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DEFORMATIONS OF A1-CYLINDRICAL VARIETIES

ADRIEN DUBOULOZ AND TAKASHI KISHIMOTO

Abstract. An algebraic variety is called A1-cylindrical if it contains an A1-cylinder, i.e. a Zariski open subset of
the form Z × A1 for some algebraic variety Z. We show that the generic fiber of a family f : X → S of normal
A1-cylindrical varieties becomes A1-cylindrical after a finite extension of the base. This generalizes the main result
of [6] which established this property for families of smooth A1-cylindrical affine surfaces. Our second result is a
criterion for existence of an A1-cylinder in X which we derive from a careful inspection of a relative Minimal Model
Program ran from a suitable smooth relative projective model of X over S.

Introduction

An algebraic variety is called A1-cylindrical (or affine-ruled or A1-ruled) if it contains an A1-cylinder, i.e. a
Zariski open subset of the form Z × A1 for some algebraic variety Z. Such A1-cylinders appear naturally in
many recent problems and questions related to the geometry of algebraic varieties, both affine and projective
[16, 5, 6, 7, 8, 1, 2, 3, 17, 18, 19, 24, 25]. Clearly, there are only two A1-cylindrical smooth complex curves: the
affine line A1 and the projective line P1. As a consequence of classical classification results, every smooth projective
surface of negative Kodaira dimension is A1-cylindrical, and the same holds true for smooth affine surfaces by a
deep result of Miyanishi-Sugie and Fujita [22]. But it is still an open problem to find a complete and effective
characterization of which complex surfaces, possibly singular, contain A1-cylinders [16]. The situation in higher
dimension is even more elusive, some natural class of examples of A1-cylindrical varieties are known, especially in
relation with the study of additive group actions on affine varieties, but for instance the question whether every
smooth rational projective variety is A1-cylindrical is still totally open.

A natural way to try to produce new A1-cylindrical varieties from known ones is to consider algebraic families
f : X → S of such varieties. One hopes that the fiberwise A1-cylinders could arrange themselves continuously to
form a global relative A1-cylinder in the total space X , in the form of a cylinder U ≃ Z×A1 in X for some S-variety
Z, whose restriction to a general closed fiber of f : X → S is equal to the initially prescribed A1-cylinder in it. For
families of relative dimension one, it is a classical fact [14] that a smooth fibration f : X → S whose general closed
fibers are isomorphic to A1 indeed restricts to trivial A1-bundle Z × A1 over a dense open subset Z of S. But on
the other hand, the existence of nontrivial conic bundles f : X → S shows that it is in general too much to expect
that fiberwise cylinders are restrictions of global ones. Indeed, for such a nontrivial conic bundle, the general closed
fibers are isomorphic to P1, hence are A1-cylindrical, but the generic fiber of f : X → S is a nontrivial form of P1

over the function field K of S: the latter does not contains any open subset isomorphic to A1
K , which prevents in

turn the existence of a global A1-cylinder in X over an S-variety. Nevertheless, such an A1-cylinder exists after
extending the scalars to a suitable quadratic extension of K, leading to the conclusion that the total space of any
smooth family f : X → S of A1-cylindrical varieties of dimension one always contain a relative A1-cylinder, possibly
after an étale extension of the base S.

A similar property is known to hold for certain families of relative dimension 2. More precisely, it was established
in [10, Theorem 3.8] and [6, Theorem7] by different methods, involving respectively the study of log-deformations
of suitable relative projective models and the geometry of smooth affine surfaces of negative Kodaira dimension
defined over non closed fields, that for smooth families f : X → S of complex A1-cylindrical affine surfaces, there
exists an étale morphism T → S such that XT = X ×S T contains an A1-cylinder U ≃ Z × A1 over a T -variety Z.
The first main result of this article consists of a generalization of this property to arbitrary families f : X → S of
normal algebraic varieties defined over an uncountable base field, namely:

Theorem 1. Let k be an uncountable field of characteristic zero and let f : X → S be dominant morphism between
geometrically integral algebraic k-varieties. Suppose that for general closed points s ∈ S, the fiber Xs contains
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an A1-cylinder Us ≃ Zs × A1 over a κ(s)-variety Zs. Then there exists an étale morphism T → S such that
XT = X ×S T contains an A1-cylinder U ≃ Z × A1 over a T -variety Z.

We next turn to the problem of finding effective conditions on the fiberwise A1-cylinders which ensure that a
global relative A1-cylinder exists, without having to take any base change. The question is quite subtle already in
the case of fibrations of relative dimension 2, as illustrated on the one hand by smooth del Pezzo fibrations with non
rational generic fiber, which therefore cannot contain any A1-cylinder [8], and on the other hand by examples of one
parameter families f : X → S of smooth A1-cylindrical affine cubic surfaces whose total spaces do not contain any
A1-cylinder at all, relative to f : X → S or not [5]. Intuitively, a global relative cylinder should exist as soon as the
fiberwise A1-cylinders are “unique”, in the sense that the intersection of any two of them is again an A1-cylinder.
This holds for instance for A1-cylinders inside non rational smooth affine surfaces, and for families f : X → S of
such surfaces, it was indeed confirmed in [6, Theorem 10] that X contains a relative A1-cylinder U ≃ Z × A1 over
S, for which the rational projection X 99K Z coincides, up to birational equivalence, with the Maximally Rationally
Connected quotient of a relative smooth projective model f : X → S of X over S.

The natural generalization in higher dimension would be to consider normal varieties Y which contain A1-
cylinders U ≃ Z × A1 over non uniruled bases Z. But there is a second type of obstruction for uniqueness, which
does not appear in the affine case: the fact that a given A1-cylinder U ≃ Z × A1 in a variety Y can actually be
the restriction of a P1-cylinder U ≃ Z × P1 inside Y , with the effect that Y then contains infinitely many distinct
A1-cylinders of the form Z×(P1\{p}), p ∈ P1, all over the same base Z. This possibility is eliminated by restricting
the attention to varieties Y containing A1-cylinders U ≃ Z×A1 for which the open immersion Z ×A1 →֒ Y cannot
be extended to a birational map Z × P1

99K Y defined over the generic point of Z. An A1-cylinder with this
property is called vertically maximal in Y (see Definition 10), and our second main result consists of the following
characterization:

Theorem 2. Let k be a field of characteristic zero and let f : X → S be a dominant morphism between normal
k-varieties such that for general closed points s ∈ S, the fiber Xs contains a vertically maximal A1-cylinder Us ≃
Zs × A1 over a non uniruled κ(s)-variety Zs. Then X contains an A1-cylinder U ≃ Z × A1 for some S-variety Z.

The article is organized as follows. The first section contains a quick review of rationally connected and uniruled
varieties and some explanation concerning the minimal model program for varieties defined over arbitrary fields
of characteristic zero which plays a central role in the proof of Theorem 2. In section two, we establish basic
properties of A1-cylindrical varieties. Theorem 1 is then derived in section three from quite standard “general-to-
generic” Lefschetz principle and specialization arguments. Finally, section four is devoted to the proof of Theorem
2, which proceeds through a careful study of the output of a relative minimal model program applied to a suitably
constructed smooth projective model f : Y → S of X over S.

1. Preliminaries

In what follows, unless otherwise stated, k is a field of characteristic zero, and all objects considered will be
assumed to be defined over k. A k-variety is a reduced scheme of finite type over k. For a morphism f : X → S and
another morphism T → S, the symbol XT will denote the fiber product X ×S T . In particular for a point s ∈ S,
closed or not, we write Xs = f−1(s) = X ×S Spec(κ(s)) where κ(s) denotes the residue field of s. In addition, if
T = Spec(K) for a field K, then XT will also sometimes be denoted by XK .

1.1. Recollection on rational connectedness and uniruledness.

Definition 3. (See [20, IV.3 Definition 3.2 and IV.1 Definition 1.1]) Let f : X → S be an integral scheme over a
scheme S. We say that X is:

a) Rationally connected over S if there exists an S-scheme B and a morphism u : B × P1 → X of schemes over
S such u×B u : (B × P1)×B (B × P1) → X ×S X is dominant.

b) Uniruled over S if there exists an S-scheme B of relative dimension dim(X/S) − 1 and a dominant rational
map u : B × P1

99K X of schemes over S.
c) Ruled over S if there exists an S-scheme B of relative dimension dim(X/S) − 1 and a dominant birational

map u : B × P1
99K X of schemes over S.

A variety X defined over a field k is called rationally connected (resp. uniruled, resp. ruled) if it is rationally
connected (resp. uniruled, resp. ruled) over Spec(k). Recall [20, IV.3 3.2.5 and IV.1 Proposition 1.3] that the first
two notions are independent of the field over which X is defined. In particular, X is rationally connected (resp.
uniruled) if and only if XK is rationally connected (resp. uniruled) over Spec(K) for every field extension k ⊂ K. In
contrast, it is well-known that the property of being ruled depends on the base field k: for instance a smooth conic
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C ⊂ P2
k without k-rational point is uniruled but not ruled, but becomes ruled after base extension to a suitable

quadratic extension of k.
The following lemma is probably well-known, but we include a proof because of lack of an appropriate reference.

Lemma 4. Let Z be a non uniruled k-variety and let h : Y → T be a surjective proper morphism between normal
k-varieties, with rationally connected general fibers. Then every dominant rational map p : Y 99K Z factors through
a rational map q : T 99K Z.

Proof. Since the property of being non uniruled is invariant under birational equivalence, we can assume without
loss of generality that Z is projective. Since h : Y → T is proper, for every blow-up σ : Ỹ → Y of Y , the composition
h ◦ σ : Ỹ → T is again proper with rationally connected general fibers [20, IV.3.3]. So blowing-up Y to resolve the
indeterminacy of p, we can further assume that p is a morphism, and by shrinking T that h : Y → T is faithfully flat
and proper, with rationally connected fibers. Then Y is rationally chain connected over T . Let u : C = B×P1 → Y
be a morphism of algebraic varieties over T witnessing this property. The inverse image by p× p : Y ×T Y → Z×Z
of the diagonal is a closed subset X of Y ×T Y . If X 6= Y ×T Y then since h ◦ pr1 : Y ×T Y → T is flat hence open,
the image of Y ×T Y \X is a dense open subset T0 of T . Replacing T by T0, this would imply that the image of
(p ◦ u)×B (p ◦ u) : C ×B C → Z × Z is not contained in the diagonal, in contradiction with the non-uniruledness of
Z. Thus X = Y ×T Y and so, p is constant on the fibers of h : Y → T . By faithfully flat descent, there exists a
unique morphism q : T → Z such that p = q ◦ h. �

Remark 5. The conclusion of Lemma 4 does not hold under the weaker assumption that the general fibers of
h : Y → T are rationally chain connected. For instance, let Y be the projective cone over a smooth elliptic curve
Z ⊂ P2

k and let h : Y → T = Spec(k) be the canonical structure morphism. Then Y is rationally chain connected
over Spec(k) and the projection p : Y 99K Z form the vertex of the cone is a dominant rational map, which therefore
does not factor through Spec(k).

1.2. Minimal Model Program over non closed fields. In the proof of Theorem 2 given in section four below,
we will make use of minimal model program over arbitrary fields of characteristic zero. We freely use the standard
terminology and conventions in this context, and just recall the mild adaptations needed to run the minimal model
program over a non closed field k in a form appropriate to our needs. It is well known (see e.g. [21, § 2.2] and [15,
§ 3.9]) that the minimal model program over an algebraically closed field has natural equivariant generalizations
to the case of varieties with finite group actions, actually groups whose actions on the Neron-Severi groups of the
varieties at hand factor through those of finite groups. This applies in particular to the situation of a smooth
projective morphism f : Y → S between normal quasi-projective varieties defined over a field k: after the base
change fk : Yk → Sk to an algebraic closure k of k, one can perform all the basic steps of KY

k
-mmp with scalings

relative to fk : Yk → Sk as in [4] in an equivariant way with respect to the natural action of the Galois group

G = Gal(k/k). Compared to the genuine relative KY
k
-mmp with scalings, this program runs in the category of

varieties which are projective over Sk, with only terminal G-Q-factorial singularities, i.e. varieties with terminal
singularities on which every G-invariant Weil divisor is Q-Cartier.

The termination of arbitrary sequences of G-equivariant flips is not yet verified in a full generality, but as far as
KY

k
is not pseudo-effective over Sk, it follows from [4, Corollary 1.3.3] that there exists a G-equivariant KY

k
-mmp

Θ : Yk 99K Ỹ over Sk with scalings by an fk-ample G-invariant divisor which ends with a G-Mori fiber space

ρ̃ : Ỹ → T̃ over a normal Sk-variety T̃ . That is, ρ̃ : Ỹ → T̃ is a projective G-equivariant morphism between

quasi-projective k-varieties with the following properties: ρ̃∗OỸ = OT̃ , dim T̃ < dim Ỹ , Ỹ has only terminal G-Q-

factorial singularities, the anti-canonical divisor −KỸ is ρ̃-ample and the relative G-invariant Picard number of Ỹ

over T̃ is equal to one.
The birational map Θ : Yk 99K Ỹ is a composition of either divisorial contractions associated to successive G-

invariant extremal faces in the cone NE(Yk/Sk) or flips which are all defined over k. The last morphism ρ̃ : Ỹ → T̃
corresponds to a G-equivariant extremal contraction of fiber type and is defined over k as well. It follows that
Θ : Yk 99K Ỹ and ρ̃ : Ỹ → T̃ can be equivalently seen as the base change to k of a sequence θ : Y 99K Y ′ of KY -
negative divisorial extremal contractions and flips between k-varieties which are Q-factorial over k and projective
over S, and an extremal contraction of fiber type ρ′ : Y ′ → T between normal k-varieties, such that −KY ′ is
ρ′-ample and the relative Picard number of Y ′ over T is equal to one.

2. A1
-cylindrical varieties

In this section, we introduce and establish basic properties of a special class of ruled varieties called A1-cylindrical
varieties.
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Definition 6. Let f : X → S be a morphism of schemes. An A1-cylinder in X over S is a pair (Z,ϕ) consisting of
an S-scheme Z → S and an open embedding ϕ : Z × A1 →֒ X of S-schemes. We say that X is A1-cylindrical over
S if there exists an A1-cylinder (Z,ϕ) in X over S.

A variety X defined over a field k is called A1-cylindrical over k if it is A1-cylindrical over Spec(k). Similarly
as for ruledness, the property of being A1-cylindrical depends on the base field k: a smooth conic C ⊂ P2

k without
k-rational point is not A1-cylindrical over k but becomes A1-cylindrical after base extension to a suitable quadratic
extension of k.

Definition 7. A sub-A1-cylinder of an A1-cylinder (Z,ϕ) in X over S is an A1-cylinder (Z ′, ϕ′) in X over S for
which there exists a commutative diagram

Z ′ × A1 Z × A1 X

Z ′ Z

j

pr
Z′

ϕ′

ϕ

pr
Z

i

for some open embeddings of S-schemes i : Z ′ →֒ Z and j : Z ′ × A1 →֒ Z × A1. Two A1-cylinders in X over S are
called equivalent if they have a common sub-A1-cylinder over S.

2.1. A1-cylinders and P1-fibrations. Recall that a P1-fibration is a proper morphism h : Y → T between integral
schemes whose fiber over the generic point of T is a form of P1 over the function field K of T . Given an A1-cylinder
(Z,ϕ) in an algebraic variety X over k, the composition of ϕ−1 : X 99K Z×A1 with the projection prZ : Z×A1 → Z
extends on a suitable complete model Y of X to a P1-fibration h : Y → T over a complete model T of Z, restricting
to a trivial P1-bundle over a non empty open subset Z0 of Z ⊂ T . Conversely, the total space Y of a P1-fibration
h : Y → T is A1-cylindrical over T provided that h admits a rational section H ⊂ Y . Indeed, if so, there exists a
dense open subset Z of T such that h−1(Z) ≃ Z × P1 and H ∩ h−1(Z) ≃ Z × {∞} for some fixed k-rational point
∞ ∈ P1, which implies in turn that the open subset h−1(Z) ∩ (Y \H) of Y is isomorphic to Z × A1.

The following characterization will be useful for the proof of Theorem 2:

Lemma 8. Let h : Y → T be a surjective proper morphism between normal varieties over a field k of characteristic
zero, with irreducible and rationally connected general fibers. Suppose that Y contains an A1-cylinder (Z,ϕ) for
some non-uniruled k-variety Z. Then h : Y → T is a P1-fibration and there exists a sub-A1-cylinder (Z ′, ϕ′) of
(Z,ϕ) and commutative diagram

Z ′ × A1 Y

Z ′ T

ϕ′

pr
Z′ h

i

for some open embedding i : Z ′ →֒ T . In particular, T is not uniruled.

Proof. By shrinking Z, we can assume that it is smooth and affine. Letting Z be a smooth projective model of
Z, the composition prZ ◦ ϕ−1 defines a dominant rational map prZ ◦ ϕ−1 : Y 99K Z which lifts to a P1-fibration

p : Ỹ → Z on some blow-up σ : Ỹ → Y of Y . Since Z is not uniruled, and h ◦ σ : Ỹ → T is proper with rationally
connected general fibers, it follows from Lemma 4 that p factors through a dominant rational map q : T 99K Z. So
dim T ≥ dimZ and since dimZ = dim Ỹ − 1 ≥ dimT , we conclude that dimT = dimY − 1. This implies that
h ◦ σ : Ỹ → T is a P1-fibration, hence that h is a P1-fibration. Since the general fiber of p : Ỹ → Z are irreducible,
q has degree 1, hence is birational. Now it suffices to choose for Z ′ an open subset of Z ⊂ Z on which q−1 restricts
to an isomorphism onto its image. �

2.2. Birational modifications preserving A1-cylinders. In contrast with ruledness, the property of containing
an A1-cylinder is obviously not invariant under birational equivalence. Nevertheless, it is stable under certain
particular birational modifications which we record here for later use:

Lemma 9. Let (Y,∆) be a pair consisting of a normal k-variety and a reduced divisor on it, let θ : Y 99K Y ′ be a
birational map to a normal k-variety Y ′ and let ∆′ = θ∗(∆) be the proper transform of ∆ on Y ′. Then the following
hold:

a) If θ is an isomorphism in codimension one then Y \∆ is A1-cylindrical over k if and only if so is Y ′ \∆′.
b) If θ is a proper morphism and Y ′ \∆′ contains an A1-cylinder (Z ′, ϕ′) over k then there exists a sub-cylinder

(Z,ϕ) of (Z ′, ϕ′) such that (Z, θ−1 ◦ ϕ) is an A1-cylinder in Y \∆ over k.
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c) If θ is a proper morphism, each irreducible component of pure codimension one of the exceptional locus Exc(θ)
of θ is uniruled and Y \ ∆ contains an A1-cylinder (Z,ϕ) for some non-uniruled k-variety Z then there exists a
sub-cylinder (Z ′, ϕ′) of (Z,ϕ) such that (Z ′, θ ◦ ϕ′) is a A1-cylinder in Y ′ \∆′.

Proof. If θ is an isomorphism in codimension one, then it restricts to an isomorphism θ : U → U ′ between open
subsets U ⊂ Y and U ′ ⊂ Y ′ whose complements X and X ′ have codimension at least 2 in Y and Y ′ respectively.
Given a cylinder (Z,ϕ) in Y \∆, the inverse image by ϕ of X ∩ (Y \∆) has codimension at least two in Z × A1,
hence does not dominate Z. Consequently, there exists a dense open subset Z ′ ⊂ Z such that (Z ′, ϕ′ = ϕ|Z×A1)
is a sub-A1-cylinder of (Z,ϕ) whose image is contained in U ∩ (Y \∆), and the composition (Z ′, θ ◦ ϕ′) is then an
A1-cylinder in U ′ ∩ Y ′ \∆′ ⊂ Y ′ \∆′. Reversing the roles of Y and Y ′, this yields a).

If θ is a proper morphism, then C = θ(Exc(θ)) has codimension at least 2 in Y ′ because Y ′ is normal. So the

restriction of prZ′ to ϕ′−1
(C) cannot be dominant. This guarantees the existence of a dense open subset Z of Z ′

such that (Z,ϕ = ϕ′|Z×A1) is a sub-A1-cylinder of (Z ′, ϕ′) whose image is contained Y ′ \∆′ ∪C. Then (Z, θ−1 ◦ϕ)
is an A1-cylinder in Y \∆ ∪ Exc(θ) ⊂ Y \∆, which proves b).

Finally to prove c), we observe that since Z is not uniruled, the restriction of prZ to the inverse image by ϕ of
a uniruled irreducible component of pure codimension one of Exc(θ) cannot be dominant. This implies that the
restriction of prZ to ϕ−1(Exc(θ)) is not dominant hence that there exists a dense open subset Z ′ ⊂ Z such that
ϕ(Z ′ ×A1) ⊂ Y \∆∪Exc(θ). Then (Z ′, ϕ′ = ϕ|Z′

×A1) is a sub-A1-cylinder of (Z,ϕ) with the desired property. �

2.3. Uniqueness properties of A1-cylinders. The fact that P1
k contains infinitely many non-equivalent cylinders

P1
k \ {p} over k, parametrized by the set of its k-rational points p ∈ P1

k(k), shows that in general a given k-variety
X can contain many non equivalent cylinders even when their respective base spaces are non-uniruled. To ensure
some uniqueness property of A1-cylinders, we are led to introduce the following notion:

Definition 10. Let f : X → S be a morphism of schemes. An A1-cylinder (Z,ϕ) in X over S is said to be vertically
maximal in X over S if for every generic point ξ of Z, the open embedding ξ × A1 →֒ X induced by ϕ cannot be
extended to a morphism ξ × P1 → X .

The next result can be thought as another geometric variant of Iitaka and Fujita strong cancellation theorems [13].

Proposition 11. Let X be k-variety containing a vertically maximal A1-cylinder (Z,ϕ) over a non uniruled k-
variety Z. Then every A1-cylinder in X over k is equivalent to (Z,ϕ).

Proof. Let U = ϕ(Z × A1) be the open image of Z × A1 in X . By shrinking Z if necessary, we can assume that
Z is affine and that all fibers of the projection prZ ◦ ϕ−1 : U → Z are closed in X . Let (T, ψ) be another cylinder
in X with image V = ψ(T × A1), let W = U ∩ V and let Z0 and T0 be the open images of W in Z and T by
the morphisms prZ ◦ ϕ−1 and prT ◦ ψ−1 respectively. Since prT ◦ ψ−1 : W → T0 is a surjective morphism with
uniruled fibers and Z, whence Z0, is not uniruled, there exists a unique surjective morphism α : T0 → Z0 such that
prZ ◦ϕ−1 :W → Z0 factors as prZ ◦ϕ−1 = α◦ (prT ◦ψ−1) :W → T0 → Z0. So for every point t ∈ T0, there exists a
unique z = α(t) ∈ Z0 such that ψ(pr−1

T (t)) ∩U is equal to ϕ(pr−1
Z (z))∩ V . Since by hypothesis ϕ(pr−1

Z (z)) ≃ A1
κ(z)

is closed in X , it follows that ψ(pr−1
T (t)) = ϕ(pr−1

Z (z)). This implies in turn that ψ(T0 × A1) ⊂ ϕ(Z0 × A1) and
that we have a commutative diagram:

ψ(T0 × A1) ϕ(Z0 × A1) U

T0 Z0 Z.

pr
T
◦ψ−1 pr

Z
◦ϕ−1

α

It follows in particular that α is also injective, hence an isomorphism. Thus (T0, ψ|T0×A) is a sub-A1-cylinder of
(Z,ϕ), which shows that (Z,ϕ) and (T, ψ) are equivalent. �

3. Proof of Theorem 1

We now proceed to the proof of Theorem 1. By hypothesis, f : X → S is a dominant morphism between
geometrically normal algebraic varieties defined over an uncountable field k of characteristic zero, with the property
that for general closed points s ∈ S, the fiber Xs contains a cylinder (Zs, ϕs) over a κ(s)-variety Zs. Letting Xη

be the fiber of f over the generic point η of S, the existence of an étale morphism T → S such that X ×S T
is A1-cylindrical over T , is equivalent to that of a finite extension L ⊂ L′ of the function field L of S such that
Xη ×Spec(L) Spec(L

′) is A1-cylindrical over L′. In fact, the following specialization lemma implies that it is enough

to find any extension L′ of L for which Xη ×Spec(L) Spec(L
′) is A1-cylindrical over L′:
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Lemma 12. Let X be a variety defined over a field k of characteristic zero and let k ⊂ K be any field extension.
If XK is A1-cylindrical over K then there exists a finite extension k ⊂ k′ such that Xk′ is A1-cylindrical over k′.

Proof. By hypothesis, there exists an open embedding ϕ : Z×A1 →֒ XK for someK-variety Z. This open embedding
is defined over a finitely generated sub-extension L of K, i.e. there exists an open embedding ϕ0 : Z0 × A1 →֒ XL

of L-varieties such that ϕ is obtained from ϕ0 by the base change Spec(K) → Spec(L). Being finitely generated
over k, L is the function field of an algebraic variety S defined over k and we can therefore view XL as the fiber
Xη of the projection prS : X = X × S → S over the generic point η of S. Let ∆ and T be the respective closures of
Xη \ϕ0(Z0×A1) and ϕ0(Z0×{0}) in X. The projection prZ0

: Z0×A1 → Z0 induces a rational map ρ : X\∆ 99K T

whose generic fiber is isomorphic to A1 over the function field of T . It follows that there exists an open subset
Y ⊂ T over which ρ is regular and whose inverse image V = ρ−1(Y ) is isomorphic to Y × A1. Now for a general
closed point s ∈ S, the fiber Xs of prS over s is isomorphic to Xκ(s), where κ(s) denotes the residue field of s, and

contains an open subset Vs isomorphic to Ys × A1. The induced open immersion Ys × A1 →֒ Xκ(s) provides the

desired A1-cylinder over the finite extension κ(s) of k. �

Let k be an algebraic closure of k and let fk : Xk → Sk be the morphism obtained by the base extension

Spec(k) → Spec(k). Since S is geometrically integral, Sk is integral and its field of functions k(Sk) is an extension
of the field of functions L of S. If the generic fiber of fk becomes A1-cylindrical after the base change to some

extension of k(Sk) then by the previous lemma, the generic fiber Xη of f : X → S becomes A1-cylindrical after

the base change to a finite extension of L. We can therefore assume from the very beginning that k = k is an
uncountable algebraically closed field of characteristic zero. Up to shrinking S, we can further assume without loss
of generality that it is affine and that for every closed point s in S, Xs contains a cylinder (Zs, ϕs) over a k-variety
Zs. Since X and S are k-varieties, there exists a subfield k0 ⊂ k of finite transcendence degree over Q such that
f : X → S is defined over k0, i.e. there exists a morphism of k0-varieties f0 : X0 → S0 and a commutative diagram

X X0

S S0

Spec(k) Spec(k0)

f f0

in which each square is cartesian. The field of functions L0 = k0(S0) of S0 is an extension of k0 of finite transcendence
degree over Q, and since k is uncountable and algebraically closed, there exists a k0-embedding i : L0 →֒ k of
L0 in k. Letting (X0)η0 be the fiber of f0 over the generic point η0 : Spec(L0) → S0 of S0, the composition
Γ(S0,OS0

) →֒ L0 →֒ k induces a k-homomorphism Γ(S0,OS0
) ⊗k0 k → k defining a closed point s : Spec(k) →

Spec(Γ(S0,OS0
)⊗k0 k) = S of S for which we obtain the following commutative diagram

Xs

��⑧⑧
⑧
⑧
⑧
⑧
⑧
⑧

��

// X

��⑧⑧
⑧
⑧
⑧
⑧
⑧
⑧

f

��

(X0)η0 //

��

X0

f0

��

Spec(k)

i∗

��⑧⑧
⑧
⑧
⑧
⑧
⑧

s
// S //

��⑧⑧
⑧
⑧
⑧
⑧
⑧
⑧

Spec(k)

��⑧⑧
⑧
⑧
⑧
⑧
⑧

Spec(L0)
η0

// S0
// Spec(k0).

Since the bottom square of the cube above is cartesian by construction, we have

(X0)η0 ×Spec(L0) Spec(k) ≃ X0 ×S0
Spec(k) ≃ X ×S Spec(k) = Xs.

Since by hypothesis Xs is A1-cylindrical over k, we conclude that (X0)η0 ×Spec(L0) Spec(k) is A1-cylindrical over
k. Lemma 12 then guarantees that there exists a finite extension L0 ⊂ L′

0 such that (X0)η0 ×Spec(L0) Spec(L
′

0) is

A1-cylindrical over L′

0. Finally, the tensor product L⊗L0
L′

0 decomposes as a direct product of finitely many finite
extensions L′ of L with the property that Xη ×Spec(L) Spec(L

′) is A1-cylindrical over L′, which completes the proof
of Theorem 1.
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Remark 13. Combined with Proposition 11, Lemma 12 implies that for a k-variety X , the property of containing a
vertically maximal A1-cylinder over a non uniruled variety is independent of the base field. Indeed, by Lemma 12 if
XK contains a cylinder for some arbitrary field extension k ⊂ K, then Xk′ contains a cylinder for a finite extension
k ⊂ k′. Letting k′′ be the Galois closure of the extension k ⊂ k′ in an algebraic closure of k′, Proposition 11 implies
that the translates of a given cylinder (Z,ϕ) in Xk′′ over k′′ by the action of the Galois group G = Gal(k′′/k)
are all equivalent. Since G is a finite group, it follows that there exists a dense affine open subset Z0 of Z, an
action of G on Z0 lifting to a G-action on Z0 × A1 such that the induced open embedding (Z0, ϕ|Z0×A1) →֒ Xk′′ is
G-equivariant. The quotients (Z0 × A1)/G and Z0/G are then affine varieties defined over k while the projection
Z0×A1 → Z0 and the open embedding ϕ|Z0×A1 : Z0×A1 →֒ Xk′′ descend respectively to a locally trivial A1-bundle
π : (Z0 ×A1)/G→ Z0/G and an open embedding ψ : (Z0 ×A1)/G →֒ Xk′′/G ≃ X . A cylinder in X over k is then
obtained by restricting ψ to the inverse image of a dense open subset of Z0/G over which π is a trivial A1-bundle.

4. Proof of Theorem 2

We first consider the case where f : X → S is a smooth projective morphism whose general closed fibers contain
vertically maximal A1-cylinders over non uniruled varieties. The case of an arbitrary morphism f : X → S between
normal algebraic varieties is then deduced by considering a suitably constructed smooth relative projective model
of X over S.

4.1. Case of a smooth projective morphism.

Proposition 14. Let f : Y → S be a smooth projective morphism between normal k-varieties and let ∆ ⊂ Y be a
divisor on Y such that for a general closed point s ∈ S, Ys \∆s contains an A1-cylinder (Zs, ϕs) over a non uniruled

κ(s)-variety Zs. Then there exists a KY -MMP θ : Y 99K Y ′ relative to f : Y → S whose output f
′

: Y ′ → S has
the structure of a Mori conic bundle ρ′ : Y ′ → T over a non uniruled normal S-variety h : T → S. Furthermore,
for a general closed point s ∈ S, there exists a sub-cylinder (Z ′

s, ϕ
′

s) of (Zs, ϕs) and a commutative diagram

Z ′

s × A1 Y ′

s

Z ′

s Ts

pr
Z′
s

θs◦ϕ
′

s

ρ′
s

αs

where the top and bottom arrows are open embeddings.

Proof. Since the general fibers of f : Y → S are in particular uniruled, it follows that KY is not f -pseudo-effective.
By virtue of [4, Corollary 1.3.3] (see § 1.2), there exists a KY -mmp θ : Y 99K Y ′ relative to f : Y → S whose output

f
′

: Y ′ → S has the structure of a Mori fiber space ρ′ : Y ′ → T over some normal S-variety h : T → S. Since
for a general closed point s ∈ S the restriction θs : Ys 99K Y ′

s of θ is a part of a KYs
-mmp ran from the smooth

projective variety Ys, it follows from [11, Corollary 1.7] that every irreducible component of pure codimension one
of the exceptional locus of θs is uniruled. Since θs is a composition of divisorial contractions and isomorphisms
in codimension one, we deduce from Lemma 9 a) and c) that there exists a sub-cylinder (Z ′

s, ϕ
′

s) of (Zs, ϕs) such
that (Z ′

s, θs ◦ ϕ
′

s) is an A1-cylinder in Y ′

s . Since Y ′ has terminal singularities and −KY ′ is ρ′-ample, we deduce
from [11, Corollary 1.4] that every fiber of ρ′ is rationally chain connected. Since a general closed fiber of ρ′ has
again terminal singularities, we deduce in turn from [11, Corollary 1.8] that it is in fact rationally connected. The
assertion then follows from Lemma 8. �

Lemma 15. In the setting of Proposition 14, suppose further that for a general closed point s ∈ S, the A1-cylinder
(Zs, ϕs) in Ys \∆s is maximally vertical. Then Y \∆ is A1-cylindrical over S.

Proof. Since Ys is projective, the hypothesis that (Zs, ϕs) is maximally vertical in Ys \∆s implies that the subset

∆0 of irreducible components of ∆ which are horizontal for f : Y → S is not empty. Furthermore, for a general
closed point s ∈ S, ∆0,s intersects the closures in Ys of the general fibers of prZs

◦ ϕ−1
s : ϕs(Zs × A1) → Zs in a

unique place. Let (Z ′

s, ϕ
′

s) be a sub-A1-cylinder of (Zs, ϕs) with the property that (Z ′

s, θs ◦ ϕ
′

s) is an A1-cylinder in
Y ′

s and αs : Z
′

s →֒ Ts is an open embedding. Since the only divisors that could be contracted by θs : Ys 99K Y
′

s are
uniruled hence do not dominate Z ′

s, we can assume up to shrinking Z ′

s further if necessary that the restriction of

θ−1
s to ρ′s

−1
(Z ′

s) is an isomorphism onto its image Vs in Ys. Consequently, ρ′s ◦ θs|Vs
: Vs → Z ′

s is a P1-fibration

extending prZ′

s

◦ ϕ′

s
−1

: ϕ′

s(Z
′

s × A1) → Z ′

s. Since (Zs, ϕs) is vertically maximal in Ys \∆s, so is (Z ′

s, ϕ
′

s), and it

follows that ∆0,s ∩Vs is a section of ρ′s ◦ θs|Vs
: Vs → Z ′

s. This implies in turn that ∆0 is irreducible and that there
exists an open subset T0 of T such that (ρ′ ◦ θ)−1(T0) ≃ T0 × P1 and (ρ′ ◦ θ)−1(T0) \∆ ≃ T0 × A1. So Y \ ∆ is
A1-cylindrical over T0 whence over S. �
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4.2. General case. The case of a general morphism f : X → S between normal algebraic varieties is now obtained
as follows. By desingularization theorems [12], we can find a desingularization σ : X̃ → X which restricts to
an isomorphism over the regular locus Xreg. Since X is normal, it follows in particular that the image of the
exceptional locus of σ is a closed subset of X of codimension at least two. By Nagata completion theorems [23]

and desingularization theorems again, there exists an open embedding j : X̃ →֒ Ỹ into a smooth algebraic variety
Ỹ proper over S. Then by Chow lemma [9, 5.6.1] there exists a smooth algebraic variety Y projective over S, say

f : Y → S, and a birational morphism τ : Y → Ỹ . Applying desingularization again, we can further assume that the
reduced total transform of Ỹ \j(X̃) in Y is an SNC divisor ∆. Since Ỹ is smooth, the image of the exceptional locus

of τ has codimension at least two in Ỹ , and so the image of the exceptional locus of β = σ ◦ τ |τ−1(X̃) : τ
−1(X̃) → X

is a closed subset of codimension at least two in X . Summing up, we get a sequence of birational maps of S-varieties

X X̃ Ỹ Y

S S

σ−1

f

δ

j τ−1

f

which we refer to as a good relative smooth projective completion of f : X → S.

Lemma 16. Let f : X → S be a morphism between normal k-varieties and let δ : X 99K Y be a good relative
smooth projective completion of f : X → S. Suppose that for a general closed point s ∈ S, Xs contains an A1-
cylinder (Zs, ϕs) over a κ(s)-variety Zs. Then for a general closed point s, there exists a dense open subset Z ′

s of
Zs such that (Z ′

s, δs ◦ϕs) is an A1-cylinder in in Ys \∆s. Furthermore, if (Zs, ϕs) is vertically maximal in Xs then
(Z ′

s, δs ◦ ϕs) is vertically maximal in Ys \∆s.

Proof. Since X is normal, for a general closed point s ∈ S, Xs is a normal variety. The morphism (σ ◦ τ)s :

τ−1(j(X̃))s → Xs being proper and birational by construction, the first assertion follows from Lemma 9 b). The
second one is clear from the definition of ∆. �

The following proposition combined with Proposition 14, Lemma 15 Lemma 16 completes the proof of Theorem
2.

Proposition 17. Let f : X → S be a morphism between normal k-varieties and let δ : X 99K Y be a good relative
smooth projective completion of f : X → S. Suppose that for a general closed point s ∈ S, Xs contains a vertically
maximal A1-cylinder (Zs, ϕs) over a non uniruled κ(s)-variety Zs. If Y \∆ is A1-cylindrical over S then so is X.

Proof. Let ψ : T ×A1 →֒ Y \∆ be an A1-cylinder in Y over S. It is enough to show that the restriction of prT to the

inverse image by ψ of the exceptional locus Exc(β) of β = σ ◦ τ |τ−1(X̃) : τ
−1(X̃) → X is not dominant. Indeed, if

so, there exists an open subset T0 of T such that ψ(T0 ×A1) is contained in Y \Exc(β)∪∆ ≃ δ(X \β(Exc(β))). So
suppose on the contrary that there exists an irreducible component E of Exc(β) such that prT |ψ−1(E) is dominant.

For a general closed point s ∈ S, the fiber Ys is smooth and the restriction βs : τ
−1
s (X̃s) → Xs is an isomorphism

outside a closed subset of codimension at least two in Xs. So there exists a dense open subset Z ′

s of Zs such that

(Z ′

s, ϕ
′

s = β−1
s ◦ ϕs|Z′

s
×A1) is A1-cylinder in τ−1

s (X̃s). Since (Zs, ϕs) is a vertically maximal A1-cylinder in Xs,

(Z ′

s, ϕ
′

s) is vertically maximal in τ−1
s (X̃s). On the other hand, for a general closed point s ∈ S, the restriction

ψs : Ts × A1 → τ−1
s (X̃s) is also an embedding. Since Zs whence Z ′

s is not uniruled, it follows from Proposition

11 that (Z ′

s, ϕ
′

s) and (Ts, ψs) are equivalent A1-cylinders in τ−1
s (X̃s). But then the restriction of prZ′

s
to ϕ′

s
−1

(E)

would be dominant, implying in turn that (Z ′

s, ϕ
′

s) is a not a cylinder, a contradiction. �
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