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In the last century, differential geometry has been expressed within various calculi: vectors, tensors, spinors, exterior differential forms and recently Clifford algebras. Clifford algebras yield an excellent representation of the rotation group and of the Lorentz group which are the cornerstones of the theory of moving frames. Though Clifford algebras are all related to quaternions via the Clifford theorem, a biquaternion formulation of differential geometry does not seem to have been formulated so far. The paper develops, in 3D Euclidean space, a biquaternion calculus, having an associative exterior product, and applies it to differential geometry. The formalism being new, the approach is intended to be pedagogical. Since the methods of Clifford algebras are similar in other dimensions, it is hoped that the paper might open new perspectives for a 4D hyperbolic differential geometry. All the calculi presented here can easily be implemented algebraically on Mathematica and numerically on Matlab. Examples, matrix representations, and a Mathematica work-sheet are provided.

Introduction

Much of differential geometry is still formulated today within the 3D vector calculus which was developed at the end of the nineteenth century. In recent years, new mathematical tools have appeared, based on Clifford algebras [START_REF] Gürlebeck | Quaternionic and Clifford Calculus for Physicists and Engineers[END_REF][START_REF] Vince | Geometric Algebra for Computer Graphics[END_REF][START_REF] Snygg | A New Approach to Differential Geometry using Clifford's Geometric Algebra[END_REF][START_REF] Casanova | L'algèbre vectorielle[END_REF][START_REF] Girard | Analytic Video (2D+t) Signals by Clifford Fourier Transforms in Multiquaternion Grassmann-Hamilton-Clifford Algebras[END_REF][START_REF] Girard | Quaternion Grassmann-Hamilton-Clifford-algebras: new mathematical tools for classical and relativistic modeling[END_REF][START_REF] Girard | Quaternions, Clifford Algebras and Relativistic Physics[END_REF][START_REF] Girard | Quaternions, Algèbre de Clifford et Physique Relativiste[END_REF][START_REF] Girard | Quaternions, Clifford Algebra and Symmetry Groups[END_REF][START_REF] Girard | Einstein's equations and Clifford algebra[END_REF] which give an excellent representation of groups, such as the rotation group SO(3) or the Lorentz group, which are the cornerstones of the theory of moving frames. Since the methods of Clifford algebras can easily be transposed to other dimensions, the question naturally arises of whether it is possible to rewrite differential geometry within a Clifford algebra in order to open new perspectives for 4D modeling. Such an extension might proceed as follows. A 4D tetraquaternion calculus has already been presented in [START_REF] Girard | Quaternions, Clifford Algebras and Relativistic Physics[END_REF][START_REF] Girard | Quaternions, Algèbre de Clifford et Physique Relativiste[END_REF]. A moving surface OM = f (t, u, v) can be viewed as a hypersurface (with normal n) in a 4D pseudo-euclidean space. The invariants are then obtained by diagonalizing the second fundamental form via a rotation around n combined with a Lorentz boost along n, generalizing the methods presented here. Though Clifford algebras can be presented in various ways, the originality of the paper lies in the use biquaternions. We shall first introduce quaternions and Clifford algebras together with a demonstration of Clifford's theorem relating Clifford algebras to quaternions. Then, we shall develop the biquaternion calculus (with its associative exterior product) and show how classical differential geometry can be reformulated within this new algebraic framework.

2 Clifford algebras: historical perspective

Hamilton's quaternions and biquaternions

In 1843, W. R. Hamilton (1805Hamilton ( -1865) ) discovered quaternions [START_REF] Girard | The quaternion group and modern physics[END_REF][START_REF] Gsponer | Quaternions in mathematical physics (1): Alphabetical bibliography[END_REF][START_REF] Gsponer | Quaternions in mathematical physics (2): Analytical bibliography[END_REF][START_REF] Hamilton | The Mathematical Papers[END_REF][START_REF] Hamilton | Elements of Quaternions[END_REF][START_REF] Hankins | Sir William Rowan Hamilton[END_REF][START_REF] Crowe | A History of Vector analysis: The Evolution of the Idea of a Vectorial System[END_REF] which are a set of four real numbers:

a = a 0 + a 1 i + a 2 j + a 3 k (1) 
= (a 0 , a 1 , a 2 , a 3 )

= (a 0 , -→ a )

where i, j, k multiply according to the rules

i 2 = j 2 = k 2 = ijk = -1 (4) 
ij = -ji = k (5) jk = -kj = i (6) ki = -ik = j. (7) 
The conjugate of a quaternion is given by

a c = a 0 -a 1 i -a 2 j -a 3 k. (8) 
Hamilton was to give a 3D interpretation of quaternions; he named a 0 the scalar part and -→ a the vector part. The product of two quaternions a and b is defined by

ab = (a 0 b 0 -a 1 b 1 -a 2 b 2 -a 3 b 3 ) +(a 0 b 1 + a 1 b 0 + a 2 b 3 -a 3 b 2 )i +(a 0 b 2 + a 2 b 0 + a 3 b 1 -a 1 b 3 )j +(a 0 b 3 + a 3 b 0 + a 1 b 2 -a 2 b 1 )k (9)
and in a more condensed form

ab = (a 0 b 0 -- → a • - → b , a 0 - → b + b 0 - → a + - → a × - → b ) (10) 
where -→ a • -→ b and -→ a × -→ b are respectively the usual scalar and vector products. Quaternions (denoted by H) constitute a non commutative field without zero divisors (i.e. ab = 0 implies a or b = 0). At the end of the nineteenth century, the classical vector calculus was obtained by taking a 0 = b 0 = 0 and by separating the dot and vector products. Hamilton also introduced complex quaternions he called biquaternions which we shall use in the next parts.

Clifford algebras and theorem

About the same time Hamilton discovered the quaternions, H. G. Grassmann (1809-1877) had the fundamental idea of a calculus composed of n generators e 1 , e 2 , ...e n multiplying according to the rule e i e j = -e j e i (i = j) [START_REF] Grassmann | Die lineale Ausdehungslehre: ein neuer Zweig der Mathematik, dargestellt und durch Anwendungen auf die übrigen Zweige der Mathematik, wie auch die Statik, Mechanik, die Lehre von Magnetismus und der Krystallonomie erläutert[END_REF][START_REF] Grassmann | Mathematische und physikalische Werke[END_REF][START_REF] Grassmann | Der Ort der Hamilton'schen Quaternionen in der Ausdehnungslehre[END_REF][START_REF] Petsche | Grassmann[END_REF]. In 1878, W. K. Clifford (1845[START_REF] Clifford | Applications of Grassmann's extensive algebra[END_REF] was to give a precise algebraic formulation thereof and proved the Clifford theorem relating Clifford algebras to quaternions. Though Clifford did not claim any particular originality, his name was to become attached to these algebras [START_REF] Clifford | Applications of Grassmann's extensive algebra[END_REF][START_REF] Clifford | Mathematical Papers[END_REF].

Definition 1. Clifford's algebra C n is defined as an algebra (over R) composed of n generators e 1 , e 2 , ..., e n multiplying according to the rule e i e j = -e j e i (i = j) and such that e 2 i = ±1. The algebra C n contains 2 n elements constituted by the n generators, the various products e i e j , e i e j e k , ... and the unit element 1.

Examples of Clifford algebras (over R) are

1. complex numbers C (e 1 = i, e 2 1 = -1). 2. quaternions H (e 1 = i, e 2 = j, e 2 i = -1). 3. biquaternions H ⊗ C (e 1 = Ii, e 2 = Ij, e 3 = Ik, I 2 = -1, e 2
i = 1, I commuting with i, j, k). Matrix representations of biquaternions are given in the appendix. [START_REF] Casanova | L'algèbre vectorielle[END_REF]. tetraquaternions H ⊗ H (e 0 = j, e 1 = kI, e 2 = kJ, e 3 = kK, e 2 0 = -1, e 2 1 = e 2 2 = e 2 3 = 1, where the small i, j, k commute with the capital I, J, K) [START_REF] Girard | Quaternions, Clifford Algebras and Relativistic Physics[END_REF][START_REF] Girard | Quaternions, Algèbre de Clifford et Physique Relativiste[END_REF]. All Clifford algebras are related to quaternions via the following theorem.

Theorem 1. If n = 2m (m : integer), the Clifford algebra C 2m is the tensor product of m quaternion algebras. If n = 2m -1, the Clifford algebra C 2m-1 is the tensor product of m -1 quaternion algebras and the algebra (1, ω) where ω is the product of the 2m generators (ω = e 1 e 2 ...e 2m ) of the algebra C 2m .

Proof.

The above examples of Clifford algebras prove the Clifford theorem up to n = 4. For any n, Clifford's theorem can be proved by recurrence as follows [24, p. 378]. The theorem being true for n = (2, 4), suppose that the theorem is true for C 2(n-1) , to C 2(n-1) one adds the quantities f = e 1 e 2 ...e 2(n-1) e 2n-1 , g = e 1 e 2 ...e 2(n-1) e 2n [START_REF] Girard | The quaternion group and modern physics[END_REF] which anticommute among themselves and commute with the elements of C 2(n-1) ; hence, they constitute a quaternionic system which commutes with C 2(n-1) .

From the various products between f, g and the elements of C 2(n-1) one obtains a basis of C 2n which proves the theorem.

Hence, Clifford algebras can be formulated as hyperquaternion algebras the latter being defined as either a tensor product of quaternion algebras or a subalgebra thereof.

3 Biquaternion Clifford algebra

Definition

The algebra (over R) has three anticommuting generators e 1 = Ii, e 2 = Ij, e 3 = Ik with e 2 1 = e 2 2 = e 2 3 = 1 (I 2 = -1, I commuting with i, j, k). A complete basis of the algebra is given in the following table 

1 i = e 3 e 2 j =
A general element of the algebra can be written

A = p + Iq ( 13 
)
where p = p 0 + p 1 i + p 2 j + p 3 k and q = q 0 + q 1 i + q 2 j + q 3 k are quaternions. The Clifford algebra contains scalars p 0 , vectors I(0, q 1 , q 2 , q 3 ), bivectors (0, p 1 , p 2 , p 3 ) and trivectors (pseudo-scalars) Iq 0 where all coefficients (p i , q i ) are real numbers; we shall call these multivector spaces respectively V 0 , V 1 , V 2 and V 3 . The product of two biquaternions A = p + Iq and B = p + Iq is defined by

AB = (pp -qq ) + I(pq + qp ) (14) 
where the products in parentheses are quaternion products. The conjugate of A is defined as

A c = (p c + Iq c ) (15) 
with p c and q c being the quaternion conjugates with (AB) c = B c A c . The dual of A noted A * is defined by

A * = IA (16) 
and the commutator of two Clifford numbers by

[A, B] = 1 2 (AB -BA) . (17) 

Interior and exterior products

Products between vectors and multivectors In this section we shall adopt the general approach used in [START_REF] Casanova | L'algèbre vectorielle[END_REF] though our algebra differs as well as several formulas. The product of two general elements of the algebra being given, one can define interior and exterior products of two vectors a (= a 1 iI + a 2 jI + a 3 kI) and b via the obvious identity

ab = 1 2 (ab + ba) -[- 1 2 (ab -ba)] (18) = a.b -a ∧ b (19) 
with a.b being the interior product

a.b = 1 2 (ab + ba) (20) = a 1 b 1 + a 2 b 2 + a 3 b 3 ∈ V 0 (21) 
and a ∧ b the exterior product

a ∧ b = - 1 2 (ab -ba) (22) = (a 2 b 3 -a 3 b 2 )i + (a 3 b 1 -a 1 b 3 )j + (a 1 b 2 -a 2 b 1 )k ∈ V 2 (23) 
which has the same components as the pseudo-vector -→ a × -→ b . Next we define the interior products a.A p and A p .a (with 2 ≤ p ≤ 3 and

A p = v 1 ∧ v 2 ∧ ... ∧ v p , v i ∈ V 1 ) a.A p = Σ p k=1 (-1) k (a.v k )v 1 ∧ ... ∧ v k-1 ∧ v k+1 ∧ ... ∧ v p (24) 
together with A p .a ≡ (-1) p-1 a.A p .

Explicitly, we have

a.(v 1 ∧ v 2 ) = -(a.v 1 )v 2 + (a.v 2 )v 1 (26) 
a.(v 1 ∧ v 2 ∧ v 3 ) = -(a.v 1 )(v 2 ∧ v 3 ) + (a.v 2 )(v 1 ∧ v 3 ) -(a.v 3 )(v 1 ∧ v 2 ). ( 27 
)
The interior product a.A p allows the definition of the multivector a ∧ A p and A p ∧ a via the relations aA p = a.A p -a ∧ A p (28)

A p a = A p .a -A p ∧ a (29) 
with

A p ∧ a = (-1) p a ∧ A p . (30) 
Multiplying both sides of Eq. ( 29) with (-1) p and applying Eqs. [START_REF] Fehr | Application de la Méthode Vectorielle de Grassmann à la Géométrie Infinitésimale[END_REF]30), we obtain (-1)

p A p a = -a.A p -a ∧ A p (31) 
Combining Eqs. (28, 31), we obtain the formulas valid in all cases (1 ≤ p ≤ 3)

a.A p = 1 2 [aA p -(-1) p A p a] ∈ V p-1 (32) a ∧ A p = - 1 2 [aA p + (-1) p A p a] ∈ V p+1 (33) 
A 3 being a pseudo-scalar, commuting with any Clifford number, we have in particular a ∧ A 3 = 0.

Table 1. Interior and exterior products with their corresponding expressions in the classical vector calculus (with B = b∧c, B1 = a∧b, B2 = c∧d, T1 = a∧b∧c, T2 = f ∧g∧h and a, b, c, d, e, f, g, h ∈ V1, T ∈ V3)

Multivector calculus Classical vector calculus a.b = 1 2 (ab + ba) ∈ V0 -→ a . -→ b a ∧ b = -1 2 (ab -ba) ∈ V2 -→ a × -→ b a.B = 1 2 (aB -Ba) ∈ V1 -→ a × -→ b × -→ c a ∧ B = -1 2 (aB + Ba) ∈ V3 -→ a . -→ b × -→ c B1.B2 = -1 2 (B1B2 + B2B1) ∈ V0 -→ a × -→ b . -→ c × -→ d [B1, B2] = 1 2 (B1B2 -B2B1) ∈ V2 -→ a × -→ b × -→ c × -→ d T1.T2 = -1 2 (T1T2 + T2T1) ∈ V0 -→ a . -→ b × -→ c -→ f . -→ g × -→ h B.T = -1 2 (BT + T B) ∈ V1 -→ a × -→ b -→ f . -→ g × -→ h a.T = 1 2 (aT + T a) ∈ V2 -→ a -→ f . -→ g × -→ h
Products between multivectors Other interior and exterior products between two multivectors A p and B q are defined for p ≤ q [4]

A p • B q ≡ (v 1 ∧ v 2 ∧ • • • ∧ v p-1 ) • (v p • B q ) (34) A p ∧ B q ≡ v 1 ∧ (v 2 ∧ • • • ∧ v p ) ∧ B q ) (35) with A p • B q = (-1) p(q+1) B q • A p (36) 
which defines B q • A p for q ≥ p. The various products are given in Table 1.

Associativity A major property of the exterior product is its associativity which is expressed as (with

v i ∈ V 1 ) [4]. (v 1 ∧ v 2 ) ∧ v 3 = v 1 ∧ (v 2 ∧ v 3 ) (37) 
Proof.

(v 1 ∧ v 2 ) ∧ v 3 = v 3 ∧ (v 1 ∧ v 2 ) (38) = 1 2 [-v 3 (v 1 ∧ v 2 ) -(v 1 ∧ v 2 ) v 3 ] (39) = 1 4 [v 3 (v 1 v 2 -v 2 v 1 ) + (v 1 v 2 -v 2 v 1 ) v 3 ] (40) v 1 ∧ (v 2 ∧ v 3 ) = 1 2 [-v 1 (v 2 ∧ v 3 ) -(v 2 ∧ v 3 ) v 1 ] (41) = 1 4 [v 1 (v 2 v 3 -v 3 v 2 ) + (v 2 v 3 -v 3 v 2 ) v 1 ] . ( 42 
) Since v 3 v 1 v 2 -v 2 v 1 v 3 = -v 1 v 3 v 2 + v 2 v 3 v 1 because of (v 3 v 1 + v 1 v 3 ) v 2 = v 2 (v 3 v 1 + v 1 v 3 ) , (43) 
Eq. ( 37) is established.

General formulas

Among general formulas, one has with (a, b, c, d

)∈ V 1 , (B, B i ) ∈ V 2 and F, G, H being any elements (a ∧ b) .B = a. (b.B) = -b. (a.B) (44) (a ∧ b) . (c ∧ d) = (a.c) (b.d) -(a.d) (b.c) (45) [F, [G, H]] -[G, [F, H]] = [[F, G] , H] (46) 
B 2 . (B 1 .a) -B 1 . (B 2 .a) = [B 2 , B 1 ] .a (47) a.A p = a ∧ A * p * (48) a ∧ A p = a.A * p * (49) B 1 ∧ B * 2 = (B 1 .B 2 ) * (50) 
B 1 .B 2 = B * 1 .B * 2 (51) 
Proof. Eq. ( 44) results from the definition (34). Eq. ( 45) follows from 

(a ∧ b) . (c ∧ d) = a. [b. (c ∧ d)] (52) 
Eq. ( 46) is simply the Jacobi identity which entails Eq. (47). Eq. ( 48) is established as follows (with n = 3)

a ∧ A * p = a ∧ A n-p (55) = - 1 2 aA n-p + (-1) n-p A n-p a (56) = - 1 2 [aA n-p -(-1) p A n-p a] (57) = - I 2 [aA p -(-1) p A p a] = -(a.A p ) * (58) 
hence, we obain since (A * ) * = -A the relation

a ∧ A * p * = (a.A p ) . (59) 
Eq. ( 49) follows from

a.A * p = a.A n-p (60) = 1 2 aA n-p -(-1) n-p A n-p a (61) = 1 2 [aA n-p + (-1) p A n-p a] (62) = I 2 [aA p + (-1) p A p a] (63) 
thus we get

a.A * p * = -1 2 [aA p + (-1) p A p a] = a ∧ A p . (64) 
Eq. ( 50) results from

B 1 ∧ B * 2 = B * 2 ∧ B 1 (65) = -I 2 (B 2 B 1 + B 1 B 2 ) = (B 1 .B 2 ) * (66) 
and Eq. ( 51) from

(B 1 .B 2 ) = -1 2 (B 1 B 2 + B 2 B 1 ) (67) = 1 2 (IB 1 IB 2 + IB 2 IB 1 ) = (B * 1 .B * 2 ) . (68) 
4 Multivector geometry

Analytic geometry

The equation of a straight line parallel to the vector u and going through the point a is expressed by (x -a) ∧ u = 0 (69) yielding the solution

x -a = λu (70)

x = λu + a (λ ∈ R). (71) 
Similarly, the equation of a plane going through the point a parallel to the plane

B = u ∧ v is expressed by (x -a) ∧ (u ∧ v) = 0 (72)
with the solution

x -a = λu + µv (73)

x = λu + µv + a (λ, µ ∈ R) (74) 

Orthogonal projections

Orthogonal projection of a vector on a vector The orthogonal projection of a vector u = u + u ⊥ on a vector a with u ⊥ • a = 0, u ∧ a = 0 is obtained as follows. Since

ua = u • a -u ∧ a (75)
one has

u a = u • a = u • a (76) u ⊥ a = -u ⊥ ∧ a = -u ∧ a (77) therefore u = (u • a)a -1 (78) u ⊥ = -(u ∧ a)a -1 . ( 79 
)
Orthogonal projection of a vector on a plane Similarly, to obtain the orthogonal projection of a vector

u = u + u ⊥ on a plane B = a ∧ b (with u ⊥ • B = 0, u ∧ B = 0) one writes uB = u • B -u ∧ B (80) 
hence, the solution is (with

B -1 = B c /BB c ) u = (u • B)B -1 (81) 
u ⊥ = -(u ∧ B)B -1 . ( 82 
)
Orthogonal projection of a plane on a plane As another example, let us give the orthogonal projection of a plane B 1 = B 1 +B 1⊥ on the plane B 2 = a∧b with B 1⊥ • B 2 = 0, and B 1 , B 2 = 0. Using the relation

B 1 B 2 = -B 1 • B 2 + [B 1 , B 2 ] , (83) 
we obtain

B 1 = -(B 1 • B 2 )B -1 2 (84) B 1⊥ = {[B 1 , B 2 ]} B -1 2 . ( 85 
)
5 Differential operators and integrals

Differential operators

In Cartesian coordinates, the nabla operator

∇ = Ii ∂ ∂x1 +Ij ∂ ∂x2 +Ik ∂ ∂x3 acting on a scalar f , a vector a (= a 1 Ii + a 2 Ij + a 3 Ik), a bivector B (= B 1 i + B 2 j + B 3 k) and a trivector T (= τ I ) yields respectively ∇f = Ii ∂ ∂x 1 + Ij ∂ ∂x 2 + Ik ∂ ∂x 3 = gradf ∈ V 1 (86) ∇.a = ∂a 1 ∂x 1 + ∂a 2 ∂x 2 + ∂a 3 ∂x 3 = diva ∈ V 0 (87) ∇ ∧ a = ∂a 3 ∂x 2 - ∂a 2 ∂x 3 i + ∂a 1 ∂x 3 - ∂a 3 ∂x 2 j + ∂a 2 ∂x 1 - ∂a 1 ∂x 2 k (88) = rota ∈ V 2 (89) ∇.B = (∇ ∧ B * ) * = (rotB * ) * ∈ V 1 (90) ∇ ∧ B = (∇.B * ) * = (divB * ) * ∈ V 3 (91) ∇.T = ∇T = -(∇T * ) * = -(gradT * ) * ∈ V 2 . ( 92 
)
Hence, the various operators can be expressed with the usual ones (grad, div, rot) and the duality. Among a few properties of the nabla operator, one has

∇ 2 = , ∇ ∧ (∇ ∧ f ) = 0, ∇ ∧ (∇ ∧ a) = 0 (93) a = ∇ (∇a) = ∇ (∇.a -∇ ∧ a) = ∇ (∇.a) -∇. (∇ ∧ a) , (94) 
where the last equation results from

∇ (∇ ∧ a) = ∇. (∇ ∧ a) -∇ ∧ (∇ ∧ a) = ∇. (∇ ∧ a) . (95) 

Integrals and theorems

The length, surface and volume integrals are respectively for a curve x(u), surface x(u, v) and a volume x(u, v, w)

L = ds = (dx) 2 = dx du 2 du (96) S = - ∂x ∂u ∧ ∂x ∂v 2 dudv (97) V = - ∂x ∂u ∧ ∂x ∂v ∧ ∂x ∂w 2 dudvdw. (98) 
The formulas exhibit immediately the transformation properties under a change of coordinates. Stokes' theorem is expressed for a vector a (with dl = dx, dS = dl 1 ∧ dl 2 ) Definition 2. The symmetric of x with respect to a plane is obtained by drawing the perpendicular to the plane and by extending this perpendicular by an equal length.

a.dl = (∇ ∧ a) .dS; (99 
Let x be a vector, x its symmetric to a plane and a a unit vector perpendicular to the plane. From the geometry, x -x is perpendicular to the plane and thus parallel to a; similarly, x + x is parallel to the plane and thus perpendicular to a. Consequently, one has

x = x + λa, a • x + x 2 = 0; (106) 
hence, one obtains (with a • a = a 2 = 1) (111)

a • x + λa 2 = 0 (107) yielding λ = -2(a•x) a•a and x = x - 2(a • x)a a • a = x - (ax + xa)a a • a (108) = -axa. (109 
with u = u 1 i + u 2 j + u 3 k (u 2 = -1)
. Eq. ( 110) represents a conical rotation of the vector x by an angle θ around the unit vector u * = Iu. One verifies that the rotation conserves the norm x 2 = x 2 . The same equation holds for any element A of the algebra A = rAr c since the product of two vectors x, y transforms as

x y = (rxr c ) (ryr c ) = r(xy)r c ( 112 
)
and similarly for the product of three vectors as well as a linear combination of such products. The above formulas allow to easily express the classical moving frames such as the Frenet and Darboux frames within the Grassmannian scheme.

Curves

Generalities

Consider a 3D curve x(t) (= x 1 (t)e 1 +x 2 (t)e 2 +x 3 (t)e 3 ) where e i is the canonical orthonormal basis (e 1 = Ii, e 2 = Ij, e 3 = Ik). Taking the length of the curve s as parameter we have x = f (s) with ds = (dx) 2 . The tangent unit vector at a point M (x) is

T = dx ds , T 2 = dx ds 2 = 1. ( 113 
)
The equation of the tangent at a point M (x) is given by

(X -x) ∧ dx ds = 0 ( 114 
)
where X is a generic point of the tangent. The equations of the plane perpendicular to the curve and of the osculating plane at the point M read respectively

(X -x) . dx ds = 0 (115) (X -x) ∧ dx ds ∧ d 2 x ds 2 = 0 ( 116 
)
where X is a generic point of the plane [START_REF] Fehr | Application de la Méthode Vectorielle de Grassmann à la Géométrie Infinitésimale[END_REF].

Frenet frame

The Frenet frame (v i ) attached to the curve x(t) is given by

v i = re i r c ( 117 
)
where r = e 1 2 uθ expresses the rotation of angle θ around the unit vector u * rr c = 1, u 2 = -1 and e i is the canonical orthonormal basis. After differentiation, one obtains (using the relation dr c r = -r c dr resulting from the differentiation of rr c = 1)

dv i = r (r c dre i + e i dr c r) r c (118) = r (dι F .e i ) r c (119) = r (De i ) r c (120) 
with

dι F = 2r c dr = 2e -1 2 uθ e 1 2 uθ dθ 2 u + θ 2 du (121) = (dθu + θdu) (122) = (da) i + (db) j + (dc) k) ∈ V 2 (123) 
and

De i = dι F .e i = 1 2 (dι F e i -e i dι F ) . (124) 
We shall call dι F = 2r c dr the affine connection bivector. Explicitly, one has (131)

Curvature and torsion

To obtain the curvature and torsion we define α and

β α = dx ds ∧ d 2 x ds 2 = ρv 1 ∧ v 2 (132) β = dx ds ∧ d 2 x ds 2 ∧ d 3 x ds 3 = Iρ 2 τ (133)
and using the Lagrange equation

(v 1 ∧ v 2 ) 2 = (v 1 .v 2 ) 2 -(v 1 ) 2 (v 2 ) 2 = -1 (134) 
we obtain the invariants

ρ = -α 2 = - dx ds ∧ d 2 x ds 2 2 (135) τ = Iβ α 2 = I dx ds ∧ d 2 x ds 2 ∧ d 3 x ds 3 dx ds ∧ d 2 x ds 2 2 . ( 136 
)
Under a change of parameter t, one has using dx dt = dx ds ds dt

dx dt ∧ d 2 x dt 2 = ds dt 3 α (137) 
and thus one obtains the curvature

ρ = - dx dt -6 dx dt ∧ d 2 x dt 2 2 . (138) 
For the torsion, proceeding similarly, we get under a change of parameter

dx dt ∧ d 2 x dt 2 ∧ d 3 x dt 3 = ds dt 6 β (139) 
and thus

τ = I dx dt ∧ d 2 x dt 2 ∧ d 3 x dt 3 dx dt ∧ d 2 x dt 2 2 ∈ V 0 . (140) 

Example

As example, consider the curve x(t) = (2 cos t)Ii + (2 sin t)Ij + (t)Ik. The line element is ds = √ dx 2 = √ 5dt; writing x = dx dt , etc., we have

x ∧ x = (2 sin t)i -(2 cos t)j + 4k, (141) 
(x ∧ x ) 2 = -20 (142) x ∧ x ∧ x = 4I. ( 143 
)
The curvature and torsion are respectively

ρ = -(x ) -6 (x ∧ x ) 2 = 2 5 (144) τ = I (x ∧ x ∧ x ) (x ∧ x ) 2 = 1 5 . ( 145 
)
The equation of the osculating plane is (with X = (X 1 ) Ii + (X 2 ) Ij + (X 3 ) Ik being a generic point of the plane )

(X -x) ∧ dx ds ∧ d 2 x ds 2 = I √ 5 (-2t + 2X 3 -X 2 cos t + X 1 sin t) = 0. ( 146 
)
The Frenet basis v i is

v 1 = 1 √ 5 [(-2 sin t) Ii + (2 cos t) Ij + Ik] (147) 
v 2 = (-cos t) Ii -(sin t) Ij (148) 
v 3 = (v 1 ∧ v 2 ) * = 1 √ 5 [(sin t) Ii -(cos t) Ij + 2Ik] . (149) 
The basis v i is obtained via the following rotations. First, the frame is brought into its initial position (at t = 0) via the rotation f 0 = f 1 f 2 with tanθ = 1 2 and

f 1 = e k π 2 = 1 √ 2 (1 + k) (150) 
f 2 = e -j θ 2 = 1 √ 2 + 1 √ 5 -j 1 √ 2 - 1 √ 5 (151) yielding f 0 = 1 4 + 1 2 √ 5 + i 1 4 - 1 2 √ 5 -j 1 4 - 1 2 √ 5 + k 1 4 + 1 2 √ 5 . (152) 
Next, follows the rotation due to the affine connection bivector

f 3 = cos t 2 + i √ 5 + 2k √ 5 sin t 2 . ( 153 
)
The end result is r = f 1 f 2 f 3 and explicitly

r = A cos t 2 -C sin t 2 + i B cos t 2 + D sin t 2 (154) +j -B cos t 2 + D sin t 2 + k A cos t 2 + C sin t 2 (155) with A = 1 10 5 5 + 2 √ 5 , B = 1 10 5 5 -2 √ 5 (156) C = 1 10 5 -2 √ 5 + 2 5 + 2 √ 5 , (157) 
D = 1 10 -2 5 -2 √ 5 + 5 + 2 √ 5 . ( 158 
)
Finally, one verifies that v i = re i r c .

Surfaces

Generalities

Consider in a 3D Euclidean space a surface x = f (u, v) . The tangent plane is given by

f u ∧ f v (f u = ∂f ∂u , f v = ∂f ∂v
) and the unit normal by

h = (f u ∧ f v ) * -(f u ∧ f v ) 2 (159) with (f u , f v , h) being a direct trieder (f u ∧ f v ∧ h = λI, λ > 0)
. Take an orthonormal moving frame of basis vectors v i and a vector a (of components A with respect to the moving frame) attached to the surface. This frame is obtained by rotating the canonical frame e i ; hence, one has

v i = re i r c , a = rAr c . ( 160 
)
Differentiating these relations, one obtains

dv i = r (De i ) r c , da = r (DA) r c with De i = dι.e i , DA = dA + dι.A (161) 
where DA is the covariant differential (dA being a differentiation with respect to the components only) and dι = 2r c dr.

Darboux frame

The Darboux frame (v iD ) is obtained for a curve on the surface from the Frenet frame by a rotation of an algebraic angle α = ∠ (v 3F , h) around v 1F . Hence

v iD = (r D ) e i (r D ) c ( 162 
)
with r D = r 1 r and

r 1 = cos α 2 -(v 1F ) * sin α 2 = rpr c ( 163 
)
where p = cos α 2 + i sin α 2 ; hence r D = r 1 r = rp. Consequently, the rotation bivector dι D = 2 (r D ) c dr D can be expressed as follows

dι D = 2 (rp) c d (rp) = 2p c r c (drp + rdp) (164) = p c (dι F ) p + 2p c dp (165) = (τ r ds) i -(ρ n ds) j + (ρ g ds) k ( 166 
)
where ρ g = ρ cos α is the geodesic curvature, ρ g = -ρ sin α the normal curvature and τ r = dα ds + τ the relative torsion. The Darboux equations thus become

dv iD = r D (dι D .e i ) (r D ) c ( 167 
)
and explicitly

dv 1D = (ρ g v 2D + ρ n v 3D ) ds ( 168 
)
dv 2D = (-ρ g v 1D + τ r v 3D ) ds ( 169 
)
dv 3D = (-ρ n v 1D -τ r v 2D ) ds. ( 170 
)
If the Darboux frame is rotated in the tangent plane by an angle θ(s) around the unit normal h one obtains, applying the same reasoning as above, for the rotation r = r D f with f = cos θ 2 + k sin θ 2 . The new vectors v i of the frame become v i = re i r c and the affine connection bivector transforms into

dι = 2r c dr (171) = 2f c (r D ) c [(dr D ) f + r D df ] (172) = f c (dι D ) f + 2f c df. ( 173 
)
Applying this formula, one obtains

dι = ds (τ r cos θ -ρ n sin θ) i + ds (-ρ n cos θ -τ r sin θ) j (174) 
+ (ρ g ds + dθ) k.

(175)

Integrability conditions

The 3D Euclidean space being without torsion and curvature, this entails that dM and dv i are integrable.

Integrability of dM Consider a point on the surface, one has

dM = r (DM ) r c = f u du + f v dv ( 176 
)
where DM are the components expressed in the moving frame (with the moving vectors v i = r (e i ) r c ). One has

DM = ω 1 e 1 + ω 2 e 2 (177) = (A 1 du + B 1 dv) e 1 + (A 2 du + B 2 dv) e 2 (178) 
with

A 1 = (r c f u r) .e 1 = f u .v 1 , B 1 = (r c f v r) .e 1 = f v .v 1 ( 179 
)
A 2 = (r c f u r) .e 2 = f u .v 2 , B 2 = (r c f v r) .e 2 = f v .v 2 . ( 180 
)
The affine connection bivector dι = 2r c dr can be written [15, II, p. 410] as dι = ι 1 du+ι 2 dv (with

ι 1 = a 1 i+b 1 j +c 1 k, ι 2 = a 2 i+b 2 j +c 2 k).
The integrability condition of dM is expressed by the condition

∆ (DM ) -D (∆M ) = 0 (181) 
with

∆ (DM ) = δ (DM ) + δι.DM (182) 
D (∆M ) = d (∆M ) + dι.∆M. (183) 
This leads to the relation

δ (DM ) -d (∆M ) = dι.∆M -δι.DM. (184) 
Explicitly, it reads

∂A 1 ∂v - ∂B 1 ∂u = -B 2 c 1 + A 2 c 2 (185) ∂A 2 ∂v - ∂B 2 ∂u = B 1 c 1 -A 1 c 2 (186) 
A 1 b 2 + B 2 a 1 = A 2 a 2 + B 1 b 1 . (187) 
The linear Eqs. (185,186) determine c 1 , c 2 ; the result is

c 1 = -1 A 1 B 2 -A 2 B 1 A 1 ∂A 1 ∂v - ∂B 1 ∂u + A 2 ∂A 2 ∂v - ∂B 2 ∂u (188) 
c 2 = -1 A 1 B 2 -A 2 B 1 B 2 ∂A 2 ∂v - ∂B 2 ∂u + B 1 ∂A 1 ∂v - ∂B 1 ∂u (189) 
Integrability of dv i The integrability conditions of dv i are obtained similarly, with dv i = rDe i r c . The condition δdv i -dδv i = 0 leads to the relation

∆ (De i ) -D (∆e i ) = 0 (190) 
with De i = dι.e i , ∆e i = δι. 

hence, the integrability condition of dv i can be expressed as

(δdι -dδι) .e i = [dι, δι] .e i (194) 
and thus (δdι -dδι) = [dι, δι] or

∂ι 1 ∂v - ∂ι 2 ∂u = [ι 1 , ι 2 ] . (195) 
Explicitly, these equations read [15, II, p. 412] 

∂a 1 ∂v - ∂a 2 ∂u = b 1 c 2 -b 2 c 1 (196) ∂b 1 ∂v - ∂b 2 ∂u = c 1 a 2 -c 2 a 1 (197) ∂c 1 ∂v - ∂c 2 ∂u = a 1 b 2 -a 2 b 1 . (198) 8 
The affine connection bivector dι = dai + dbj + dck can be developed on ω 1 (=

A 1 du + B 1 dv), ω 2 (= A 2 du + B 2 dv ) as follows [26, p. 209] da = L 21 ω 1 + L 22 ω 2 = a 1 du + a 2 dv (201) db = -L 11 ω 1 -L 12 ω 2 = b 1 du + b 2 dv. (202) 
Identifying the coefficients of du, dv, and solving the linear system, one obtains

L 11 = b 2 A 2 -b 1 B 2 A 1 B 2 -A 2 B 1 , L 22 = a 2 A 1 -a 1 B 1 A 1 B 2 -A 2 B 1 (203) 
L 12 = b 1 B 1 -b 2 A 1 A 1 B 2 -A 2 B 1 , L 21 = a 1 B 2 -a 2 A 2 A 1 B 2 -A 2 B 1 . (204) 
Due to the integrability condition Eq. ( 187), we have L 12 = L 21 and thus the fondamental form Π becomes

Π = L 11 ω 2 1 + L 22 ω 2 2 + 2L 12 ω 1 ω 2 . (205) 
If we rotate the frame by an angle Φ around v 3 we have

v i = f v i f c with f = cos(Φ/2) -v * 3 sin(Φ/2) (206) = r [cos(Φ/2) -e * 3 sin(Φ/2)] r c (207) = r [cos(Φ/2) + k sin(Φ/2)] r c . (208) 
The total rotation is R = f r = rp with p = cos(Φ/2) + k sin(Φ/2) and the affine connection bivector transforms into

dι = 2R c dR = 2p c r c (drp) = p c (dι) p (209) 
= da i + db j + dc k (210)

with da = cos(Φ)da + sin(Φ)db = L 12 ω 1 + L 22 ω 2 (211) db = -sin(Φ)da + cos(Φ)db = -L 11 ω 1 -L 12 ω 2 (212) dc = dc. ( 213 
)
The vector DM = ω 1 e 1 + ω 2 e 2 transforms in the same way i.e.,

ω 1 = cos(Φ)ω 1 + sin(Φ)ω 2 (214) 
ω 2 = -sin(Φ)ω 1 + cos(Φ)ω 2 . (215) 
The 

L 12 = L 12 cos(2Φ) + 1 2 sin(2Φ)(L 22 -L 11 ). ( 218 
)
The curvature lines are the lines for which the fundamental form Π becomes diagonal, i.e., when

L 12 = 0, or tan 2Φ = 2L 12 (L 11 -L 22 ) . ( 219 
)
Along these lines, the curvature is defined by De 

K 2 = L 12 = 1 2 L 11 + L 22 + (L 11 -L 22 ) 2 + 4L 2 12 . (224) 
Hence, the Gaussian curvature K is given by

K = K 1 K 2 = L 11 L 22 -L 2 12 (225) = a 1 b 2 -a 2 b 1 A 1 B 2 -A 2 B 1 = ∂c1 ∂v -∂c2 ∂u A 1 B 2 -A 2 B 1 (226) 
where we have made use of the integrability condition Eq. (198). Replacing c 1 , c 2 by their expressions of Eqs. (188, 189), we finally get for the Gaussian curvature

K = 1 (A 1 B 2 -A 2 B 1 )        ∂ ∂u B2( ∂A 2 ∂v - ∂B 2 ∂u )+B1( ∂A 1 ∂v - ∂B 1 ∂u ) (A1B2-A2B1) -∂ ∂v A1( ∂A 1 ∂v - ∂B 1 ∂u )+A2( ∂A 2 ∂v - ∂B 2 ∂u ) (A1B2-A2B1)        . ( 227 
)
The Gaussian curvature thus depends only on the metric ds = (dM ) 2 , as stated by Gauss' theorem. The mean curvature H is given by

H = 1 2 (K 1 + K 2 ) = 1 2 (L 11 + L 22 ) (228) = -b 1 B 2 + b 2 A 2 + a 2 A 1 -a 1 B 1 2 (A 1 B 2 -A 2 B 1 ) . ( 229 
)
8.5 Gaussian and mean curvature: second method

The Gaussian and mean curvatures can also be derived as follows [START_REF] Fehr | Application de la Méthode Vectorielle de Grassmann à la Géométrie Infinitésimale[END_REF]. The curvature K is defined by the relation

dv 3 = -KdM. ( 230 
)
Developing that equation we have

∂v 3 ∂u du + ∂v 3 ∂v dv = -K (x u du + x v dv) (231) 
or

Kx u + ∂v 3 ∂u du + Kx v + ∂v 3 ∂v dv = 0. ( 232 
)
The two vectors in parentheses are parallel and thus

Kx u + ∂v 3 ∂u ∧ Kx v + ∂v 3 ∂v = 0 (233) 
which gives the equation

K 2 (x u ∧ x v ) + K ∂v 3 ∂u ∧ x v + x u ∧ ∂v 3 ∂v + ∂v 3 ∂u ∧ ∂v 3 ∂v = 0. ( 234 
)
Multiplying with the exterior product on the left by n = (x u ∧ x v ) * and using Eq. ( 50)

(x u ∧ x v ) * ∧ (x u ∧ x v ) = -(x u ∧ x v ) 2 * = I n 2 (235) 
we obtain the formula [25]

K 2 I n 2 + K n ∧ ∂v 3 ∂u ∧ x v + n ∧ x u ∧ ∂v 3 ∂v + n ∧ ∂v 3 ∂u ∧ ∂v 3 ∂v = 0. ( 236 
)
Calling K 1 , K 2 the two roots of the equation, one has for the Gaussian curvature

K = K 1 K 2 = -I n 2 n ∧ ∂v 3 ∂u ∧ ∂v 3 ∂v . ( 237 
)
The mean curvature is given by 

H = 1 2 (K 1 + K 2 ) = I 2n 2 n ∧ x u ∧ ∂v 3 ∂v + n ∧ ∂v 3 ∂u ∧ x v . (238 
d(OM ) = (v 1 cos Φ + v 2 sin Φ) ds (239) = ω 1 v 1 + ω 2 v 2 (240) d 2 (OM ) = d 2 (OM ) ds 2 ds = (v 2 dc -v 3 db) cos Φ (241) + (-v 1 dc + v 3 da) sin Φ + (v 2 cos Φ -v 1 sin Φ) dΦ (242) = -v 1 sin Φ(dc + dΦ) + v 2 cos Φ (dc + dΦ) (243) +v 3 (sin Φda -cos Φdb) . (244) 
Asymptotic lines The normal curvature is defined by

ρ n (s) = d 2 (OM ) ds 2 .v 3 (245) = sin Φ da ds -cos Φ db ds . (246) 
Developing da, db on ω 1 , ω 2 via Eqs. (201, 202), one obtains after rearrangement

ρ n (s) = L 22 sin 2 Φ + L 11 cos 2 Φ + 2 sin Φ cos ΦL 12 . (247) 
The asymptotic line is defined by ρ n (s) = 0, leading to

tan Φ = -L 12 ± L 2 12 -L 11 L 22 L 22 (248) 
under the assumption that L 2 12 -L 11 L 22 ≥ 0.

Curvature lines The relative torsion τ r (s) is expressed by

Iτ r (s) = d(OM ) ds ∧ v 3 ∧ dv 3 ds (249) = (v 1 cos Φ + v 2 sin Φ) ∧ v 3 ∧ db ds v 1 - da ds v 2 (250) = cos Φ da ds + db ds sin Φ v 1 ∧ v 2 ∧ v 3 . (251) 
Developing da, db on ω 1 , ω 2 as above, we get

τ r (s) = cos Φ (L 12 cos Φ + L 22 sin Φ) -sin Φ (L 11 cos Φ + L 12 sin Φ) (252) = L 12 cos 2Φ + sin 2Φ 2 (L 22 -L 11 ) . (253) 
The curvature lines are defined by τ r (s) = 0, hence

tan 2Φ = 2L 12 L 11 -L 22 (254) 
as we have already obtained previously in Eq. ( 219).

Geodesics The geodesic curvature ρ g (s) is given by

Iρ g (s) = d(OM ) ds ∧ d 2 (OM ) ds 2 ∧ v 3 (255) = 1 ds (v 1 cos Φ + v 2 sin Φ) (256) 
∧ (dΦ + dc) (-v 1 sin Φ + v 2 cos Φ) +v 3 (sin Φda -cos Φdb) ∧ v 3 (257) = dc ds + dΦ ds I. (258) 
The geodesic lines correspond to ρ g (s) = 0 and thus to dc+dΦ = 0 or equivalently

c 1 du + c 2 dv + d Arc tan ω 2 ω 1 = 0. (259) 
Hence, the equation of the geodesic is given by [15, II, p. 414]

c 1 du + c 2 dv + d Arc tan A 2 du + B 2 dv A 1 du + B 1 dv = 0 (260) 
where c 1 , c 2 are expressed by Eqs. (188, 189).

Example

Consider as surface the sphere of radius r, x(t) = (r sin θ cos ϕ)Ii+(r sin θ sin ϕ)Ij+ (r cos θ)Ik. One has dx = ω

1 v 1 + ω 2 v 2 with ω 1 = rdθ, ω 1 = r sin θdϕ (A 1 = r, B 1 = 0, A 2 = 0, B 2 = r sin θ) and v 1 = (cos θ cos ϕ) Ii + (cos θ sin ϕ) Ij -(sin θ) Ik (261) v 2 = -(sin ϕ) Ii + (cos ϕ) Ij (262) v 3 = (v 1 ∧ v 2 ) * = (sin θ cos ϕ) Ii + (sin θ sin ϕ) Ij + (cos θ) Ik. (263) 
This frame (v i = re i r c ) is obtained from the canonical basis e i via a rotation r 1 of ϕ around e 3 , followed by a rotation r 2 of θ around the axis r 1 e 2 r 1c , hence, 

r = r 1 r 2 = e k ϕ 2 e j θ 2 (264) = cos θ 2 cos ϕ 2 -sin θ 2 sin ϕ 2 i (265) + sin θ 2 cos ϕ 2 j + cos θ 2 sin ϕ 2 k. ( 266 
The Gaussian and mean curvature are respectively

K = a 1 b 2 -a 2 b 1 A 1 B 2 -A 2 B 1 = 1 r 2 (271) 
H = -b 1 B 2 + b 2 A 2 + a 2 A 1 -a 1 B 1 2 (A 1 B 2 -A 2 B 1 ) = - 1 r . ( 272 
)

Conclusion

The paper has presented a biquaternion calculus, having an associative exterior product, and shown how differential geometry can be expressed within this new algebraic framework. The method presented here can be extended to other spaces such as a pseudo-Euclidean 4D space. It is hoped that this paper will further interest in these new algebraic tools and provide new perspectives for geometric modeling.

A Representation of biquaternions by 4 × 4 real matrices 

e 1 e 3 k = e 2 e 1 I = e 1 e 2 e 3

 13 Ii = e 1 Ij = e 2 Ik = e 3

  with b. (c ∧ d) = (b.d) c -(b.c) d (53) hence, a. [b. (c ∧ d)] = (a.c) (b.d) -(b.c) (a.d) .

  ) the same formula can be used for a bivector B by taking a = B * B * .dl = (∇ ∧ B * ) .dS = -(∇.B) * .dS (100) = rotB * .dS. (101) Ostrogradsky's theorem for a bivector B yields (with dτ = dl 1 ∧ dl 2 ∧ dl 3 ) B.dS = (∇ ∧ B) .dτ = (divB * ) * .dτ (102) = (divB * ) dV. (103) For a vector a, one obtains with B = -a * -a * .dS = (diva) dV (104) which transforms, since a * .dS = -a.dS * , into a.dS * = (diva) dV. (105) 6 Orthogonal groups O(3) and SO(3)

) Definition 3 . 1 + x 2 y 2 + x 3 y 3 Theorem 2 .

 31232 The orthogonal group O(3) is the group of linear operators which leave invariant the quadratic form x • y = x 1 y Every rotation of O(3) is the product of an even number ≤ 3 of symmetries, any reflection is the product of an odd number ≤ 3 of symmetries.The special orthogonal group SO(3) is constituted by rotations i.e. of proper transformations f (x) of determinant equal to 1 (i.e. α = f (e 1 ) ∧ f (e 2 ) ∧ f (e 3 ) = I). A reflection is an improper transformation of determinant equal to -1 (i.e. α = -I). Combining two orthogonal symmetries, we obtain x = (ba) x (ab) = rxr c (110) with r = ba, r c = a c b c = ab, rr c = 1. One can express r as

De 1 =

 1 (dc) e 2 -(db) e 3 (125) De 2 = -(dc) e 1 + (da) e 3 (126) De 3 = (db) e 1 -(da) e 2 . (127) The Frenet frame is defined by the affine connection bivector dι F = 2r c dr = (τ ds) i + (ρds) k (128) where ρ = 1/R is the curvature and τ = 1/T the torsion. This gives the Frenet equations De 1 = (ρds) e 2 (129) De 2 = -(ρds) e 1 + (τ ds) e 3 (130) De 3 = (-τ ds) e 2 .

  e i and ∆ (De i ) = δ (dι.e i ) + δι. (dι.e i ) (191) D (∆e i ) = d (δι.e i ) + dι. (δι.e i ) . (192) Applying Eq. (47), one has δι. (dι.e i ) -dι. (δι.e i ) = -[dι, δι] .e i

. 4

 4 Curvature lines and curvature: first method Consider a moving frame v i = re i r c with De i = dι.e i (dι = 2r c dr) and DM = ω 1 e 1 + ω 2 e 2 expressed in the moving frame. The fundamental form Π can be expressed as Π = -De 3 .DM = -(dι.e 3 ) .DM (199) = DM. (e 3 .dι) = (DM ∧ e 3 ) .dι.

22 (L 11 -L 22 ) 2 L 11 +

 221122211 3 = -K (DM ) with De 3 = db e 1 -da e 2 (220) da = L 22 ω 2 , db = -L 11 ω 1 (221) and DM = ω 1 e 1 or DM = ω 2 e 2; hence, the curvatures are given by K 1 = L 11, K 2 = L 22 i.e., as a function of the angle Φ. To obtain the standard formulas, we write cos 2Φ = L 11 -L 2 Φ = 1 2 (1 + cos 2Φ) , sin 2 Φ = 1 2 (1 -cos 2Φ); after rearrangement, we get K 1 = L 11 = 1 L 22 -(L 11 -L 22 )

)

  The affine connection bivector dι = 2r c dr isdι = -(dϕ sin θ) i + (dθ) j + (dϕ cos θ) k (267) = (da) i + (db) j + (dc) k,(268)leading to (with da = a 1 dθ + a 2 dϕ, etc.)a 1 = 0, a 2 = sin θ, b 1 = 1, b 2 = 0 (269) c 1 = 0, c 2 = cos θ.

2 =-i i 0 e 3 == σ 1 of two biquaternions a = a 1 +

 20311 Ij = σ 2 = 0 Ik Ia 2 , b = b 1 + Ib 2 , a i , b i ∈ H; a double star * * means a quaternion product * ) CP [a , b ] : = {(a[[1]] * * b[[1]]) -(a[[2]] * * b[[2]]), (a[[2]] * * b[[1]]) + (a[[1]] * * b[[2]])} (*conjugate K*) K[a ] : = {Quaternion[a[[1, 1]], -a[[1, 2]], -a[[1, 3]], -a[[1, 4]]], Quaternion[a[[2, 1]], -a[[2, 2]], -a[[2, 3]], -a[[2, 4]]]} ( * sum and difference * ) csum[a , b ] : = {a[[1]] + b[[1]], a[[2]] + b[[2]]} cdif [a , b ] : = {a[[1]] -b[[1]], a[[2]] -b[[2]]} ( * multiplication by a scalar * ) f clif [f , a ] := {f * a[[1]], f * a[[2]]} ( * products 1 2 (ab + ba), 1 2 (ab -ba) * ) int[a , b ] : = {f clif [1/2, csum[CP [a, b], CP [b, a]]]} ext[a , b ] : = {f clif [1/2, cdif [CP [a, b], CP [b, a]]]} ( * products -1 2 (ab + ba), -1 2 (ab -ba) * ) mint[a , b ] : = {f clif [-1/2, csum[CP [a, b], CP [b, a]]]} mext[a , b ] : = {f clif [-1/2, cdif [CP [a, b], CP [b, a]]]} ( * example: product of two biquaternions A and B, w = AB * ) A = {Quaternion[1, 3, 0, 4], Quaternion[2, 1, 5, 1]} B = {Quaternion[1, 7, 8, 1], Quaternion[2, 1, 0, 1]} w = Simplif y[CP [A, B]] ( * result * ) {Quaternion[-26, -31, 23, 30], Quaternion[-51, 19, 28, -15]}

  coefficients L ij are obtained by expressing (da, db) of Eqs. (211, 212) in terms of (L ij, ω i ) via the Eqs. (201, 202) and then by writing the ω i in terms of ω i ; one finds L 11 = L 11 cos 2 (Φ) + L 22 sin 2 (Φ) + L 12 sin(2Φ) (216) L 22 = L 11 sin 2 (Φ) + L 22 cos 2 (Φ) -L 12 sin(2Φ) (217)

  ) 8.6 Curves on surfaces: asymptotic, curvature and geodesic lines Consider on a surface, at a point OM , an orthonormal frame v 1 , v 2 , v 3 (with v 3 being the unit normal). One has (with ω 1 = cos Φds, ω 2 = sin Φds)[START_REF] Hamilton | Elements of Quaternions[END_REF] II, p. 413] 
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