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MULTI-BUMPS ANALYSIS FOR TRUDINGER-MOSER NONLINEARITIES
I - QUANTIFICATION AND LOCATION OF CONCENTRATION POINTS

OLIVIER DRUET AND PIERRE-DAMIEN THIZY

ABSTRACT. In this paper, we investigate carefully the blow-up behaviour of sequences of
solutions of some elliptic PDE in dimension two containing a nonlinearity with Trudinger-
Moser growth. A quantification result had been obtained by the first author in [I5] but many
questions were left open. Similar questions were also explicitly asked in subsequent papers,
see Del Pino-Musso-Ruf [12], Malchiodi-Martinazzi [30] or Martinazzi [34]. We answer all of
them, proving in particular that blow up phenomenon is very restrictive because of the strong
interaction between bubbles in this equation. This work will have a sequel, giving existence
results of critical points of the associated functional at all energy levels via degree theory
arguments, in the spirit of what had been done for the Liouville equation in the beautiful
work of Chen-Lin [§].

1. INTRODUCTION
We let © be a smooth bounded domain of R? and we consider the equation

Au:)\fue“2 nQu>0inQ, u=0on o . (1.1)
where A = —aa—:z — 66—;2, A >0 and f is a smooth positive function in Q.

This equation is critical with respect to Trudinger-Moser inequality. Indeed, the nonlinearity
in e’ is the best one can hope to control in dimension 2 by the L?-norm of the gradient. More
precisely, we let H} () be the standard Sobolev space (with zero boundary condition) endowed
with the norm ||Vul> :/ |Vu|® dz. Trudinger proved in [40] that / e* dx is finite for any

Q

Q
function u in Hg (). Moser was then a little bit more precise in [35], proving that

sup / e da < 400 if and only if v < 47 . (1.2)
weHE (Q), || Vull,=1 /0

Solutions of equation (L)) are in fact critical points of the functional
J(u) = / fe da (1.3)
Q

under the constraint / |Vu|® dz = 3 for some 8 > 0. The A appearing in (1)) is then the Euler-
Q

Lagrange coefficient. This functional is well-defined on H} () thanks to Trudinger [40]. It is also
easy to find a critical point of J if 5 < 47 in the constraint thanks to Moser’s inequality (L2 :

these critical points may be found as maxima of J under the constraint / |Vu|2 de = < 4.
Q

However, as studied by Adimurth-Prashanth [2], for 8 = 4w, finding critical points is more
tricky since a lack of compactness appears in Palais-Smale sequences at this level of energy.
Nevertheless, it has been proved by Carleson-Chang [6] for the unit disk, by Struwe [37] for
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2 OLIVIER DRUET AND PIERRE-DAMIEN THIZY

close to the disk and by Flucher [I8] for a general 2 that there are extremals in Moser’s inequality
([C2) for v = 4w, meaning in particular that there are always critical points of J for the critical
value B = 4w. Note that existence of critical points for g8 slightly larger than 47 has also been
proved by Struwe [37] and Lamm-Robert-Struwe [20]. Struwe [38] also found critical points of
higher energy (for some values of 5 between 47 and 87) when the domain contains an annulus (in
the spirit of Coron [I0]). We refer also to the recent Mancini-Martinazzi [31] for an interesting
new proof of the existence of extremal functions for Moser’s inequality in the disk without using
test-functions computations.

In the last decade, tools have been developed to study sequences of solutions of equation
(CI) and in particular to understand precisely their potential blow-up behaviour. This serie of
works started in the minimal energy situation (3 close to 47) with Adimurthi-Struwe [3]. Then
Adimurthi-Druet [I] used this blow-up analysis to obtain an improvement of Moser’s inequality
(completing the result of Lions [28]). In the radial case (that is in the unit disk with f = 1),
such a blow-up analysis in the minimal energy case was recently used by Malchiodi-Martinazzi
[30] to prove that there is a Sy > 4x for which there are solutions of (ILT]) of energy less than or
equal to By but no solutions of energy greater than f.

In order to get solutions of higher energies and to describe precisely the set of solutions for
all 3, one needs a fine analysis of blowing-up solutions. The first result in this direction is the
quantification result of the first author [15] that we recall here since the questions we adress in
the present work come from it :

Theorem 1.1 (Druet [15]). Let Q be a smooth bounded domain in R* and let (f.).., be a
sequence of functions of uniform critical growth in Q. Also let (u.).., be a sequence of solutions
of
Au, = f. (:c,ug(x))
verifying that |\Vu5||§ — B as € — 0 for some B € R. Then there exists a solution ug € C° (Q)
of
Aug = fo(x,uo(:n)) m Q, ug =0 on 99,
and there exists N € N such that
IVuclly = [ Vuoll; + 47N +o(1) .

If N =0, the convergence of u. to ug is strong in H} (Q) and actually holds in C° (Q)

We do not define here sequences of functions of uniform critical growth in 2. The only thing
we need to know is that they include sequences of the form f.(z,u) = he(z)ue®" as soon as
he >0 and he — hy in Ct (ﬁ) But they include much more general nonlinearities behaving like
ev at infinity. Note also that, in the litterature, the nonlinearity is sometimes written as e
(this is for instance the case in [I5]), hence the discrepancy of 47 in some results.

Aru?

This result describes precisely the lack of compactness in the energy space. Note that this
result is not true for Palais-Smale sequences, as proved by Costa-Tintarev [I1] : there are Palais-
Smale sequences for the above equation which converge to 0 weakly in H{ (£2) and which present
a lack of compactness at any level above 47. This shows that the quantification result of Theorem
[[Tlis specific to sequences of solutions of the equation and require a pointwise analysis as carried
out in [I5] and below (not only an analysis in energy space).

Note also that the above result is not empty since Del Pino-Musso-Ruf [13] constructed, via
a Liapunov-Schmidt procedure, multi-pikes sequences of solutions of equation (L)) (with f = 1)
in annuli. These sequences satisfy the hypothesis of the above theorem, converge weakly to 0 in
H} (Q) (that is up = 0 in the above result) and have an energy converging to 47 N. They can
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construct such solutions for all N > 1. This suggests that the topology of the domain plays a
crucial role in the existence of solutions of arbitrary energies.

However, if one wants to push further the existence results, we need to be more precise than
Druet [15]. In particular, we need to answer the following natural questions, left open in this work
of the first author (see also Del Pino-Musso-Ruf [12], Malchiodi-Martinazzi [30] or Martinazzi
[34] where one can find these, or similar, questions) :

1. Is it possible to have both ug # 0 and N > 1 in the above theorem ?
2. Are the concentration points appearing when N >1 isolated] or not ? If yes, where are
they ?

These questions are natural and can be motivated by analogy with Liouville type equations

(see among others [7l 8 23] 27, (29, 39]) or Yamabe type equations (see for instance [4l, [5] T4}
(17, 19 221 24, 25 26] 32l [33] [36]). We refer in particular to [16] for a survey on this kind of

questions.

We attack in this paper the questions 1 and 2 above. Our result holds for more general
nonlinearities but we restrict, for sake of clearness, to the simplest one. We consider a sequence
(ue) of smooth positive solutions of

Au. = )\Efguseui in Q, u. =0 on 9N, (1.4)

for some sequence (\:) of positive real numbers and some sequence (f.) of smooth functions in
Q which satisfies

fe— foinC' () ase — 0and |V?[. o(1) (1.5)

HLoo(sz) =
where fo > 0 in Q. And we prove the following result :

Theorem 1.2. Let Q be a smooth bounded domain of R? and let (uc) be a sequence of smooth
solutions of ([(LAl) which is bounded in HE (). Assume that ([(LH) holds. Then, after passing to
a subsequence, Ae — Ao as € — 0 for some Ao € R. .

If Ao # 0, then there exists ug € C? (ﬁ) solution of
Aug = )\Qfouoeug mn Q, ug =0 on N
such that ue — ug in C? (ﬁ) as € — 0.
If X\o = 0, then u. — 0 weakly in H} (). Moreover there exist N > 1 such that

/|Vu€|2 dr — 47N ase — 0
Q

and N sequences of points (x;¢) in  such that
a) Tie — x; as € — 0 with x; € Q (not on the boundary), all the x;’s being distinct.
b) ue — 0 in C2. (Q\S) where S = {ziticy N
¢) foralli=1,...,N, we have that ;e = uc (T;c) — +00 as € — 0 and that

1
Vie (Ue (Tie + piex) —vie) = Ulx) = —1n (1 + Z|x|2)

mn 012 (RQ) as € — 0 where

oc

—2 2
Bie = Acfe (:Ei,g)vige'“vf — 4o ase —0.

1By isolated, we mean here that the energy at any concentration point is exactly 47. In other words, we mean
that there are no bubble accumulations and we do not wish to rule out only bubbles towers.
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d) for alli=1,..., N, there exists m; > 0 such that

2
VAcYie = ———=——== a5 0.

mir/ fo ()

e) The points x; are such that

1 Vfol(xi)
2m; Vo, H (v, x;) + 4 m;Vy,G(x;,z;))+ -—mi———= =0
yH (23, @3) ZJQ(J)Q Fo @)
J#i
and that
47erjg(zj,zi)+2mi'H(zi,zi)+milnLﬁi) +m; =0
j#i m;
foralli=1,..., N where
1 1
= (Im—
G(o.1) = 5= (In 2 + M o))

is the Green function of the Laplacian with Dirichlet boundary condition.

Note that this theorem proves that, if blow-up occurs, then the weak limit has to be zero
so that lack of compactness can occur only at the levels § = 47N for N > 1. This is a key
information to get general existence result via degree theory from this theorem; this will be
the subject of a subsequent paper. We also obtain a precise characterisation of the location
of concentration points. This answers in particular by the affirmative to the conjecture of Del
Pino-Musso-Ruf [12] (p. 425) since, in case f = 1, the (x;, m;) of Theorem [[2 are critical points
of the function

N N
D (y;, ) = QﬂZaiajg (Yi,y;) + Za??—[ (Yi, yi) + Z (af —aflna;) .

i#j i=1 i=1

The paper is organized as follows. In Section 2] we recall the main results of Druet [15]
and set up the proof of the theorem. Section [ is devoted to a fine asymptotic analysis in the
neighbourhood of a given concentration point while the theorem is proved in Section E which
deals with the multi-spikes analysis. At last, we collect some useful estimates concerning the
standard bubble and the Green function respectively in appendices A and B.

2. PREVIOUS RESULTS AND SKETCH OF THE PROOF

We set up the proof of Theorem and we recall some results obtained in Druet [15]. We
let 2 be a smooth bounded domain of R? and we consider a sequence (u.) of smooth positive
solutions of

Au, = Agfeugeui in Q, u. =0 on 9N (2.1)
for some sequence (\;) of positive real numbers and some sequence (f.) of smooth functions
which satisfies (LT). Note that we necessarily have that

A
limsup Az < 71
£—0 ming fo
where A1 > 0 is the first eigenvalue of the Laplacian with Dirichlet boundary condition in €.

Indeed, let ¢1 € C*° (ﬁ) be a positive (in 2) eigenfunction associated to A\; and multiply equation
@) by ¢1. After integration by parts, we get that

)\1/ U1 dr = )\8/ fgugeuigol dx .
Q Q

(2.2)
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Since f. becomes positive for e small thanks to (3] and since u. and ¢; are positive, we can

write that
A1 / uepy dxr > A¢ (m_in fs) / Ueipy dx |
Q Q Q
which leads to (2.2)).

We assume in the following that there exists C' > 0 such that
/ |Vue|* dz < C foralle > 0. (2.3)
Q

Then we have the following :

Proposition 2.1 (Druet [15]). After passing to a subsequence, A — Ao as € — 0, there exists
a smooth solution ug of the limit equation
Aug = )\Ofbuoe“g in Q, up =0 on 9N (2.4)
and there exist N > 0 and N sequences (x;¢) of points in Q such that the following assertiondl
hold :
a) ue — ug weakly in Hi (Q). If N =0, the convergence of ue to ug holds in C? (ﬁ)
b) for any i€ {1,...,N}, us (z;c) = +00 as e — 0 and Vu, (z;.) = 0.
C) fOT any i?] E {1,"'7]\]}7 i #]7
|Ti,e — e

Hie

— 40 ase — 0

where )
'LLZEQ = A fe (zi,s) Ue (xi,s)Q eui(xi’a) — +oo0 ase — 0.

d) for any i € {1,..., N}, we have that
1
Ue (Tie) (e (Tie + picx) —ue (Tie)) > U(z) = —In (1 + Z|z|2)

in C7,, (R?).
e) there exists C; > 0 such that

2
Ae ( min_|x;. — x|) 116(90)26“5(””)2 <Cy
i=1,...,N

.....

for all x € Q.
f) there exists Cy > 0 such that
<_ IlninN |xie — z|> ue(x) [Vue(x)] < Cq .

.....

Proof - Even if this result is already contained in [I5], we shall give part of the proof here.
The first reason is that it is not exactly stated in this way in [I5]. The second reason is that
it is proved in greater generality in [I5] and we thus give a proof which is in some sense more
readable here.

First, it is clear thanks to (Z3) that, up to a subsequence, u. — ug weakly in H} () where
ug is a solution of (Z4). If [ju.|, = O(1), then, by standard elliptic theory, this convergence
holds in C? (ﬁ) and the proposition is true with NV = 0. Let us assume from now on that

supu, — +ooase — 0. (2.5)
Q

2We assume for assertions b) to f) that N > 1.
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Given N > 1 and N sequences (x; ) of points in € which verify that
Vie = Us (T;c) = +00 as ¢ — 0 and u:f =M f: (:Ei,g)viaeﬁs — 40 ase—0, (2.6)
we consider the following assertions :

(PlN) For any 4,5 € {1,..., N}, i # j,

7|z1-1€ — zj’€| — 400 as e — 0.
i,€
(P¥) For any i € {1,..., N}, Vu. (z;.) = 0 and
Yi,e (us (xi,s + Mi,€z> - 7i,€> — U(ZL')
in Cl200 (RQ) as € — 0 where

U(r) = —1In (1 + iw)

is a solution of AU = €2V in R2.
(P3Y) There exists C > 0 such that

2
Ae < min _|z; . — x|> us(x)Qe“E(z)2 <C
i=1,...,N

for all x € Q.

A first obvious remark is that
(PY) and (P)) =>/ |Vaue|* do > 47N + o(1) . (2.7)
Q

Indeed, one has just to notice that

/ |Vug|2 dr = )\8/ feugeuﬁ dz ,
Q Q
that Dy, . (Rpi,e) N Dy, . (Rpje) = 0 for € > 0 small enough thanks to (P{¥) and that

lim \. /
e—0 D

thanks to (Py").

In the following, we shall say that property Py holds if there are N sequences (x; ) of points
in © which verify ([Z8) such that assertions (P{") and (P3¥) hold.

STEP 1 - Property P1 holds.

fsugeug dr = / e?Vdr — e?V dx = 41 as R — +o0
(Rpi,e) Do (R) R?

Ti,e

PROOF OF STEP 1 - Let z. €  be such that

ue (xe) = Max e .

By (Z3)), we have that

Ve =ue () > oo ase = 0. (2.8)
We just have to check (PJ) since (P!) is empty. We clearly have that Vu. (z.) = 0. We seffl
aE(z) = Ve (Us (xs + MESC) - 'Ys) (2.9)

for z € Q). where
Q. = {:c €R? s.t. z. + pex € Q}

and ,
/’[’6_2 = A fe ('Ta)'yge% : (2.10)

3The fact that this rescaling is appropriate to understand the blow up behaviour of solutions of equation (LI
was first discovered by Adimurthi-Struwe [3].
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It is clear that
pe > 0ase—0. (2.11)

Indeed, we can write that

2 2 _qsupq fe _ _
Ae feucets < Ao (Slglzp fa) Yee'T =2 ! & EM ‘=0 (:U'a 2)

fe (:CE) c
thanks to (LH) and (Z8). If ever [ZII]) was false, we would have that [|[Auc||,, — 0ase — 0
which, together with the fact that u. = 0 on 9€, would contradict ([2.8]). Thus [2I1) holds.
Thanks to (ZI1]), we know that, up to a subsequence and up to a harmless rotation,

Q. - R¥*or Q. - R x (—o0,d) ase — 0 (2.12)
d(z., 00
where d = lim M We also have that
e—0 e
Al — fe (e + pew) ue (ze + pe) elie(zetpen)? =2 (2.13)
e = .
fe () Ye

in Q. thanks to (ZI) and (ZI0). Since 0 < u. < 7. in  and thanks to (LI)), this leads to
[ At oo (. = O(1). Together with the fact that 4. < 0 = (0) and @ = -2 — —o0 as

€ — 0 on 0f), one can check that this implies that
Q. —>R¥ase—0

and that

i — U in C, (RQ) ase — 0
after passing to a subsequence. We refer here the reader to [3] or [I5] for the details of such an
assertion. Moreover, we clearly have that U < U(0) = 0 in R2. Noting that, as a consequence of
the above convergence of ., we have that

Ue (2 + pex)® — 42 — 2U in O, (R?) |
one can easily pass to the limit in equation ([ZI3)) to obtain that
AU = e?Y in R2 .
Moreover, by standard elliptic theory, one has that
. - UinCp, (R?) ase —0. (2.14)
In order to apply the classification result of Chen-Li [9], we need to check that e?V € L' (R?).

Using (29) together with (L), I0) and ZI4]), we can write that

lim A\, / fgugeuz dr = / 2V dx
=20 b, (Rue) Do(R)

for all R > 0. Thanks to (ZI]) and (23], we know that
2 u? 2 u? 2
)\5/ feuZe's dx < )\5/ feuZe's dx :/ [Vue|” de < M
Dms (Rpe) Q Q
so that €2V € L' (R?). Remembering that U < U(0) = 0, we thus get by [9] that
1
U(z)=—1In (1 + Z|$|2) .

This clearly ends the proof of Step 1. o

STEP 2 - Assume that property Py holds for some N > 1. Then either (ngv) holds or Pn41
holds.
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PROOF OF STEP 2 - Assume that Py holds for some N > 1 (with associated sequences (z;c))
and that (Pz)fv ) does not hold, meaning that

2
Ae Sup ( min _|z; . — :c|) ug(:c)Qe“f(z)2 — +ooase — 0. (2.15)
zeQ \=1,..., N

We let then y. € 2 be such that
2 2
(. min |z . — y€|> ue (y2)° etewe)® = sup ( min _|z; . — :c|) ug(x)2e“5(l)2 (2.16)
i=1,...,N weQ \i=1l,..,N
and we set
Ue (Ye) = Fe -
Since 2 is bounded and ()\.) is bounded, see ([Z2]), we know that

Ye = +o0 as e — 0

thanks to ZI5) and (ZI6). Thanks to (Py), I5) and (ZIG), we also know that
M—)+ooass—>0foralll§i§N. (2.17)
Hie
We set
~~ ~ 22
He = Ae fe (ye)mfe%

so that, with (LH), @I3) and (214,

fle > 0ase—0
and
|$i,a _y6|

—+oocase —>0forall 1 <i<N. (2.18)
He

We set now
te () = e (ue (Y + few) — Fe)
for x € Qg where
QE:{:EGRQ s.t. ye—i-ﬂger} .
We are exactly in the situation of Step 1 except for one thing : we can not say that . < 0 in
Q.. However, combining (2.I6) and (2I8)), we can say that

e < o(1) in KNQ.

for all compact subset K of R%. This permits to repeat the arguments of Step 1, see [I5] for the
details, to obtain that

@e = U in C, (R?) ase = 0. (2.19)
Since U has a strict local maximum at 0, u. must possess, for ¢ > 0 small, a local maximum
TN41,e in Q such that |zny1e —ye| = 0(jic). Then Vue (xn41,.) = 0 and defining yn41.e,

UN+1,e With respect to this point 11, it is easily checked that (PQNH) and (PlNJrl) hold
with the sequences (z;.),_,  y,, thanks to (ZIT7), @2I8) and @2I9J). This proves that property
Pn+1 holds and ends the proof of Step 2. o

Starting from Step 1, and applying by induction Step 2, using (Z3) and ([Z71) to stop the
process, we can easily prove the proposition except for point (f). But this point was the subject
of Proposition 2 of [I5] and we refer the reader to this paper for the proof. O

The main result of Druet [I5] may be phrased as follows :



MULTI-BUMPS ANALYSIS FOR TRUDINGER-MOSER NONLINEARITIES IN 2D 9

Theorem 2.1 (Druet [15]). In the framework of Proposition [2), there exist moreover M > 0
and M sequences of points (y; ) in ) such that the following assertions hold after passing to a
subsequence :

a) For anyi € {1l,...,M} and any j € {1,...,N},

|yi,s - l'j,€|
Mje

— +o0 ase — 0.

b) For anyi € {1,..., M},
1
Ue (Yire) (Ue (Yie + Vie®) — ue (Yie)) = U(x) = —1In (1 + Z|x|2>

in C, (R*\'S;) where

oc
_ 2
Vz‘,f = A fe (yi,a) Ue (yi,e)2 eueWie)” 400 ase — 0

and

SZ-{hmixj’a_yi’e,j1,...,N}U{hm7yk’€_yi’a,k:1,...,M,k7éi} .

e—0 Vie e—0 Ve
¢) The Dirichlet norm of u. is quantified by

/|Vu€|2 dz:/ |Vuo|® da + 47 (N + M) + o(1) .
Q Q

It is the way that the main quantification result of Druet [I5] is proved. Proposition 1 in
Section 3 of [15] corresponds to Proposition2labove (at the exception of f)). Then concentration
points are added at the end of Section 3 of [I5], point f) of the above proposition is proved in
Section 4 of [15] and it is proved during Sections 5 and 6 of [I5] that the quantification holds
with these concentration points added.

Let us comment on this result. First, it is clear that ug # 0 = A9 > 0. Second, if N = 0,
then the convergence of u. to ug is strong in Hj () and in fact even holds in C? (Q2). The two
questions left open in this work of the first author were :

1. Is it possible to have ug # 0 and N > 1 together ?
2. Are the concentration points (z; ) isolated or can there be bubbles accumulation ?

These two questions can be motivated, as explained in the introduction, by the situation in
low dimensions for Yamabe type equations, as studied in [I4] (see also [I6]). But they are also
crucial in order to understand precisely the number of solutions of equation (II]), a question we
shall address in a subsequent paper.

Let us briefly sketch the proof of Theorem We start from the above results of [15]. We
shall first give some fine pointwise estimates on the sequence (u.) in small (but not so small)
neighbourhoods of the concentration points. This will be the subject of section Then we
prove Theorem in section Ml through a serie of claims proving successively that : M = 0 in
Theorem 2Tl above, A\g = 0 so that up = 0 and, at last, the concentration points are isolated and
of comparable size. All Theorem then follows easily.



10 OLIVIER DRUET AND PIERRE-DAMIEN THIZY

3. LOCAL BLOW UP ANALYSIS

In this section, we get some fine estimates on sequences of solutions of equations (2] in the
neighbourhood of one of the concentration points (z; ) of Theorem 21l During all this section,
C denotes a constant which is independant of ¢ or variables x, vy, ...

We let (p:) be a bounded sequence of positive real numbers (possibly converging to 0 as ¢ — 0)
and we consider a sequence of smooth positive functions (v.) which are solutions of

Av, = )\Efgvge”g in Do (pe) (3.1)

where (A:) is a bounded sequence of positive real numbers, (f:) is a sequence of smooth positive
functions satisfying that there exists Cy > 0 such that

1
o < f=(0) < Co, |Vfe| < Cpand |V*fo| < Cpin Do (pe) - (3.2)
0

Here and in all what follows, D,(r) denotes the disk of center z and radius r. We assume
moreover that

Ye = ve(0) = 400 as e — 0 and Vo, (0) =0, (3.3)
that
po? = Af-(0) 782673 — +00 as € — 0 with % — +ooase —0, (3.4)
€
that
1
Ve (Ve (pex) —7e) = U(r) = —1In (1 + Z|x|2> in Cp, (R*) ase —0, (3.5)

that there exists C7 > 0 such that
/\€|x|21)§ev3 < C; in Dg (pe) (3.6)

and that there exists Cy > 0 such that
Cy .
2| |Vve| < 72 in Do (p2) (3.7)
€

The aim of this section will be to compare in a suitable disk the sequence (v.) with the bubble
B. defined as the radial solution in R? of

AB. = A f-(0)B.e? with B.(0) = 7. . (3.8)
Thanks to the results of Appendix A, see in particular Claims and 53] we know that
t t
‘Bg(x) - (% _ k@) if))‘ < O3y % for @ st te(z) <92 (3.9)
FYE Va
and that
- 21 - || 2
VB.(z) =y ' ———| < Oyy 2 ——— for = s.t. t.(x) <~ 3.10
A | O e .

where C's > 0 and C4 > 0 are some universal constants and

te(z) =In (1 + i';) : (3.11)

We prove the following :
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Proposition 3.1. We have that :

1
a) if ve(r) = =— /a]]) ( )vg do,
o7

~ 2y
sup [T:(r) — Be(r)| =0 (72 ") -
0<r<pe
As a consequence, we have that
te(pe) <72 —1+0(1) .
b) There exists C > 0 such that
|v€ - BE| < C'Ygl
and
IV (ve = Be)| < CVs_lps_l
m DO (pa)
¢) After passing to a subsequence,
1
Ve (Ve (pe ) — Be (pe)) = 2lnm +H

ase— 0 1in ClloC

(Do(1) \ {0}) where H is some harmonic function in the unit disk satisfying

#(0) = 0 and VH(0) = —% lim %féo) .

Proof of Proposition [31]- Let us first remark that we may assume without loss of generality
that

te (pe) <72 (3.12)

Indeed, up to reduce p., this is the case and once a) is proved, we know that ¢. (p-) < y2—1+o0(1).
This will easily permit to prove that, for the original p., we had t. (p.) < 72 since t.(r) <2 — 1
as long as t.(r) < 2.

Fix 0 <n <1 and let

re = sup {7’ € (0,p.) st [5o(s) — Bo(s)| < L forall 0 < s < r} (3.13)
Ve

where

1
Eg(r):—/ ve do .
2mr Dy ()

Note that we know thanks to ([B4]) and (B3] that

T—8—>+ooass—>0. (3.14)
e
We have that
5.(r) — Bo(r)] < - for all 0 < 7 < 1. (3.15)
13
and that .
WE (Ts) — B, (7’5)| =—ifr. < Pe - (3.16)
€
We set
ve = B +w, (317)
in Dy (pe). Thanks to B7) and BIH), we know that
C:
lwe| < T2 0 (re) - (3.18)

€
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This clearly implies since |B:| < 7. that

|v2 — B2| <3(n+aCs) inDp(re) . (3.19)
Thanks to (B.1), we can write that
Aw. = A fevee’ — Asfs(O)BseBE

= /\8635 (fgvsevg_Bg — fs(O)BE)

= /\seBE (fswsev57B5 + f€B56v5735 - fs(O)Bs)

in D (r:) so that, using [B2), BIY) and BIJ) but also (B3], we get the existence of some
C > 0 such that

2
|Aw,| < CA f-(0) (1 + B2) B2 |we| + CA.|x] (7 + BE> B2 in Dy (re) . (3.20)
g

We let . be such that
Ap. =0in Dy (r.) and . = w. on IDyg (rc) . (3.21)
Using (B.1) and 3I0), we know that
|Vwe| < Cytr2t on 0Dy (r.)
for some C' > 0 so that

1
IVeell oo o (ry) = O <7—r) . (3.22)
ele

Note also that, up to a subsequence,
Yee (re - ) — o in C7. (Do(1)) as e — 0 (3.23)

since |, (re)| < ny- ! thanks to (BIH) and BID). It follows from standard elliptic theory thanks
to .

STEP 1 - There exists C > 0 such that

— H — — —1_—
|v (we - 508) (y)| < C (||vw€||L°°(DU(Ts)) +7€ 1) <’u _:|y| +7€ 2> + nys : + Crs 178 ’
€

for ally € Dy (r).

PROOF OF STEP 1 - Let y. € Dy (7). Using the Green representation formula and [B.20]), we
can write that

1 2
IV (we — @) (ye)] < C)\EfE(O)/ (1 + Bg(z)2) oBe(@) |we (z)] dx (3.24)
Do (re) |z — el
! 2 Be(a)?
+CA ——— x| | — 4+ Be(x) ) 75" dx .
Do (re) |z — | Ve
We let in the following
1
t,e = me and to. =72 — 72 (3.25)
and we let
Qo = Do(re) N{te(z) <tic},
Ql,e = Dy (’I“E) M {tl,g < tg(l') < t275} and (326)

Qe = Do (7’5) N {ts(z) > t2,s} .
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We also set, for « = 0,1, 2,

Lo = A f.(0) L (14 Ba(@)?) 5@ ()] da
Qe |z — yel

Jie = / 2] (= + B.() ) @ da.
’ Q. Ixfysl

and

13

(3.27)

(3.28)

CASE 1 - We assume first that |y.| = O (u.). Since w.(0) = 0 and using B3], we can write

that
te(z)® (a:)
|SC| B —2t. (z) da

Io.e < CAF-(0)7267 || Vwe]|, o /
0. feOnze™ [IViwell o q,.) Qo 17— Vel

Thanks to (4], we can rewrite this as

LA e )

Ine < CuZ? ||Vwel s oo / dx
0,e = Ul || EHL (Q0,¢) Q.. |z,y€|
Since (2)?
te(@ 7
— 2t (x) < —=t. Q
’752 ( ) 4'e ( )1n 0, 5
this leads to
7
- $| |$|2 1
Ie < Cp? | Vwel||pee / | ( +—) dz
0 e IVwellim o) 0.0 17— Yl Ap2
7
|.’L'| |$|2 Tz
< C|Vv - — |1+ dx .
< [Vwe| (QO,E)/]R2 }x_ Z—E 1 x

€

Since |y:| = O (ue), we obtain by the dominated convergence theorem that

Iy =0 (HVUJEHLoc(Qo,E)) :

(3.29)

In Q4 ¢, we have that |z] < (1 4+ 0(1)) |x — ye| since |y-| = O (u.) so that, we can write, as above

2
te@)” o1 (2)

Il,a CME_Q ||vw5||L°°(Ql,a)/Q e ¢ dx
1,e

IN

t2

t2.e

! 5 —t
CIVuel ooy, [

ti,e

IN

by the change of variables ¢t = In ( + ‘I ) Since

t? t 1
S t<—— <7
75 75 4

for 1 372 =t1e <t <ty. =192 — ., we immediately get that

I < C|Vue] pmq, .y 726 .

(3.30)

In Qs ., we have that B, = O (1) thanks to (39) so that, using (32) and (BI8)) , we can write

that
1

o(re) |$ - y8|

L. < Chrr / de
D

so that
IQ,E < C/\ETE'Y;l

(3.31)
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Now we notice that t. (r.) <2 implies that
2

T—Z < 4e7%
l’l’E
Using B2 and 34), this gives that
Ar? <= (3.32)
Thus we get that E
L. <Crit'ys? . (3.33)
For the second set of integrals, things are similar and easier. We write that
Joe < Cu;%’l/ 2l e g,
, 0, |z — yel
so that, see above,
Jor<CATt (3.34)
We also have that
Jre < Cree™ 10 (3.35)
in the same way than above. At last, for J; ., we write that
Jo.e < CAcre / dz < CAer? .
’ Do(re) [T — Yel :
Thus we have thanks to (8:32)) that
Joe <Cy2. (3.36)

Summarizing, we obtain in this first case, coming back to (324) with (329), B.30), B33),
B37), 333) and ([B330), that

IV (we = ¢e) (¥e)| < ClIVWell ooy ray) +Cra + Ot (3.37)

CASE 2 - We assume now that lz—“ — +o0 as € — 0.

We follow the lines of the first case to estimate most of the integrals. Thus we only emphasize
on the changes. First, we write that

7
B |1'| |ZL'|2 T4
. < oﬂﬁnvauwmo,E)/ﬂ PR B
0,e € €
7
|| ( |9U|2>4
< Ol [, (14 )
|| EHL (Q0,¢) R2 |x—u§1ya| 4

Now we can write that
7

2\ 1
/ |96|_1 (14_&) dz
R2 |SC*,U5 ys| 4
-3 2 2\
() f i (252)
e R2 |2 — |ye| vl \ |el 4
-3 -3 2 2\
gc(@) +2(@) / o [ 25+ B0}
He He Do(3) |Ye | 4

€
T
1

,% 2\ —
He lye| Jre 4

SN

BN

IN
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so that
He

— . 3.38
) Toe] (3.38)

Ipe <O Vwe ||L°°((20,5

Let us write once again that

LA e T

< dx
1,e |$ - y8|

he < Cp? Vel ma, ) |

Let us split this integral into two parts. First,

-2 7] @ o (a) o @ o ()
T —e ¢ dr < 3p; e 7 dx
Ql,s\DyS(%lys‘) |:L' _yel Ql,g
t2,5 ﬁ_t
< C/ e dt
tl,s
1
< Onlemi

as in Case 1. Second,

9 lz] =@ o (a) 3 225, 1
e FEDT dv < guelyel e R
Q1,:NDy, (ly]) 1T — Ye Dy, (ly=]) 1T~ Ye

Thus we have that

te(@)? e _
u;?/ |1"| e E,yg 2ti(x) dl' S C|y€2 67? 2s¢
Q1D (4ly.]) [T — ¥el (2

1
Note that Q; . ND,, (5 |y8|) =0 if

3 9 |y |? 1,
te <§ |y€|) =In (1 + Tu? <t1e= 1=

so that we may assume that

Thus

1
It is also clear that if Q1 . ND,, (5 |y€|) #0, sc <tge =72 — .. Thus we have that

2

sz 1
£ 5. < —= o(1) .
’7&2 Se = 4'YE+ ()
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We deduce that, if not zero,

2 x| =9 ot (a) lyel” _1, _
7 / e 7E der < C—Qe 10 g™ 5e
Q1.nDy, (Llye]) 1T — Vel I
2 2\ !
< Clyzl . Iyal2
pZ 164z
< Ce™ 17
Thus we arrive to
_1
L. < 0%2@ i vaE”LOO(QLE) : (3.39)
At last, for I ., we have nothing to change to get that
L. <Crity73. (3.40)
For Jy e, J1 - and Jo ., we proceed as above or as in Case 1 to get that
C
Joe < C%—lr‘—g', Jie < Cree ¥ and oo < = .
Ye €

Thus, in this second case, we obtain coming back to (324) with B38), (339), (340) and these
last estimates that

19 (0 = 92) 4 < € (Il oy +257) (15 22674 ) £ 040 . )
€

The study of these two cases clearly permits to conclude Step 1. o
STEP 2 - We have that

IV (we = )l oo gy = 0 (2 1721) + 0 (427)
and that
[|we — <P5||LOO(DU(TE)) =0 (’7571) :
Moreover, if r- /4 0 as € = 0, we have that
tim VO _ (
=0 f(0)

1
lim —
e—0 1e

) Vo (0) .

PROOF OF STEP 2 - Let y. € Dy (r2) be such that

IV (we = e) (ye)| = IV (we = @e) | oo (o () (3.42)
and let us assume that )
e = |V (we — ¢e) (ye)| > eye + o ( )
for some ¢ > 0. Thanks to (3:22), we have that
- C
[Vwell oo (g () < @ + Cr2 Il <ae (1 + g> . (3.44)

Applying Step 1 to this sequence (y.), we get thanks to (B.42), (B43) and (B:44) that
1 9 _ 7 _ _ 1 -
(5 + E) 1 <o = |V (we — ¢2) (ye)| < Csare (m + 7 2) +Cy2+Cr7yR
This proves that
&%yOERQ ase — 0 (3.45)
o

€
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after passing to a subsequence and, thanks to Step 1 and ([B.43)), that
Cs

|V (0 — @e) (2)] < +o(1) for all x € R? (3.46)
1+ |z
where Cs depends only on § and
1 1
5 = D = . 347
We () e (ex) , @e() o (kex) (3.47)
We know that
w.(0) = 0, Vib(0) = 0 and ‘v (B — ¢2) (yi) ’ =1. (3.48)
He
We also know thanks to [8.23]) and ([B43) that, after passing to a subsequence,
~ . 1 . 1 2
Vge(z) — (gli% %TE(%) Vo(0) = Ain C,. (R*) ase 0. (3.49)

Using (320, we can write that
A | < OXp2f(0) (1+ Be (pe)? ) 702" i, + CaZ il (73 + B. (um) ePelner)”
Noting thanks to (3:46), (348) and (3:49) that

()] < Csln (1 +[a]) + | 4] 2] + o (J2])

and is thus uniformly bounded on any compact subset of R?, we easily deduce from the above
estimate together with the definition B4)) of p. and [B43) that (Aw.) is uniformly bounded in
any compact subset of R?. Thus, by standard elliptic theory, we have that, after passing to a
subsequence,

W — wp in O} (R?) ase — 0. (3.50)
Moreover, we have thanks to (B.45), (34d), (B48) and E350) that
~ ~ C
wo(0) =0, Vwe(0) =0, |Vwo (yo) — A’ =1 and ‘Vwo(:n) — Al < l +6| | in R? . (3.51)
T

Thus wo # 0. Since we know that vow. (uez) — 0 in C} (R?) as ¢ — 0 thanks to &), we
deduce that

Yeprete > 0ase — 0. (3.52)
Thanks to 1)), 34), BS), BI7) and B4T), we can write that
~ 1 T w x 2
Aw, (-T) = a_ﬂa)\e (fa (Me-T) (Be (Me-T) + we (Mex)) e(BE('uE JHwe(nee))
£

—f-(0)B: (pe) eBE(“EI)Z) .

B. (:LLE'I) eBE(,uax)zf’y? 1 <f€ (ME'I) 6235(,uax)wg(,ugx)qua(,LLE:n)2 _ 1)
Ve Qe [lee f=(0)

+'Ye_2 fe (fo) e (x)eBs(usw)z—v§+2Bs(st)ws(usw)-‘rws(usw)Z )

f=(0)
Let us write now that
' Be (pex) = 1in ). (R?) ase — 0,
that
B. (pex)® — 42 — 2U(z) in C), (R*) ase —0
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where
J?
thanks to (B.9) and BII). We can also write that

fa (Me-T) B _ i
W =14 f.(0) ' pez’0; f-(0) + O (uz|:c|2)

thanks to (B2)) and that

2B: (pew) we (pet) + we (st)Q = 2pte0ee (wo + o(1)) = o(1)
thanks to (B50) and (352). Thus we can write that

fE (Mex) eQBE(HEm)wE(ugz)-i-ws(usw)z -1

f=(0)
= 2 Ywo + Mefa(o)_lxzaifa(o) +o (Meaa'Va)
Thus we obtain that

1 -1, 5. o
o f-(0)" x 61f8(0)> +o(1) .

Thanks to ([B.43]), we know that, after passing to a subsequence,

At (z) = V@ <2w0($) +

1 81f€(0)
— X;ase —0. 3.53
asve [f-(0) ( )
Note that we have, again thanks to ([343]), that
X=0ifr.>0ase—0. (3.54)

Then we can write that
A, (z) = 2V (2w (z) + X;2") + o(1)
so that
Awy = ?Y (2w0 + Xi;z:i) in R? . (3.55)
Now, thanks to [7], lemma 2.3 or [2]], lemma C.1, we know that the only solution of this equation

satisfying (B5]]) is

@)= (3.56)
wo(z) = x; .
T AP
and, moreover, we must have
. 1.5
A= —§X . (3.57)

Since wgy # 0, we must have A # 0 and thus X # 0.

This permits to prove the step. Indeed, if r. — 0, then we have that X = 0 by 354), which is
a contradiction. Thus, if r. — 0, we get that 343) is impossible so that a. = o (yZ'r!) in this
case. This proves the first estimate of the step in the case r. - 0ase — 0. If r. A 0ase — 0,
we know thanks to the fact that X # 0 and to 53) that a. = O (1) if BZ3) holds and if
it does not hold, we again have that a. = O (’yg 1). Thus we also have that the first estimate of
the step holds if r. 4 0 as ¢ — 0. Moreover, in this second case, we know that

. aife(o) _ : 1
Ly A0S -2\ lm - Vo (0)
thanks to (B.49), B53) and (E1). This proves the last part of the step.
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It remains to notice that the second estimate of the step is a simple consequence of the first.
Indeed, coming back to the estimate of Step 1 with the estimate on the gradient just proved, we
have that

IV (w: = ¢e) ()] < Crt (140 (r2)) ( be +7§2) + O+ Ol
pe + [y
Since we — . = 0 on 9D (r.), this leads after integration to

() — ()] < Cret (140 (o)) e 2T L 0 (422
lwe(y) — p=(y)| < Cv* ( (re)) L (v?)

for all y € Dg (r.). This leads to

_ T _ T _ _
||w€ — (108||L°°(]D)0(T5)) =0 (,YE 1M€1n (1 + _E)) +0 (’YE 1&111 (1 + —8)) +0 (’YE 2) =0 (75 1)
He Te He
thanks to (B.14).
This ends the proof of Step 2. o

We are now in position to prove Proposition Bl First, since w.(0) = 0 and Vw.(0) = 0, we
get with Step 2 that

pe(0) =0(7") (3.58)
and that
V(0 =o0o(z'rz" ) +0 (71 . (3.59)
Since ¢ is harmonic, (B5]) gives that
Ve (0) = 1 / pedo - 0ase —0.
27'('7"8 B]D)o(?“a)

Since v. — B: = w: = . on dDq (r¢), this leads to
Ve [Ue (re) — B (r)] = 0ase =0,
which is impossible if r. < p. thanks to (3I6]). Thus we have proved that
Te = Pe s (3.60)

for any choice of n € (0,1). This proves the first part of a). The second part of a) is then just
a consequence of ([B9). Indeed, . [0: (p:) — B: (p:)| = o(1) implies that v.B. (p:) > V:Te (pe) +
o(1). And (B3) gives that

V2 = te (pe) = 7= e (pe) > 7T (pe) + o(1) -
which leads to ¢, (p.) < y2—1+o0(1) since . (p:) > 0. Point b) of the proposition is a consequence
of Step 2 together with [B22). It remains to prove c). Let us write that

Ve (Ve (pex) — Be (pe)) = Yewe (pex) + Y (Be (pew) — Be (pe)) -
We write that

72 (B (p-) — B (p.)) = 2In ﬁ in Cl,, (Do(1) \ {0}) as e =0

thanks to (B3) and BI0). Moreover, thanks to Step 2, we know that

Ve ||w€ (pESC) - Pe (Psx)HLm(Do(l)) = 0(1)
and, combining Steps 1 and 2, that

Yepe |Vwe (pex) — Ve (pez)|

He -2 -1 -2
<O ———+ +C +C
- <M6 + Pelxl e ) pere e
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in Dy(1). Thus we have that

Yewe (pe) = o in Cpo (Do(1) \ {0}) as e =0
thanks to ([3:23). We thus have obtained that

1
Ve (ve (pe ) — Be (pe)) — 2lnm + ¥o

in C},. (Dy(1) \ {0}) as € — 0. Moreover, we have thanks to Step 2 that
. . 1. pVfe (0)
This ends the proof of the proposition. &

4. PROOF OF THEOREM

Let (u:) be a sequence of smooth positive solutions of
Au, = /\Efsuge“g in Q, u. =0 on 9N (4.1)

for some sequence (\.) of positive real numbers and some sequence (f:) of functions in C* (Q)
which satisfies (I5]). We assume that there exists C' > 0 such that

/ Vue|* dz < C . (4.2)
Q

We consider the concentration points (z;.),_,
vie's and p; ’s. For any i € {1,..., N}, we let

y given by Proposition 2.1] together with the

.....

Tie = %min {je{lj?}]r\}},j# |Zie — el d(zie, GQ)} . (4.3)
Note that we have
A |z — 2P uc(z)?e* @ < Oy in D, _ (rir) (4.4)
and
|z — i.c| ue(x) [Vue(x)| < Co in Dy, _ (ric) (4.5)

thanks to assertions e) and f) of Proposition 2T}
We let, for i € {1,..., N}, B; . be the radial solution, studied in Appendix A, of

ABi,s = )\sfs (xi,s) Bi,seBiz’E and Bi,s (O) = Yi,e

and we shall write, by an obvious and not misleading abuse of notation,

Bi75(.’L') = Bi,e (|£E - .’L‘i75|) . (46)
We let also
2
tie (r) =In (1 + 4T—2> and t.(2) = tic (jo — @ic]) - (4.7)
i,€

At last, we define fori =1,..., N
di75 = d(l‘l”&-, GQ) . (48)

Let us first state a claim which explains how we shall use the results of Section [ for the multi-
bumps analysis :
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Claim 4.1. Assume that (u.) satisfies equation ([EI) with (f.) satisfying (L3). Assume also that
[H2) holds so that we have concentration points (x; ) satisfying @A) and (@H). Let 0 < r. < r;.
be such that there exists C3 > 0 such that

& = ie| [Vue(2)] < 03’71'?51 in Dy, (re) .
Then we have that :
a’) ti,e (Ta) < ’71'275 -1+ 0(1) and

1
27re

/ uedo = Bi. (re) + o (v}) -
oD ,5(7‘5)

b) There exists C > 0 such that
|ue — Bic| < CViTal
and
IV (ue — Bic)| < CViTelT;l

in Dy, (re).

¢) If re =rie, after passing to a subsequence,

1
Yi,e (UE (xi,a + Tie - ) - Bi,e (Ti,e)) — 2In m +H;

ase—0in CL.(Do(1)\ {0}) where H; is some harmonic function in the unit disk satisfying

1 i 'ri,avfa (-Ti,e)
m —---:.

75 =0 fe (-Ti,e)

Let us start with a simple consequence of this claim :

H;(0) =0 and VH;(0) =

Claim 4.2. For any i € {1,...,N} and any sequence (r:) of positive real numbers such that
Dy, . (re) C Q, we have that :

a) If re <. and By (re) > 07 for some § > 0, there exists C > 0 such that

|us - Bi,s| <

in Dy, (re) .

i,
Moreover, we have that

1

27,

/ Ue do = Bi,e (TE) +o (’7;61) :
BDmi,E (TE)

b) If limsupy; ' Bi . (re) <0 and limsup~; ! B;. (r:c) <0, then we have that
e—0 ’ ’

e—=0
. -1
o e < Bic ) 002
¢) If lim sup 'nyBLE (1) <0, we have that t; . (d; ) < 2. for ¢ > 0 small enough. In other
e—=0 ’ ’
words, we have that
Ae fe (zi,s) 'ngdig <4
for € small enough. Here, d;  is as in (LS]).
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Proof of Claim [{.9 - We first prove a). We assume that B;. (r.) > dv; . for some 6 > 0.
Define 0 < 5. < r. as

1
Se = maX{O <s<re st oue > 56%76 in ]D)ILE(S)} .

Thanks to ([43]), we have that
| — | [Vue| < C’yifgl in D, . (sc)
for some C' > 0 so that we can apply Claim [l Assertion b) of this claim gives that
|ue — B; | < C’yi;l in D, . (sc)

for some C' > 0. Since B; . (sc) > Bje (re) > 67i,c, we obtain in particular that s, = r.. Indeed,

if s. < re, there would exist some z. € 0Dy, _ (s:) such that u. (z.) = gfyiys, which is impossible

by what we just proved. Thus a) is clearly proved, applying again Claim ] this time with r..
2

Let us now prove b). Let us assume first that 1 + 4;§ < 671'2’5, that lim sup %'_ngi,e (re) <0
i€ e—0 ’

and that limsup ;. 81 B (ric) < 0 and assume by contradiction that there exists 0 < 1 < 1 such
e—0 ’

that
D inf )Ua > B (re) + 7771'_,51 . (4.9)
We claim that
1 4p2 1— L
Us 2 Vie T In = 5 = d +o (’Yi gl) in Dy, . (re) \Dwi,s (ROMZ',E) (4.10)
Yi,e |:L'i1€ — :L'| Yi,e ’
where A
Ry =

Vel=n—1°
The right-hand side of ([@I0) being harmonic and u. being super-harmonic, it is sufficient to
check the inequality on 0D, . (re) and on 0D, . (Ropi,c). For that purpose, let us write that

B; . (re) = Yi,e — ’7;51751',6 (Ta) - '7;&-3751',6 (Ta) +0 (’7;52)

as proved in Appendix A, Claim[52] since we assumed for the moment that ¢; . () < ’yi .. Since

e (7’5)

t.
we assumed that lim sup ’y;Ele (re) <0, this gives that ———* — 1 as ¢ — 0 so that

e—0 71'2,6
-1 7"? -1 -1

Bi7€ (TE) = Yie = Ve In(1+ 412 ~ Yie +o (’Yi,a)

1,€
1 4 _ _
= TYie +—1n ;18 - ’Yi,al to (ryi,el) :
i€ re
This implies with ([£9) that
Ue = Vie + In uE - — L (v;il) on oDy, (r.) . (4.11)
Yi,e |:CZ'75 — :C| Yi,e ’

Let us write now that
us — Bie=o0 (’yi;l) on D, . (Rofti,e)
thanks to d) of Proposition [Z1l Since

_ R2 _
Bic (Roptie) = Vie — ’Y@El In (1 + TO) +o (’Yi,gl) )



MULTI-BUMPS ANALYSIS FOR TRUDINGER-MOSER NONLINEARITIES IN 2D 23

we obtain that

4#12,8 o 1- U

|2 Yi,e

In +o0 ('71-;1) on 0Dy, . (Ropti,e) (4.12)

Ue > Yie +
Vie |wie—x

provided that

4
(14— )<1-7,
" ( i Rg) 1
which is the case with our choice of Ryg. Thus ([@I0) is proved.

Now there exists Rofii,e < 5. < min{r.,r;} suchthat B;. (s.) = Z7;, since lim sup %'_ngi,e (re) <0
e—0 ’
and lim sup 'yifale (rie) < 0. We can apply a) of the claim to get that
peatis

E—

1 _
/ ue do = g%"e +o0 ('71',51) .
D, _(se)

278,

Applying (£I0), this leads to
1 4p. 1-9

) -1 n -1
Yie + — In 2 +o(vl) < 5 Yie T O (Vie) - (4.13)

Since Bj . (5:) = 5., it is not difficult to check thanks to Claim of Appendix A that

tie(s) = (1-2) (4. =) +0 (1))

— 400 as e — 0,

so that, since MS_E

i,€

A n
In 3215 =— ('71'2,5 —1) (1 - 5) +o(1) .

€
Coming back to ([@I3]) with this leads to a contradiction. This proves that (£9) is absurd for
any 0 <7 < 1. Thus we have proved assertion b) as long as t; . (re) < ~7..

We shall now prove c), which will by the way prove that b) holds since the condition ¢; ¢ (r.) <
vi. will always be satisfied. Let us assume by contradiction that #;.(di) > ~7.. Then
Dy, . (re) € Q for € > 0 small where

2
r 2_1
14— —¢e¥e—3 .
+ 12 e

We can apply b) in this case since t; o (re) < %‘2,5 and

1
Bie(re) = =572 + 0 (42

2
by Claim 5.2 of Appendix A. This leads to a contradiction since u. > 0 in Q. Thus ¢) is proved
thanks to the definition of y; . and b) is also proved. This ends the proof of this claim. &

Claim 4.3. For anyi € {1,..., N}, we have that

lim sup 'y;ElBi,s (rie) <0.
e—0

Proof of Claim[4.3- Let us reorder for this proof the concentration points in such a way that
Tl,e < T2, << TN - (414)
We prove the assertion by induction on i. Let ¢ € {1,..., N} and let us assume that

limsup'y;;Bjﬁ (rje) <Oforall1<j<i-—1. (4.15)
e—0 ’



24 OLIVIER DRUET AND PIERRE-DAMIEN THIZY

Note that we do not assume anything if ¢ = 1. We proceed by contradiction, assuming that,
after passing to a subsequence,
Yie Bie (rie) 2 2¢0 (4.16)
for some ¢ > 0.
STEP 1 - If ([@IQ) holds, then w — 400 as € — 0. In particular, this implies that
rie — 0 ase— 0.

PROOF OF STEP 1 - For any 1 > 0 small enough, there exists a path of length less than or
equal to Cd (z; ¢, 082) joining the boundary of 2 and the boundary of the disk D, . (nd (z; ¢, 09)),
and avoiding all the disks D, . (nd (z,,09)) for j = 1,...,N. Using f) of Proposition 2T} we
deduce that, for any n > 0, there exists C' > 0 such that

ue < C on Dy, , (nd (x;c,00)) .

If d(x;e,00) = O (r;¢), we can find > 0 small enough such that nd (z;.,9Q?) < r; .. Then
the above estimate would clearly contradict a) of Claim 2] together with ([@I6]). Thus Step 1 is
proved. [

Thanks to Step 1, we know that, if (£I6) holds, then
D; = {j € {1, .. .,N}, J 7& i s.t. |£L'j1€ — zi,s| = O(Ti,s)} 7é 0. (417)

There exists 0 < § < 1 such that, for any j € D;, any point of 9D, (d; ) can be joined to a
point of 0Dy, . (dr;c) by a path . : [0,1] — Q such that |y.(t) — xx,c| > 6ric forallk =1,..., N
and all 0 < ¢ <1 and such that |y.(¢)| < § 1r;.. Thanks to assertion f) of Proposition 1] the
existence of such paths give that

inf ug > inf u? — 200 2 forall j €D; .
6]1)):,:]‘15 (5’)“1',5) B]DJ (57‘7;’5)

Thanks to ([@I6]), we can apply a) of Claim to obtain also that
Ue > By o (0r52) — C%.Tel on 0Dy, _ (07.)

for some C' > 0. Since
B (0ric) = Bic (rie) + O (1)) .
the two previous estimates , together with ([LI0), lead to the existence of some C' > 0 such that

Ue > B (rie) — C%-TEI on D, _ (dr;c) for all j € D; . (4.18)
STEP 2 - If (&I6) holds, then for any j € D;, we have that
lim inf ViaBje (1) > 0.
In particular, we have that 7 > 1+ 1.

PROOF OF STEP 2 - Assume on the contrary that there exists j € D; such that, after passing
to a subsequence,

limsup’yj_slBj,g (rjie) <0. (4.19)
e—0 ’
Since j € D;, we also know that
1
7’]'18 S 5 |:Ci,5 — SCj75| S CTLE . (420)
Thus we also have that
lim sup 7;;Bj,8 (0rie) <O0. (4.21)

e—0
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We can apply b) of Claim with r. = dr; . to obtain that

Bi75 (7“1'75) — C'yi_’; < Bjﬁ ((57“1'75) + o0 (’y;sl) (4.22)
thanks to ([LI8)). Combining (£I10) and (£21]), we get that
Yie =0(Vje) - (4.23)

Thus we also have that p; . < p; .. Let us write now thanks to Claim [5.2] of Appendix A that
2
)

.
Bje (6ric) = =72 In ( 48) — ;i (AAi) + 0 (7;2)

and that
r
Bic(ric) = =i (7) (2 +0 (01)

to obtain that

2
i _ i _
Bje (0ric) = 25 Bic (ric) + 9t [ 55 ) +0 (372 -
Ve ’yj,s

Coming back to (£22) with this, [@I6) and [@23]), we obtain that

2
_ Vi _ _
(250 + 0(1)) Vi,e < Wj,sl In (71218> +0 (71’,81) <0 (/71',51) ’

Je

which is a clear contradiction. Step 2 is proved. [
We can now conclude the proof of the claim by proving that ([@I6) is absurd if (ZIH) holds.

Continue to assume that (£I6) holds. Then we know thanks to Step 2 that for any j € D;,
j =i+ 1sothat 7. > r; .. We set, for j € D;, and up to a subsequence,

Lje — Tie

;= 213% - (4.24)
and we let R
S={z;,j €D} . (4.25)
We know thanks to Step 1 that there exists j € D; such that
|| =2 (4.26)
and that
|Zp — &y| > 2 for all k,l e D;, k #1. (4.27)
Since r; . and r; . are comparable, we also have thanks to Step 2 that
lim inf VieBije (rje) > 0. (4.28)

Let K be a compact subset of R?\ §. We can use assertion f) of Proposition I to writd] that
Vise |te (Tie +7Tiet) = Bie (rie)| < Ok in K . (4.29)
Thanks to (@), we can write that

- 2 2 . )2
Ade = /\Eri,a%,sfs (Tie + 73,eT) Ue (Tije + 7icT) ele(Tietric)

where
Ue = Yi,e (Us (xi,s + ri,sx) - Bi,s (Ti,s)) .

4see the argument between Steps 1 and 2.
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Using ([@.29), we can write that
- ()22
|Adie| < Crepuy 2rfePoelroe) e in K

for any compact subset K of R? \ S. Thanks to ([#I6), we have that

2 —1—2¢o
2 2 T
eBie(rie) =i, <C|1+ 1725
4:”1’,6

) 4eq
|At.| < Ck <&> — 0 uniformly in K .
T

1,6

so that

By standard elliptic theory, we thus have that
Gie = Yie (Ue (Tie +7ic7) — Bic (1i2)) — G in CJ,, (R2 \ S’) ase — 0 (4.30)

where
Adg=0in R*\ S . (4.31)
Since 1. > r; . for j € D;, (28)) permits to apply a) of Claim 2] which in turn implies thanks
to (@) that we can apply Claim Tl for all j € D; with r. = r; .. Assertion c) of this claim gives
that
1
Vie (Ue (Tje +7ic) — Bje(rie)) = 2 ln +H; (4.32)

in C}, (Dy(1) \ {0}) as & — 0 where H; is harmonic in the unit disk and satifies H;(0) = 0 and
VH,;(0) = 0 (note here that we know thanks to Step 1 that r; . — 0 as ¢ — 0). This gives that

i 1 ~
Toc U +Vje (Bie (rie) — Bje (rie)) — 2In — +H,; (4.33)
Yie |z — @]

in C}, (Ds,(1)\ {&;}) as e — 0 for all j € D; (and also for j =i if we set &; = 0). It remains to
write thanks to Claim [5.2] of Appendix A and to (LH) that

i, 7 ;
Bic (rie) = Bje (rie) = (1 -2 E) Bic(rie) + Yje 'l ] (% s)
Vie z,e
to deduce from ([@I4]), 30) and [E33) that
Y32 59 ase—0and Vie [Vie —Viel =0 (1) . (4.34)
Yi,e
Then (£30) and (33) just lead to
i = 21n +0; (4.35)

| — ;]
in Dz, (1)\ {Z;} where ¢; is smooth and harmonic and satisfies V; (#;) = 0. Thus we can write
that

o = 21n + 2 Z ln " (4.36)

where ¢ is a smooth harmonic function in R%. Thanks to assertion f) of Proposition 21} we also
know that

|Vo(z)| < in R?

1+ |z
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for some C' > 0 so that ¢ = Cst. Now this gives that for any k € D;,

\V4 1— 1) =0 .
n—+ » 1 |x_%| (1)
JE€D;,j#k

Let k € D; be such that || > |#;] for all j € D;. Then

(V| In ||+ Z (Z1),21) = —l|ig| — Z M

JED:, j#k |x—z]| JEDs, j#k [k = ]
< - |‘%k| <0 )
which gives the desired contradiction. This proves that [@I0) is absurd as soon as (I3 holds.
And this ends the proof of the claim by an induction argument. &

Claim 4.4. For anyi=1,..., N, we have that
)\sfe (1'1}8) Vi, 8d128 =
for € small enough.
Proof of Claim [[4]- It is a direct consequence of ¢) of Claim together with Claim 3l
Claim 4.5. We have that

/ \Vu|* dx :/ \Vuo|® dz + 47N + o(1) .
Q Q
In other words, M =0 in Theorem [21.

Proof of Claim [{.5 - We prove that M = 0 in Theorem Il Assume on the contrary that
there exists some sequence (y; ) such that the assertion b) of Theorem 2.1 holds. This means
that

V;? = A fe (yl,s) Ue (y1,€)2 eug(y1,5)2 — +ocoase — 0.

By e) of Proposition 21l we know that

=1,..., i=1,...,

< les (yl,s) .
This proves that there exists ¢ € {1,..., N} such that

2 2
— . . 2
Vi <i—‘PmN i - y1,5|> - < min (@i - y1,€|> Aefe (y1.0) e (1.0) €= 0n)

|Tie — Y1l = O (1,6) -

Since
|Tie — Y16l

Hie

— +ocase—0

by a) of Theorem 2] we have that
Vie
Hie
Thanks to the definition of v . and p; ., this leads to

— +ocase—0.

2
eV?,a*“E(yl,a)ZLQ — +ooase— 0 ’
Ue (yl,&
which implies that

V. —ue(y1e)’ = +ooase 0. (4.37)
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Now, by the convergence of b) of Theorem 2] we know that
Ue 2 Ug (yl,s) — Cu, (yl,s)il on aDmi,a (Ryl,s)

for some R > 0 and C' > 0. Thanks to Claim 3] we can use assertion b) of Claim [£2to deduce
that

Ug (yl,s) — Cu, (yl,s)il < Bi,s (Ryl,s) +o0 (’)/7:81) .
This leads after some simple computations, using Claim of Appendix A, to

2 2
Ue (Y1,e) ue (Y1)
£ 5 £ ) + £ : £

+ C;., 81

i,€ 1,€

ue (Y1) — Cue (yl,a)_l < %_;1 In (

so that, thanks to ([{31),
v (y1..)° (1 - w) <c.
Yi,e
This clearly implies that
Ue (yl,s)
Yi,e

—lase—0

and then that
Ue (yl,s) > Yie — C'YZ'_’;
for some C' > 0. This contradicts (A3T). Thus we have proved that M = 0 in Theorem 2] and
the claim follows. &
For any i € {1,..., N}, thanks to Claim L3 and a) of Claim (£2), there exists 0 < s, . < r; ¢
such that D
lim sup 'Y;ngi,e (sic) <0and |u. — Bic| < — in D, . (i) (4.38)

e—0 1,€

for some D; > 0.

Claim 4.6. We have that

e—0

liminf/ \Vue|® dz > 47 .
D“’i,a (S'L,E)

Proof of Claim[{-6- Let 6 > 0. Let us write thanks to ([£38) that

2 +|? +
|Vu.|” dx > }V (ue — 07i.e) ‘ dr = (ue — 0vie)" Aucdx .
D“’i,a (S'L,E) Dmi’i(si,s) Dmi’i(si,s)

Thanks to (@), this leads to

/ |Vu,3|2 de > A / fe(ue — 5%‘,5)+ ueeui dx
Dz, o (si,e) D, . (sie)

Y

Ae / fe (Ua - 6’71’,6)—’_ uaeug dz
Dziyg (R#i,a)
for all R > 0. Now we have that

lim )\5/ fe (ue — 5%18)"_ useuz de = (1- 5)/ 2V dx
=0 JIp,, (Ruie) Do (R)

thanks to d) of Proposition 21l Since

/ e2Vde = 4 |
]RZ

the result follows by letting R go to +o00 and § go to 0. &
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Let us set now

N
Q. =Q\ U Da;. (8ie) (4.39)

i=1

where s; . is as in (Z38) and
Uge in Q.
= D, . . .
e Inin{ug,BLE (Sie)+2 } in Dy, . (sie) fori=1,...,N (4.40)
Yi,e ’

Claim 4.7. We have that

IV (we —uo)]* dz— 0 ase — 0.
Q

Proof of Claim[{.7- Let us write that

IV (we —up)|® dz = /|Vw€|2 dz—2/<Vw€,Vu0>d:c+/ |Vuo|® da
Q Q Q

/|Vu€|2 dz—2/<Vu€,Vu0>d:c+/ |Vug|® da
Q Q Q

+ / (V (we — ue), Vue + Vwe — 2Vug) da
Q

Q

= 47N +o(1) + / (V (we — ue), Vue + Vwe — 2Vug) de
Q

thanks to the weak convergence of u. to ug in H' and to Claim Let us remark now that
V (w: —u:) =0 in Q. and that (V (w. — u.), Vw:) = 0 a.e. Thus we can write that

N
/Q IV (we — )| do = 47N + o(1) + ;/D (V (we —ue),Vue —2Vug)de . (4.41)

T (Si,a)

Since w. — u. is null on the boundary of D, . (i), we can proceed as in the proof of Claim
to get that

/ (V (we —ug), Vue —2Vug)de = / (we — ue) (Aus — 2Auyg) dz
D“’i,a (si,e) Dmi,a (8i,2)

—4r+o0(1)+ O (%’,s/ | Aug dz) .
D“’i,a (S'L,E)

Here we used the fact that we < u. and |we| = 0 (vie) in Dy, . (sic). If ug = 0, the last term

disappears. If ug £ 0, then A. — \p with \g > 0 and Claim [£4] gives that 71-15535 = o(1). Thus,
in any case, we have that

IN

/ (V (we — ue), Vue —2Vug) dz < —4m + o(1) .
D“’i,a (si,s)

Coming back to (41]) with this proves the claim. O
The next two claims are devoted to obtaining good pointwise estimates on u. and Vu..
Claim 4.8. For any sequence (x:) of points in € such that
|Te — @i

Hie

— 4 ase—=0fori=1,...,N,

we have that
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a)ifd. = d(x.,00) 40 ase — 0, then

N
ue (1) = ¢a($a)+zwg($i,aaxa)

=1 Yi,e

.y
O In{—25 49
' <Z'7 (|zzs$€|+%s n(|$i,€zs|+ ))> ,

b) ifd. - 0 as e — 0, then

ue (ve) = ¢a($6)+zwg($i,aaxa)

i1 Yi,e

+0 <Z%E (”7 +72 In (576 +2)>>
e i — | |25,e — e
" <Z d- + d e G 7@615136))

i€B

where G is the Green function of the Laplacian with Dirichlet boundary condition in Q and 1. is
a solution of

Ay, = )\Efgwgewg n Q and P, =0 on 0N .

Inb), A is defined as the set of i € {1,...,N} such that |z;c — xc| < sic + 0(d:) and B as its
complementary.

Proof of Claim[]-8- We let G be the Green function of the Laplacian with Dirichlet boundary
condition in . We let (x.) be a sequence of points in € such that

|1's - zi,€|
Hie
Then we have thanks to (@J]) and to the definition of . that
( ) we -Ta = /g Te, X fE )( 8( ) ue(@)® _we(-r)ewi(z)z) dr .
Using the definition (£40) of w., this gives that
Ue (z2) — Ve (2e) (4.43)

N

— 4ooase —»0fori=1,...,N. (4.42)

A =\ / (G (wer) = G (we,1.0)) fol) (@)@’ — wo(@)e= @) d . (4.44)
Dzl 5(51 a)

We fix i € {1,..., N} in the following and we let

Qoe = Da, . (sie) N{te(x) < t1c},
Ql,e = ]D)ziyg (Sz,a) N {tl,e < ta( ) < t2,a} and (445)
Qo = ]D)Ii,a (Si,E) N {ts (z) > t276} :

where to(a) = In (1+ Z22) 1y, = 192, and 1 = 42, — 5,
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STEP 1 - We have that

)\5/ fe(x) (us(z)euf(z)
Dxi,s (Si’E)

2

PROOF OF STEP 1 - We write that
)\5/ fs(z) (us(z)eus(wﬂ - ws(x)ewg(wh) de
Dmi’i(si,s)
= )\5/ fe(x) (ue(x)eus(wﬂ B we(x)ewg(z)z) da
Dmi’g (Rsﬂi,s)
+)\5/ fg((E) (ua(l-)eus(l)Z o we(l_)ews(w)z) du
QO,E\DILE (Rall«i,a)
+Ae fs(z) (us(x)eua(m)Z B ws(x)ewg(z)z) de

Ql,a

+ fe(x) (ug(gc)euf(m)2 — we(x)ewf(z)z) dx
92,5

— ws(x)ewf(z)z) dr = 47”’;51 +o0 ('yijel) .

31

where R, — +00 is such that |u. — B; .| =0 (%-;1) and %TslBi,g(m) =1+4o0(1) in Dy, . (Repie).

Such a R. does exist thanks to d) of Proposition 2] Then we have, using also (£38), that

)\a/ fe(@) (ua(x)eug(l)z - wa(x)ewg(ﬂz) de
Dziyg (Rall«i,a)

= Ae (fe (zie) +0(1)) / Biﬁs(z)eBi,a(r)z da

DI'L,E (Raﬂ'i,z)

+0 ()‘EBZ',E (Si,a) eBi’E(Si’E)zR‘gN?,E)

— %.;1 / 2V dx + o(l) | +o (%-;1)
DU(RE)

= 4#’7551 +o0 ('71-;1) .

In Qo ., we write that

2 _ 9 te(x)? , 7
Bie (2)" = 7ie = 2te (2) + =5 + O(1) < 7jc — 7te(2) + O(1)
i,€
so that ]
2 4
eBie@? < v [ 14 % _
4:”1',5

Thus we can write that

0< A / £0) (e — e (@)e ) da
QU,E\Dmi’E(Rsﬂ'L,E)

_T
- o =) -
< C%,Elui,f/ (1 + 1 21 = dx = o (%.761
Q\]D)‘Ti,g (REN'L,E) Mi €

eBie(@)’ < Vi1V pte(@)

In Q; ., we write that
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so that

0 S )\E fE (1,) (us(z)eua(fb)Q - ws(x)e’wa(fb)z) do
Ql,a

1
2
_9 _1.. _ xr — Z;
< Cﬂi,fe ‘1‘%'571',81/9 (1 + %) dx
1,e i,e

o (2)

1. —
S Ce 471,5,71_761 In :

i,e
since 2In 7= = 42_ + O(1) thanks to Claim [l At last, in Qa,c, we have that B;. = O(1) so
that ’

0< A fe(2) (ug(x)euf(m)2 - wg(z)ewf(z)Q) dzx < C/\Esi‘E =0 (v72)

i,€
92,5

thanks to Claim [£4 Combining all these estimates clearly proves Step 1. o

We shall now estimate the A;’s involved in ([I43]) and defined in (£44]). We write since u. > w,
and thanks to (£38)) that

A;.] < O\ / I8 6en) =G i)l (B b O B gy i
]D)I'L,s Si,e

STEP 2 - Assume that d. = d(x.,0Q) > d for some d > 0. Then we have that

i _ Si
[Aie] < C%'_,El ( R %',sl In ( et 2)) .

|$i,€ - :C€| |1'i,€ - :C€|

PROOF OF STEP 2 - We use ([6.1]) to write that

|g (:L'E,:L') -g (x€7xi,€>| < %

|$i,€ - 1'€|

In

+C e — i
|ze — |

Thus we have thanks to ([EZ40]) that

|A;c] < C)\a/ (‘IHM
Da. _(sie) |ze —
7 ie—xf

Bi(z) < %’2,5 ~2 In (1 + M)

A
)\E/ In lzie — a| +zie — | ) (Bie + C%_—;) eBis(®)? g
QO,E |1"5 - 'T| ’

_z
—92 _ |1'i€71'5| |xis*$|2 1
§C’u-2'y-1/ <‘ln’7+z- —x 1+ ——— dx .
ie li,e .. |$e _$| | i€ | 4’u227€

‘zi,afxa‘

+ |xie — x|) (Bie+ C%;l) eBie@? gy

Ti,e

In o, we have that

so that

This leads after simple computations, since

)\5/ (’m [2ie = 2|
Qo.c |ze — |

— 400, as e — 0 to

+ |@ie — :E|) (Bm + 0%;1) eBi,s(z)z dz < 0771 Hie

1,€ i :
|$z,€ - :C€|
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In Q; ., we can write that

2 —1
Bic(@? < 22— daie <1 n w>

i
)\a / (‘ln 7|1‘i1€ _ :C€|
Ql,a |:C€ - :C|
corzeine [ (ks
’ Ql,a |’T8 - :L'|

2
—1 —1.. r
S Cryz Ele 1%i,e (1n ﬁ)

so that
+ |Tie — x|) (Bie + O 2) ePe@ dg

+lzie — x|> |l — zmrz dx

Hie
where t; . (72,c) = t2.. We have that

In 22:< <72

Mie

so that

)\e/ (’h’l 7|:L'i76 _ :EE|
Qe |z€ - $|

At last, in Q9 ., we have that B; . = O(1) so that

/\g/ Qm [2ic = 2|
Qz,a |’T8 - ‘rl

< As/ <‘1n [#1.c = c]
92’5 |$5 - ‘rl

<As?In <37 + 2> <0y % (573” + 2)
1>

|$i,a - xa' |-Ti,e -

+ |-Ti,e o $|) (Bi,a + C%'Tsl) eBi,s(z)z de = O (%3,56_%%5) -0 (%;2) _

+ |Tie — :c|) (B + C"yi;l) eBie@)? dg

+|zie — z|> dx

by direct computations and Claim [£4l Combining the above estimates gives Step 2. o
STEP 3 - Assume now that d. = d (x.,00) — 0 as e — 0 and that |v, . — xc| > s;.c + dde for
some 6 > 0. Then we have that

d _ _
il < O (il +7ilsic) -
i€

€

PROOF OF STEP 3 - In this setting, we can apply ([EI2) to write that

de

drd

|g (:CEVT) -g ($E;$i,a)| <C

so that

de -1\ B?
A | <CAg———— — T B; C~; e .
[Aiel < “d. +d;. /]D)() o= el (Bue + O ) e do

thanks to ([L44). In Qg ., we have that

NN

2\ —
T -
(Bic+ C’Yfgl) eBle < C%ﬁeﬁ,a 14+ %
1 4Mi,8
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so that

2
)\5/ |ZL' — :Ci,€| (B,L'ﬁ‘€ =+ 077:61) eBi,e dx
QO,E

SN

o\ -

5 I

< Cﬂi,f%,sl/m - |7 — @] <1 + %) du
i e \Sie ie

< Cuievil -
In Q; ., we have that
o — il
_ . 2 2 1. T — X
(Bi,e + O 61) eBie(@) < i e€Tie 1vie |1 + 721’5
’ 4:”1’,6
so that

_ 2
)\5/ |ZL' — :Ci,€| (BL8 —+ C’yi761) eBi,a dx
Ql,a

-1
2
—2_ —1, —d~, . |z — Ty
S Cugivice ™ /D ( )|$—$z‘,a| (H_T dx
zi e Si,e 1,E

-1 1.
§'7i75€ 4%’551',6-

At last, in Q9 ., we have that B; . = O(1) so that
)\g/ |(E — .’L'i75| (Bi,a + C’y;gl) eBiZ,E dm S )\58'?,8 .
QZ,E

Combining the above estimates with Claim [£4] we get the estimate of Step 3.

)

STEP 4 - Assume now that d. = d (z.,090) — 0 as € — 0 and that |v; . — x| < s;c + 0(de).

Then we have that

. 5
|4, ] < C’YZ-T; (7'%’6 + ’y;’al In <7|$ ue + 2>> .
i,€

|-Ti,e - xa' - xa'

PROOF OF STEP 4 - Let us remark that in this case, we necessarily have that

3
de < |1'z',s - 1'5| + di,s < Sie T di,s +o (d€> < idi,s + O(ds)

so that d. = O (d; ). This leads in turn to |2; . — 2| < s;c + 0(d; ). And then we can write

that

1
di,s <d. + |1'z',s - :C€| < Sie T O(di,s) +d. < §di,€ +d:+o (di,s)

so that d; . = O (d.). Thanks to ([G12), we can write that

|z — ;¢
di,e

so that the computations of Step 2 lead to the result of Step 4.

|1'z',€ - 1'€|

G (22, 2) — G (22, 250)] < C +0F

|ze — |

Of course, the combination of Steps 1 to 4 gives the estimate of the claim.
Claim 4.9. There exists C > 0 such that
N
- -1
IV (e = ) ()] < O 7 (pie + & — i)

i=1

where . is as in Claim[{.8

o 4
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Proof of Claim [[.9 - We use again the Green representation formula with equation (I

(together with the equation satisfied by 1., see Claim [£.])) to write that

|v (ua - we) ($)| < )\a /Q |VQ(‘T’y)| fa(y) (ue(y)euf(y)z - we(y)ewf(y)2) dy .

Thanks to standard estimates on the Green function and to the definition ([@40), this leads to

N
|v (ua —e) ('T)| < CZ)‘E/ |‘T - y|_1 ua(y)eUE(y) dy .
i=1

Tie (Si,E)

Thanks to ([@38), we have that

Ae / & — g ua(y)e= @ dy
DII 5(51 5)

< O\ Z / |1, o y| (y) + Ci’yl'jgl) eBi,a(y)z dy
Qp

k=0,1,2

where the Q, .’s are as in (£45). In Qo ., we write that

7
2 i
(Bz e+ Cl'% g) (y) eBi’E(y)Z < 0%756%2,5 (1 ’ |y 4 227€| )
Mi,a

so that

)\E/Q |JE o y|—1 (Bi,s(y) + Ci'Y;gl) eBi,g(yh dy
0,e

2 4
o _ _ Y —
< Cﬂi,f'yi,gl/ |-T - y| e + | 1 21 8| dy .
Qo,g lu’i,s

Direct computations give that

-

_ _ . 2 _ —
Ae/ 2 —y| ™" (Bic(y) + Civi ) ePos W dy < Oy} (pie + |v — i)™
0

,€

In €4 ., we write that

ta(y) —2t.(y)
(stJrCz’YlE)( )eBi,a(y) < Cvie elice e .

so that

te (y)?

_ - ) 2 . _ ;
A8/ 2 —y| ™! (Bie(y) + Ciyi ) ePoe® dy < C%,Qui,f/ o=y e
Ql,s

1,
In €4 ., we have that

ta(y)2 1
712,5 - 2ta(y) < _tE(y) - Z%’E

so that

)\E/ |x _ y|_1 (Bi,a(y) + Ci%'_,sl) eBi,E(y)Z dy

€

-1
1 1. -1 2
< Oy e 7/ |z =y (u?,g+|y—wi,e| ) dy .
Ql,s

(4.47)

(4.48)

(4.49)

—2t.(y)
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In Q) . we have that |y — x; | > p;c so that

— _ . 2 _ 1. — _
AE/ |z — y| 7! (Bie(y) + Ciyil) ePoe W) dy < Oy tem 70 / o —y| Ny — 2|2 dy
Qlyg Q

1,e

Noting that D, . (r1,c) Ny, = 0 for € small where
1.2
e = Mz’,aeg’yi’s )

we get by direct computations that

— _ . 2
AE/Q |z —y| ™" (Bie(y) + Civil) €% @) dy

< Oyite i (jo — zie| + 1) n (2 Jlz i - x“') .
1l,e

Thanks to the value of 71 ., this leads to

— _ . 2 _ —
Ae / o=y (Bie(y) + Covit) <@ dy = o (v (pie + o —wic) ') - (450)

1,e

At last, in Q9 ., we have that B, (y) = O(1) so that
2

2 _ Si
Ag/( 2 —y| ™! (Bie(y) + Ciyil) ePos @ dy < C/\g/ lz —y|™! dy < CA. <
22,5

% - Sie+ o —wie]
Thanks to Claim 4] this leads to
— _ ) 2 _ —
A / 2 —y| 7" (Bie(y) + Ciyil) ePo W dy < O 2 (sie + o —2i) 7 (4.51)

2,e

Coming back to (£47) with ([L4]), (£49), (@50) and [@E]), we obtain the claim. O

Let us reorder the concentration points in a suitable way. For this purpose, we notice that, up

to a subsequence, for any i,j € {1,..., N}, there exists C; ;, possibly 0 or +o0o (but nonnegative)
such that _
lim 22 = ¢ . (4.52)
e—0 ’7]‘76

Note that C; ; = C;il (with obvious conventions when C; ; = 0 or +00). Then there exists C' > 1
such that

1 ~
for any 4,5 € {1,..., N}, either C; ; =0 or C; ; = +00 or e <(Ci; <C. (4.53)
It is then easily checked that we can order the concentration points in such a way that
for any 4,5 € {1,...,N},i<j=C;; < +o0 (4.54)
and
forany i, €{1,...,N},i<jand C;; >0=r;. <7j.. (4.55)

Let us give some estimates on ., involved in Claims and Using Claim 7, we clearly
have that A-'A¢. is uniformly bounded in any LP () thanks to Trudinger-Moser inequality.
Thus we know that there exists C' > 0 such that

[Yellcre@)y < CAe (4.56)

for 0 < a < 1 by standard elliptic theory. Now, if A\, — 0, we know that ug = 0 and we can be
a little bit more precise. Indeed,

1A%e oy < Ae el oy [fwee

< 1ol ey ey [

Lr(Q) ~ L2 (Q)
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Since ug = 0, we know thanks to Claim 7] and to Trudinger-Moser inequality that (ewf ) is

bounded in any L?. Thus we have that
||A1/’a||Lp(Q) <O H“6||L2p((z)
thanks to (LH). Using Claim ([@3]), we get that
C

V (ue — woy < —L

IV (e = ) ooy < 2
for some Cy > 0 for all 1 < ¢ < 2. Remember that concentration points are ordered such that
(#354) holds. This gives that

ol oy < Co (5 + IVl cr 7))
so that
|8¢e Loy < A (372 + IV¥eller m)) -
By standard elliptic theory and since we assumed that A. — 0, we finally obtain that
A
if Ao = 0ase— 0, then ||1/)EHCW(§) < C7 <. (4.57)

,€

Claim 4.10. We have that r1. > dg for some dy > 0.

Proof of Claim [{.10] - We assume by contradiction that . — 0 as ¢ — 0. We let in the
following

Dy ={ie{2,...,N} s.t. |z;.—21/=0(r1.)} and Dy =D7 U{1} . (4.58)
After passing to a subsequence, we let
S{z{iizhmm,iel){} and S; = S U {1 =0} . (4.59)
e—0 T1,e
We also let
Q-={yeR?®st. a1 +ryc}. (4.60)

Note that, after passing to a subsequence (and up to a harmless rotation if necessary), we have
that

d
0 = R? if ¢ 5 4ooase —0
T1,e
Q. — Qo as € — 0 where (4.61)
d
Q=R x (—o00,L) if == Lase—0
T1,e
Here dy . = d (21,.,09), as defined in (L8). For R > 0, we shall also let
1
R _ (=
0l = (QOHID)O(R))\ig D;, (R) : (4.62)

We shall distinguish three cases, depending on the behaviour of dq . = d (x1,,99) and rq ..

CASE 1 - We assume that d; . /4 0 as ¢ — 0, meaning that, after passing to a subsequence,
1. — 1 as € — 0 with z; € Q.

We let y € Qg for some R > 0 and we set x. = x4+ r1y. Since di . /4 0 and r1 . — 0, we are
in situation a) of Claim L8 Note indeed that

|1's - xi,s|

Hie

— 4ocase —0foralli=1,...,N.
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It is obvious if ¢ € D; since we clearly have in this case

|z — zi,€| o |z — zi,€| e Tie
Hie Tle Ti,e Hiye
Te — T _
with e = @iccl >R ' +4o0(1), == > 2@ " +0(1) for i € D and equal to 1 if i = 1, and
T1,e Tie
r
" 5 400 as € — 0 thanks to assertion c) of Proposition 211 While, if i ¢ Dy, we can write
Hie
that

e = @il 5 14 1)) [Ze = @el S (94 o)) Tt L focase 0.
Hie Hie Hie

Thus, applying a) of Claim .8 we can write that

N
U5($5) = 1/]8(:1;8)+Z(4F+O(1))71:51g(xi755$5)

i=1

S
O In [ —222 49 .
' (Z'V (|zz€$€|+% n(|$i,€zs|+ ))>

Now, for any i € {1,..., N},

R - -
Yie |75 .0 Z_Ex8| =o0(vd) =o(re)

thanks to ([L54) and

it (= v2) =0 i)

|$i,€ - :C€|

thanks to the fact that s;. < r;c = O (|x;, — x|). Note that Claim F4 implies that A\, =

O (1. 2) in our case so that [@57) gives that

e (1) =0 (v 2) =0 (1)) -
Thus we have that

N
Z (47 + of ’yi;lg (Tie,xe) + 0 ('yfgl) . (4.63)
i=1

We can now use ([G3) to write that

+0(1)

1
g (-Ti,fs; xe) = % In 1.

if ¢ € Dy and that
g (xi,sv :CE) =g (:Ci,sa 1'1,8) + O(1>
if i € D1. Thus we have that

ue (z2) = (2—1—0(1))’71611&— 1+ ) Ciy (4.64)
i€DY

+ > (4r+0(1)) 171G (wie,w1e) + O (312) -
Z‘Q’Dl
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Note that C ; < C for all i > 1 thanks to (#353). Thus we have in particular that

'yl_sl In

1 1
1+ > Cug g( +o(1>>us(zs><vlllnr

€ €D} e

Note that we also have thanks to Claim and to (LE1) that

(1 +(N - 1)0) . (4.65)

[Vue(2)] < Cypllere — 27! foralle € Dy, | (r1e) - (4.66)
We are thus in position to apply Claim [£1] for ¢ = 1 to write that, if |z| = %,

Ue (xl,s + Tl,sz) = Bl,s (rl,s) +0 (71_751) .
Combined with (@65, this gives that

2+ o(1 mlslnl— 1+ 3 Cui | <Bic(re) < (2+0(1))’yi€11n%(1+(]\771)6’).

€Dy
(4.67)
We write now thanks to Claim of Appendix A that
1 _
Bie(rie) = 271 eln— " — M !In ()‘6712,5) +0 (71,;) (4.68)
€

to deduce that

(2+0(1)) Z Cri < —viln(Ani,) < (2(N ~-1)C + 0(1)) Yiiln L . (4.69)

i€DY

Fix now i € Di. It is clear that there exists § > 0 such that D, , (6r1.) C {z1c + 710y, y € O}
for some R > 0. Thus we can write that

inf > (2 1 In— |1 Ci,
aDmi,lin(én,s)ua 2 @+l ))%E i Le +lezp* '
thanks to ([@LGH). We can also apply b) of Claim [£2] with r. = dry . thanks to Claim and to
the fact that =5 > 2 7] " + o(1). This leads to
T

1,6

1+ Z Cl ) < Bi,E (57’115) +o (’Yz_,al) .

s€ ZED*

(2+o0(1)) 712

We have that

B (0r1e) =27, 'n ~Vie 1l ()\E'yze) +O(’y;;) .

T1,e
This leads together with (£69) to
Ve
2
1

(2—1—0(1))71511&— 1+ Y ¢ g(z —1)é+2+0(1))7;811n it

ieD* l,e

NS
This is clearly impossible if C ; = 0. Thus we have proved that
for any i € D}, C1; > 0. (4.70)



40 OLIVIER DRUET AND PIERRE-DAMIEN THIZY

This implies thanks to (£.53) that r; . > r1 . for all i € Df. Then we can apply Claim [.1] to all

i € Dy thanks to Claim 9 and to what we just said to get that, for any Z; € Dy,

Vie (Ue (X1, +711,e%) — Bie (r1,)) = 2In ———— 4+ H; in Clloc (Dz, (1) \ {Z;}) ase =0 (4.71)

|£L' — jz|
where H,; is some harmonic function in Dz, (1) satisfying H; (Z;) = 0 and VH,; (z;) = 0 (note
here that we assumed that 1 . — 0 as ¢ = 0). Let us set now

Ve (1) = Y16 (e (16 +716%) — Bie (1)) -
Thanks to Claim L9 we have that
|Vv.| < Cp in QF
for all R > 0. This clearly proves that (v.) is uniformly bounded in any Q. Since

_ 2 Ue (X1 c+7T1 e 2
Ave = /\€r1,571,€f€ (xl,s =+ 7’1151') Ue (56175 + 7’1151') ele(T1,e471,7)

in Qf, we have that
|Ave| = O ()‘Eris’yl,a (31,5 (r1,e) + Vfg) 631*5(”*5)2) in Qép” .
Thanks to (L6, we know that
Aeri . < Coyp 2em1meBrelrne)
so that
|Av:| = O (’Yf; (Bie (1) + ’Yf;) eBl’E(”’E)Q*“’EBI’E(”’E)) =o(1) in QF

thanks to Claim Thus we have by standard elliptic theory that

ve = v in Cj, (R?\Sy) ase — 0 (4.72)
where vy is some harmonic funtion in R? \ S; which satisfies, thanks to Claim EE0]
C
[Vuo| < Tl for |z| large. (4.73)
x

Thanks to ([TT]), we know that

’Uo(m) = 201,1' In + Cl,iHi + B; in D3, (1)

for all ¢+ € Dy where B; is a constant given by

fo (961) . 71,
0 +2C,;InCh; + 213% 1— 22 )In ()\E'yigrig) .

Bi - (1 - Cl,i) (1 + In
1,6
Thus we have that

1 1
vo(z) =2In— + 2 Z Criln ————+wp

ol T e T =]

where wy is harmonic in R? and satisfies thanks to (Z73)) that |[Vwo| < C|z|~! for |z| large. This
implies that wyg = Ag for some constant Ag. Thus we have that

1 1
vo(x) =2In— +2 Y Ciiln———+ 4. (4.74)

I T
Moreover, the H;’s of (LTI are given by

1 1
’Hz(x):21n——|—2 Z Cl,jlni—i—AO

P e PR
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and they satisfy VH,; (Z;) = 0 for all ¢ € D;. Note that, by the definition of r; . and since we
assumed that Tli — +00 as € — 0, we know that Dy 7é (). Let us pick up i € D such that

|#;] > |Z;| for all j € D}. It is then clear that

- — T,
(VH; (@), 2;) = -2 -2 Z Clz . Z>§*27
JEDE, j#i |zz - z]|
which contradicts the fact that V#H,; (;) = 0. This is the contradiction we were looking for and
this proves that, if r; . — 0 as ¢ — 0, this first case can not happen, that is we must have
di—0ase—0. '

CASE 2 - We assume that d; . — 0 and that TC}: —0ase—0.

We let y € Qf for some R > 0 and we set x. = 21, +71.2. Since d; . — 0 and 1. — 0, we are
in situation b) of Claim Indeed, as in Case 1, we have that

|$5 - -Ti,al

Hie

— 4ocase —0foralli=1,...,N.

N
we(zs) = o)+ S TEWg e o)

i=1 ,YZ,E

Y
O In{ —>2— 429
' (zEZA'Y <|z1€z€|+%s n<|xi76$€|+ )>>

d - _
+O (’LGZB ds “I’Edi,s (’Yi’glﬂi’a T /71-75281.’8))

where A is defined as the set of i € {1,..., N} such that |z; . — 2| < s, + 0(d:) and B as
its complementary. Noting that |x; . — z.| > Cr; . for all i € {1,..., N}, we have that for any
1€ A,

1 i e Sie -1
R A L — 1 — 0 192 = :
Vi,e |$ia_$a|+%8 n<|xi7g_:1/'g|+ ) 0(71,8)

_de
da + di,zs

and, for any i € B,
('YZ;/M,s + 'Yi_,fsi,e) =0 (7;51) :
Thus we have that
N
47 4+ o(1 _
ue (ze) = e () + Z T()g (Tie,2e) +o0 (’Yl,;)
i=1 ke
thanks to [@54)). For i € Dy, we have that |z; . — 2| = 0(dy ) so that, thanks to ([EI2),
1 2d1 ¢
0,€ =—(n o1
G (a1000) = 5 (222 4 0(0).
For any i & Dy, we know that
G (Tie; @) = G (Tie, 21,¢) +0(1)
thanks to (G.I12). Thus we can write that
2+o0(1 2d _ _
Ue () = e () + Z O (hl 178) + Z 'Yi;g (Tie,z16) + O (71151) .

; r
ey, b Le i@Dy

)
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If \p # 0, then we can write thanks to the fact that ¥, = 0 on 9 and to ([@350) that 1. (x.) =
O (dy,). This leads with Claim [44] to . () = O ('yfgl) If A\g = 0, then we can use ([L.51) to
arrive to the same result. Thus we finally get that

d d
— Y O (ln 1’€>+ > vi,;g(:ci,s,zl,s>+o(m,§ (ln 1)) . (4.75)
l,e X
iZD1

ieD* T,e T1,e

ue (xe) =

Note that C; ; < C for all i > 1 thanks to @53). Thus we have in particular that

dy d d ~
271 ey [ Z Cii| < ug(xg)—l—o(%_;lni) < 29y tn =2 (1+(N—1)C) .
T1,e . ’ T1,e ’ Tl,e
i€DY
(4.76)
Here we used ([612) to estimate G (x; ¢, 1) for i ¢ Dy. Note that we also have thanks to Claim
and to (£57) that

[Vue ()] < Cvf,; |1,e — x| for all z € Dy, _ (r1,c) - (4.77)
The proof now follows exactly Case 1, from [66) to the end. We will not repeat it here. [ )

di,e
CASE 3 - We assume that d; . — 0 as ¢ = 0 and that —— — L as ¢ — 0 where L > 2.
T1,e

We are thus in the case where, after some harmless rotation,
Qp =R x (=00, L) .
We let y € Qf for some R > 0 and we set 2. = 21, +71,cy. Since di . — 0 and 71 . — 0, we are
in situation b) of Claim L8 Indeed, as in Case 1, we have that
|Te — @ie|

Hie

— 4ocase —0foralli=1,...,N.

Thus we can write that

ue (ve) = ¢a($6)+zwg($i,aaxa)

i1 Yi,e

S
O In | —25— 42
- <leZA’Y <|$18_$6|+716 n<|xi,e_$a|+ )>>

d — —
+0 <ZGZB dE_;’_igdz,‘E (Vi,al,ui,s + 'Yi7525i,5)>

where A is defined as the set of i € {1,..., N} such that |v;. — 2| < s; + 0(d:) and B as its
complementary. As in Case 2, we have that

—1_ Hie 2 Sie -1
Yie |$ia —$g| +’71 n <|-Ti,e _$e| + ) 0(71,5)

de
ds + di,s
for all © € B. Thus we have that

for all i € A while
(’7;51/'[/7:,8 + ,yi_’fsi,&) =0 (’7:51)

Ug (-Ta) = we (-Ta) + Z Mg (-Ti,f:‘a $5) +o (71_,;) .

i—1 i
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If ¢« € Dy, we have that

1 Ui — Y
G (wie, ) = %mﬁ +o(1)
where

R being the reflection with respect to the straight line R x {L}. Here we used (6.12). If ¢ & Dy,
we have that

G (Tie,xe) = o(1)
thanks to (G.I2). Thus we can write, remembering (£54]), that

ue (22) = e () + 2970 3 Cuin '%’%*' fo(il) .

1€Dq T~ y|

Using ([£350]), we know that
Pelze) , 4 (L —y2)

T1,e
where y = (y1, y2) for some A independent of y. Moreover, we have that A > 0 by the maximum
principle since Ay, > 0 in © and . = 0 on 9. If A\g # 0, we can use Claim [£4] to deduce that

Y1,e¥e () = B (L — y2)
for some B > 0, independent of y. If \g = 0, then (@57 implies that
Y,eP1,e (2e) = O (Aer1e) = o(1) .
Thus, up to change the B above, we can write that
9i — vl
|1Zi —

Y1,ete (Te) = B (L —y2) + 2 Z Ch,iln

1€Dy

ase — 0. (4.78)

Then, by the equation satisfied by wu., it is clear that

’UE(:C) = M,elUe (551,5 + 7’1,51')

has a Laplacian uniformly converging to 0 in any QF. Thus, by standard elliptic theory, we can
conclude that

Yrette (@10 +r1ey) = B(L—y2)+2 Y Criln Ef — Z|| inCL,(Q\S1) ase —0. (4.79)
i€D; v
Writing that

|V1/)5| <CAXcin Dzl,a (7’1,5)

thanks to ([@56), we get with Claim 4] that

[Vipe| < Cvy )‘Edii'hisl in Dy, . (71.¢)

so that we can use Claim [L.9and ([@54) to obtain that

-1

[Vu.| < Cvf,; |T1e — x| in Dy, (r1,e) -

We are thus in position to apply Claim [£Ilto ¢ = 1. In particular, combined with [@79)), we get
that

Y,eBie(r1,e) =0(1) .
This leads with Claim of Appendix A to

In ()\57"%7671275) =0(1) .
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Thus we have that, up to a subsequence,
Aefe (1) At > agase —0 (4.80)

for some oy > 0. Let now ¢ € Dy be such that the second coordinate of Z; satisfies (%;), < L
and
(%i)y > (Zj), or (%), =L forall j € Dy .
Note that such a ¢ does exists since 1 € D;. Moreover, we have that
L> (i), 2 (21), =0.
Note also that d; . > (L — (Z;)y + 0(1)) 71, so that Claim F4] implies that

2 52 2

Vi, di, . Vi,

O(1) = Aefe (71¢) 'Yi%sd?,s = 25 26 Aefe (1,6) 7%,57’%,5 > ((L - (xi)2>2 ap + 0(1)) 26
l,e Tl,e ’yl,a

thanks to (@80). This implies that Cy; # 0. Thanks to [@53), we then have that r; . > ry ..
Once again, thanks to Claim and to (L5, we see now that

-1

[Vu| < C’yifgl |Tie — 2| in Dy, (r1,c)

and that we can apply Claim 1] In particular, using ([@380), we get that

1

Yictie (Tre +710) = 2l ——— + H; —In |~ | in CL, (Ds, (1)\ {is}) ase — 0
' ’ ’ |z — 2 40T,

where #; is harmonic in Dz, (1) and satisfies VH; (Z;) = 0 (since r; . — 0 as € — 0 by assump-

tion). Now, combining this with ([@79), we know that

B [0 77—
H; = (L —x9)+2 Z ilnMJran@ithLln Qo0 )
Cl,i . A |$j_$| i
JE€D1,jF#1i

The derivative of H; with respect to the second coordinate at Z; is

o LTS @(ﬁnﬂﬂnz (%(fj>2>+2<@>2—<@->2,

(#;) = — - ~ 2 ~ ~ 2
Oxy Cri L ehs Cri \ 195 — &l |Z; — &4

Note now that
(gj)z =2L— (i'j)z

so that
OHi (i) = — B +2 Z Crj [ i)y + (%), — 2L _ (Zi)y — (%), +4(9Ei)2 L
dry " Ci , . Ciy l7; — & |25 — &4 G — &|*
’ JED1,j#i ’ Yj g J i Yi i
We claim that B B ~ ~
5 — & T E - &l
for all j € Dy with j # 4. This will imply that
OH,;
~i 0 )
g () <

all the terms above being nonpositive, the last one being negative. This will give a contradiction
with the fact that VH,; (Z;) = 0, thus proving that this last case is not possible either. In order
to prove (L8]], we first notice that

% — 57 = |3 — &7+ 4(L — (@),) (L — (35),) -
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Thus we can write that

<0
since (Z;), — L < 0 and if (Z;), — L # 0, (Z;), — (%), > 0. This clearly proves [8I)) and, as
already said, proves that this last case is not possible. o
The study of these three cases proves that the assumption r; . — 0 is absurd and thus proves
the claim. &
Note that this claim implies that
T1.—x ase— 0 withz, € Q. (4.82)
We also have thanks to Claims [£4] and that
A =0 ()
so that Ay = 0 and ug = 0. Moreover, we can transform (£57) into
IV¥ellera(m) = O (1) - (4.83)

Let us now give a simple consequence of the previous claim :
Claim 4.11. After passing to a subsequence,
)\Evia —ag ase — 0

for some

0<ap< 5 -
fo (1‘1) d(zl,ﬁﬂ)

Proof of Claim [[.11]- We already said that \. = O ('yl_f) Claim L9 with (£3X3)) gives that

N
- -1 .
[Vu.| < CZ%—; (ie + T —2i2])" In Q.

i=1

This gives in particular that
- ~1
[Vue| < C'Yl,; |z — @1

in Dy, . (d0) where &g is as in Claim ET0L Thus we are in position to apply Claim BTl to i = 1.
This gives in particular that

Y1,e (ue(x) — Bi,e (do)) = O(1)
for all |z — 21| = %. Now Claim [£8 combined with ([3S3) gives that
do
Y,ete () = O(1) on OD,, , 5
so that the above leads to
Y,eB1e (d0) = O(1) .
Since
’71763176 (60) =-—In ()\6/71276) + 0(1) )

we obtain that
In (/\8’7%,8) = 0(1) :
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This clearly permits to prove the claim. &

Claim 4.12. We have that r; > 61 for some 6 >0 foralli=1,...,N.

Proof of Claim [[.19- We shall prove it by induction on ¢. This is already proved for ¢ =1 in
the previous claim. Fix 2 < i < N and assume that

rje > 61 >0forall j <i. (4.84)
In particular, after passing to a subsequence, we have that
Tje—x;ase — 0witha; € Q. (4.85)
Assume by contradiction that
rie —0ase—0. (4.86)

By (£35), this implies that Cj; = 0 for all j < i so that
Yje =0(vie) forall j <i. (4.87)
We shall now proceed as in the proof of Claim and distinguish three cases.
We let in the following

D: = {] >4 s.t. |£L'i1€ — ZL']'18| =0 (Ti,s)} and D; = D: U {’L} . (488)
After passing to a subsequence, we let
o B T L I o) = SFU{F =
S = {:cj &11_1% - ,J€ Dz} and §; =S U{z;, =0} . (4.89)
We also let
Qi-={yeR?st. 2.+ 1.y €Q} . (4.90)

Note that, after passing to a subsequence (and up to a harmless rotation if necessary), we have
that

d;
Qo = R? if == 5 +ooase—0
Tie
Qi e — Qo as € — 0 where (4.91)
d;
Q=R x (—o0,L) if == = Lase—0
Tie
Here d; . = d(z;¢,00), as defined in [£F). For R > 0, we shall also let
1
0l = (2 NDo(R))\ | Ds, (E) . (4.92)
JED;

CASE 1 - We assume that d; . /4 0 as ¢ — 0, meaning that, after passing to a subsequence,
Tie — x; as € — 0 with z; € Q.

We let y € Q{f for some R > 0 and we set 2. = x; . +7;y. Sinced;. A 0andr;. = 0ase =0,
we are in situation a) of Claim L8] Note indeed that
|ze — ;|
Hije
It is obvious if j < ¢ since r;j . > d; > 0 and r; . — 0 as ¢ — 0. It is also obvious if j € D; since
we clearly have in this case

—4ocase —0foral j=1,...,N.

|Ze — @j.e _ |Ze — @jiel Tie Tje

Mje Tie Tje Mje
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|ze

e = @] >R+ 0(1), 77:1_5 >2|%;| 7" +o(1) for j € D and equal to 1 if j = i, and

Tie J,€

with
r
—L= 5 +00 as € — 0 thanks to assertion c) of Proposition ZIl While, if j > i and j € D;, we
Hj.e

can write that

lee = 2jel > (1+0(1))w > (24 0(1) 25 5 yooase 0.
Hi,e Hje Hje
Thus, applying a) of Claim [8 we can write that

ue (ze) = e (e JFZ (47 + o( ))’ijfslg(zj1€7x€)

7j=1
N 0 ..
10 (yf1¢+y,—21n<¢+z>) |
(; P mje —we| o E |7, — |
For j < ¢, we have that

(47T + 0(1)) 7] eg (zJ 87'18) - 471—71 slcl Jg (SCJ,ZL'Z) +o (71 5)
thanks to the assumption that z; . — x; with x; € Q, to ([L80) and to (£52), [@54). We also
obviously have that

3, -
v 1 g€ + %,3 In (

“Tje — x|

S5 —
) —olil)

|, =
We also know thanks to (£83) that ¢ (z:) = o (7{51) For j > i, we can proceed exactly as in
Case 1 of Claim to finally obtain that
i—1
ue () = 47T'yi€1 chng (xj,x;) +0 ('yfsl)
j=1

1+ Y Ciy (4.93)

JjeD}
+ > (rto(1) 7,00 (wiewi) + O (7))
Jj>1i, j€D;

This gives in particular that u, > 071_761 on 0Dy, _ (r;,) for some C' > 0. Using b) of Claim E.2]
we deduce that

+(2+0(1)7, .} In

i€

CY < Bic(rie) +0(vl) == Im(Ariri) + O () -
Since y1,e = 0 (Vi,e), see [ERT), we deduce that
)‘6%'2,57%'2,5 —0ase—0.
Thanks to Claim [TT] this gives that
VieTie =0(V1,e) - (4.94)

We apply now Claim combined with ([£83]) and this last estimate to write that

Vue ()] < Oyt wie — 2|~ + Cyil <Oyt wie — a2l
in D, . (ric). Thus we can apply Claim Tl to ¢ : this gives that, if [z| = 1,

Ug (-Ti,e + ri,ax) = Bi,f:‘ (Tiﬂf) +0 (’yi_,sl) :
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Combined with (£.93)), this leads to
i—1
Bi,a (ri,a) = 47‘["71_7; Z Cng (mj, mi) +o0 (’71_7;)

j=1

1
1 _
+(2+0(1))~; lnn’ 1+§ Cij

Jj€D;
+ Z (47 + o(1 ’y;‘glg(xi,E;xj,a)+O(/7iTsl) :
7>, j¢Di
Since
Bi,s (ﬁ,s) = 'Yl € 'In ()‘671 Ty s) +0 (71'7,51) s
this leads to

i—1
—In(A\APor?s) = vl (47D CuyG (g, @) + of1)
j=1
toln—— (14 Y ¢ (4.95)
1 i .
Tie ; 7
: jepr
1
+ Z (47 + o(1 Czjg(xzs,z]€)+o<1n : ) .
3>, €D Tie
Thanks to Claim 21Tl and ([£87), we deduce that
i—1
4ﬂZCl,jg(xj,xi)+o(1)+ :16 - Z Cii+o(l)] <0. (4.96)
J=1 i€ i€ jeDr

Let k € D}. It is clear that there exists § > 0 such that 0D, _ (67c) C {@ic + ricy, y € U}
for some R > 0. Thus we can write that

inf Ue > C'yl et 271 In

BDIkYE(Jn,E) 7"17&-

1+ ) Cij+o(1)

JeD;
thanks to ([L93). We can also apply b) of Claim .2 with r. = dr; . thanks to Claim L3 and to
o(1). This leads to

Tk,e

1
Cyre 29,0 mn— | 1+ > Cij+o(1)

“e JED;
< Bj. (6ri15>+0(71;;) = 1111 ()\ i eV, a) JrO('y,;;) .
Combined with (£95)), this gives that
i—1
1 _ _
Cyie +29; ) In — |t Y Ciy+o)] < plverit | 4rd ] CuiG (g,m) + (1)
i,e jeD: =1

1 I /s
+O (’Yks TZE) _7k7€1n<72€ .
s i€
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Assume by contradiction that v; . = o (yx,-). We then have that

Cviel + 2%-;1 In :

i€

1

L4+ Y Cij+ol) | <olyl)+o (%-jln ) ;

; ’ ’ Tie

JED; ’
which is absurd. Thus we have proved that

Ciyj >0 forall j € D: . (497)

Since ;—Z — 400 as € — 0 and since
and, with ([L37), that

|Zie—Tje]

— +oo for all j < i, we are sure that D} # ()

ZCM>O.

JED;
Then (£96) leads to a contradiction. This proves that this first case is absurd. [ )

CasE 2 - We assume that d; . — 0 and that 7= — 0 as € — 0.

i,€

We let z; = 1in% Z;c. Note that z; € 002. We let y € Qg’” for some R > 0 and we set x, =
E—>

Tie + Tiey. Since dj . — 0 and r; . — 0, we are in situation b) of Claim .8 Indeed, as in Case
1, we have that
|Te — ;|

—4ocase—0forall j=1,...,N.
Kje
Thus we have that
N
47+ o(1
ue (ze) = e (xe) + Z 7()g CID
=1 Vi.e
- Hje -2 Sje
e < M o 1n<7+2>>
jgél Tie |Zj,e — Tae |Tj,e — el

d - —
+0 EZB de—i—isdg (Vj,alﬂj,s + ’ijsjﬁ)

where A is defined as the set of j € {1,..., N} such that |z;. —z.| < sj. 4+ 0o(d:) and B as
its complementary. Noting that |z, . —z.| > Cr;. for all j € {1,..., N}, we have that for any
JEA,
-1 Hje ) Sje 1
P L In( ———+2 ) = ; .
Ve 7, — ] ;e (|:cj75 x| + ) 0 (%,e)
And, for any j € B,

de -1 -2 -1
Tt a Chetie t 752856 =0 (3;2) -
5 j,€
Note also that, if j < i, we have that j € B thanks to (L84 and that
de -1 —2 -1
de +dj e (’ijf Hje T Vje Sjvs) =0 (dgfyj,e) :
3,

Thus we have that

4
e (Te) = Ve () + Z %O(l)g (xj,g,xg) +o (’yii,sl) +o (df/yljfl) )
jre

j=1
We can write thanks to ([A83]) and since 1. = 0 on 9 that
Ve (22) = O (de?) -
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Then we have that, for any j < i,
G(zje, ) = —de0,G (x5, 2:) +0(de) .
And, for j > i, we have thanks to (G.I2) that

1 2di8 1 T

r
) - ] ) | %€ o) %€ [0) di
G (wjere) 27 . Tie + 27 . |zj.e — xe] + (di,s) +0(dic)

if 7 € D; and that
G (@je,2e) = G (Tie, wje) + 0(1)
if j ¢ D;. We thus arrive to

ue (ze) = dic ZCLJ —0,G (zj,2;))

2, .
Z Cij+o(l) |2 (ln d—l) (4.98)
; .

je'Dl ,€
+ ) (@Ar o) lG (wiewie) + o (dierit) -
7>, j¢D;s

This gives in particular that u. > Cdi,gvig on 0D, . (1) for some C' > 0. Using b) of Claim
2 we deduce that

Odz 871 € S Bz 3 (rz 8) + O (71 € ) _'YZ ! ln ()‘871 € z E) + O (’yz_,sl) :
Thanks to Claim ETT] this gives that
di i el de z
C 187 ;€ S _ ln ’y £ E + 0(1) )
T,e 71 ,€

Since f?—s — 400 as € — 0 in our case, this implies that

VieTie =0(M,e) - (4.99)
We apply now Claim combined with (£83), [@84)) and this last estimate to write that
[Vue (z)] < C’Yz'—,sl |i,e — x| + 0’71 1< C/%,sl |i,e — 95|_1
in Dy, . (ri,). Thus we can apply Claim Edlto i : this gives that, if |z| = 1,
Ue (Tie +1iew) = Bie (rie) + 0 (1)) -
Combined with ([Z98]) and ([@399)), this leads to

Bie(rie) = ’71 chj —0,G (zj,2i)) +o(1)

2dz €
Y Cij+o(l) ] it (m —= ) (4.100)
: -

JED;

+ Z (47 + of ’yjjelg (Tie, Tje) -
3>, j€Di
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Since

2 g2 .
B (rie) = _%,;1 In (Agvﬁgrzg) +0 (%;1) _ _%,;1 In (71,52 'L,s) _ 2%';1 In (;z_a) 10 (%;1)
i,

71,8

thanks to Claim [£.I1] this leads to

2 42 d; =i il
71n 'LE 2,€ — 47{'M E Cl,j (78yg (:Cjaz’b>)+0(]‘>
71,8 Tie j=1

> Cij+o(1) <1n f) (4.101)

jED?
T Z (47 + o %'_76 G(Tie mje)
J>1,j¢D; ’YJ’E

from which we can infer that, for ¢ small,

Tie V.e
2 —— In - > 27 C1. (—0,G (zj,2; 4102
dicVie (diysfyiys) Z 15 ( J» i) ( )

d;
> Cuyrolt) | 72 ()
1,€ |1, 1,

JED]

Let j € Dy. Note that, since i’f’: — +oo as € — 0, we know that Df # ). There exists § > 0
such that 9D, (0rie) C Q{f for some R > 0. Thus we can write that

inf Ue > (1 + 0(1))Bz‘,a (Tie)

oD, O0rie)

e (
J.€
thanks to (£98) and (LI00). We can also apply b) of Claim 2 with r. = dr; . thanks to Claim
and to the fact that — '+ o(1). This leads to

e
Bj. (rie) > (1 + 0(1))B¢1E (rie) -
Since
Bj: (brie) = =772 n(Aerioril) + 0 (v;2)
and
Bie (rie) = =2 m(Arforil) +0 (7))
thanks to Claim LTIl we obtain that
Ve (Arieris) + 0 (30) = =(L+0(1)y 2 In (Arferie) +0 (%)) -
This implies since v; . = O (7j,c), see ([E54), that
In (Aen?or?e) (1+0( ) — %’8) >-C
Vi.e
for some C' > 0. Since — 0 as e — 0, we get with Claim 4] that \.rj 77, = 0ase — 0
and the above implies that C;; > 1. Thus we have obtained that

Ci; > 1forall j €D} . (4.103)

Tzs
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Thanks to ([@5H), we know that r;. > r; . for all ¢ € D}. Using Claim 9] (£83) and {84), we
thus obtain that

|VUE|SC /716+/7162|$.75_
J€D;

in Dy, . (Rric) for all R > 0. Thanks to (£39), this leads to
Vue| < Oyt Y wje —af
JED;
in D, . (Rr;.) for all R > 0. We are now in position to follow exactly the end of the proof of
Case 2 of Claim We can prove that

Vie (Ue (e + 7 c0) — Bic (1)) — 21n + 2 Z Ci il
JED;

+ Ao

|zf:cj|

in Cl. (R*\'S;) as e — 0 for some constant Ay and then get a contradiction with Claim ET] for
j € Df (which is non-empty) such that |Z;| > |Zx| for all & € D}. Note here that we assumed
that ;. — 0 as € — 0, see (A80). This proves that this second case can not happen either. &

d; .
CASE 3 - We assume that d; . — 0 as ¢ — 0 and that — L as ¢ — 0 where L > 2.

Tie
We are thus in the case where, after some harmless rotation,

QO =R x (—OO,L) .
We let y € QF for some R > 0 and we set x. = x; . + r; .x. Since d; . — 0 and r; . — 0, we are
in situation b) of Claim [£.8 Indeed, as in Case 1, we have that
|Te — ;]

Kje

— 4oocase—0forall j=1,...,N.

Thus we can write that

ue (ve) = ¢6($6)+Z47T+70(1)g(95j,6a$6)

=1 Vi.e

_ Hj.e 2 Sj,e
O P L In{ ———+2
* Z <’)’]7E |7j,e — Te] e <|$j,8 — x| * ))

jeEA

Z de —1 —2
+0 de +d; (7j18 Hie T Ve Sjvf)

: 7,E

where A is defined as the set of j € {1,..., N} such that |z;. — x| < sj + 0(d:) and B as its
complementary. As in Case 2, we have that

-1 Hje ) Sje 1
3¢ |20 — e e n(|xj€z€| + ) 0('7%5)

for all j € A while

d -1 —2 -1
T a. Oiekie tesie) =o0(7)
for all j € B. Note also that, if j < i, we have that j € B thanks to ({84 and that

de

d. + dje (’Yj_,glﬂj,s +7j_7525j,€) =0 (dﬂ;;) =0 (Ti,E'Y;El) .
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Thus we have that
N
47+ o(1 _ _
Ue (xs) = e (xs) + Z ng (CCi,s; zs) +o0 (’Y@El) +o0 (7’1',871,;) :
i=1 1,€
We can write thanks to (A83]) and since 1. = 0 on 9 that
1/)6 (xs) =0 (7’1',87177?) .
Then we have that, for any j < 1,
G(zje, ) = —d0,G (zj, ) +0(rie) .
And, for j > i, we have that

L g —yl
. = In 22 1
g(‘rjﬁ’xf) It n|iz'j*y| +0( )

if j € D; where
4; = R(%5) ,
R being the reflection with respect to the straight line R x {L}. Here we used (612). At last,
for j > i and j € D;, we have that
G (zje we) = 0(1)
thanks to (GI2). This leads to

i—1
e (w:) = dndoyi Y (=C1 0,6 (,3:))
j=1
240(1) |7 —yl -1 —1
+ In = +o(v.)Fol(riey .
SERT I INUET IO s

JED;
This gives in particular that u. > Cr¢1€7;€1 on 0Dy, . (r;) for some C' > 0. Using b) of Claim
2 we deduce that
Criecvre < Bie (rie) + 0 (vid) = =7l m(Aerierie) + 0 (vid) -
Thanks to Claim [TT] this gives that

Ti,eYi,e (712767“1'2,6 )
C————<-In|——5=]+0Q1).
Ve e
This proves that
Ti,eVie = 0 (’Yl,s)

so that, up to a subsequence,

Ti,eYi,e

Vi,e

Then, by the equation satified by u., it is clear that

—+Bpase—0. (4.104)

Ve () = YijcUe (T1,6 + 75cT)

has a Laplacian uniformly converging to 0 in any Qf. Thus, by standard elliptic theory, we can
conclude that

Vi,elUe (SCLE —+ 7’1'1533) — Bl (L — yQ) + 2 Z Ci,j In |Zij _ y|
ieD; %5 =l

Using (£83), (@I04), (£109) and Claim 9] we have that

Vue| < Ol |zie —2| 7" in Dy, (rie) -

in CL.(Q\S1) ase — 0. (4.105)
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We are thus in position to apply the results of Section Bl to u. (z; + ) in the disk Dg (7). In
particular, applying ¢) of Proposition Bl and combining it with ([{LI05), we get that

YieBie (rie) =0 (1) .
This leads with Claim of Appendix A to

In ()‘87"1'2,5%2,5) =0(1) .
Thanks to Claim .11 we thus have that By > 0 in (£Z104) and By > 0 in (£I05). We can then
proceed exactly as in Case 3 of Claim to get a contradiction in this last case. o

The study of these three cases, all leading to a contradiction, proves that (£87) is absurd
when we assume ([{.84]). As already said, this permits to prove the claim by induction on i. <

We are now in position to prove Theorem We know thanks to Claim 12] that
Tie — T as € — 0 where z; € Q. (4.106)

Claim B4l then gives that A.v7. = O(1) for all i = 1,..., N. Thanks to Claim EIT and (54),
this implies that, up to a subsequence

1
V /\E'Yi,s

for alli =1,..., N with m; > 0. Thanks to Claim L8 to (@83]) and to the equation satisfied by
ue, by standard elliptic theory, we obtain that

—m; ase — 0 (4.107)

Ue
om

_____ ~- Moreover, using again (£83) this time together with Claim 9] we

N
—4m > miG (zi,7) in Cl, (2\ S) (4.108)
1=1

where S = {x;},_,
know that

N
Vue| < CVAD Jwie —a| ™!
i=1
in Q. We are thus in position to apply Claim ] for all s = 1,..., N. This gives that

Vie (Ue (e +0x) — Bic (0)) — 21n S +Hi(x) in CL. (Do(1) \ {0}) ase — 0 (4.109)

]
where H; (0) = 0 and VH,; (0) = —16 vfﬁa(cm;) Let us write thanks to Claim [£.2] that

52
Bi:(0) = %ie— 7. (1+72)In (1 + 4—2> +0 (%2)
i,€
1 —2 1 1, 07 —1
= Yie T Vie (1 + Ve ) In 3 " ie In 1 t+o (%,a )
i€
-1 -1 _ 274& 1
- Yi,e YVi,e In (fO (1'1) AE’Yi,E) Yie In 4 +o (’yi,e )
so that, thanks to (£I07),

5 fo ()
Wi,EBi,E (5) — —11’147”112 —1.

Coming back to ([I09) with this, we get that

T — @ Jo (%)
) ) In 4m12

—1in C}, (Dy, (6) \ {z;}) ase — 0.
(4.110)

1
Viete () = 2In ———— 4+ H;
’ |x — 2]
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On the other hand, using (£107) and (£I08), we also have that

N
4
Vi,ele (T) — % ijg (zj,2) in Cl, (Dy, (6)\ {7;}) ase = 0. (4.111)
7 ‘7:1

Combining (£I110) and (@III]), we get that

T—x al fo (@)

— X o (z
miH,; < 5 > = 47T;mjg(:cj,z) —2m;In P 4+ m;In p +my .
Writing
G (5,y) = 5= (In == +H(2,9)
z,y 7271_ n|.%'—y| z,y )
this leads to
m;H; (z 5xi) = 471'ij9 (zj,x) + 2m;H (x;,x) +m;In fi75f;> +m; .
J#i i

The conditions that #;(0) = 0 and VH,;(0) = 755% read as

47er<g (x5, 25) + 2miH (z;,2;) + m; In fo (@) +m; =0 (4.112)

L J VERd] 7 1y L 7 477’),2 7
J#i i
and v
1 i
47TijVyg (@, 23) +2m;VyH (x5, ;) = —Qmiffo(i:(:%) . (4.113)
o (@

J#i
This ends the proof of Theorem [[.2] up to change the m;’s as in the statement of the theorem.
¢

5. APPENDIX A - THE STANDARD BUBBLE

In this appendix, we develop the exact form of the standard bubble B. which is defined as
the radial solution of

AB, = ME_Q'yE_2BEeB§_7€2 in R? with B.(0) = 7. (5.1)
where 7. — +o00 and p. — 0 as € — 0. Note that, by standard ordinary differential equations

theory, this function is defined on [0, +00) and is decreasing.
We perform the change of variables

7,,2
t=In(1 5.2
n( +4M?) (5-2)

so that we can rewrite equation (&) as
_ / B, 24 B2_~2
e ((1-e")B) = —7—266 t+Be—e (5.3)
€

We shall need the following lemma which can be proved by direct computations :
Lemma 5.1. The solution ¢ of
L(p)=¢e"((1—e") <,0/)/ +2p=F
with ©(0) = 0 and F smooth is

o(t) = /Ot e F(s) <(1 —2e7t) (1-2¢%)In :t — 1 4 — et)> ds .
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Proof of Lemma 521 - We clearly have that ¢(0) = 0 so that we just have to check that ¢
satisfies the given differential equation. Let us differentiate to obtain that

b et—1 et —2 ,
o'(t) = / e 5F(s) (2€_t (1—-2¢*)In + = (1—2e7%) + 4e_t) ds
0 es—1 e -1

so that
t t t t t

¢ B s et —1 s e—1 e =2 s e —1
(1—e )wl(t)/oe F(s)<2 T (1—2e )lnes_lJr o (1—-2e°)+4 T ds .
Differentiating again, we get that

t t

—t / _ —t et —2 _t et —1

(1—e ) @) = e F(t)( 7 (1—2e7")+4 T )

t t

' ' -1
+/ e °F(s) (—2@"5 (1-2¢7")(1-2¢*)In es 1 + 8¢ — Se_te_s) ds
0 e

= e 'F(t) —2e (),
which proves the lemma. O

Let us define
et —1

wol(t) = /o e ® (s —s°%) <(1 —2¢") (1-2¢°)In o1 +4 (e — et)) ds (5.4)

so that, by lemma [5.7],

L(po) () =t — 2. (5.5)
We claim now that
lpo(t) +t] < Co and py(t) — 1 as t — +o00 (5.6)
for some Cy > 0. Let us write that
t t t
wol(t) = / e ® (s—s%) (2@"5 (1—-2¢*)In ¢ -1 + et =2 (1—2e7%) + 4e_t) ds
0 es—1 et —1

et —2

t
- 1) / e ® (s - 52) (1 - 26_5) ds
Jre_t/ e’ (s - 52) (2 (1 - 26_8) In + 4) ds

0 es — 1

b
- <2e_t1n(et1)+e _i> (A+t+e%) e — 27 1)

= (Qe_t In (et — 1) +

+0 () e
= —1+0((1+t*)e™) .

This proves the second part of (&6l by passing to the limit ¢ — 400 and the first part by
integration.

We set now .
Bs(t) = Ye — ’7_ + 7;3@0 + Rs . (57>
1>
Claim 5.1. There exists Do > 0 such that
|RL(t)| < Dory=® for all0 <t <~2 —T.

where T. is any sequence such that T. = o (y.) and ye=T= — 0 as ¢ — 0 for all k.
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Proof of Claim [51 - Fix such a sequence T.. Let Dg > 0 that we shall choose later. Since
RL(0) = 0, there exists 0 < t. < 2 — T. such that

|RL(t)| < Doy® for all 0 <t < t. . (5.8)
Note that this implies since R.(0) = 0 that
|R.(t)] < Doyt forall 0 <t < t. . (5.9)

We will prove that, for some choice of Dy, this t. may be chosen equal to 2 — T., which will
prove the claim. Now, assume this is not the case, then, for the maximal ¢, such that (8] holds,
we have that

|RL ()] = Donz” . (5.10)
This is the statement we will contradict by an appropriate choice of Dy. Let us use (53), (5.5
and (B.7) to write that

L(R.)=F.

where ) B
Fs _ _2562t+B§*’752 + 2R€ _ 7;3 (t o t2 o 2@0) )

78 ,YE

For 0 <t < min {t.,T.}, we have that

t? _ t _
2t+B§7§?+2%Rs+2782<1¥) wo+o0 (%)

€ €

and that

B _ _ _
'7_26 = Ye ! — Ve 2t+75 5<PO+0(75 6)
€
thanks to (B.6) and (B.9). Thus we have in particular that
2t2 _ _ _
|2t + B2 — 92| < Pl + 2Dyt + 2977 (Co+1) + 0 (727) = o(1)
€

again with (50) and (59). We can write that

IN

‘e2t+B§fv§ —1—(2t+ B2 -+?2) 2 (2t + B — %2)2

IN

207, (¢ + (Co +1)°)
for all 0 <t < min{t., T} for € small. Coming back to F_, this leads to
|[Fe| < Dy (1+t)~7°

for all 0 <t < min {¢., T.} where D; depends on Cy but not on Dy. We can use the representation
formula of Lemma B5.] to deduce that
t t t
—1 -2
RO < Do [ e (145 e
0

d
es—1 et—1 s

2¢~t (1 — 26_8) In (1 — 26_5) +4e7t

for all 0 < ¢t < min {7%,t.} where Dy depends only on Cy, not on Dy. Up to choose Dy > 2Ds,
we get that t. > T. thanks to (EI0). Moreover we have that

|RL(T2)] < Do (5.11)

From now on, we assume that t. > T.. For all T. <t < ~2 —T., we can write that

t2

|Fe(t)] < Cree®
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for some C > 0, depending on Dy and Cy. Then we write that

t 52_5
RL(t) — RL(T.)| < O /

TE

t i—s
< C%/ e “ds

B <T617 )
oo
o)

= 0 ('yse*%Tf) =o0 (7;5) .
Combined with (5I1J), this gives that
[RL()] < Danz 40 (127) -

This proves that (&.I0) is impossible, up to choose Dy > 2D5. This ends the proof of this claim.
.

If we want to push a little bit further the estimates, we can get

et—1+et—2
es—1 et —1

2¢~t (1 — 26_5) In (1 — 26_5) + 4e7t ds

Claim 5.2. There exists Co > 0 such that

t t _
Be =7+ — + —| < Covl?
v Ve

€

for all()gtgfy?.

Proof of Claim [52 - Tt is clear that it holds for any 0 < t < 42 — T, for 7. as in Claim .11
This is a consequence of Claim [B.1] and of (5.6). We also know that

. 1 T
B.(V?-T)==—-—4+=10(% . 5.12
€ (76 E) ’YE ’YE 753 (’Ye ) ( )
and that ) )
Bl(y~T:)=-— -5 +0(") . (5.13)
e Ye

Let us integrate twice the equation (53) between 752 — T, and t, = 752 —ap for0 < a, <T. to
write that

o [t 1
Bo(t) = Be(-T)+B.(2-T) (1- " ) (S — (5.14)

erd-Te — 1

7370‘5 te
—%/ ln(et 1)Be<t>ef+Bs“>2-ﬁ dt .
Ve ~v2-T. et —1

Using (.12 and (EI3), and remembering that a. < T. = o (), we obtain that

B B O 5 1 ’staal etg_l B t+Bg(t)2—'72
E(ta)—')/a_i—ry_g)‘f' (%)_7_3 R b (e sdt.  (5.15)
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Assume that the statement of the Claim holds up to t.. If we are able to prove that, under this
condition,

752_0% te 1
/ In <e ) B.(t)e!tB=(0" =72 gt = (1), (5.16)
,

t_
2T, & 1

then the argument already used in the previous claim will conclude.
If

< Covy;?

t t
B€77€+_+_3
0 v

€ €

for all 0 <t < t., then we can write that

te 2_ .2
In (eet — 11) Be(t)] e P2 =0 (77 (14 5%) e7)

in [%2 - T, te} with ¢t = 42 — s so that it is easily checked that

7527&5 etf —1 B 2 2
/ In < 7 ) B.(t)e!T B0 =7 dt = O (v .
.

t_
r \ €

which ends the proof of this claim. O
Claim 5.3. There exists C; > 0 such that

|BL(t) + 71| < Oiv®
for all 0 <t < ~2.

Proof of Claim [223- Let us start from the fact that
et t 2 2
BL(t) = —2 / Bg(s)eSJrBE(S) e ds
0

€ ¢ et —1

obtained by integrating (B.3]). This leads to

e ®ds.

_ _ et ¢ 2_ .2
|Bé(t>+7€1‘§7€26t_1/0 ‘BE(S>625+BE(S) ’Yaffys

Let us use Claim [5.2] to write that
s2 S +fy ﬁ,s
< C7e (673 — 1) e S+ CT—Ee?

Ve

for some C > 0 independent of € and of 0 < s < 752. Thus we get that

et tros2 - t 2
2 —1)e*ds+CyZ 27 ds
e1571/0 (6 )e s+ O, etfl/o (s+7e)e s

Arguing as above, one gets that

et tyos2
— / (673 — 1) e *ds < Cry 2
€ = 0

t 2

t S —_a
¢ 1/ (s+7.)e? “ds < Cr.
0

et —

for all 0 <t < ~2. This permits to end the proof of the claim. &

|BL(t) + 7 < Cyt

and that
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6. APPENDIX B - ESTIMATES ON THE GREEN FUNCTION

We list and prove some useful estimates on the Green function of the Laplacian with Dirichlet
boundary condition in some smooth domain 2. We fix such a two-dimensional domain and we
let G (z,y) be such that

ALG(x,y) =0, with G (z,y) =0if x € 90 .

It is well known that G is symmetric and smooth outside of the diagonal. Except on the disk of
radius R where G is explicitly given by

1
G(z,y) =—In+—m5—
&= g & —y?
and so where all the estimates below follow from explicit computations, we need to be a little
bit careful to estimate the Green function for various x and y.
We know that

1 1
= ln——— 1
where . .
AgHy(z) =0in Q and H,(z) = —o- 1nm on 0} .
First, if y € K for some compact subset K of ), we clearly have that
[Hy ()] < Ck and |[VHy(z)] < Ck (6.2)
for some Cx > 0 for all z € 2 so that
1
1 <C
g(z,y) 27Tn|.’17—y|‘_ K
1 z—
27 |z —y|
|Vfﬂg (Z',y)| < CK |£L' - y|71 )
1. lz—y
_ ] < _
G (5:9) G (29) - g | < Cicla = 5

for all z,y,z € K CcC Q (distinct points).
We let now (ye) be a sequence of points in 2 such that

de =d(y-,00) > 0ase—0. (6.4)

We let now . € R? be such that

Je =27 (Ye) — ye (6.5)
where 7 is the projection on the boundary of Q. Note that 7 (y.) is unique thanks to ([G.4]) and
to the fact that Q is smooth. Moreover, we have that

Ue = Ye + 2d.ve (6.6)
where v, is the unit outer normal of 92 at 7 (y.). We let now

|z — el

1 .
g(‘rayé‘) 2ﬂ' n|$*y5| +HE(‘T) ( )
where H, is harmonic in Q and satisfies
. 1 Y
Ao () = —Lm 220 a0 (6.8)

27 |x — ye|
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It is easily checked since Q € C? that

A (@)] < Cad.

for some Cq > 0 independent of € and for all z € 9€2. Thus we have that
‘ﬂg (z)’ < Cqd. in Q. (6.9)
It is also easily checked that
‘VT“rla (m)’ < Cq (6.10)
for all 2 € 92 where VT denotes the tangential derivative. Thus we have that
’Vﬂg (:c)’ < CQ#M in Q. (6.11)

Let us give some useful consequences of (G.9]) and (GIT)). Let y. be such that d. = d (y.,9Q) — 0

as

¢ — 0, then we have that for any sequence (x.) in 2

d

gxg,gzO(ie) ifd. = O (Jxe — ye

(e, Ye) P— (Jze — yel)

1 2d. |xe — ye| ) B
G(ze,ye) = 5 In ER— + O < a ) +0(d.) if |ze —y| = 0(d:)
(6.12)
d. L

IV2G (22, y:)| = O (m) if de = O (|ze — ye|)

1 1
oG (@ ye)| = — - if 2. —y.| = o(d
|V g(xs y€>| 2ﬂ_|$€ _y6| +0 <da) 1 |$€ y€| 0( s)

These are the only estimates which were used in this paper.
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