 − a1b3)j

+(a0b3 + a3b0 + a1b2 − a2b1)k (9)

and in a more condensed form

ab = (a0b0 −−→a ·
−→
b , a0

−→
b + b0

−→a +−→a ×
−→
b ) (10)
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where −→a ·
−→
b and −→a ×

−→
b are respectively the usual scalar and vector products.

Quaternions (denoted by H) constitute a non commutative field without zero
divisors (i.e. ab = 0 implies a or b = 0). At the end of the nineteenth century, the
classical vector calculus was obtained by taking a0 = b0 = 0 and by separating
the dot and vector products. Hamilton also introduced complex quaternions he
called biquaternions which we shall use in the next parts.

2.2 Clifford algebras and theorem

About the same time Hamilton discovered the quaternions, H. G. Grassmann
(1809-1877) had the fundamental idea of a calculus composed of n generators
e1, e2, ...en multiplying according to the rule eiej = −ejei(i 6= j) [18–21]. In
1878, W. K. Clifford (1845-1878) was to give a precise algebraic formulation
thereof and proved the Clifford theorem relating Clifford algebras to quaternions.
Though Clifford did not claim any particular originality, his name was to become
attached to these algebras[22, 23].

Definition 1. Clifford’s algebra Cn is defined as an algebra (over R) composed
of n generators e1, e2, ..., en multiplying according to the rule eiej = −ejei (i 6= j)
and such that e2i = ±1. The algebra Cn contains 2n elements constituted by the
n generators, the various products eiej , eiejek, ... and the unit element 1.

Examples of Clifford algebras (over R) are

1. complex numbers C (e1 = i, e21 = −1).
2. quaternions H (e1 = i, e2 = j, e2i = −1).
3. biquaternions H ⊗ C (e1 = Ii, e2 = Ij, e3 = Ik, I2 = −1, e2i = 1, I com-

muting with i, j, k). Matrix representations of biquaternions are given in the
appendix.

4. tetraquaternions H ⊗ H (e0 = j, e1 = kI, e2 = kJ, e3 = kK, e20 = −1, e21 =
e22 = e23 = 1, where the small i, j, k commute with the capital I, J,K) [7, 8].

All Clifford algebras are related to quaternions via the following theorem.

Theorem 1. If n = 2m (m : integer), the Clifford algebra C2m is the tensor
product of m quaternion algebras. If n = 2m− 1, the Clifford algebra C2m−1 is
the tensor product of m − 1 quaternion algebras and the algebra (1, ω) where ω
is the product of the 2m generators (ω = e1e2...e2m) of the algebra C2m.

Proof. The above examples of Clifford algebras prove the Clifford theorem up
to n = 4. For any n, Clifford’s theorem can be proved by recurrence as follows
[24, p. 378]. The theorem being true for n = (2, 4), suppose that the theorem is
true for C2(n−1), to C2(n−1) one adds the quantities

f = e1e2...e2(n−1)e2n−1, g = e1e2...e2(n−1)e2n (11)

which anticommute among themselves and commute with the elements of C2(n−1);
hence, they constitute a quaternionic system which commutes with C2(n−1).
From the various products between f, g and the elements of C2(n−1) one obtains
a basis of C2n which proves the theorem. ut
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Hence, Clifford algebras can be formulated as hyperquaternion algebras the latter
being defined as either a tensor product of quaternion algebras or a subalgebra
thereof.

3 Biquaternion Clifford algebra

3.1 Definition

The algebra (over R) has three anticommuting generators e1 = Ii, e2 = Ij, e3 =
Ik with e21 = e22 = e23 = 1 (I2 = −1, I commuting with i, j, k). A complete basis
of the algebra is given in the following table

1 i = e3e2 j = e1e3 k = e2e1
I = e1e2e3 Ii = e1 Ij = e2 Ik = e3

(12)

A general element of the algebra can be written

A = p+ Iq (13)

where p = p0 + p1i+ p2j+ p3k and q = q0 + q1i+ q2j+ q3k are quaternions. The
Clifford algebra contains scalars p0, vectors I(0, q1, q2, q3), bivectors (0, p1, p2, p3)
and trivectors (pseudo-scalars) Iq0 where all coefficients (pi, qi) are real numbers;
we shall call these multivector spaces respectively V0, V1, V2 and V3. The product
of two biquaternions A = p+ Iq and B = p′ + Iq′ is defined by

AB = (pp′ − qq′) + I(pq′ + qp′) (14)

where the products in parentheses are quaternion products. The conjugate of A
is defined as

Ac = (pc + Iqc) (15)

with pc and qc being the quaternion conjugates with (AB)c = BcAc. The dual
of A noted A∗ is defined by

A∗ = IA (16)

and the commutator of two Clifford numbers by

[A,B] =
1

2
(AB −BA) . (17)

3.2 Interior and exterior products

Products between vectors and multivectors In this section we shall adopt
the general approach used in [4] though our algebra differs as well as several
formulas. The product of two general elements of the algebra being given, one
can define interior and exterior products of two vectors a (= a1iI+a2jI+a3kI)
and b via the obvious identity

ab =
1

2
(ab+ ba)− [−1

2
(ab− ba)] (18)

= a.b− a ∧ b (19)
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with a.b being the interior product

a.b =
1

2
(ab+ ba) (20)

= a1b1 + a2b2 + a3b3 ∈ V0 (21)

and a ∧ b the exterior product

a ∧ b = −1

2
(ab− ba) (22)

= (a2b3 − a3b2)i+ (a3b1 − a1b3)j + (a1b2 − a2b1)k ∈ V2 (23)

which has the same components as the pseudo-vector −→a ×
−→
b . Next we define

the interior products a.Ap and Ap.a (with 2 ≤ p ≤ 3 and Ap = v1 ∧ v2 ∧ ...∧ vp,
vi ∈ V1)

a.Ap = Σp
k=1(−1)k(a.vk)v1 ∧ ... ∧ vk−1 ∧ vk+1 ∧ ... ∧ vp (24)

together with

Ap.a ≡ (−1)p−1a.Ap. (25)

Explicitly, we have

a.(v1 ∧ v2) = −(a.v1)v2 + (a.v2)v1 (26)

a.(v1 ∧ v2 ∧ v3) = −(a.v1)(v2 ∧ v3) + (a.v2)(v1 ∧ v3)− (a.v3)(v1 ∧ v2). (27)

The interior product a.Ap allows the definition of the multivector a ∧ Ap and
Ap ∧ a via the relations

aAp = a.Ap − a ∧Ap (28)

Apa = Ap.a−Ap ∧ a (29)

with

Ap ∧ a = (−1)pa ∧Ap. (30)

Multiplying both sides of Eq. (29) with (−1)p and applying Eqs. (25, 30), we
obtain

(−1)pApa = −a.Ap − a ∧Ap (31)

Combining Eqs. (28, 31), we obtain the formulas valid in all cases (1 ≤ p ≤ 3)

a.Ap =
1

2
[aAp − (−1)pApa] ∈ Vp−1 (32)

a ∧Ap = −1

2
[aAp + (−1)pApa] ∈ Vp+1 (33)

A3 being a pseudo-scalar, commuting with any Clifford number, we have in
particular a ∧A3 = 0.
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Table 1. Interior and exterior products with their corresponding expressions in the
classical vector calculus (with B = b∧c,B1 = a∧b,B2 = c∧d, T1 = a∧b∧c, T2 = f∧g∧h
and a, b, c, d, e, f, g, h ∈ V1, T ∈ V3)

Multivector calculus Classical vector calculus

a.b = 1
2
(ab + ba) ∈ V0

−→a .
−→
b

a ∧ b = − 1
2
(ab− ba) ∈ V2

−→a ×
−→
b

a.B = 1
2
(aB −Ba) ∈ V1

−→a ×
(−→
b ×−→c

)
a ∧B = − 1

2
(aB + Ba) ∈ V3

−→a .
(−→
b ×−→c

)
B1.B2 = − 1

2
(B1B2 + B2B1) ∈ V0

(−→a ×−→b ) .(−→c ×−→d )
[B1, B2] = 1

2
(B1B2 −B2B1) ∈ V2

(−→a ×−→b )× (−→c ×−→d )
T1.T2 = − 1

2
(T1T2 + T2T1) ∈ V0

[−→a .
(−→
b ×−→c

)] [−→
f .
(−→g ×−→h )]

B.T = − 1
2
(BT + TB) ∈ V1

(−→a ×−→b ) [−→f .
(−→g ×−→h )]

a.T = 1
2
(aT + Ta) ∈ V2

−→a
[−→
f .
(−→g ×−→h )]

Products between multivectors Other interior and exterior products be-
tween two multivectors Ap and Bq are defined for p ≤ q [4]

Ap ·Bq ≡ (v1 ∧ v2 ∧ · · · ∧ vp−1) · (vp ·Bq) (34)

Ap ∧Bq ≡ v1 ∧ (v2 ∧ · · · ∧ vp) ∧Bq) (35)

with
Ap ·Bq = (−1)p(q+1)Bq ·Ap (36)

which defines Bq ·Ap for q ≥ p. The various products are given in Table 1.

Associativity A major property of the exterior product is its associativity
which is expressed as (with vi ∈ V1) [4].

(v1 ∧ v2) ∧ v3 = v1 ∧ (v2 ∧ v3) (37)

Proof.

(v1 ∧ v2) ∧ v3 = v3 ∧ (v1 ∧ v2) (38)

=
1

2
[−v3 (v1 ∧ v2)− (v1 ∧ v2) v3] (39)

=
1

4
[v3 (v1v2 − v2v1) + (v1v2 − v2v1) v3] (40)

v1 ∧ (v2 ∧ v3) =
1

2
[−v1 (v2 ∧ v3)− (v2 ∧ v3) v1] (41)

=
1

4
[v1 (v2v3 − v3v2) + (v2v3 − v3v2) v1] . (42)
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Since v3v1v2 − v2v1v3 = −v1v3v2 + v2v3v1 because of

(v3v1 + v1v3) v2 = v2 (v3v1 + v1v3) , (43)

Eq. (37) is established. ut

3.3 General formulas

Among general formulas, one has with (a, b, c, d )∈ V1, (B, Bi ) ∈ V2 and F,G,H
being any elements

(a ∧ b) .B = a. (b.B) = −b. (a.B) (44)

(a ∧ b) . (c ∧ d) = (a.c) (b.d)− (a.d) (b.c) (45)

[F, [G,H]]− [G, [F,H]] = [[F,G] , H] (46)

B2. (B1.a)−B1. (B2.a) = [B2, B1] .a (47)

a.Ap =
(
a ∧A∗p

)∗
(48)

a ∧Ap =
(
a.A∗p

)∗
(49)

B1 ∧B∗2 = (B1.B2)
∗

(50)

B1.B2 = B∗1 .B
∗
2 (51)

Proof. Eq. (44) results from the definition (34). Eq. (45) follows from

(a ∧ b) . (c ∧ d) = a. [b. (c ∧ d)] (52)

with
b. (c ∧ d) = (b.d) c− (b.c) d (53)

hence,
a. [b. (c ∧ d)] = (a.c) (b.d)− (b.c) (a.d) . (54)

Eq. (46) is simply the Jacobi identity which entails Eq. (47). Eq. (48) is estab-
lished as follows (with n = 3)

a ∧A∗p = a ∧An−p (55)

= −1

2

[
aAn−p + (−1)

n−p
An−pa

]
(56)

= −1

2
[aAn−p − (−1)

p
An−pa] (57)

= −I
2

[aAp − (−1)
p
Apa] = − (a.Ap)

∗
(58)

hence, we obain since (A∗)
∗

= −A the relation(
a ∧A∗p

)∗
= (a.Ap) . (59)
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Eq. (49) follows from

a.A∗p = a.An−p (60)

=
1

2

[
aAn−p − (−1)

n−p
An−pa

]
(61)

=
1

2
[aAn−p + (−1)

p
An−pa] (62)

=
I

2
[aAp + (−1)

p
Apa] (63)

thus we get (
a.A∗p

)∗
=
−1

2
[aAp + (−1)

p
Apa] = a ∧Ap. (64)

Eq. (50) results from

B1 ∧B∗2 = B∗2 ∧B1 (65)

=
−I
2

(B2B1 +B1B2) = (B1.B2)
∗

(66)

and Eq. (51) from

(B1.B2) =
−1

2
(B1B2 +B2B1) (67)

=
1

2
(IB1IB2 + IB2IB1) = (B∗1 .B

∗
2) .ut (68)

4 Multivector geometry

4.1 Analytic geometry

The equation of a straight line parallel to the vector u and going through the
point a is expressed by

(x− a) ∧ u = 0 (69)

yielding the solution

x− a = λu (70)

x = λu+ a (λ ∈ R). (71)

Similarly, the equation of a plane going through the point a parallel to the plane
B = u ∧ v is expressed by

(x− a) ∧ (u ∧ v) = 0 (72)

with the solution

x− a = λu+ µv (73)

x = λu+ µv + a (λ, µ ∈ R) (74)
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4.2 Orthogonal projections

Orthogonal projection of a vector on a vector The orthogonal projection
of a vector u = u‖ + u⊥ on a vector a with u⊥ · a = 0, u‖ ∧ a = 0 is obtained as
follows. Since

ua = u · a− u ∧ a (75)

one has

u‖a = u‖ · a = u · a (76)

u⊥a = −u⊥ ∧ a = −u ∧ a (77)

therefore

u‖ = (u · a)a−1 (78)

u⊥ = −(u ∧ a)a−1. (79)

Orthogonal projection of a vector on a plane Similarly, to obtain the
orthogonal projection of a vector u = u‖ + u⊥ on a plane B = a ∧ b (with
u⊥ ·B = 0, u‖ ∧B = 0) one writes

uB = u ·B − u ∧B (80)

hence, the solution is (with B−1 = Bc/BBc)

u‖ = (u ·B)B−1 (81)

u⊥ = −(u ∧B)B−1. (82)

Orthogonal projection of a plane on a plane As another example, let us
give the orthogonal projection of a plane B1 = B1‖+B1⊥ on the plane B2 = a∧b
with B1⊥ ·B2 = 0, and

[
B1‖, B2

]
= 0. Using the relation

B1B2 = −B1 ·B2 + [B1, B2] , (83)

we obtain

B1‖ = −(B1 ·B2)B−12 (84)

B1⊥ = {[B1, B2]}B−12 . (85)

5 Differential operators and integrals

5.1 Differential operators

In Cartesian coordinates, the nabla operator∇ = Ii ∂
∂x1

+Ij ∂
∂x2

+Ik ∂
∂x3

acting on
a scalar f , a vector a (= a1Ii+ a2Ij + a3Ik), a bivector B (= B1i+B2j +B3k)
and a trivector T (= τI ) yields respectively

∇f = Ii
∂

∂x1
+ Ij

∂

∂x2
+ Ik

∂

∂x3
= gradf ∈ V1 (86)
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∇.a =
∂a1
∂x1

+
∂a2
∂x2

+
∂a3
∂x3

= diva ∈ V0 (87)

∇∧ a =

(
∂a3
∂x2
− ∂a2
∂x3

)
i+

(
∂a1
∂x3
− ∂a3
∂x2

)
j +

(
∂a2
∂x1
− ∂a1
∂x2

)
k (88)

= rota ∈ V2 (89)

∇.B = (∇∧B∗)∗ = (rotB∗)
∗ ∈ V1 (90)

∇∧B = (∇.B∗)∗ = (divB∗)
∗ ∈ V3 (91)

∇.T = ∇T = − (∇T ∗)∗ = − (gradT ∗)
∗ ∈ V2. (92)

Hence, the various operators can be expressed with the usual ones (grad, div, rot)
and the duality. Among a few properties of the nabla operator, one has

∇2 = 4,∇∧ (∇∧ f) = 0,∇∧ (∇∧ a) = 0 (93)

4a = ∇ (∇a) = ∇ (∇.a−∇ ∧ a) = ∇ (∇.a)−∇. (∇∧ a) , (94)

where the last equation results from

∇ (∇∧ a) = ∇. (∇∧ a)−∇ ∧ (∇∧ a) = ∇. (∇∧ a) . (95)

5.2 Integrals and theorems

The length, surface and volume integrals are respectively for a curve x(u), surface
x(u, v) and a volume x(u, v, w)

L =

∫
ds =

∫ √
(dx)

2
=

∫ √(
dx

du

)2

du (96)

S =

∫ ∫ √
−
(
∂x

∂u
∧ ∂x
∂v

)2

dudv (97)

V =

∫ ∫ ∫ √
−
(
∂x

∂u
∧ ∂x
∂v
∧ ∂x

∂w

)2

dudvdw. (98)

The formulas exhibit immediately the transformation properties under a change
of coordinates.

Stokes’ theorem is expressed for a vector a (with dl = dx, dS = dl1 ∧ dl2)∮
a.dl =

∫
(∇∧ a) .dS; (99)

the same formula can be used for a bivector B by taking a = B∗∮
B∗.dl =

∫
(∇∧B∗) .dS = −

∫
(∇.B)

∗
.dS (100)

=

∫
rotB∗.dS. (101)
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Ostrogradsky’s theorem for a bivector B yields (with dτ = dl1 ∧ dl2 ∧ dl3)∮
B.dS =

∫
(∇∧B) .dτ =

∫
(divB∗)

∗
.dτ (102)

=

∫
(divB∗) dV. (103)

For a vector a, one obtains with B = −a∗

−
∮
a∗.dS =

∫
(diva) dV (104)

which transforms, since a∗.dS = −a.dS∗ , into∮
a.dS∗ =

∫
(diva) dV. (105)

6 Orthogonal groups O(3) and SO(3)

Definition 2. The symmetric of x with respect to a plane is obtained by drawing
the perpendicular to the plane and by extending this perpendicular by an equal
length.

Let x be a vector, x′ its symmetric to a plane and a a unit vector perpendicular
to the plane. From the geometry, x′ − x is perpendicular to the plane and thus
parallel to a; similarly, x′ + x is parallel to the plane and thus perpendicular to
a. Consequently, one has

x′ = x+ λa, a ·
(
x′ + x

2

)
= 0; (106)

hence, one obtains (with a · a = a2 = 1)

a ·
(
x+

λa

2

)
= 0 (107)

yielding λ = − 2(a·x)
a·a and

x′ = x− 2(a · x)a

a · a
= x− (ax+ xa)a

a · a
(108)

= −axa. (109)

Definition 3. The orthogonal group O(3) is the group of linear operators which
leave invariant the quadratic form x · y = x1y1 + x2y2 + x3y3

Theorem 2. Every rotation of O(3) is the product of an even number ≤ 3 of
symmetries, any reflection is the product of an odd number ≤ 3 of symmetries.
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The special orthogonal group SO(3) is constituted by rotations i.e. of proper
transformations f(x) of determinant equal to 1 (i.e. α = f (e1)∧f (e2)∧f (e3) =
I). A reflection is an improper transformation of determinant equal to −1 (i.e.
α = −I). Combining two orthogonal symmetries, we obtain

x′ = (ba)x (ab) = rxrc (110)

with r = ba, rc = acbc = ab, rrc = 1. One can express r as

r =

(
cos

θ

2
+ u sin

θ

2

)
= e

1
2uθ (111)

with u = u1i + u2j + u3k (u2 = −1). Eq. (110) represents a conical rotation of
the vector x by an angle θ around the unit vector u∗ = Iu. One verifies that the
rotation conserves the norm x′2 = x2. The same equation holds for any element
A of the algebra A′ = rArc since the product of two vectors x, y transforms as

x′y′ = (rxrc) (ryrc) = r(xy)rc (112)

and similarly for the product of three vectors as well as a linear combination of
such products. The above formulas allow to easily express the classical moving
frames such as the Frenet and Darboux frames within the Grassmannian scheme.

7 Curves

7.1 Generalities

Consider a 3D curve x(t) (= x1(t)e1+x2(t)e2+x3(t)e3) where ei is the canonical
orthonormal basis (e1 = Ii, e2 = Ij, e3 = Ik). Taking the length of the curve s
as parameter we have x = f(s) with ds =

√
(dx)2. The tangent unit vector at a

point M(x) is

T =
dx

ds
, T 2 =

(
dx

ds

)2

= 1. (113)

The equation of the tangent at a point M(x) is given by

(X − x) ∧ dx
ds

= 0 (114)

where X is a generic point of the tangent. The equations of the plane perpendic-
ular to the curve and of the osculating plane at the point M read respectively

(X − x) .
dx

ds
= 0 (115)

(X − x) ∧ dx
ds
∧ d

2x

ds2
= 0 (116)

where X is a generic point of the plane [25].
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7.2 Frenet frame

The Frenet frame (vi) attached to the curve x(t) is given by

vi = reirc (117)

where r = e
1
2uθ expresses the rotation of angle θ around the unit vector u∗(

rrc = 1, u2 = −1
)

and ei is the canonical orthonormal basis. After differentia-
tion, one obtains (using the relation drcr = −rcdr resulting from the differenti-
ation of rrc = 1)

dvi = r (rcdrei + eidrcr) rc (118)

= r (dιF .ei) rc (119)

= r (Dei) rc (120)

with

dιF = 2rcdr = 2e−
1
2uθe

1
2uθ

(
dθ

2
u+

θ

2
du

)
(121)

= (dθu+ θdu) (122)

= (da) i+ (db) j + (dc) k) ∈ V2 (123)

and

Dei = dιF .ei =
1

2
(dιF ei − eidιF ) . (124)

We shall call dιF = 2rcdr the affine connection bivector. Explicitly, one has

De1 = (dc) e2 − (db) e3 (125)

De2 = − (dc) e1 + (da) e3 (126)

De3 = (db) e1 − (da) e2. (127)

The Frenet frame is defined by the affine connection bivector

dιF = 2rcdr = (τds) i+ (ρds) k (128)

where ρ = 1/R is the curvature and τ = 1/T the torsion. This gives the Frenet
equations

De1 = (ρds) e2 (129)

De2 = − (ρds) e1 + (τds) e3 (130)

De3 = (−τds) e2. (131)

7.3 Curvature and torsion

To obtain the curvature and torsion we define α and β

α =
dx

ds
∧ d

2x

ds2
= ρv1 ∧ v2 (132)
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β =
dx

ds
∧ d

2x

ds2
∧ d

3x

ds3
= Iρ2τ (133)

and using the Lagrange equation

(v1 ∧ v2)
2

= (v1.v2)
2 − (v1)

2
(v2)

2
= −1 (134)

we obtain the invariants

ρ =
√
−α2 =

√
−
(
dx

ds
∧ d

2x

ds2

)2

(135)

τ =
Iβ

α2
=
I
(
dx
ds ∧

d2x
ds2 ∧

d3x
ds3

)
(
dx
ds ∧

d2x
ds2

)2 . (136)

Under a change of parameter t, one has using dx
dt = dx

ds
ds
dt

dx

dt
∧ d

2x

dt2
=

(
ds

dt

)3

α (137)

and thus one obtains the curvature

ρ =

√
−
(
dx

dt

)−6(
dx

dt
∧ d

2x

dt2

)2

. (138)

For the torsion, proceeding similarly, we get under a change of parameter

dx

dt
∧ d

2x

dt2
∧ d

3x

dt3
=

(
ds

dt

)6

β (139)

and thus

τ =
I
(
dx
dt ∧

d2x
dt2 ∧

d3x
dt3

)
(
dx
dt ∧

d2x
dt2

)2 ∈ V0. (140)

7.4 Example

As example, consider the curve x(t) = (2 cos t)Ii + (2 sin t)Ij + (t)Ik. The line

element is ds =
√
dx2 =

√
5dt; writing x′ = dx

dt , etc., we have

x′ ∧ x′′ = (2 sin t)i− (2 cos t)j + 4k, (141)

(x′ ∧ x′′)2 = −20 (142)

x′ ∧ x′′ ∧ x′′′ = 4I. (143)

The curvature and torsion are respectively

ρ =

√
− (x′)

−6
(x′ ∧ x′′)2 =

2

5
(144)

τ =
I (x′ ∧ x′′ ∧ x′′′)

(x′ ∧ x′′)2
=

1

5
. (145)
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The equation of the osculating plane is (with X = (X1) Ii + (X2) Ij + (X3) Ik
being a generic point of the plane )

(X − x) ∧ dx
ds
∧ d

2x

ds2
=

I√
5

(−2t+ 2X3 −X2 cos t+X1 sin t) = 0. (146)

The Frenet basis vi is

v1 =
1√
5

[(−2 sin t) Ii+ (2 cos t) Ij + Ik] (147)

v2 = (− cos t) Ii− (sin t) Ij (148)

v3 = (v1 ∧ v2)
∗

=
1√
5

[(sin t) Ii− (cos t) Ij + 2Ik] . (149)

The basis vi is obtained via the following rotations. First, the frame is brought
into its initial position (at t = 0) via the rotation f0 = f1f2 with tanθ = 1

2 and

f1 = ek
π
2 =

1√
2

(1 + k) (150)

f2 = e−j
θ
2 =

(√
1√
2

+
1√
5
− j

√
1√
2
− 1√

5

)
(151)

yielding

f0 =

√(
1

4
+

1

2
√

5

)
+ i

√
1

4
− 1

2
√

5
− j

√
1

4
− 1

2
√

5
+ k

√
1

4
+

1

2
√

5
. (152)

Next, follows the rotation due to the affine connection bivector

f3 = cos
t

2
+

(
i√
5

+
2k√

5

)
sin

t

2
. (153)

The end result is r = f1f2f3 and explicitly

r =

(
A cos

t

2
− C sin

t

2

)
+ i

(
B cos

t

2
+D sin

t

2

)
(154)

+j

(
−B cos

t

2
+D sin

t

2

)
+ k

(
A cos

t

2
+ C sin

t

2

)
(155)

with

A =
1

10

√
5
(

5 + 2
√

5
)
, B =

1

10

√
5
(

5− 2
√

5
)

(156)

C =
1

10

(√
5− 2

√
5 + 2

√
5 + 2

√
5

)
, (157)

D =
1

10

(
−2

√
5− 2

√
5 +

√
5 + 2

√
5

)
. (158)

Finally, one verifies that vi = reirc.
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8 Surfaces

8.1 Generalities

Consider in a 3D Euclidean space a surface x = f (u, v) . The tangent plane is
given by fu ∧ fv (fu = ∂f

∂u , fv = ∂f
∂v ) and the unit normal by

h =
(fu ∧ fv)∗√
− (fu ∧ fv)2

(159)

with (fu, fv, h) being a direct trieder (fu ∧ fv ∧ h = λI, λ > 0) . Take an or-
thonormal moving frame of basis vectors vi and a vector a (of components A with
respect to the moving frame) attached to the surface. This frame is obtained by
rotating the canonical frame ei; hence, one has

vi = reirc, a = rArc. (160)

Differentiating these relations, one obtains dvi = r (Dei) rc, da = r (DA) rc with

Dei = dι.ei, DA = dA+ dι.A (161)

where DA is the covariant differential (dA being a differentiation with respect
to the components only) and dι = 2rcdr.

8.2 Darboux frame

The Darboux frame (viD) is obtained for a curve on the surface from the Frenet
frame by a rotation of an algebraic angle α = ∠ (v3F , h) around v1F . Hence

viD = (rD) ei (rD)c (162)

with rD = r1r and

r1 = cos
α

2
− (v1F )

∗
sin

α

2
= rprc (163)

where p = cos α2 + i sin α
2 ; hence rD = r1r = rp. Consequently, the rotation

bivector dιD = 2 (rD)c drD can be expressed as follows

dιD = 2 (rp)c d (rp) = 2pcrc (drp+ rdp) (164)

= pc (dιF ) p+ 2pcdp (165)

= (τrds) i− (ρnds) j + (ρgds) k (166)

where ρg = ρ cosα is the geodesic curvature, ρg = −ρ sinα the normal curvature
and τr = dα

ds + τ the relative torsion. The Darboux equations thus become

dviD = rD (dιD.ei) (rD)c (167)
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and explicitly

dv1D = (ρgv2D + ρnv3D) ds (168)

dv2D = (−ρgv1D + τrv3D) ds (169)

dv3D = (−ρnv1D − τrv2D) ds. (170)

If the Darboux frame is rotated in the tangent plane by an angle θ(s) around
the unit normal h one obtains, applying the same reasoning as above, for the
rotation r = rDf with f = cos θ2 + k sin θ

2 . The new vectors vi of the frame
become vi = reirc and the affine connection bivector transforms into

dι = 2rcdr (171)

= 2fc (rD)c [(drD) f + rDdf ] (172)

= fc (dιD) f + 2fcdf. (173)

Applying this formula, one obtains

dι = ds (τr cos θ − ρn sin θ) i+ ds (−ρn cos θ − τr sin θ) j (174)

+ (ρgds+ dθ) k. (175)

8.3 Integrability conditions

The 3D Euclidean space being without torsion and curvature, this entails that
dM and dvi are integrable.

Integrability of dM Consider a point on the surface, one has

dM = r (DM) rc = fudu+ fvdv (176)

where DM are the components expressed in the moving frame (with the moving
vectors vi = r (ei) rc). One has

DM = ω1e1 + ω2e2 (177)

= (A1du+B1dv) e1 + (A2du+B2dv) e2 (178)

with

A1 = (rcfur) .e1 = fu.v1, B1 = (rcfvr) .e1 = fv.v1 (179)

A2 = (rcfur) .e2 = fu.v2, B2 = (rcfvr) .e2 = fv.v2. (180)

The affine connection bivector dι = 2rcdr can be written [15, II, p. 410] as
dι = ι1du+ι2dv (with ι1 = a1i+b1j+c1k, ι2 = a2i+b2j+c2k). The integrability
condition of dM is expressed by the condition

∆ (DM)−D (∆M) = 0 (181)



18 DIFFERENTIAL GEOMETRY REVISITED

with

∆ (DM) = δ (DM) + δι.DM (182)

D (∆M) = d (∆M) + dι.∆M. (183)

This leads to the relation

δ (DM)− d (∆M) = dι.∆M − δι.DM. (184)

Explicitly, it reads
∂A1

∂v
− ∂B1

∂u
= −B2c1 +A2c2 (185)

∂A2

∂v
− ∂B2

∂u
= B1c1 −A1c2 (186)

A1b2 +B2a1 = A2a2 +B1b1. (187)

The linear Eqs. (185,186) determine c1, c2 ; the result is

c1 =
−1

A1B2 −A2B1

[
A1

(
∂A1

∂v
− ∂B1

∂u

)
+A2

(
∂A2

∂v
− ∂B2

∂u

)]
(188)

c2 =
−1

A1B2 −A2B1

[
B2

(
∂A2

∂v
− ∂B2

∂u

)
+B1

(
∂A1

∂v
− ∂B1

∂u

)]
(189)

Integrability of dvi The integrability conditions of dvi are obtained similarly,
with dvi = rDeirc. The condition δdvi − dδvi = 0 leads to the relation

∆ (Dei)−D (∆ei) = 0 (190)

with Dei = dι.ei, ∆ei = δι.ei and

∆ (Dei) = δ (dι.ei) + δι. (dι.ei) (191)

D (∆ei) = d (δι.ei) + dι. (δι.ei) . (192)

Applying Eq. (47), one has

δι. (dι.ei)− dι. (δι.ei) = − [dι, δι] .ei (193)

hence, the integrability condition of dvi can be expressed as

(δdι− dδι) .ei = [dι, δι] .ei (194)

and thus (δdι− dδι) = [dι, δι] or

∂ι1
∂v
− ∂ι2
∂u

= [ι1, ι2] . (195)

Explicitly, these equations read [15, II, p. 412]

∂a1
∂v
− ∂a2

∂u
= b1c2 − b2c1 (196)

∂b1
∂v
− ∂b2
∂u

= c1a2 − c2a1 (197)

∂c1
∂v
− ∂c2
∂u

= a1b2 − a2b1. (198)
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8.4 Curvature lines and curvature: first method

Consider a moving frame vi = reirc with Dei = dι.ei (dι = 2rcdr) and DM =
ω1e1 + ω2e2 expressed in the moving frame. The fundamental form Π can be
expressed as

Π = −De3.DM = − (dι.e3) .DM (199)

= DM. (e3.dι) = (DM ∧ e3) .dι. (200)

The affine connection bivector dι = dai + dbj + dck can be developed on ω1(=
A1du+B1dv), ω2 (= A2du+B2dv ) as follows [26, p. 209]

da = L21ω1 + L22ω2 = a1du+ a2dv (201)

db = −L11ω1 − L12ω2 = b1du+ b2dv. (202)

Identifying the coefficients of du, dv, and solving the linear system, one obtains

L11 =
b2A2 − b1B2

A1B2 −A2B1
, L22 =

a2A1 − a1B1

A1B2 −A2B1
(203)

L12 =
b1B1 − b2A1

A1B2 −A2B1
, L21 =

a1B2 − a2A2

A1B2 −A2B1
. (204)

Due to the integrability condition Eq. (187), we have L12 = L21 and thus the
fondamental form Π becomes

Π = L11ω
2
1 + L22ω

2
2 + 2L12ω1ω2. (205)

If we rotate the frame by an angle Φ around v3 we have v′i = fvifc with

f = cos(Φ/2)− v∗3 sin(Φ/2) (206)

= r [cos(Φ/2)− e∗3 sin(Φ/2)] rc (207)

= r [cos(Φ/2) + k sin(Φ/2)] rc. (208)

The total rotation is R = fr = rp with p = cos(Φ/2) + k sin(Φ/2) and the affine
connection bivector transforms into

dι′ = 2RcdR = 2pcrc (drp) = pc (dι) p (209)

= da′i+ db′j + dc′k (210)

with
da′ = cos(Φ)da+ sin(Φ)db = L′12ω

′
1 + L′22ω

′
2 (211)

db′ = − sin(Φ)da+ cos(Φ)db = −L′11ω′1 − L′12ω′2 (212)

dc′ = dc. (213)

The vector DM ′ = ω′1e1 + ω′2e2 transforms in the same way i.e.,

ω′1 = cos(Φ)ω1 + sin(Φ)ω2 (214)
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ω′2 = − sin(Φ)ω1 + cos(Φ)ω2. (215)

The coefficients L′ij are obtained by expressing (da, db) of Eqs. (211, 212) in
terms of (Lij,ωi) via the Eqs. (201, 202) and then by writing the ωi in terms of

ω
′

i; one finds

L′11 = L11 cos2(Φ) + L22 sin2(Φ) + L12 sin(2Φ) (216)

L′22 = L11 sin2(Φ) + L22 cos2(Φ)− L12 sin(2Φ) (217)

L′12 = L12 cos(2Φ) +
1

2
sin(2Φ)(L22 − L11). (218)

The curvature lines are the lines for which the fundamental form Π becomes
diagonal, i.e., when L′12 = 0, or

tan 2Φ =
2L12

(L11 − L22)
. (219)

Along these lines, the curvature is defined by De3 = −K (DM) with

De3 = db′e1 − da′e2 (220)

da′ = L′22ω
′
2, db = −L′11ω′1 (221)

and DM = ω′1e1 or DM = ω′2e2; hence, the curvatures are given by K1 =
L′11,K2 = L′22 i.e., as a function of the angle Φ. To obtain the standard formulas,
we write

cos 2Φ =
L11 − L22[

(L11 − L22)
2

+ 4L2
12

]1/2 , sin 2Φ =
2L12[

(L11 − L22)
2

+ 4L2
12

]1/2 (222)

and use cos2 Φ = 1
2 (1 + cos 2Φ) , sin2 Φ = 1

2 (1− cos 2Φ); after rearrangement,
we get

K1 = L′11 =
1

2

(
L11 + L22 −

√
(L11 − L22)

2
+ 4L2

12

)
(223)

K2 = L′12 =
1

2

(
L11 + L22 +

√
(L11 − L22)

2
+ 4L2

12

)
. (224)

Hence, the Gaussian curvature K is given by

K = K1K2 = L11L22 − L2
12 (225)

=
a1b2 − a2b1
A1B2 −A2B1

=

(
∂c1
∂v −

∂c2
∂u

)
A1B2 −A2B1

(226)

where we have made use of the integrability condition Eq. (198). Replacing c1, c2
by their expressions of Eqs. (188, 189), we finally get for the Gaussian curvature

K =
1

(A1B2 −A2B1)


∂
∂u

[
B2( ∂A2

∂v −
∂B2
∂u )+B1( ∂A1

∂v −
∂B1
∂u )

(A1B2−A2B1)

]
− ∂
∂v

[
A1( ∂A1

∂v −
∂B1
∂u )+A2( ∂A2

∂v −
∂B2
∂u )

(A1B2−A2B1)

]
 . (227)
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The Gaussian curvature thus depends only on the metric ds =

√
(dM)

2
, as

stated by Gauss’ theorem. The mean curvature H is given by

H =
1

2
(K1 +K2) =

1

2
(L11 + L22) (228)

=
−b1B2 + b2A2 + a2A1 − a1B1

2 (A1B2 −A2B1)
. (229)

8.5 Gaussian and mean curvature: second method

The Gaussian and mean curvatures can also be derived as follows [25]. The
curvature K is defined by the relation

dv3 = −KdM. (230)

Developing that equation we have

∂v3
∂u

du+
∂v3
∂v

dv = −K (xudu+ xvdv) (231)

or (
Kxu +

∂v3
∂u

)
du+

(
Kxv +

∂v3
∂v

)
dv = 0. (232)

The two vectors in parentheses are parallel and thus(
Kxu +

∂v3
∂u

)
∧
(
Kxv +

∂v3
∂v

)
= 0 (233)

which gives the equation

K2 (xu ∧ xv) +K

(
∂v3
∂u
∧ xv + xu ∧

∂v3
∂v

)
+
∂v3
∂u
∧ ∂v3
∂v

= 0. (234)

Multiplying with the exterior product on the left by n = (xu ∧ xv)∗ and using
Eq. (50)

(xu ∧ xv)∗ ∧ (xu ∧ xv) = −
[
(xu ∧ xv)2

]∗
= I

(
n2
)

(235)

we obtain the formula [25]

K2I
(
n2
)

+K

[
n ∧ ∂v3

∂u
∧ xv + n ∧ xu ∧

∂v3
∂v

]
+ n ∧ ∂v3

∂u
∧ ∂v3
∂v

= 0. (236)

Calling K1,K2 the two roots of the equation, one has for the Gaussian curvature

K = K1K2 =
−I
n2

(
n ∧ ∂v3

∂u
∧ ∂v3
∂v

)
. (237)

The mean curvature is given by

H =
1

2
(K1 +K2) =

I

2n2

(
n ∧ xu ∧

∂v3
∂v

+ n ∧ ∂v3
∂u
∧ xv

)
. (238)
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8.6 Curves on surfaces: asymptotic, curvature and geodesic lines

Consider on a surface, at a point OM , an orthonormal frame v1, v2, v3 (with
v3 being the unit normal). One has (with ω1 = cosΦds, ω2 = sinΦds) [15, II, p.
413]

d(OM) = (v1 cosΦ+ v2 sinΦ) ds (239)

= ω1v1 + ω2v2 (240)

d2(OM) =
d2(OM)

ds2
ds = (v2dc− v3db) cosΦ (241)

+ (−v1dc+ v3da) sinΦ+ (v2 cosΦ− v1 sinΦ) dΦ (242)

= −v1 sinΦ(dc+ dΦ) + v2 cosΦ (dc+ dΦ) (243)

+v3 (sinΦda− cosΦdb) . (244)

Asymptotic lines The normal curvature is defined by

ρn(s) =
d2(OM)

ds2
.v3 (245)

=

(
sinΦ

da

ds
− cosΦ

db

ds

)
. (246)

Developing da, db on ω1, ω2 via Eqs. (201, 202), one obtains after rearrangement

ρn(s) = L22 sin2 Φ+ L11 cos2 Φ+ 2 sinΦ cosΦL12. (247)

The asymptotic line is defined by ρn(s) = 0, leading to

tanΦ =
−L12 ±

√
L2
12 − L11L22

L22
(248)

under the assumption that L2
12 − L11L22 ≥ 0.

Curvature lines The relative torsion τr(s) is expressed by

Iτr(s) =
d(OM)

ds
∧ v3 ∧

dv3
ds

(249)

= (v1 cosΦ+ v2 sinΦ) ∧ v3 ∧
(
db

ds
v1 −

da

ds
v2

)
(250)

=

(
cosΦ

da

ds
+
db

ds
sinΦ

)
v1 ∧ v2 ∧ v3. (251)

Developing da, db on ω1, ω2 as above, we get

τr(s) =

[
cosΦ (L12 cosΦ+ L22 sinΦ)
− sinΦ (L11 cosΦ+ L12 sinΦ)

]
(252)

=

[
L12 cos 2Φ+

sin 2Φ

2
(L22 − L11)

]
. (253)
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The curvature lines are defined by τr(s) = 0, hence

tan 2Φ =
2L12

L11 − L22
(254)

as we have already obtained previously in Eq. (219).

Geodesics The geodesic curvature ρg(s) is given by

Iρg(s) =
d(OM)

ds
∧ d

2(OM)

ds2
∧ v3 (255)

=
1

ds
(v1 cosΦ+ v2 sinΦ) (256)

∧
[

(dΦ+ dc) (−v1 sinΦ+ v2 cosΦ)
+v3 (sinΦda− cosΦdb)

]
∧ v3 (257)

=

(
dc

ds
+
dΦ

ds

)
I. (258)

The geodesic lines correspond to ρg(s) = 0 and thus to dc+dΦ = 0 or equivalently

c1du+ c2dv + d

(
Arc tan

ω2

ω1

)
= 0. (259)

Hence, the equation of the geodesic is given by [15, II, p. 414]

c1du+ c2dv + d

(
Arc tan

A2du+B2dv

A1du+B1dv

)
= 0 (260)

where c1, c2 are expressed by Eqs. (188, 189).

8.7 Example

Consider as surface the sphere of radius r, x(t) = (r sin θ cosϕ)Ii+(r sin θ sinϕ)Ij+
(r cos θ)Ik. One has dx = ω1v1 + ω2v2 with ω1 = rdθ, ω1 = r sin θdϕ (A1 =
r,B1 = 0, A2 = 0, B2 = r sin θ) and

v1 = (cos θ cosϕ) Ii+ (cos θ sinϕ) Ij − (sin θ) Ik (261)

v2 = − (sinϕ) Ii+ (cosϕ) Ij (262)

v3 = (v1 ∧ v2)
∗

= (sin θ cosϕ) Ii+ (sin θ sinϕ) Ij + (cos θ) Ik. (263)

This frame (vi = reirc) is obtained from the canonical basis ei via a rotation r1
of ϕ around e3, followed by a rotation r2 of θ around the axis r1e2r1c, hence,

r = r1r2 = ek
ϕ
2 ej

θ
2 (264)

= cos
θ

2
cos

ϕ

2
−
(

sin
θ

2
sin

ϕ

2

)
i (265)

+

(
sin

θ

2
cos

ϕ

2

)
j +

(
cos

θ

2
sin

ϕ

2

)
k. (266)
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The affine connection bivector dι = 2rcdr is

dι = − (dϕ sin θ) i+ (dθ) j + (dϕ cos θ) k (267)

= (da) i+ (db) j + (dc) k, (268)

leading to (with da = a1dθ + a2dϕ, etc.)

a1 = 0, a2 = sin θ, b1 = 1, b2 = 0 (269)

c1 = 0, c2 = cos θ. (270)

The Gaussian and mean curvature are respectively

K =
a1b2 − a2b1
A1B2 −A2B1

=
1

r2
(271)

H =
−b1B2 + b2A2 + a2A1 − a1B1

2 (A1B2 −A2B1)
= −1

r
. (272)

9 Conclusion

The paper has presented a biquaternion calculus, having an associative exterior
product, and shown how differential geometry can be expressed within this new
algebraic framework. The method presented here can be extended to other spaces
such as a pseudo-Euclidean 4D space. It is hoped that this paper will further
interest in these new algebraic tools and provide new perspectives for geometric
modeling.
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A Representation of biquaternions by 4 × 4 real matrices

e1 = Ii =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 , e2 = Ij =


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1



e3 = Ik =


0 0 0 −1
0 0 −1 0
0 −1 0 0
−1 0 0 0

 , e3e2 = i =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0



e1e3 = j =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 , e2e3 = k =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0



e1e2e3 = I =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 , 1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


B Representation of biquaternions by 2 × 2 complex

Pauli matrices

(i′: ordinary complex imaginary)

e1 = Ii = σ1 =

[
0 1
1 0

]
, e2 = Ij = σ2 =

[
0 −i′
i′ 0

]
e3 = Ik = σ1 =

[
1 0
0 −1

]
, e3e2 = i =

[
0 −i′
−i′ 0

]
e1e3 = j =

[
0 −1
1 0

]
, e2e3 = k =

[
−i′ 0
0 i′

]
e1e2e3 = I =

[
i 0
0 i

]
, 1 =

[
1 0
0 1

]
.

C Work-sheet: biquaternions (Mathematica)

<<Quaternions`
(∗product of two biquaternions a = a1+Ia2, b = b1+Ib2, ai, bi ∈ H; a double

star ∗∗ means a quaternion product∗)

CP [a , b ] : = {(a[[1]] ∗ ∗b[[1]])− (a[[2]] ∗ ∗b[[2]]),

(a[[2]] ∗ ∗b[[1]]) + (a[[1]] ∗ ∗b[[2]])}
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(*conjugate K*)

K[a ] : = {Quaternion[a[[1, 1]],−a[[1, 2]],−a[[1, 3]],−a[[1, 4]]],

Quaternion[a[[2, 1]],−a[[2, 2]],−a[[2, 3]],−a[[2, 4]]]}

(∗sum and difference∗)

csum[a , b ] : = {a[[1]] + b[[1]], a[[2]] + b[[2]]}
cdif [a , b ] : = {a[[1]]− b[[1]], a[[2]]− b[[2]]}

(∗multiplication by a scalar∗)

fclif [f , a ] := {f ∗ a[[1]], f ∗ a[[2]]}

(∗products 1
2 (ab+ ba), 12 (ab− ba)∗)

int[a , b ] : = {fclif [1/2, csum[CP [a, b], CP [b, a]]]}
ext[a , b ] : = {fclif [1/2, cdif [CP [a, b], CP [b, a]]]}

(∗products − 1
2 (ab+ ba),− 1

2 (ab− ba)∗)

mint[a , b ] : = {fclif [−1/2, csum[CP [a, b], CP [b, a]]]}
mext[a , b ] : = {fclif [−1/2, cdif [CP [a, b], CP [b, a]]]}

(∗example: product of two biquaternions A and B, w = AB∗)

A = {Quaternion[1, 3, 0, 4], Quaternion[2, 1, 5, 1]}
B = {Quaternion[1, 7, 8, 1], Quaternion[2, 1, 0, 1]}
w = Simplify[CP [A,B]]

(∗result∗)

{Quaternion[−26,−31, 23, 30], Quaternion[−51, 19, 28,−15]}


