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MULTI-BUMPS ANALYSIS FOR TRUDINGER-MOSER NONLINEARITIES

I - QUANTIFICATION AND LOCATION OF CONCENTRATION POINTS

OLIVIER DRUET AND PIERRE-DAMIEN THIZY

Abstract. In this paper, we investigate carefully the blow-up behaviour of sequences of
solutions of some elliptic PDE in dimension two containing a nonlinearity with Trudinger-
Moser growth. A quantification result had been obtained by the first author in [15] but many
questions were left open. Similar questions were also explicitly asked in subsequent papers,
see Del Pino-Musso-Ruf [12], Malchiodi-Martinazzi [30] or Martinazzi [34]. We answer all of
them, proving in particular that blow up phenomenon is very restrictive because of the strong
interaction between bubbles in this equation. This work will have a sequel, giving existence
results of critical points of the associated functional at all energy levels via degree theory
arguments, in the spirit of what had been done for the Liouville equation in the beautiful
work of Chen-Lin [8].

1. Introduction

We let Ω be a smooth bounded domain of R2 and we consider the equation

∆u = λfueu
2

in Ω, u > 0 in Ω, u = 0 on ∂Ω . (1.1)

where ∆ = − ∂2

∂x2 − ∂2

∂y2 , λ > 0 and f is a smooth positive function in Ω.

This equation is critical with respect to Trudinger-Moser inequality. Indeed, the nonlinearity

in eu
2

is the best one can hope to control in dimension 2 by the L2-norm of the gradient. More
precisely, we let H1

0 (Ω) be the standard Sobolev space (with zero boundary condition) endowed

with the norm ‖∇u‖22 =

∫

Ω

|∇u|2 dx. Trudinger proved in [40] that

∫

Ω

eu
2

dx is finite for any

function u in H1
0 (Ω). Moser was then a little bit more precise in [35], proving that

sup
u∈H1

0 (Ω), ‖∇u‖2=1

∫

Ω

eγu
2

dx < +∞ if and only if γ ≤ 4π . (1.2)

Solutions of equation (1.1) are in fact critical points of the functional

J(u) =

∫

Ω

feu
2

dx (1.3)

under the constraint

∫

Ω

|∇u|2 dx = β for some β > 0. The λ appearing in (1.1) is then the Euler-

Lagrange coefficient. This functional is well-defined on H1
0 (Ω) thanks to Trudinger [40]. It is also

easy to find a critical point of J if β < 4π in the constraint thanks to Moser’s inequality (1.2) :

these critical points may be found as maxima of J under the constraint

∫

Ω

|∇u|2 dx = β < 4π.

However, as studied by Adimurth-Prashanth [2], for β = 4π, finding critical points is more
tricky since a lack of compactness appears in Palais-Smale sequences at this level of energy.
Nevertheless, it has been proved by Carleson-Chang [6] for the unit disk, by Struwe [37] for Ω
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close to the disk and by Flucher [18] for a general Ω that there are extremals in Moser’s inequality
(1.2) for γ = 4π, meaning in particular that there are always critical points of J for the critical
value β = 4π. Note that existence of critical points for β slightly larger than 4π has also been
proved by Struwe [37] and Lamm-Robert-Struwe [20]. Struwe [38] also found critical points of
higher energy (for some values of β between 4π and 8π) when the domain contains an annulus (in
the spirit of Coron [10]). We refer also to the recent Mancini-Martinazzi [31] for an interesting
new proof of the existence of extremal functions for Moser’s inequality in the disk without using
test-functions computations.

In the last decade, tools have been developed to study sequences of solutions of equation
(1.1) and in particular to understand precisely their potential blow-up behaviour. This serie of
works started in the minimal energy situation (β close to 4π) with Adimurthi-Struwe [3]. Then
Adimurthi-Druet [1] used this blow-up analysis to obtain an improvement of Moser’s inequality
(completing the result of Lions [28]). In the radial case (that is in the unit disk with f ≡ 1),
such a blow-up analysis in the minimal energy case was recently used by Malchiodi-Martinazzi
[30] to prove that there is a β0 > 4π for which there are solutions of (1.1) of energy less than or
equal to β0 but no solutions of energy greater than β0.

In order to get solutions of higher energies and to describe precisely the set of solutions for
all β, one needs a fine analysis of blowing-up solutions. The first result in this direction is the
quantification result of the first author [15] that we recall here since the questions we adress in
the present work come from it :

Theorem 1.1 (Druet [15]). Let Ω be a smooth bounded domain in R
2 and let (fε)ε>0 be a

sequence of functions of uniform critical growth in Ω. Also let (uε)ε>0 be a sequence of solutions
of

∆uε = fε
(

x, uε(x)
)

verifying that ‖∇uε‖22 → β as ε → 0 for some β ∈ R. Then there exists a solution u0 ∈ C0
(

Ω̄
)

of
∆u0 = f0

(

x, u0(x)
)

in Ω, u0 = 0 on ∂Ω ,

and there exists Ñ ∈ N such that

‖∇uε‖22 = ‖∇u0‖22 + 4πÑ + o (1) .

If Ñ = 0, the convergence of uε to u0 is strong in H1
0 (Ω) and actually holds in C0

(

Ω̄
)

.

We do not define here sequences of functions of uniform critical growth in Ω. The only thing

we need to know is that they include sequences of the form fε(x, u) = hε(x)ue
u2

as soon as
hε > 0 and hε → h0 in C1

(

Ω
)

. But they include much more general nonlinearities behaving like

eu
2

at infinity. Note also that, in the litterature, the nonlinearity is sometimes written as e4πu
2

(this is for instance the case in [15]), hence the discrepancy of 4π in some results.

This result describes precisely the lack of compactness in the energy space. Note that this
result is not true for Palais-Smale sequences, as proved by Costa-Tintarev [11] : there are Palais-
Smale sequences for the above equation which converge to 0 weakly in H1

0 (Ω) and which present
a lack of compactness at any level above 4π. This shows that the quantification result of Theorem
1.1 is specific to sequences of solutions of the equation and require a pointwise analysis as carried
out in [15] and below (not only an analysis in energy space).

Note also that the above result is not empty since Del Pino-Musso-Ruf [13] constructed, via
a Liapunov-Schmidt procedure, multi-pikes sequences of solutions of equation (1.1) (with f ≡ 1)
in annuli. These sequences satisfy the hypothesis of the above theorem, converge weakly to 0 in
H1

0 (Ω) (that is u0 ≡ 0 in the above result) and have an energy converging to 4πÑ . They can
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construct such solutions for all Ñ ≥ 1. This suggests that the topology of the domain plays a
crucial role in the existence of solutions of arbitrary energies.

However, if one wants to push further the existence results, we need to be more precise than
Druet [15]. In particular, we need to answer the following natural questions, left open in this work
of the first author (see also Del Pino-Musso-Ruf [12], Malchiodi-Martinazzi [30] or Martinazzi
[34] where one can find these, or similar, questions) :

1. Is it possible to have both u0 6≡ 0 and Ñ ≥ 1 in the above theorem ?

2. Are the concentration points appearing when Ñ ≥ 1 isolated1 or not ? If yes, where are
they ?

These questions are natural and can be motivated by analogy with Liouville type equations
(see among others [7, 8, 23, 27, 29, 39]) or Yamabe type equations (see for instance [4, 5, 14,
17, 19, 22, 24, 25, 26, 32, 33, 36]). We refer in particular to [16] for a survey on this kind of
questions.

We attack in this paper the questions 1 and 2 above. Our result holds for more general
nonlinearities but we restrict, for sake of clearness, to the simplest one. We consider a sequence
(uε) of smooth positive solutions of

∆uε = λεfεuεe
u2
ε in Ω, uε = 0 on ∂Ω , (1.4)

for some sequence (λε) of positive real numbers and some sequence (fε) of smooth functions in
Ω which satisfies

fε → f0 in C1
(

Ω
)

as ε→ 0 and
∥

∥∇2fε
∥

∥

L∞(Ω)
= O(1) (1.5)

where f0 > 0 in Ω. And we prove the following result :

Theorem 1.2. Let Ω be a smooth bounded domain of R2 and let (uε) be a sequence of smooth
solutions of (1.4) which is bounded in H1

0 (Ω). Assume that (1.5) holds. Then, after passing to
a subsequence, λε → λ0 as ε→ 0 for some λ0 ∈ R. .

If λ0 6= 0, then there exists u0 ∈ C2
(

Ω
)

solution of

∆u0 = λ0f0u0e
u2
0 in Ω, u0 = 0 on ∂Ω

such that uε → u0 in C2
(

Ω
)

as ε→ 0.

If λ0 = 0, then uε ⇀ 0 weakly in H1
0 (Ω). Moreover there exist N ≥ 1 such that

∫

Ω

|∇uε|2 dx→ 4πN as ε→ 0

and N sequences of points (xi,ε) in Ω such that

a) xi,ε → xi as ε→ 0 with xi ∈ Ω (not on the boundary), all the xi’s being distinct.

b) uε → 0 in C2
loc

(

Ω \ S
)

where S = {xi}i=1,...,N .

c) for all i = 1, . . . , N , we have that γi,ε = uε (xi,ε) → +∞ as ε→ 0 and that

γi,ε (uε (xi,ε + µi,εx) − γi,ε) → U(x) = − ln

(

1 +
1

4
|x|2
)

in C2
loc

(

R
2
)

as ε→ 0 where

µ−2
i,ε = λεfε (xi,ε) γ

2
i,εe

γ2
i,ε → +∞ as ε→ 0 .

1By isolated, we mean here that the energy at any concentration point is exactly 4π. In other words, we mean
that there are no bubble accumulations and we do not wish to rule out only bubbles towers.
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d) for all i = 1, . . . , N , there exists mi > 0 such that
√

λεγi,ε →
2

mi

√

f0 (xi)
as ε→ 0 .

e) The points xi are such that

2mi∇yH (xi, xi) + 4π
∑

j 6=i

mj∇yG (xj , xi) +
1

2
mi

∇f0 (xi)
f0 (xi)

= 0

and that

4π
∑

j 6=i

mjG (xj , xi) + 2miH (xi, xi) +mi ln
f0 (xi)

m2
i

+mi = 0

for all i = 1, . . . , N where

G(x, y) = 1

2π

(

ln
1

|x− y| +H (x, y)

)

is the Green function of the Laplacian with Dirichlet boundary condition.

Note that this theorem proves that, if blow-up occurs, then the weak limit has to be zero
so that lack of compactness can occur only at the levels β = 4πN for N ≥ 1. This is a key
information to get general existence result via degree theory from this theorem; this will be
the subject of a subsequent paper. We also obtain a precise characterisation of the location
of concentration points. This answers in particular by the affirmative to the conjecture of Del
Pino-Musso-Ruf [12] (p. 425) since, in case f ≡ 1, the (xi,mi) of Theorem 1.2 are critical points
of the function

Φ (yi, αi) = 2π
∑

i6=j

αiαjG (yi, yj) +

N
∑

i=1

α2
iH (yi, yi) +

N
∑

i=1

(

α2
i − α2

i lnαi

)

.

The paper is organized as follows. In Section 2, we recall the main results of Druet [15]
and set up the proof of the theorem. Section 3 is devoted to a fine asymptotic analysis in the
neighbourhood of a given concentration point while the theorem is proved in Section 4 which
deals with the multi-spikes analysis. At last, we collect some useful estimates concerning the
standard bubble and the Green function respectively in appendices A and B.

2. Previous results and sketch of the proof

We set up the proof of Theorem 1.2 and we recall some results obtained in Druet [15]. We
let Ω be a smooth bounded domain of R2 and we consider a sequence (uε) of smooth positive
solutions of

∆uε = λεfεuεe
u2
ε in Ω, uε = 0 on ∂Ω (2.1)

for some sequence (λε) of positive real numbers and some sequence (fε) of smooth functions
which satisfies (1.5). Note that we necessarily have that

lim sup
ε→0

λε ≤
λ1

minΩ f0
(2.2)

where λ1 > 0 is the first eigenvalue of the Laplacian with Dirichlet boundary condition in Ω.
Indeed, let ϕ1 ∈ C∞

(

Ω
)

be a positive (in Ω) eigenfunction associated to λ1 and multiply equation
(2.1) by ϕ1. After integration by parts, we get that

λ1

∫

Ω

uεϕ1 dx = λε

∫

Ω

fεuεe
u2
εϕ1 dx .
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Since fε becomes positive for ε small thanks to (1.5) and since uε and ϕ1 are positive, we can
write that

λ1

∫

Ω

uεϕ1 dx ≥ λε

(

min
Ω
fε

)∫

Ω

uεϕ1 dx ,

which leads to (2.2).

We assume in the following that there exists C > 0 such that
∫

Ω

|∇uε|2 dx ≤ C for all ε > 0 . (2.3)

Then we have the following :

Proposition 2.1 (Druet [15]). After passing to a subsequence, λε → λ0 as ε → 0, there exists
a smooth solution u0 of the limit equation

∆u0 = λ0f0u0e
u2
0 in Ω, u0 = 0 on ∂Ω (2.4)

and there exist N ≥ 0 and N sequences (xi,ε) of points in Ω such that the following assertions2

hold :

a) uε ⇀ u0 weakly in H1
0 (Ω). If N = 0, the convergence of uε to u0 holds in C2

(

Ω
)

.

b) for any i ∈ {1, . . . , N}, uε (xi,ε) → +∞ as ε→ 0 and ∇uε (xi,ε) = 0.

c) for any i, j ∈ {1, . . . , N}, i 6= j,

|xi,ε − xj,ε|
µi,ε

→ +∞ as ε→ 0

where
µ−2
i,ε = λεfε (xi,ε)uε (xi,ε)

2
euε(xi,ε)

2 → +∞ as ε→ 0 .

d) for any i ∈ {1, . . . , N}, we have that

uε (xi,ε) (uε (xi,ε + µi,εx) − uε (xi,ε)) → U(x) = − ln

(

1 +
1

4
|x|2
)

in C2
loc

(

R
2
)

.

e) there exists C1 > 0 such that

λε

(

min
i=1,...,N

|xi,ε − x|
)2

uε(x)
2euε(x)

2 ≤ C1

for all x ∈ Ω.

f) there exists C2 > 0 such that
(

min
i=1,...,N

|xi,ε − x|
)

uε(x) |∇uε(x)| ≤ C2 .

Proof - Even if this result is already contained in [15], we shall give part of the proof here.
The first reason is that it is not exactly stated in this way in [15]. The second reason is that
it is proved in greater generality in [15] and we thus give a proof which is in some sense more
readable here.

First, it is clear thanks to (2.3) that, up to a subsequence, uε ⇀ u0 weakly in H1
0 (Ω) where

u0 is a solution of (2.4). If ‖uε‖∞ = O(1), then, by standard elliptic theory, this convergence

holds in C2
(

Ω
)

and the proposition is true with N = 0. Let us assume from now on that

sup
Ω
uε → +∞ as ε→ 0 . (2.5)

2We assume for assertions b) to f) that N ≥ 1.



6 OLIVIER DRUET AND PIERRE-DAMIEN THIZY

Given N ≥ 1 and N sequences (xi,ε) of points in Ω which verify that

γi,ε = uε (xi,ε) → +∞ as ε→ 0 and µ−2
i,ε = λεfε (xi,ε) γ

2
i,εe

γ2
i,ε → +∞ as ε→ 0 , (2.6)

we consider the following assertions :
(

PN
1

)

For any i, j ∈ {1, . . . , N}, i 6= j,
|xi,ε − xj,ε|

µi,ε

→ +∞ as ε→ 0.

(

PN
2

)

For any i ∈ {1, . . . , N}, ∇uε (xi,ε) = 0 and

γi,ε (uε (xi,ε + µi,εx)− γi,ε) → U(x)

in C2
loc

(

R
2
)

as ε→ 0 where

U(x) = − ln

(

1 +
1

4
|x|2
)

is a solution of ∆U = e2U in R
2.

(

PN
3

)

There exists C > 0 such that

λε

(

min
i=1,...,N

|xi,ε − x|
)2

uε(x)
2euε(x)

2 ≤ C

for all x ∈ Ω.

A first obvious remark is that
(

PN
1

)

and
(

PN
2

)

=⇒
∫

Ω

|∇uε|2 dx ≥ 4πN + o(1) . (2.7)

Indeed, one has just to notice that
∫

Ω

|∇uε|2 dx = λε

∫

Ω

fεu
2
εe

u2
ε dx ,

that Dxi,ε
(Rµi,ε) ∩ Dxj,ε

(Rµj,ε) = ∅ for ε > 0 small enough thanks to
(

PN
1

)

and that

lim
ε→0

λε

∫

Dxi,ε
(Rµi,ε)

fεu
2
εe

u2
ε dx =

∫

D0(R)

e2U dx→
∫

R2

e2U dx = 4π as R→ +∞

thanks to
(

PN
2

)

.

In the following, we shall say that property PN holds if there are N sequences (xi,ε) of points
in Ω which verify (2.6) such that assertions

(

PN
1

)

and
(

PN
2

)

hold.

Step 1 - Property P1 holds.

Proof of Step 1 - Let xε ∈ Ω be such that

uε (xε) = max
Ω

uε .

By (2.5), we have that
γε = uε (xε) → +∞ as ε→ 0 . (2.8)

We just have to check
(

P 1
2

)

since
(

P 1
1

)

is empty. We clearly have that ∇uε (xε) = 0. We set3

ũε(x) = γε (uε (xε + µεx)− γε) (2.9)

for x ∈ Ωε where
Ωε =

{

x ∈ R
2 s.t. xε + µεx ∈ Ω

}

and
µ−2
ε = λεfε (xε) γ

2
εe

γ2
ε . (2.10)

3The fact that this rescaling is appropriate to understand the blow up behaviour of solutions of equation (1.1)
was first discovered by Adimurthi-Struwe [3].
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It is clear that

µε → 0 as ε→ 0 . (2.11)

Indeed, we can write that

λεfεuεe
u2
ε ≤ λε

(

sup
Ω
fε

)

γεe
γ2
ε = γ−1

ε

supΩ fε
fε (xε)

µ−2
ε = o

(

µ−2
ε

)

thanks to (1.5) and (2.8). If ever (2.11) was false, we would have that ‖∆uε‖∞ → 0 as ε → 0
which, together with the fact that uε = 0 on ∂Ω, would contradict (2.8). Thus (2.11) holds.
Thanks to (2.11), we know that, up to a subsequence and up to a harmless rotation,

Ωε → R
2 or Ωε → R× (−∞, d) as ε→ 0 (2.12)

where d = lim
ε→0

d (xε, ∂Ω)

µε

. We also have that

∆ũε =
fε (xε + µεx)

fε (xε)

uε (xε + µεx)

γε
euε(xε+µεx)

2−γ2
ε (2.13)

in Ωε thanks to (2.1) and (2.10). Since 0 ≤ uε ≤ γε in Ω and thanks to (1.5), this leads to
‖∆ũε‖L∞(Ωε)

= O(1). Together with the fact that ũε ≤ 0 = ũε(0) and ũε = −γ2ε → −∞ as

ε→ 0 on ∂Ωε, one can check that this implies that

Ωε → R
2 as ε→ 0

and that

ũε → U in C1
loc

(

R
2
)

as ε→ 0

after passing to a subsequence. We refer here the reader to [3] or [15] for the details of such an
assertion. Moreover, we clearly have that U ≤ U(0) = 0 in R

2. Noting that, as a consequence of
the above convergence of ũε, we have that

uε (xε + µεx)
2 − γ2ε → 2U in C0

loc

(

R
2
)

,

one can easily pass to the limit in equation (2.13) to obtain that

∆U = e2U in R
2 .

Moreover, by standard elliptic theory, one has that

ũε → U in C2
loc

(

R
2
)

as ε→ 0 . (2.14)

In order to apply the classification result of Chen-Li [9], we need to check that e2U ∈ L1
(

R
2
)

.
Using (2.9) together with (1.5), (2.10) and (2.14), we can write that

lim
ε→0

λε

∫

Dxε (Rµε)

fεu
2
εe

u2
ε dx =

∫

D0(R)

e2U dx

for all R > 0. Thanks to (2.1) and (2.3), we know that

λε

∫

Dxε (Rµε)

fεu
2
εe

u2
ε dx ≤ λε

∫

Ω

fεu
2
εe

u2
ε dx =

∫

Ω

|∇uε|2 dx ≤M

so that e2U ∈ L1
(

R
2
)

. Remembering that U ≤ U(0) = 0, we thus get by [9] that

U (x) = − ln

(

1 +
1

4
|x|2
)

.

This clearly ends the proof of Step 1. ♠
Step 2 - Assume that property PN holds for some N ≥ 1. Then either

(

PN
3

)

holds or PN+1

holds.
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Proof of Step 2 - Assume that PN holds for some N ≥ 1 (with associated sequences (xi,ε))
and that

(

PN
3

)

does not hold, meaning that

λε sup
x∈Ω

(

min
i=1,...,N

|xi,ε − x|
)2

uε(x)
2euε(x)

2 → +∞ as ε→ 0 . (2.15)

We let then yε ∈ Ω be such that
(

min
i=1,...,N

|xi,ε − yε|
)2

uε (yε)
2
euε(yε)

2

= sup
x∈Ω

(

min
i=1,...,N

|xi,ε − x|
)2

uε(x)
2euε(x)

2

(2.16)

and we set

uε (yε) = γ̂ε .

Since Ω is bounded and (λε) is bounded, see (2.2), we know that

γ̂ε → +∞ as ε→ 0

thanks to (2.15) and (2.16). Thanks to
(

P 2
N

)

, (2.15) and (2.16), we also know that

|xi,ε − yε|
µi,ε

→ +∞ as ε→ 0 for all 1 ≤ i ≤ N . (2.17)

We set

µ̂−2
ε = λεfε (yε) γ̂

2
εe

γ̂2
ε

so that, with (1.5), (2.15) and (2.16),

µ̂ε → 0 as ε→ 0

and
|xi,ε − yε|

µ̂ε

→ +∞ as ε→ 0 for all 1 ≤ i ≤ N . (2.18)

We set now

ûε(x) = γ̂ε (uε (yε + µ̂εx)− γ̂ε)

for x ∈ Ω̂ε where

Ω̂ε =
{

x ∈ R
2 s.t. yε + µ̂εx ∈ Ω

}

.

We are exactly in the situation of Step 1 except for one thing : we can not say that ûε ≤ 0 in
Ω̂ε. However, combining (2.16) and (2.18), we can say that

ûε ≤ o(1) in K ∩ Ω̂ε

for all compact subset K of R2. This permits to repeat the arguments of Step 1, see [15] for the
details, to obtain that

ûε → U in C2
loc

(

R
2
)

as ε→ 0 . (2.19)

Since U has a strict local maximum at 0, uε must possess, for ε > 0 small, a local maximum
xN+1,ε in Ω such that |xN+1,ε − yε| = o (µ̂ε). Then ∇uε (xN+1,ε) = 0 and defining γN+1,ε,

µN+1,ε with respect to this point xN+1,ε, it is easily checked that
(

PN+1
2

)

and
(

PN+1
1

)

hold
with the sequences (xi,ε)i=1,...,N+1 thanks to (2.17), (2.18) and (2.19). This proves that property

PN+1 holds and ends the proof of Step 2. ♠
Starting from Step 1, and applying by induction Step 2, using (2.3) and (2.7) to stop the

process, we can easily prove the proposition except for point (f). But this point was the subject
of Proposition 2 of [15] and we refer the reader to this paper for the proof. ♦

The main result of Druet [15] may be phrased as follows :
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Theorem 2.1 (Druet [15]). In the framework of Proposition 2.1, there exist moreover M ≥ 0
and M sequences of points (yi,ε) in Ω such that the following assertions hold after passing to a
subsequence :

a) For any i ∈ {1, . . . ,M} and any j ∈ {1, . . . , N},

|yi,ε − xj,ε|
µj,ε

→ +∞ as ε→ 0 .

b) For any i ∈ {1, . . . ,M},

uε (yi,ε) (uε (yi,ε + νi,εx) − uε (yi,ε)) → U(x) = − ln

(

1 +
1

4
|x|2
)

in C2
loc

(

R
2 \ Si

)

where

ν−2
i,ε = λεfε (yi,ε)uε (yi,ε)

2
euε(yi,ε)

2 → +∞ as ε→ 0

and

Si =

{

lim
ε→0

xj,ε − yi,ε

νi,ε
, j = 1, . . . , N

}

⋃

{

lim
ε→0

yk,ε − yi,ε

νi,ε
, k = 1, . . . ,M, k 6= i

}

.

c) The Dirichlet norm of uε is quantified by
∫

Ω

|∇uε|2 dx =

∫

Ω

|∇u0|2 dx+ 4π (N +M) + o(1) .

It is the way that the main quantification result of Druet [15] is proved. Proposition 1 in
Section 3 of [15] corresponds to Proposition 2.1 above (at the exception of f)). Then concentration
points are added at the end of Section 3 of [15], point f) of the above proposition is proved in
Section 4 of [15] and it is proved during Sections 5 and 6 of [15] that the quantification holds
with these concentration points added.

Let us comment on this result. First, it is clear that u0 6≡ 0 ⇒ λ0 > 0. Second, if N = 0,
then the convergence of uε to u0 is strong in H1

0 (Ω) and in fact even holds in C2
(

Ω
)

. The two
questions left open in this work of the first author were :

1. Is it possible to have u0 6≡ 0 and N ≥ 1 together ?

2. Are the concentration points (xi,ε) isolated or can there be bubbles accumulation ?

These two questions can be motivated, as explained in the introduction, by the situation in
low dimensions for Yamabe type equations, as studied in [14] (see also [16]). But they are also
crucial in order to understand precisely the number of solutions of equation (1.1), a question we
shall address in a subsequent paper.

Let us briefly sketch the proof of Theorem 1.2. We start from the above results of [15]. We
shall first give some fine pointwise estimates on the sequence (uε) in small (but not so small)
neighbourhoods of the concentration points. This will be the subject of section 3. Then we
prove Theorem 1.2 in section 4 through a serie of claims proving successively that : M = 0 in
Theorem 2.1 above, λ0 = 0 so that u0 = 0 and, at last, the concentration points are isolated and
of comparable size. All Theorem 1.2 then follows easily.
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3. Local blow up analysis

In this section, we get some fine estimates on sequences of solutions of equations (2.1) in the
neighbourhood of one of the concentration points (xi,ε) of Theorem 2.1. During all this section,
C denotes a constant which is independant of ε or variables x, y, . . .

We let (ρε) be a bounded sequence of positive real numbers (possibly converging to 0 as ε→ 0)
and we consider a sequence of smooth positive functions (vε) which are solutions of

∆vε = λεfεvεe
v2
ε in D0 (ρε) (3.1)

where (λε) is a bounded sequence of positive real numbers, (fε) is a sequence of smooth positive
functions satisfying that there exists C0 > 0 such that

1

C0
≤ fε(0) ≤ C0, |∇fε| ≤ C0 and

∣

∣∇2fε
∣

∣ ≤ C0 in D0 (ρε) . (3.2)

Here and in all what follows, Dx(r) denotes the disk of center x and radius r. We assume
moreover that

γε = vε(0) → +∞ as ε→ 0 and ∇vε(0) = 0 , (3.3)

that

µ−2
ε = λεfε (0) γ

2
εe

γ2
ε → +∞ as ε→ 0 with

ρε

µε

→ +∞ as ε→ 0 , (3.4)

that

γε (vε (µεx)− γε) → U(x) = − ln

(

1 +
1

4
|x|2
)

in C2
loc

(

R
2
)

as ε→ 0 , (3.5)

that there exists C1 > 0 such that

λε|x|2v2εev
2
ε ≤ C1 in D0 (ρε) (3.6)

and that there exists C2 > 0 such that

|x| |∇vε| ≤
C2

γε
in D0 (ρε) . (3.7)

The aim of this section will be to compare in a suitable disk the sequence (vε) with the bubble
Bε defined as the radial solution in R

2 of

∆Bε = λεfε(0)Bεe
B2

ε with Bε(0) = γε . (3.8)

Thanks to the results of Appendix A, see in particular Claims 5.2 and 5.3, we know that
∣

∣

∣

∣

Bε(x)−
(

γε −
tε(x)

γε
− tε(x)

γ3ε

)∣

∣

∣

∣

≤ C3γ
−2
ε for x s.t. tε(x) ≤ γ2ε (3.9)

and that
∣

∣

∣

∣

∣

∇Bε(x) − γ−1
ε

2~x

|x|2 + 4µ2
ε

∣

∣

∣

∣

∣

≤ C4γ
−2
ε

|x|
|x|2 + µ2

ε

for x s.t. tε(x) ≤ γ2ε (3.10)

where C3 > 0 and C4 > 0 are some universal constants and

tε(x) = ln

(

1 +
|x|2
4µ2

ε

)

. (3.11)

We prove the following :
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Proposition 3.1. We have that :

a) if vε(r) =
1

2πr

∫

∂D0(r)

vε dσ,

sup
0≤r≤ρε

|vε(r) −Bε(r)| = o
(

γ−1
ε

)

.

As a consequence, we have that

tε (ρε) ≤ γ2ε − 1 + o (1) .

b) There exists C > 0 such that

|vε − Bε| ≤ Cγ−1
ε

and
|∇ (vε −Bε)| ≤ Cγ−1

ε ρ−1
ε

in D0 (ρε).

c) After passing to a subsequence,

γε (vε (ρε · )−Bε (ρε)) → 2 ln
1

|x| +H

as ε→ 0 in C1
loc (D0(1) \ {0}) where H is some harmonic function in the unit disk satisfying

H(0) = 0 and ∇H(0) = −1

2
lim
ε→0

ρε∇fε(0)
fε(0)

.

Proof of Proposition 3.1 - Let us first remark that we may assume without loss of generality
that

tε (ρε) ≤ γ2ε . (3.12)

Indeed, up to reduce ρε, this is the case and once a) is proved, we know that tε (ρε) ≤ γ2ε−1+o (1).
This will easily permit to prove that, for the original ρε, we had tε (ρε) ≤ γ2ε since tε(r) ≤ γ2ε − 1

2

as long as tε(r) ≤ γ2ε .

Fix 0 < η < 1 and let

rε = sup

{

r ∈ (0, ρε) s.t. |vε(s)−Bε(s)| ≤
η

γε
for all 0 ≤ s ≤ r

}

(3.13)

where

vε(r) =
1

2πr

∫

∂D0(r)

vε dσ .

Note that we know thanks to (3.4) and (3.5) that
rε

µε

→ +∞ as ε→ 0 . (3.14)

We have that

|vε(r) −Bε(r)| ≤
η

γε
for all 0 ≤ r ≤ rε (3.15)

and that
|vε (rε)−Bε (rε)| =

η

γε
if rε < ρε . (3.16)

We set
vε = Bε + wε (3.17)

in D0 (ρε). Thanks to (3.7) and (3.15), we know that

|wε| ≤
η + πC2

γε
in D0 (rε) . (3.18)
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This clearly implies since |Bε| ≤ γε that
∣

∣v2ε − B2
ε

∣

∣ ≤ 3 (η + πC2) in D0 (rε) . (3.19)

Thanks to (3.1), we can write that

∆wε = λεfεvεe
v2
ε − λεfε(0)Bεe

B2
ε

= λεe
B2

ε

(

fεvεe
v2
ε−B2

ε − fε(0)Bε

)

= λεe
B2

ε

(

fεwεe
v2
ε−B2

ε + fεBεe
v2
ε−B2

ε − fε(0)Bε

)

in D0 (rε) so that, using (3.2), (3.18) and (3.19) but also (3.9), we get the existence of some
C > 0 such that

|∆wε| ≤ Cλεfε(0)
(

1 +B2
ε

)

eB
2
ε |wε|+ Cλε|x|

(

2

γε
+Bε

)

eB
2
ε in D0 (rε) . (3.20)

We let ϕε be such that

∆ϕε = 0 in D0 (rε) and ϕε = wε on ∂D0 (rε) . (3.21)

Using (3.7) and (3.10), we know that

|∇wε| ≤ Cγ−1
ε r−1

ε on ∂D0 (rε)

for some C > 0 so that

‖∇ϕε‖L∞(D0(rε))
= O

(

1

γεrε

)

. (3.22)

Note also that, up to a subsequence,

γεϕε (rε · ) → ϕ0 in C2
loc (D0(1)) as ε→ 0 (3.23)

since |ϕε (rε)| ≤ ηγ−1
ε thanks to (3.15) and (3.17). It follows from standard elliptic theory thanks

to (3.21).

Step 1 - There exists C > 0 such that

|∇ (wε − ϕε) (y)| ≤ C
(

‖∇wε‖L∞(D0(rε))
+ γ−1

ε

)

(

µε

µε + |y| + γ−2
ε

)

+ Cγ−2
ε + Cr−1

ε γ−3
ε

for all y ∈ D0 (rε).

Proof of Step 1 - Let yε ∈ D0 (rε). Using the Green representation formula and (3.20), we
can write that

|∇ (wε − ϕε) (yε)| ≤ Cλεfε(0)

∫

D0(rε)

1

|x− yε|
(

1 +Bε(x)
2
)

eBε(x)
2 |wε(x)| dx (3.24)

+Cλε

∫

D0(rε)

1

|x− yε|
|x|
(

2

γε
+Bε(x)

)

eBε(x)
2

dx .

We let in the following

t1,ε =
1

4
γ2ε and t2,ε = γ2ε − γε (3.25)

and we let

Ω0,ε = D0 (rε) ∩ {tε(x) ≤ t1,ε} ,
Ω1,ε = D0 (rε) ∩ {t1,ε ≤ tε(x) ≤ t2,ε} and (3.26)

Ω2,ε = D0 (rε) ∩ {tε(x) ≥ t2,ε} .
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We also set, for i = 0, 1, 2,

Ii,ε = λεfε(0)

∫

Ωi,ε

1

|x− yε|
(

1 +Bε(x)
2
)

eBε(x)
2 |wε(x)| dx (3.27)

and

Ji,ε = λε

∫

Ωi,ε

1

|x− yε|
|x|
(

2

γε
+Bε(x)

)

eBε(x)
2

dx . (3.28)

Case 1 - We assume first that |yε| = O (µε). Since wε(0) = 0 and using (3.9), we can write
that

I0,ε ≤ Cλεfε(0)γ
2
εe

γ2
ε ‖∇wε‖L∞(Ω0,ε)

∫

Ω0,ε

|x|
|x− yε|

e
tε(x)2

γ2
ε

−2tε(x)
dx .

Thanks to (3.4), we can rewrite this as

I0,ε ≤ Cµ−2
ε ‖∇wε‖L∞(Ω0,ε)

∫

Ω0,ε

|x|
|x− yε|

e
tε(x)2

γ2
ε

−2tε(x)
dx .

Since
tε(x)

2

γ2ε
− 2tε(x) ≤ −7

4
tε(x) in Ω0,ε ,

this leads to

I0,ε ≤ Cµ−2
ε ‖∇wε‖L∞(Ω0,ε)

∫

Ω0,ε

|x|
|x− yε|

(

1 +
|x|2
4µ2

ε

)− 7
4

dx

≤ C ‖∇wε‖L∞(Ω0,ε)

∫

R2

|x|
∣

∣

∣x− yε

µε

∣

∣

∣

(

1 +
|x|2
4

)− 7
4

dx .

Since |yε| = O (µε), we obtain by the dominated convergence theorem that

I0,ε = O
(

‖∇wε‖L∞(Ω0,ε)

)

. (3.29)

In Ω1,ε, we have that |x| ≤ (1 + o(1)) |x− yε| since |yε| = O (µε) so that, we can write, as above

I1,ε ≤ Cµ−2
ε ‖∇wε‖L∞(Ω1,ε)

∫

Ω1,ε

e
tε(x)2

γ2
ε

−2tε(x)
dx

≤ C ‖∇wε‖L∞(Ω1,ε)

∫ t2,ε

t1,ε

e
t2

γ2
ε
−t
dt

by the change of variables t = ln
(

1 + |x|2

4µ2
ε

)

. Since

t2

γ2ε
− t ≤ − t

γε
≤ −1

4
γε

for 1
4γ

2
ε = t1,ε ≤ t ≤ t2,ε = γ2ε − γε, we immediately get that

I1,ε ≤ C ‖∇wε‖L∞(Ω1,ε)
γ2εe

− 1
4 γε . (3.30)

In Ω2,ε, we have that Bε = O (1) thanks to (3.9) so that, using (3.2) and (3.18) , we can write
that

I2,ε ≤ Cλεγ
−1
ε

∫

D0(rε)

1

|x− yε|
dx

so that

I2,ε ≤ Cλεrεγ
−1
ε . (3.31)
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Now we notice that tε (rε) ≤ γ2ε implies that

r2ε
µ2
ε

≤ 4eγ
2
ε .

Using (3.2) and (3.4), this gives that

λεr
2
ε ≤ C

γ2ε
. (3.32)

Thus we get that
I2,ε ≤ Cr−1

ε γ−3
ε . (3.33)

For the second set of integrals, things are similar and easier. We write that

J0,ε ≤ Cµ−2
ε γ−1

ε

∫

Ω0,ε

|x|
|x− yε|

e
tε(x)2

γ2
ε

−2tε(x)
dx

so that, see above,
J0,ε ≤ Cγ−1

ε . (3.34)

We also have that
J1,ε ≤ Cγεe

− 1
4γε (3.35)

in the same way than above. At last, for J2,ε, we write that

J2,ε ≤ Cλεrε

∫

D0(rε)

1

|x− yε|
dx ≤ Cλεr

2
ε .

Thus we have thanks to (3.32) that
J2,ε ≤ Cγ−2

ε . (3.36)

Summarizing, we obtain in this first case, coming back to (3.24) with (3.29), (3.30), (3.33),
(3.34), (3.35) and (3.36), that

|∇ (wε − ϕε) (yε)| ≤ C ‖∇wε‖L∞(D0(rε))
+ Cγ−1

ε + Cr−1
ε γ−3

ε . (3.37)

Case 2 - We assume now that |yε|
µε

→ +∞ as ε→ 0.

We follow the lines of the first case to estimate most of the integrals. Thus we only emphasize
on the changes. First, we write that

I0,ε ≤ Cµ−2
ε ‖∇wε‖L∞(Ω0,ε)

∫

Ω0,ε

|x|
|x− yε|

(

1 +
|x|2
4µ2

ε

)− 7
4

dx

≤ C ‖∇wε‖L∞(Ω0,ε)

∫

R2

|x|
|x− µ−1

ε yε|

(

1 +
|x|2
4

)− 7
4

dx .

Now we can write that
∫

R2

|x|
|x− µ−1

ε yε|

(

1 +
|x|2
4

)− 7
4

dx

=

( |yε|
µε

)− 3
2
∫

R2

|x|
|x− |yε|−1

yε|

(

µ2
ε

|yε|2
+

|x|2
4

)− 7
4

dx

≤ C

( |yε|
µε

)− 3
2

+ 2

( |yε|
µε

)− 3
2
∫

D0( 1
2 )

|x|
(

µ2
ε

|yε|2
+

|x|2
4

)− 7
4

dx

≤ C

( |yε|
µε

)− 3
2

+ 2
µε

|yε|

∫

R2

|x|
(

1 +
|x|2
4

)− 7
4

dx
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so that

I0,ε ≤ C ‖∇wε‖L∞(Ω0,ε)

µε

|yε|
. (3.38)

Let us write once again that

I1,ε ≤ Cµ−2
ε ‖∇wε‖L∞(Ω1,ε)

∫

Ω1,ε

|x|
|x− yε|

e
tε(x)2

γ2
ε

−2tε(x)
dx .

Let us split this integral into two parts. First,

µ−2
ε

∫

Ω1,ε\Dyε( 1
2 |yε|)

|x|
|x− yε|

e
tε(x)2

γ2
ε

−2tε(x)
dx ≤ 3µ−2

ε

∫

Ω1,ε

e
tε(x)2

γ2
ε

−2tε(x)
dx

≤ C

∫ t2,ε

t1,ε

e
t2

γ2
ε
−t
dt

≤ Cγ2εe
− 1

4γε

as in Case 1. Second,

µ−2
ε

∫

Ω1,ε∩Dyε( 1
2 |yε|)

|x|
|x− yε|

e
tε(x)2

γ2
ε

−2tε(x)
dx ≤ 3

2
µ−2
ε |yε| e

s2ε
γ2
ε
−2sε

∫

Dyε( 1
2 |yε|)

1

|x− yε|
dx

where

sε = tε

(yε

2

)

.

Thus we have that

µ−2
ε

∫

Ω1,ε∩Dyε( 1
2 |yε|)

|x|
|x− yε|

e
tε(x)2

γ2
ε

−2tε(x)
dx ≤ C

|yε|2
µ2
ε

e
s2ε
γ2
ε
−2sε

Note that Ω1,ε ∩Dyε

(

1

2
|yε|
)

= ∅ if

tε

(

3

2
|yε|
)

= ln

(

1 +
9 |yε|2
16µ2

ε

)

≤ t1,ε =
1

4
γ2ε

so that we may assume that

ln

(

1 +
9 |yε|2
16µ2

ε

)

>
1

4
γ2ε .

Thus

sε = ln

(

1 +
|yε|2
16µ2

ε

)

≥ 1

4
γ2ε − ln 9 .

It is also clear that if Ω1,ε ∩ Dyε

(

1

2
|yε|
)

6= ∅, sε ≤ t2,ε = γ2ε − γε. Thus we have that

s2ε
γ2ε

− sε ≤ −1

4
γε +O(1) .
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We deduce that, if not zero,

µ−2
ε

∫

Ω1,ε∩Dyε( 1
2 |yε|)

|x|
|x− yε|

e
tε(x)2

γ2
ε

−2tε(x)
dx ≤ C

|yε|2
µ2
ε

e−
1
4 γεe−sε

≤ C
|yε|2
µ2
ε

e−
1
4 γε

(

1 +
|yε|2
16µ2

ε

)−1

≤ Ce−
1
4γε .

Thus we arrive to
I1,ε ≤ Cγ2εe

− 1
4γε ‖∇wε‖L∞(Ω1,ε)

. (3.39)

At last, for I2,ε, we have nothing to change to get that

I2,ε ≤ Cr−1
ε γ−3

ε . (3.40)

For J0,ε, J1,ε and J2,ε, we proceed as above or as in Case 1 to get that

J0,ε ≤ Cγ−1
ε

µε

|yε|
, J1,ε ≤ Cγεe

− 1
4γε and J2,ε ≤

C

γ2ε
.

Thus, in this second case, we obtain coming back to (3.24) with (3.38), (3.39), (3.40) and these
last estimates that

|∇ (wε − ϕε) (yε)| ≤ C
(

‖∇wε‖L∞(D0(rε))
+ γ−1

ε

)

(

µε

|yε|
+ γ2εe

− 1
4γε

)

+Cγ−2
ε +Cr−1

ε γ−3
ε . (3.41)

The study of these two cases clearly permits to conclude Step 1. ♠
Step 2 - We have that

‖∇ (wε − ϕε)‖L∞(D0(rε))
= o

(

γ−1
ε r−1

ε

)

+O
(

γ−1
ε

)

and that

‖wε − ϕε‖L∞(D0(rε))
= o

(

γ−1
ε

)

.

Moreover, if rε 6→ 0 as ε→ 0, we have that

lim
ε→0

∇fε(0)
fε(0)

= −2

(

lim
ε→0

1

rε

)

∇ϕ0(0) .

Proof of Step 2 - Let yε ∈ D0 (rε) be such that

|∇ (wε − ϕε) (yε)| = ‖∇ (wε − ϕε)‖L∞(D0(rε))
(3.42)

and let us assume that

αε = |∇ (wε − ϕε) (yε)| ≥
δ

rεγε
+

1

δγε
(3.43)

for some δ > 0. Thanks to (3.22), we have that

‖∇wε‖L∞(D0(rε))
≤ αε + Cr−1

ε γ−1
ε ≤ αε

(

1 +
C

δ

)

. (3.44)

Applying Step 1 to this sequence (yε), we get thanks to (3.42), (3.43) and (3.44) that
(

1

δ
+

δ

rε

)

γ−1
ε ≤ αε = |∇ (wε − ϕε) (yε)| ≤ Cδαε

(

µε

µε + |yε|
+ γ−2

ε

)

+ Cγ−2
ε + Cr−1

ε γ−3
ε .

This proves that
yε

µε

→ y0 ∈ R
2 as ε→ 0 (3.45)
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after passing to a subsequence and, thanks to Step 1 and (3.43), that

|∇ (w̃ε − ϕ̃ε) (x)| ≤
Cδ

1 + |x| + o(1) for all x ∈ R
2 (3.46)

where Cδ depends only on δ and

w̃ε(x) =
1

µεαε

wε (µεx) , ϕ̃ε(x) =
1

µεαε

ϕε (µεx) . (3.47)

We know that

w̃ε(0) = 0, ∇w̃ε(0) = 0 and

∣

∣

∣

∣

∇ (w̃ε − ϕ̃ε)

(

yε

µε

)∣

∣

∣

∣

= 1 . (3.48)

We also know thanks to (3.23) and (3.43) that, after passing to a subsequence,

∇ϕ̃ε(x) →
(

lim
ε→0

1

γεrεαε

)

∇ϕ0(0) = ~A in C1
loc

(

R
2
)

as ε→ 0 . (3.49)

Using (3.20), we can write that

|∆w̃ε| ≤ Cλεµ
2
εfε(0)

(

1 +Bε (µεx)
2
)

eBε(µεx)
2 |w̃ε|+ Cλεα

−1
ε µ2

ε|x|
(

2

γε
+Bε (µεx)

)

eBε(µεx)
2

.

Noting thanks to (3.46), (3.48) and (3.49) that

|w̃ε(x)| ≤ Cδ ln (1 + |x|) +
∣

∣

∣

~A
∣

∣

∣ |x|+ o (|x|)

and is thus uniformly bounded on any compact subset of R2, we easily deduce from the above
estimate together with the definition (3.4) of µε and (3.43) that (∆w̃ε) is uniformly bounded in
any compact subset of R2. Thus, by standard elliptic theory, we have that, after passing to a
subsequence,

w̃ε → w0 in C1,η
loc

(

R
2
)

as ε→ 0 . (3.50)

Moreover, we have thanks to (3.45), (3.46), (3.48) and (3.50) that

w0(0) = 0, ∇w0(0) = 0,
∣

∣

∣∇w0 (y0)− ~A
∣

∣

∣ = 1 and
∣

∣

∣∇w0(x) − ~A
∣

∣

∣ ≤ Cδ

1 + |x| in R
2 . (3.51)

Thus w0 6≡ 0. Since we know that γεwε (µεx) → 0 in C1
loc

(

R
2
)

as ε → 0 thanks to (3.5), we
deduce that

γεµεαε → 0 as ε→ 0 . (3.52)

Thanks to (3.1), (3.4), (3.8), (3.17) and (3.47), we can write that

∆w̃ε(x) =
1

αε

µελε

(

fε (µεx) (Bε (µεx) + wε (µεx)) e
(Bε(µεx)+wε(µεx))

2

−fε(0)Bε (µεx) e
Bε(µεx)

2
)

.

=
Bε (µεx)

γε
eBε(µεx)

2−γ2
ε

1

αεµεγε

(

fε (µεx)

fε(0)
e2Bε(µεx)wε(µεx)+wε(µεx)

2 − 1

)

+γ−2
ε

fε (µεx)

fε(0)
w̃ε(x)e

Bε(µεx)
2−γ2

ε+2Bε(µεx)wε(µεx)+wε(µεx)
2

.

Let us write now that

γ−1
ε Bε (µεx) → 1 in C0

loc

(

R
2
)

as ε→ 0 ,

that

Bε (µεx)
2 − γ2ε → 2U(x) in C0

loc

(

R
2
)

as ε→ 0
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where

U(x) = − ln

(

1 +
|x|2
4

)

thanks to (3.9) and (3.11). We can also write that

fε (µεx)

fε(0)
= 1 + fε(0)

−1µεx
i∂ifε(0) +O

(

µ2
ε|x|2

)

thanks to (3.2) and that

2Bε (µεx)wε (µεx) + wε (µεx)
2
= 2µεαεγε (w0 + o(1)) = o(1)

thanks to (3.50) and (3.52). Thus we can write that

fε (µεx)

fε(0)
e2Bε(µεx)wε(µεx)+wε(µεx)

2 − 1

= 2µεαεγεw0 + µεfε(0)
−1xi∂ifε(0) + o (µεαεγε)

Thus we obtain that

∆w̃ε(x) = e2U(x)

(

2w0(x) +
1

αεγε
fε(0)

−1xi∂ifε(0)

)

+ o(1) .

Thanks to (3.43), we know that, after passing to a subsequence,

1

αεγε

∂ifε(0)

fε(0)
→ Xi as ε→ 0 . (3.53)

Note that we have, again thanks to (3.43), that

~X = 0 if rε → 0 as ε→ 0 . (3.54)

Then we can write that

∆w̃ε(x) = e2U(x)
(

2w0(x) +Xix
i
)

+ o(1)

so that

∆w0 = e2U
(

2w0 +Xix
i
)

in R
2 . (3.55)

Now, thanks to [7], lemma 2.3 or [21], lemma C.1, we know that the only solution of this equation
satisfying (3.51) is

w0(x) =
|x|2

4 + |x|2A
ixi (3.56)

and, moreover, we must have

~A = −1

2
~X . (3.57)

Since w0 6≡ 0, we must have ~A 6= 0 and thus ~X 6= 0.

This permits to prove the step. Indeed, if rε → 0, then we have that ~X = 0 by (3.54), which is
a contradiction. Thus, if rε → 0, we get that (3.43) is impossible so that αε = o

(

γ−1
ε r−1

ε

)

in this
case. This proves the first estimate of the step in the case rε → 0 as ε → 0. If rε 6→ 0 as ε→ 0,

we know thanks to the fact that ~X 6= 0 and to (3.53) that αε = O
(

γ−1
ε

)

if (3.43) holds and if

it does not hold, we again have that αε = O
(

γ−1
ε

)

. Thus we also have that the first estimate of
the step holds if rε 6→ 0 as ε→ 0. Moreover, in this second case, we know that

lim
ε→0

∂ifε(0)

fε(0)
= −2

(

lim
ε→0

1

rε

)

∇ϕ0(0)

thanks to (3.49), (3.53) and (3.57). This proves the last part of the step.
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It remains to notice that the second estimate of the step is a simple consequence of the first.
Indeed, coming back to the estimate of Step 1 with the estimate on the gradient just proved, we
have that

|∇ (wε − ϕε) (y)| ≤ Cγ−1
ε

(

1 +O
(

r−1
ε

))

(

µε

µε + |y| + γ−2
ε

)

+ Cγ−2
ε + Cr−1

ε γ−3
ε

Since wε − ϕε = 0 on ∂D0 (rε), this leads after integration to

|wε(y)− ϕε(y)| ≤ Cγ−1
ε

(

1 +O
(

r−1
ε

))

µε ln
µε + rε

µε + |y| +O
(

γ−2
ε

)

for all y ∈ D0 (rε). This leads to

‖wε − ϕε‖L∞(D0(rε))
= O

(

γ−1
ε µε ln

(

1 +
rε

µε

))

+O

(

γ−1
ε

µε

rε
ln

(

1 +
rε

µε

))

+O
(

γ−2
ε

)

= o
(

γ−1
ε

)

thanks to (3.14).

This ends the proof of Step 2. ♠
We are now in position to prove Proposition 3.1. First, since wε(0) = 0 and ∇wε(0) = 0, we

get with Step 2 that
ϕε(0) = o

(

γ−1
ε

)

(3.58)

and that
|∇ϕε(0)| = o

(

γ−1
ε r−1

ε

)

+O
(

γ−1
ε

)

. (3.59)

Since ϕε is harmonic, (3.58) gives that

γεϕε(0) =
γε

2πrε

∫

∂D0(rε)

ϕε dσ → 0 as ε→ 0 .

Since vε −Bε = wε = ϕε on ∂D0 (rε), this leads to

γε |vε (rε)−Bε (rε)| → 0 as ε→ 0 ,

which is impossible if rε < ρε thanks to (3.16). Thus we have proved that

rε = ρε , (3.60)

for any choice of η ∈ (0, 1). This proves the first part of a). The second part of a) is then just
a consequence of (3.9). Indeed, γε |vε (ρε)−Bε (ρε)| = o(1) implies that γεBε (ρε) ≥ γεvε (ρε) +
o(1). And (3.9) gives that

γ2ε − tε (ρε)− γ−2
ε tε (ρε) ≥ γεvε (ρε) + o(1) .

which leads to tε (ρε) ≤ γ2ε−1+o (1) since vε (ρε) ≥ 0. Point b) of the proposition is a consequence
of Step 2 together with (3.22). It remains to prove c). Let us write that

γε (vε (ρεx)−Bε (ρε)) = γεwε (ρεx) + γε (Bε (ρεx)−Bε (ρε)) .

We write that

γε (Bε (ρεx)−Bε (ρε)) → 2 ln
1

|x| in C1
loc (D0(1) \ {0}) as ε→ 0

thanks to (3.9) and (3.10). Moreover, thanks to Step 2, we know that

γε ‖wε (ρεx) − ϕε (ρεx)‖L∞(D0(1))
= o(1)

and, combining Steps 1 and 2, that

γερε |∇wε (ρεx)−∇ϕε (ρεx)|

≤ C

(

µε

µε + ρε|x|
+ γ−2

ε

)

+ Cρεγ
−1
ε + Cγ−2

ε
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in D0(1). Thus we have that

γεwε (ρεx) → ϕ0 in C1
loc (D0(1) \ {0}) as ε→ 0

thanks to (3.23). We thus have obtained that

γε (vε (ρε · )−Bε (ρε)) → 2 ln
1

|x| + ϕ0

in C1
loc (D0(1) \ {0}) as ε→ 0. Moreover, we have thanks to Step 2 that

ϕ0(0) = 0 and ∇ϕ0(0) = −1

2
lim
ε→0

ρε∇fε(0)
fε(0)

.

This ends the proof of the proposition. ♦

4. Proof of Theorem 1.2

Let (uε) be a sequence of smooth positive solutions of

∆uε = λεfεuεe
u2
ε in Ω, uε = 0 on ∂Ω (4.1)

for some sequence (λε) of positive real numbers and some sequence (fε) of functions in C1
(

Ω
)

which satisfies (1.5). We assume that there exists C > 0 such that
∫

Ω

|∇uε|2 dx ≤ C . (4.2)

We consider the concentration points (xi,ε)i=1,...,N given by Proposition 2.1 together with the

γi,ε’s and µi,ε’s. For any i ∈ {1, . . . , N}, we let

ri,ε =
1

2
min

{

min
j∈{1,...,N},j 6=i

|xi,ε − xj,ε| , d (xi,ε, ∂Ω)
}

. (4.3)

Note that we have

λε |x− xi,ε|2 uε(x)2euε(x)
2 ≤ C1 in Dxi,ε

(ri,ε) (4.4)

and

|x− xi,ε|uε(x) |∇uε(x)| ≤ C2 in Dxi,ε
(ri,ε) (4.5)

thanks to assertions e) and f) of Proposition 2.1.
We let, for i ∈ {1, . . . , N}, Bi,ε be the radial solution, studied in Appendix A, of

∆Bi,ε = λεfε (xi,ε)Bi,εe
B2

i,ε and Bi,ε(0) = γi,ε

and we shall write, by an obvious and not misleading abuse of notation,

Bi,ε(x) = Bi,ε (|x− xi,ε|) . (4.6)

We let also

ti,ε (r) = ln

(

1 +
r2

4µ2
i,ε

)

and ti,ε(x) = ti,ε (|x− xi,ε|) . (4.7)

At last, we define for i = 1, . . . , N

di,ε = d (xi,ε, ∂Ω) . (4.8)

Let us first state a claim which explains how we shall use the results of Section 3 for the multi-
bumps analysis :



MULTI-BUMPS ANALYSIS FOR TRUDINGER-MOSER NONLINEARITIES IN 2D 21

Claim 4.1. Assume that (uε) satisfies equation (4.1) with (fε) satisfying (1.5). Assume also that
(4.2) holds so that we have concentration points (xi,ε) satisfying (4.4) and (4.5). Let 0 ≤ rε ≤ ri,ε
be such that there exists C3 > 0 such that

|x− xi,ε| |∇uε(x)| ≤ C3γ
−1
i,ε in Dxi,ε

(rε) .

Then we have that :

a) ti,ε (rε) ≤ γ2i,ε − 1 + o (1) and

1

2πrε

∫

∂Dxi,ε
(rε)

uε dσ = Bi,ε (rε) + o
(

γ−1
i,ε

)

.

b) There exists C > 0 such that

|uε −Bi,ε| ≤ Cγ−1
i,ε

and

|∇ (uε −Bi,ε)| ≤ Cγ−1
i,ε r

−1
ε

in Dxi,ε
(rε).

c) If rε = ri,ε, after passing to a subsequence,

γi,ε (uε (xi,ε + ri,ε · )−Bi,ε (ri,ε)) → 2 ln
1

|x| +Hi

as ε→ 0 in C1
loc (D0(1) \ {0}) where Hi is some harmonic function in the unit disk satisfying

Hi(0) = 0 and ∇Hi(0) = −1

2
lim
ε→0

ri,ε∇fε (xi,ε)
fε (xi,ε)

.

Let us start with a simple consequence of this claim :

Claim 4.2. For any i ∈ {1, . . . , N} and any sequence (rε) of positive real numbers such that
Dxi,ε

(rε) ⊂ Ω, we have that :

a) If rε ≤ ri,ε and Bi,ε (rε) ≥ δγi,ε for some δ > 0, there exists C > 0 such that

|uε −Bi,ε| ≤
C

γi,ε
in Dxi,ε

(rε) .

Moreover, we have that

1

2πrε

∫

∂Dxi,ε
(rε)

uε dσ = Bi,ε (rε) + o
(

γ−1
i,ε

)

.

b) If lim sup
ε→0

γ−1
i,ε Bi,ε (rε) ≤ 0 and lim sup

ε→0
γ−1
i,ε Bi,ε (ri,ε) ≤ 0, then we have that

inf
∂Dxi,ε

(rε)
uε ≤ Bi,ε (rε) + o

(

γ−1
i,ε

)

.

c) If lim sup
ε→0

γ−1
i,ε Bi,ε (ri,ε) ≤ 0, we have that ti,ε (di,ε) ≤ γ2i,ε for ε > 0 small enough. In other

words, we have that

λεfε (xi,ε) γ
2
i,εd

2
i,ε ≤ 4

for ε small enough. Here, di,ε is as in (4.8).
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Proof of Claim 4.2 - We first prove a). We assume that Bi,ε (rε) ≥ δγi,ε for some δ > 0.
Define 0 ≤ sε ≤ rε as

sε = max

{

0 ≤ s ≤ rε s.t. uε ≥
1

2
δγi,ε in Dxi,ε

(s)

}

.

Thanks to (4.5), we have that

|x− xi,ε| |∇uε| ≤ Cγ−1
i,ε in Dxi,ε

(sε)

for some C > 0 so that we can apply Claim 4.1. Assertion b) of this claim gives that

|uε −Bi,ε| ≤ Cγ−1
i,ε in Dxi,ε

(sε)

for some C > 0. Since Bi,ε (sε) ≥ Bi,ε (rε) ≥ δγi,ε, we obtain in particular that sε = rε. Indeed,

if sε < rε, there would exist some xε ∈ ∂Dxi,ε
(sε) such that uε (xε) =

δ
2γi,ε, which is impossible

by what we just proved. Thus a) is clearly proved, applying again Claim 4.1 this time with rε.

Let us now prove b). Let us assume first that 1 +
r2ε

4µ2
i,ε

≤ eγ
2
i,ε , that lim sup

ε→0
γ−1
i,ε Bi,ε (rε) ≤ 0

and that lim sup
ε→0

γ−1
i,ε Bi,ε (ri,ε) ≤ 0 and assume by contradiction that there exists 0 < η < 1 such

that

inf
Dxi,ε

(rε)
uε ≥ Bi,ε (rε) + ηγ−1

i,ε . (4.9)

We claim that

uε ≥ γi,ε +
1

γi,ε
ln

4µ2
i,ε

|xi,ε − x|2
− 1− η

γi,ε
+ o

(

γ−1
i,ε

)

in Dxi,ε
(rε) \ Dxi,ε

(R0µi,ε) (4.10)

where

R0 =
4√

e1−η − 1
.

The right-hand side of (4.10) being harmonic and uε being super-harmonic, it is sufficient to
check the inequality on ∂Dxi,ε

(rε) and on ∂Dxi,ε
(R0µi,ε). For that purpose, let us write that

Bi,ε (rε) = γi,ε − γ−1
i,ε ti,ε (rε)− γ−3

i,ε ti,ε (rε) +O
(

γ−2
i,ε

)

as proved in Appendix A, Claim 5.2, since we assumed for the moment that ti,ε (rε) ≤ γ2i,ε. Since

we assumed that lim sup
ε→0

γ−1
i,ε Bi,ε (rε) ≤ 0, this gives that

ti,ε (rε)

γ2i,ε
→ 1 as ε→ 0 so that

Bi,ε (rε) = γi,ε − γ−1
i,ε ln

(

1 +
r2ε

4µ2
i,ε

)

− γ−1
i,ε + o

(

γ−1
i,ε

)

= γi,ε +
1

γi,ε
ln

4µ2
i,ε

r2ε
− γ−1

i,ε + o
(

γ−1
i,ε

)

.

This implies with (4.9) that

uε ≥ γi,ε +
1

γi,ε
ln

4µ2
i,ε

|xi,ε − x|2
− 1− η

γi,ε
+ o

(

γ−1
i,ε

)

on ∂Dxi,ε
(rε) . (4.11)

Let us write now that

uε −Bi,ε = o
(

γ−1
i,ε

)

on ∂Dxi,ε
(R0µi,ε)

thanks to d) of Proposition 2.1. Since

Bi,ε (R0µi,ε) = γi,ε − γ−1
i,ε ln

(

1 +
R2

0

4

)

+ o
(

γ−1
i,ε

)

,
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we obtain that

uε ≥ γi,ε +
1

γi,ε
ln

4µ2
i,ε

|xi,ε − x|2
− 1− η

γi,ε
+ o

(

γ−1
i,ε

)

on ∂Dxi,ε
(R0µi,ε) (4.12)

provided that

ln

(

1 +
4

R2
0

)

< 1− η ,

which is the case with our choice of R0. Thus (4.10) is proved.
Now there existsR0µi,ε ≤ sε ≤ min {rε, ri,ε} such thatBi,ε (sε) =

η
2γi,ε since lim sup

ε→0
γ−1
i,ε Bi,ε (rε) ≤ 0

and lim sup
ε→0

γ−1
i,εBi,ε (ri,ε) ≤ 0. We can apply a) of the claim to get that

1

2πsε

∫

∂Dxi,ε
(sε)

uε dσ =
η

2
γi,ε + o

(

γ−1
i,ε

)

.

Applying (4.10), this leads to

γi,ε +
1

γi,ε
ln

4µ2
i,ε

s2ε
− 1− η

γi,ε
+ o

(

γ−1
i,ε

)

≤ η

2
γi,ε + o

(

γ−1
i,ε

)

. (4.13)

Since Bi,ε (sε) =
η
2γi,ε, it is not difficult to check thanks to Claim 5.2 of Appendix A that

ti,ε (sε) =
(

1− η

2

)

(

γ2i,ε − 1
)

+O
(

γ−1
i,ε

)

so that, since sε
µi,ε

→ +∞ as ε→ 0,

ln
4µ2

i,ε

s2ε
= −

(

γ2i,ε − 1
)

(

1− η

2

)

+ o (1) .

Coming back to (4.13) with this leads to a contradiction. This proves that (4.9) is absurd for
any 0 < η < 1. Thus we have proved assertion b) as long as ti,ε (rε) ≤ γ2i,ε.

We shall now prove c), which will by the way prove that b) holds since the condition ti,ε (rε) ≤
γ2i,ε will always be satisfied. Let us assume by contradiction that ti,ε (di,ε) ≥ γ2i,ε. Then
Dxi,ε

(rε) ⊂ Ω for ε > 0 small where

1 +
r2ε
4µ2

ε

= eγ
2
ε−

1
2 .

We can apply b) in this case since ti,ε (rε) ≤ γ2i,ε and

Bi,ε (rε) = −1

2
γ−1
i,ε +O

(

γ−2
i,ε

)

by Claim 5.2 of Appendix A. This leads to a contradiction since uε ≥ 0 in Ω. Thus c) is proved
thanks to the definition of µi,ε and b) is also proved. This ends the proof of this claim. ♦
Claim 4.3. For any i ∈ {1, . . . , N}, we have that

lim sup
ε→0

γ−1
i,εBi,ε (ri,ε) ≤ 0 .

Proof of Claim 4.3 - Let us reorder for this proof the concentration points in such a way that

r1,ε ≤ r2,ε ≤ · · · ≤ rN,ε . (4.14)

We prove the assertion by induction on i. Let i ∈ {1, . . . , N} and let us assume that

lim sup
ε→0

γ−1
j,εBj,ε (rj,ε) ≤ 0 for all 1 ≤ j ≤ i− 1 . (4.15)
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Note that we do not assume anything if i = 1. We proceed by contradiction, assuming that,
after passing to a subsequence,

γ−1
i,εBi,ε (ri,ε) ≥ 2ε0 (4.16)

for some ε0 > 0.

Step 1 - If (4.16) holds, then
d(xi,ε,∂Ω)

ri,ε
→ +∞ as ε → 0. In particular, this implies that

ri,ε → 0 as ε→ 0.

Proof of Step 1 - For any η > 0 small enough, there exists a path of length less than or
equal to Cd (xi,ε, ∂Ω) joining the boundary of Ω and the boundary of the disk Dxi,ε

(ηd (xi,ε, ∂Ω)),
and avoiding all the disks Dxj,ε

(ηd (xi,ε, ∂Ω)) for j = 1, . . . , N . Using f) of Proposition 2.1, we
deduce that, for any η > 0, there exists C > 0 such that

uε ≤ C on ∂Dxi,ε
(ηd (xi,ε, ∂Ω)) .

If d (xi,ε, ∂Ω) = O (ri,ε), we can find η > 0 small enough such that ηd (xi,ε, ∂Ω) ≤ ri,ε. Then
the above estimate would clearly contradict a) of Claim 4.2 together with (4.16). Thus Step 1 is
proved. ♠

Thanks to Step 1, we know that, if (4.16) holds, then

Di = {j ∈ {1, . . . , N} , j 6= i s.t. |xj,ε − xi,ε| = O (ri,ε)} 6= ∅ . (4.17)

There exists 0 < δ < 1 such that, for any j ∈ Di, any point of ∂Dxj,ε
(δri,ε) can be joined to a

point of ∂Dxi,ε
(δri,ε) by a path γε : [0, 1] → Ω such that |γε(t)− xk,ε| ≥ δri,ε for all k = 1, . . . , N

and all 0 ≤ t ≤ 1 and such that |γ′ε(t)| ≤ δ−1ri,ε. Thanks to assertion f) of Proposition 2.1, the
existence of such paths give that

inf
∂Dxj,ε

(δri,ε)
u2ε ≥ inf

∂Dxi,ε
(δri,ε)

u2ε − 2C2δ
−2 for all j ∈ Di .

Thanks to (4.16), we can apply a) of Claim 4.2 to obtain also that

uε ≥ Bi,ε (δri,ε)− Cγ−1
i,ε on ∂Dxi,ε

(δri,ε)

for some C > 0. Since

Bi,ε (δri,ε) = Bi,ε (ri,ε) +O
(

γ−1
i,ε

)

,

the two previous estimates , together with (4.16), lead to the existence of some C > 0 such that

uε ≥ Bi,ε (ri,ε)− Cγ−1
i,ε on ∂Dxj,ε

(δri,ε) for all j ∈ Di . (4.18)

Step 2 - If (4.16) holds, then for any j ∈ Di, we have that

lim inf
ε→0

γ−1
j,εBj,ε (rj,ε) > 0 .

In particular, we have that j ≥ i+ 1.

Proof of Step 2 - Assume on the contrary that there exists j ∈ Di such that, after passing
to a subsequence,

lim sup
ε→0

γ−1
j,εBj,ε (rj,ε) ≤ 0 . (4.19)

Since j ∈ Di, we also know that

rj,ε ≤
1

2
|xi,ε − xj,ε| ≤ Cri,ε . (4.20)

Thus we also have that

lim sup
ε→0

γ−1
j,εBj,ε (δri,ε) ≤ 0 . (4.21)
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We can apply b) of Claim 4.2 with rε = δri,ε to obtain that

Bi,ε (ri,ε)− Cγ−1
i,ε ≤ Bj,ε (δri,ε) + o

(

γ−1
j,ε

)

(4.22)

thanks to (4.18). Combining (4.16) and (4.21), we get that

γi,ε = o (γj,ε) . (4.23)

Thus we also have that µj,ε ≤ µi,ε. Let us write now thanks to Claim 5.2 of Appendix A that

Bj,ε (δri,ε) = −γ−1
j,ε ln

(

r2i,ε

4

)

− γ−1
j,ε ln

(

λεγ
2
j,ε

)

+O
(

γ−1
j,ε

)

and that

Bi,ε (ri,ε) = −γ−1
i,ε ln

(

r2i,ε

4

)

− γ−1
i,ε ln

(

λεγ
2
i,ε

)

+O
(

γ−1
i,ε

)

to obtain that

Bj,ε (δri,ε) =
γi,ε

γj,ε
Bi,ε (ri,ε) + γ−1

j,ε ln

(

γ2i,ε

γ2j,ε

)

+O
(

γ−1
j,ε

)

.

Coming back to (4.22) with this, (4.16) and (4.23), we obtain that

(2ε0 + o(1)) γi,ε ≤ γ−1
j,ε ln

(

γ2i,ε

γ2j,ε

)

+O
(

γ−1
i,ε

)

≤ O
(

γ−1
i,ε

)

,

which is a clear contradiction. Step 2 is proved. ♠
We can now conclude the proof of the claim by proving that (4.16) is absurd if (4.15) holds.

Continue to assume that (4.16) holds. Then we know thanks to Step 2 that for any j ∈ Di,
j ≥ i+ 1 so that rj,ε ≥ ri,ε. We set, for j ∈ Di, and up to a subsequence,

x̂j = lim
ε→0

xj,ε − xi,ε

ri,ε
(4.24)

and we let

Ŝ = {x̂j , j ∈ Di} . (4.25)

We know thanks to Step 1 that there exists j ∈ Di such that

|x̂j | = 2 (4.26)

and that

|x̂k − x̂l| ≥ 2 for all k, l ∈ Di, k 6= l . (4.27)

Since rj,ε and ri,ε are comparable, we also have thanks to Step 2 that

lim inf
ε→0

γ−1
j,εBj,ε (rj,ε) > 0 . (4.28)

Let K be a compact subset of R2 \ Ŝ. We can use assertion f) of Proposition 2.1 to write4 that

γi,ε |uε (xi,ε + ri,εx)−Bi,ε (ri,ε)| ≤ CK in K . (4.29)

Thanks to (4.1), we can write that

∆ûε = λεr
2
i,εγi,εfε (xi,ε + ri,εx) uε (xi,ε + ri,εx)

2
euε(xi,ε+ri,εx)

2

where

ûε = γi,ε (uε (xi,ε + ri,εx)−Bi,ε (ri,ε)) .

4see the argument between Steps 1 and 2.
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Using (4.29), we can write that

|∆ûε| ≤ CKµ
−2
i,ε r

2
i,εe

Bi,ε(ri,ε)
2−γ2

i,ε in K

for any compact subset K of R2 \ Ŝ. Thanks to (4.16), we have that

eBi,ε(ri,ε)
2−γ2

i,ε ≤ C

(

1 +
r2i,ε

4µ2
i,ε

)−1−2ε0

so that

|∆ûε| ≤ CK

(

µi,ε

ri,ε

)4ε0

→ 0 uniformly in K .

By standard elliptic theory, we thus have that

ûε = γi,ε (uε (xi,ε + ri,εx)−Bi,ε (ri,ε)) → û0 in C1
loc

(

R
2 \ Ŝ

)

as ε→ 0 (4.30)

where

∆û0 = 0 in R
2 \ Ŝ . (4.31)

Since rj,ε ≥ ri,ε for j ∈ Di, (4.28) permits to apply a) of Claim 4.2, which in turn implies thanks
to (4.5) that we can apply Claim 4.1 for all j ∈ Di with rε = ri,ε. Assertion c) of this claim gives
that

γj,ε (uε (xj,ε + ri,εx)−Bj,ε (ri,ε)) → 2 ln
1

|x| +Hj (4.32)

in C1
loc (D0(1) \ {0}) as ε → 0 where Hj is harmonic in the unit disk and satifies Hj(0) = 0 and

∇Hj(0) = 0 (note here that we know thanks to Step 1 that ri,ε → 0 as ε→ 0). This gives that

γj,ε

γi,ε
ûε + γj,ε (Bi,ε (ri,ε)−Bj,ε (ri,ε)) → 2 ln

1

|x− x̂j |
+ Ĥj (4.33)

in C1
loc

(

Dx̂j
(1) \ {x̂j}

)

as ε→ 0 for all j ∈ Di (and also for j = i if we set x̂i = 0). It remains to
write thanks to Claim 5.2 of Appendix A and to (1.5) that

Bi,ε (ri,ε)−Bj,ε (ri,ε) =

(

1− γi,ε

γj,ε

)

Bi,ε (ri,ε) + γ−1
j,ε ln

γ2j,ε

γ2i,ε
+O

(

γ−1
j,ε

)

to deduce from (4.16), (4.30) and (4.33) that

γj,ε

γi,ε
→ 1 as ε→ 0 and γi,ε |γi,ε − γj,ε| = O (1) . (4.34)

Then (4.30) and (4.33) just lead to

û0 = 2 ln
1

|x− x̂j |
+ ϕj (4.35)

in Dx̂j
(1)\{x̂j} where ϕj is smooth and harmonic and satisfies ∇ϕj (x̂j) = 0. Thus we can write

that

û0 = 2 ln
1

|x| + 2
∑

j∈Di

ln
1

|x− x̂j |
+ ϕ (4.36)

where ϕ is a smooth harmonic function in R
2. Thanks to assertion f) of Proposition 2.1, we also

know that

|∇ϕ(x)| ≤ C

1 + |x| in R
2
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for some C > 0 so that ϕ ≡ Cst. Now this gives that for any k ∈ Di,

∇



ln
1

|x| +
∑

j∈Di,j 6=k

ln
1

|x− x̂j |



 (x̂k) = 0 .

Let k ∈ Di be such that |x̂k| ≥ |x̂j | for all j ∈ Di. Then

〈∇



ln
1

|x| +
∑

j∈Di, j 6=k

ln
1

|x− x̂j |



 (x̂k) , x̂k〉 = − |x̂k| −
∑

j∈Di, j 6=k

|x̂k|2 − 〈x̂k, x̂j〉
|x̂k − x̂j |

≤ − |x̂k| < 0 ,

which gives the desired contradiction. This proves that (4.16) is absurd as soon as (4.15) holds.
And this ends the proof of the claim by an induction argument. ♦
Claim 4.4. For any i = 1, . . . , N , we have that

λεfε (xi,ε) γ
2
i,εd

2
i,ε ≤ 4

for ε small enough.

Proof of Claim 4.4 - It is a direct consequence of c) of Claim 4.2 together with Claim 4.3. ♦
Claim 4.5. We have that

∫

Ω

|∇uε|2 dx =

∫

Ω

|∇u0|2 dx+ 4πN + o(1) .

In other words, M = 0 in Theorem 2.1.

Proof of Claim 4.5 - We prove that M = 0 in Theorem 2.1. Assume on the contrary that
there exists some sequence (y1,ε) such that the assertion b) of Theorem 2.1 holds. This means
that

ν−2
1,ε = λεfε (y1,ε)uε (y1,ε)

2
euε(y1,ε)

2 → +∞ as ε→ 0 .

By e) of Proposition 2.1, we know that

ν−2
1,ε

(

min
i=1,...,N

|xi,ε − y1,ε|
)2

=

(

min
i=1,...,N

|xi,ε − y1,ε|
)2

λεfε (y1,ε) uε (y1,ε)
2
euε(y1,ε)

2

≤ C1fε (y1,ε) .

This proves that there exists i ∈ {1, . . . , N} such that

|xi,ε − y1,ε| = O (ν1,ε) .

Since
|xi,ε − y1,ε|

µi,ε

→ +∞ as ε→ 0

by a) of Theorem 2.1, we have that
ν1,ε

µi,ε

→ +∞ as ε→ 0 .

Thanks to the definition of ν1,ε and µi,ε, this leads to

eγ
2
i,ε−uε(y1,ε)

2 γ2i,ε

uε (y1,ε)
2 → +∞ as ε→ 0 ,

which implies that

γ2i,ε − uε (y1,ε)
2 → +∞ as ε→ 0 . (4.37)
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Now, by the convergence of b) of Theorem 2.1, we know that

uε ≥ uε (y1,ε)− Cuε (y1,ε)
−1

on ∂Dxi,ε
(Rν1,ε)

for some R > 0 and C > 0. Thanks to Claim 4.3, we can use assertion b) of Claim 4.2 to deduce
that

uε (y1,ε)− Cuε (y1,ε)
−1 ≤ Bi,ε (Rν1,ε) + o

(

γ−1
i,ε

)

.

This leads after some simple computations, using Claim 5.2 of Appendix A, to

uε (y1,ε)− Cuε (y1,ε)
−1 ≤ γ−1

i,ε ln

(

uε (y1,ε)
2

γ2i,ε

)

+
uε (y1,ε)

2

γi,ε
+ Cγ−1

i,ε

so that, thanks to (4.37),

uε (y1,ε)
2

(

1− uε (y1,ε)

γi,ε

)

≤ C .

This clearly implies that
uε (y1,ε)

γi,ε
→ 1 as ε→ 0

and then that
uε (y1,ε) ≥ γi,ε − Cγ−1

i,ε

for some C > 0. This contradicts (4.37). Thus we have proved that M = 0 in Theorem 2.1 and
the claim follows. ♦

For any i ∈ {1, . . . , N}, thanks to Claim 4.3 and a) of Claim (4.2), there exists 0 ≤ si,ε ≤ ri,ε
such that

lim sup
ε→0

γ−1
i,ε Bi,ε (si,ε) ≤ 0 and |uε −Bi,ε| ≤

Di

γi,ε
in Dxi,ε

(si,ε) (4.38)

for some Di > 0.

Claim 4.6. We have that

lim inf
ε→0

∫

Dxi,ε
(si,ε)

|∇uε|2 dx ≥ 4π .

Proof of Claim 4.6 - Let δ > 0. Let us write thanks to (4.38) that
∫

Dxi,ε
(si,ε)

|∇uε|2 dx ≥
∫

Dxi,ε
(si,ε)

∣

∣

∣∇ (uε − δγi,ε)
+
∣

∣

∣

2

dx =

∫

Dxi,ε
(si,ε)

(uε − δγi,ε)
+
∆uε dx .

Thanks to (4.1), this leads to
∫

Dxi,ε
(si,ε)

|∇uε|2 dx ≥ λε

∫

Dxi,ε
(si,ε)

fε (uε − δγi,ε)
+
uεe

u2
ε dx

≥ λε

∫

Dxi,ε
(Rµi,ε)

fε (uε − δγi,ε)
+
uεe

u2
ε dx

for all R > 0. Now we have that

lim
ε→0

λε

∫

Dxi,ε
(Rµi,ε)

fε (uε − δγi,ε)
+
uεe

u2
ε dx = (1− δ)

∫

D0(R)

e2U dx

thanks to d) of Proposition 2.1. Since
∫

R2

e2U dx = 4π ,

the result follows by letting R go to +∞ and δ go to 0. ♦
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Let us set now

Ωε = Ω \
N
⋃

i=1

Dxi,ε
(si,ε) (4.39)

where si,ε is as in (4.38) and

wε =







uε in Ωε

min

{

uε, Bi,ε (si,ε) + 2
Di

γi,ε

}

in Dxi,ε
(si,ε) for i = 1, . . . , N

(4.40)

Claim 4.7. We have that
∫

Ω

|∇ (wε − u0)|2 dx→ 0 as ε→ 0 .

Proof of Claim 4.7 - Let us write that
∫

Ω

|∇ (wε − u0)|2 dx =

∫

Ω

|∇wε|2 dx − 2

∫

Ω

〈∇wε,∇u0〉 dx+

∫

Ω

|∇u0|2 dx

=

∫

Ω

|∇uε|2 dx − 2

∫

Ω

〈∇uε,∇u0〉 dx+

∫

Ω

|∇u0|2 dx

+

∫

Ω

〈∇ (wε − uε) ,∇uε +∇wε − 2∇u0〉 dx

= 4πN + o(1) +

∫

Ω

〈∇ (wε − uε) ,∇uε +∇wε − 2∇u0〉 dx

thanks to the weak convergence of uε to u0 in H1 and to Claim 4.5. Let us remark now that
∇ (wε − uε) ≡ 0 in Ωε and that 〈∇ (wε − uε) ,∇wε〉 = 0 a.e. Thus we can write that

∫

Ω

|∇ (wε − u0)|2 dx = 4πN + o(1) +

N
∑

i=1

∫

Dxi,ε
(si,ε)

〈∇ (wε − uε) ,∇uε − 2∇u0〉 dx . (4.41)

Since wε − uε is null on the boundary of Dxi,ε
(si,ε), we can proceed as in the proof of Claim 4.6

to get that
∫

Dxi,ε
(si,ε)

〈∇ (wε − uε) ,∇uε − 2∇u0〉 dx =

∫

Dxi,ε
(si,ε)

(wε − uε) (∆uε − 2∆u0) dx

≤ −4π + o(1) +O

(

γi,ε

∫

Dxi,ε
(si,ε)

|∆u0| dx
)

.

Here we used the fact that wε ≤ uε and |wε| = o (γi,ε) in Dxi,ε
(si,ε). If u0 ≡ 0, the last term

disappears. If u0 6≡ 0, then λε → λ0 with λ0 > 0 and Claim 4.4 gives that γi,εs
2
i,ε = o(1). Thus,

in any case, we have that
∫

Dxi,ε
(si,ε)

〈∇ (wε − uε) ,∇uε − 2∇u0〉 dx ≤ −4π + o(1) .

Coming back to (4.41) with this proves the claim. ♦
The next two claims are devoted to obtaining good pointwise estimates on uε and ∇uε.

Claim 4.8. For any sequence (xε) of points in Ω such that

|xε − xi,ε|
µi,ε

→ +∞ as ε→ 0 for i = 1, . . . , N ,

we have that
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a) if dε = d (xε, ∂Ω) 6→ 0 as ε→ 0, then

uε (xε) = ψε (xε) +
N
∑

i=1

4π + o(1)

γi,ε
G (xi,ε, xε)

+O

(

N
∑

i=1

γ−1
i,ε

(

µi,ε

|xi,ε − xε|
+ γ−1

i,ε ln

(

si,ε

|xi,ε − xε|
+ 2

))

)

,

b) if dε → 0 as ε→ 0, then

uε (xε) = ψε (xε) +

N
∑

i=1

4π + o(1)

γi,ε
G (xi,ε, xε)

+O

(

∑

i∈A

γ−1
i,ε

(

µi,ε

|xi,ε − xε|
+ γ−1

i,ε ln

(

si,ε

|xi,ε − xε|
+ 2

))

)

+O

(

∑

i∈B

dε

dε + di,ε
γ−1
i,ε

(

µi,ε + γ−1
i,ε si,ε

)

)

where G is the Green function of the Laplacian with Dirichlet boundary condition in Ω and ψε is
a solution of

∆ψε = λεfεwεe
w2

ε in Ω and ψε = 0 on ∂Ω .

In b), A is defined as the set of i ∈ {1, . . . , N} such that |xi,ε − xε| ≤ si,ε + o (dε) and B as its
complementary.

Proof of Claim 4.8 - We let G be the Green function of the Laplacian with Dirichlet boundary
condition in Ω. We let (xε) be a sequence of points in Ω such that

|xε − xi,ε|
µi,ε

→ +∞ as ε→ 0 for i = 1, . . . , N . (4.42)

Then we have thanks to (4.1) and to the definition of ψε that

uε (xε)− ψε (xε) = λε

∫

Ω

G (xε, x) fε(x)
(

uε(x)e
uε(x)

2 − wε(x)e
wε(x)

2
)

dx .

Using the definition (4.40) of wε, this gives that

uε (xε)− ψε (xε) (4.43)

=
N
∑

i=1

λεG (xε, xi,ε)

∫

Dxi,ε
(si,ε)

fε(x)
(

uε(x)e
uε(x)

2 − wε(x)e
wε(x)

2
)

dx +
N
∑

i=1

Ai,ε

where

Ai,ε = λε

∫

Dxi,ε
(si,ε)

(G (xε, x)− G (xε, xi,ε)) fε(x)
(

uε(x)e
uε(x)

2 − wε(x)e
wε(x)

2
)

dx . (4.44)

We fix i ∈ {1, . . . , N} in the following and we let

Ω0,ε = Dxi,ε
(si,ε) ∩ {tε(x) ≤ t1,ε} ,

Ω1,ε = Dxi,ε
(si,ε) ∩ {t1,ε ≤ tε(x) ≤ t2,ε} and (4.45)

Ω2,ε = Dxi,ε
(si,ε) ∩ {tε(x) ≥ t2,ε} .

where tε(x) = ln
(

1 +
|x−xi,ε|

2

4µ2
i,ε

)

, t1,ε =
1
4γ

2
i,ε and t2,ε = γ2i,ε − γi,ε.
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Step 1 - We have that

λε

∫

Dxi,ε
(si,ε)

fε(x)
(

uε(x)e
uε(x)

2 − wε(x)e
wε(x)

2
)

dx = 4πγ−1
i,ε + o

(

γ−1
i,ε

)

.

Proof of Step 1 - We write that

λε

∫

Dxi,ε
(si,ε)

fε(x)
(

uε(x)e
uε(x)

2 − wε(x)e
wε(x)

2
)

dx

= λε

∫

Dxi,ε
(Rεµi,ε)

fε(x)
(

uε(x)e
uε(x)

2 − wε(x)e
wε(x)

2
)

dx

+λε

∫

Ω0,ε\Dxi,ε
(Rεµi,ε)

fε(x)
(

uε(x)e
uε(x)

2 − wε(x)e
wε(x)

2
)

dx

+λε

∫

Ω1,ε

fε(x)
(

uε(x)e
uε(x)

2 − wε(x)e
wε(x)

2
)

dx

+λε

∫

Ω2,ε

fε(x)
(

uε(x)e
uε(x)

2 − wε(x)e
wε(x)

2
)

dx

where Rε → +∞ is such that |uε −Bi,ε| = o
(

γ−1
i,ε

)

and γ−1
i,ε Bi,ε(x) = 1 + o(1) in Dxi,ε

(Rεµi,ε).

Such a Rε does exist thanks to d) of Proposition 2.1. Then we have, using also (4.38), that

λε

∫

Dxi,ε
(Rεµi,ε)

fε(x)
(

uε(x)e
uε(x)

2 − wε(x)e
wε(x)

2
)

dx

= λε (fε (xi,ε) + o(1))

∫

Dxi,ε
(Rεµi,ε)

Bi,ε(x)e
Bi,ε(x)

2

dx

+O
(

λεBi,ε (si,ε) e
Bi,ε(si,ε)

2

R2
εµ

2
i,ε

)

= γ−1
i,ε

(

∫

D0(Rε)

e2U dx+ o(1)

)

+ o
(

γ−1
i,ε

)

= 4πγ−1
i,ε + o

(

γ−1
i,ε

)

.

In Ω0,ε, we write that

Bi,ε (x)
2
= γ2i,ε − 2tε (x) +

tε(x)
2

γ2i,ε
+O(1) ≤ γ2i,ε −

7

4
tε(x) +O(1)

so that

eBi,ε(x)
2 ≤ eγ

2
i,ε

(

1 +
|x− xi,ε|2

4µ2
i,ε

)− 7
4

.

Thus we can write that

0 ≤ λε

∫

Ω0,ε\Dxi,ε
(Rεµi,ε)

fε(x)
(

uε(x)e
uε(x)

2 − wε(x)e
wε(x)

2
)

dx

≤ Cγ−1
i,ε µ

−2
i,ε

∫

Ω\Dxi,ε
(Rεµi,ε)

(

1 +
|x− xi,ε|2

4µ2
i,ε

)− 7
4

dx = o
(

γ−1
i,ε

)

.

In Ω1,ε, we write that

eBi,ε(x)
2 ≤ eγ

2
i,ε−

1
4 γi,εe−tε(x)
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so that

0 ≤ λε

∫

Ω1,ε

fε(x)
(

uε(x)e
uε(x)

2 − wε(x)e
wε(x)

2
)

dx

≤ Cµ−2
i,ε e

− 1
4 γi,εγ−1

i,ε

∫

Ω1,ε

(

1 +
|x− xi,ε|2

4µ2
i,ε

)−1

dx

≤ Ce−
1
4γi,εγ−1

i,ε ln
si,ε

µi,ε

= o
(

γ−2
i,ε

)

since 2 ln
si,ε
µi,ε

= γ2i,ε + O(1) thanks to Claim 4.4. At last, in Ω2,ε, we have that Bi,ε = O(1) so

that

0 ≤ λε

∫

Ω2,ε

fε(x)
(

uε(x)e
uε(x)

2 − wε(x)e
wε(x)

2
)

dx ≤ Cλεs
2
i,ε = O

(

γ−2
i,ε

)

thanks to Claim 4.4. Combining all these estimates clearly proves Step 1. ♠
We shall now estimate the Ai’s involved in (4.43) and defined in (4.44). We write since uε ≥ wε

and thanks to (4.38) that

|Ai,ε| ≤ Cλε

∫

Dxi,ε
(si,ε)

|G (xε, x)− G (xε, xi,ε)|
(

Bi,ε + Cγ−1
i,ε

)

eBi,ε(x)
2

dx . (4.46)

Step 2 - Assume that dε = d (xε, ∂Ω) ≥ d for some d > 0. Then we have that

|Ai,ε| ≤ Cγ−1
i,ε

(

µi,ε

|xi,ε − xε|
+ γ−1

i,ε ln

(

si,ε

|xi,ε − xε|
+ 2

))

.

Proof of Step 2 - We use (6.1) to write that

|G (xε, x)− G (xε, xi,ε)| ≤
1

2π

∣

∣

∣

∣

ln
|xi,ε − xε|
|xε − x|

∣

∣

∣

∣

+ C |x− xi,ε| .

Thus we have thanks to (4.46) that

|Ai,ε| ≤ Cλε

∫

Dxi,ε
(si,ε)

(∣

∣

∣

∣

ln
|xi,ε − xε|
|xε − x|

∣

∣

∣

∣

+ |xi,ε − x|
)

(

Bi,ε + Cγ−1
i,ε

)

eBi,ε(x)
2

dx .

In Ω0,ε, we have that

Bi,ε(x) ≤ γ2i,ε −
7

4
ln

(

1 +
|xi,ε − x|2

4µ2
i,ε

)

so that

λε

∫

Ω0,ε

(∣

∣

∣

∣

ln
|xi,ε − xε|
|xε − x|

∣

∣

∣

∣

+ |xi,ε − x|
)

(

Bi,ε + Cγ−1
i,ε

)

eBi,ε(x)
2

dx

≤ Cµ−2
i,ε γ

−1
i,ε

∫

Ω0,ε

(∣

∣

∣

∣

ln
|xi,ε − xε|
|xε − x|

∣

∣

∣

∣

+ |xi,ε − x|
)

(

1 +
|xi,ε − x|2

4µ2
i,ε

)− 7
4

dx .

This leads after simple computations, since
|xi,ε−xε|

µi,ε
→ +∞, as ε→ 0 to

λε

∫

Ω0,ε

(∣

∣

∣

∣

ln
|xi,ε − xε|
|xε − x|

∣

∣

∣

∣

+ |xi,ε − x|
)

(

Bi,ε + Cγ−1
i,ε

)

eBi,ε(x)
2

dx ≤ Cγ−1
i,ε

µi,ε

|xi,ε − xε|
.



MULTI-BUMPS ANALYSIS FOR TRUDINGER-MOSER NONLINEARITIES IN 2D 33

In Ω1,ε, we can write that

eBi,ε(x)
2 ≤ eγ

2
i,ε−

1
4γi,ε

(

1 +
|x− xi,ε|2

4µ2
i,ε

)−1

so that

λε

∫

Ω1,ε

(∣

∣

∣

∣

ln
|xi,ε − xε|
|xε − x|

∣

∣

∣

∣

+ |xi,ε − x|
)

(

Bi,ε + Cγ−1
i,ε

)

eBi,ε(x)
2

dx

≤ Cγ−1
i,ε e

− 1
4γi,ε

∫

Ω1,ε

(∣

∣

∣

∣

ln
|xi,ε − xε|
|xε − x|

∣

∣

∣

∣

+ |xi,ε − x|
)

|x− xi,ε|−2
dx

≤ Cγ−1
i,ε e

− 1
4γi,ε

(

ln
r2,ε

µi,ε

)2

where ti,ε (r2,ε) = t2,ε. We have that

ln
r2,ε

µi,ε

≤ Cγ2ε

so that

λε

∫

Ω1,ε

(∣

∣

∣

∣

ln
|xi,ε − xε|
|xε − x|

∣

∣

∣

∣

+ |xi,ε − x|
)

(

Bi,ε + Cγ−1
i,ε

)

eBi,ε(x)
2

dx = O
(

γ3i,εe
− 1

4γi,ε

)

= o
(

γ−2
i,ε

)

.

At last, in Ω2,ε, we have that Bi,ε = O(1) so that

λε

∫

Ω2,ε

(∣

∣

∣

∣

ln
|xi,ε − xε|
|xε − x|

∣

∣

∣

∣

+ |xi,ε − x|
)

(

Bi,ε + Cγ−1
i,ε

)

eBi,ε(x)
2

dx

≤ λε

∫

Ω2,ε

(∣

∣

∣

∣

ln
|xi,ε − xε|
|xε − x|

∣

∣

∣

∣

+ |xi,ε − x|
)

dx

≤ λεs
2
i,ε ln

(

si,ε

|xi,ε − xε|
+ 2

)

≤ Cγ−2
i,ε ln

(

si,ε

|xi,ε − xε|
+ 2

)

by direct computations and Claim 4.4. Combining the above estimates gives Step 2. ♠
Step 3 - Assume now that dε = d (xε, ∂Ω) → 0 as ε → 0 and that |xi,ε − xε| ≥ si,ε + δdε for

some δ > 0. Then we have that

|Ai,ε| ≤ C
dε

dε + di,ε

(

γ−1
i,ε µi,ε + γ−2

i,ε si,ε
)

.

Proof of Step 3 - In this setting, we can apply (6.12) to write that

|G (xε, x)− G (xε, xi,ε)| ≤ C
dε

dε + di,ε
|x− xi,ε|

so that

|Ai,ε| ≤ Cλε
dε

dε + di,ε

∫

Dxi,ε
(si,ε)

|x− xi,ε|
(

Bi,ε + Cγ−1
i,ε

)

eB
2
i,ε dx

thanks to (4.44). In Ω0,ε, we have that

(

Bi,ε + Cγ−1
i,ε

)

eB
2
i,ε ≤ Cγi,εe

γ2
i,ε

(

1 +
|x− xi,ε|2

4µ2
i,ε

)− 7
4
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so that

λε

∫

Ω0,ε

|x− xi,ε|
(

Bi,ε + Cγ−1
i,ε

)

eB
2
i,ε dx

≤ Cµ−2
i,ε γ

−1
i,ε

∫

Dxi,ε
(si,ε)

|x− xi,ε|
(

1 +
|x− xi,ε|2

4µ2
i,ε

)− 7
4

dx

≤ Cµi,εγ
−1
i,ε .

In Ω1,ε, we have that

(

Bi,ε + Cγ−1
i,ε

)

eBi,ε(x)
2 ≤ γi,εe

γ2
i,ε−

1
4γi,ε

(

1 +
|x− xi,ε|2

4µ2
i,ε

)−1

so that

λε

∫

Ω1,ε

|x− xi,ε|
(

Bi,ε + Cγ−1
i,ε

)

eB
2
i,ε dx

≤ Cµ−2
i,ε γ

−1
i,ε e

− 1
4γi,ε

∫

Dxi,ε
(si,ε)

|x− xi,ε|
(

1 +
|x− xi,ε|2

4µ2
i,ε

)−1

dx

≤ γ−1
i,ε e

− 1
4γi,εsi,ε .

At last, in Ω2,ε, we have that Bi,ε = O(1) so that

λε

∫

Ω2,ε

|x− xi,ε|
(

Bi,ε + Cγ−1
i,ε

)

eB
2
i,ε dx ≤ λεs

3
i,ε .

Combining the above estimates with Claim 4.4, we get the estimate of Step 3. ♠
Step 4 - Assume now that dε = d (xε, ∂Ω) → 0 as ε → 0 and that |xi,ε − xε| ≤ si,ε + o (dε).

Then we have that

|Ai,ε| ≤ Cγ−1
i,ε

(

µi,ε

|xi,ε − xε|
+ γ−1

i,ε ln

(

si,ε

|xi,ε − xε|
+ 2

))

.

Proof of Step 4 - Let us remark that in this case, we necessarily have that

dε ≤ |xi,ε − xε|+ di,ε ≤ si,ε + di,ε + o (dε) ≤
3

2
di,ε + o (dε)

so that dε = O (di,ε). This leads in turn to |xi,ε − xε| ≤ si,ε + o (di,ε). And then we can write
that

di,ε ≤ dε + |xi,ε − xε| ≤ si,ε + o (di,ε) + dε ≤
1

2
di,ε + dε + o (di,ε)

so that di,ε = O (dε). Thanks to (6.12), we can write that

|G (xε, x)− G (xε, xi,ε)| ≤ C
|x− xi,ε|
di,ε

+ C

∣

∣

∣

∣

ln
|xi,ε − xε|
|xε − x|

∣

∣

∣

∣

so that the computations of Step 2 lead to the result of Step 4. ♠
Of course, the combination of Steps 1 to 4 gives the estimate of the claim. ♦

Claim 4.9. There exists C > 0 such that

|∇ (uε − ψε) (x)| ≤ C

N
∑

i=1

γ−1
i,ε (µi,ε + |x− xi,ε|)−1

where ψε is as in Claim 4.8.
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Proof of Claim 4.9 - We use again the Green representation formula with equation (4.1)
(together with the equation satisfied by ψε, see Claim 4.8) to write that

|∇ (uε − ψε) (x)| ≤ λε

∫

Ω

|∇G(x, y)| fε(y)
(

uε(y)e
uε(y)

2 − wε(y)e
wε(y)

2
)

dy .

Thanks to standard estimates on the Green function and to the definition (4.40), this leads to

|∇ (uε − ψε) (x)| ≤ C

N
∑

i=1

λε

∫

Dxi,ε
(si,ε)

|x− y|−1
uε(y)e

uε(y)
2

dy . (4.47)

Thanks to (4.38), we have that

λε

∫

Dxi,ε
(si,ε)

|x− y|−1
uε(y)e

uε(y)
2

dy (4.48)

≤ Cλε
∑

k=0,1,2

∫

Ωk,ε

|x− y|−1 (
Bi,ε(y) + Ciγ

−1
i,ε

)

eBi,ε(y)
2

dy

where the Ωα,ε’s are as in (4.45). In Ω0,ε, we write that

(

Bi,ε + Ciγ
−1
i,ε

)

(y) eBi,ε(y)
2 ≤ Cγi,εe

γ2
i,ε

(

1 +
|y − xi,ε|2

4µ2
i,ε

)− 7
4

so that

λε

∫

Ω0,ε

|x− y|−1 (
Bi,ε(y) + Ciγ

−1
i,ε

)

eBi,ε(y)
2

dy

≤ Cµ−2
i,ε γ

−1
i,ε

∫

Ω0,ε

|x− y|−1

(

1 +
|y − xi,ε|2

4µ2
i,ε

)− 7
4

dy .

Direct computations give that

λε

∫

Ω0,ε

|x− y|−1 (
Bi,ε(y) + Ciγ

−1
i,ε

)

eBi,ε(y)
2

dy ≤ Cγ−1
i,ε (µi,ε + |x− xi,ε|)−1

. (4.49)

In Ω1,ε, we write that

(

Bi,ε + Ciγ
−1
i,ε

)

(y) eBi,ε(y)
2 ≤ Cγi,εe

γ2
i,εe

tε(y)2

γ2
i,ε

−2tε(y)

so that

λε

∫

Ω1,ε

|x− y|−1 (
Bi,ε(y) + Ciγ

−1
i,ε

)

eBi,ε(y)
2

dy ≤ Cγ−1
i,ε µ

−2
i,ε

∫

Ω1,ε

|x− y|−1
e

tε(y)2

γ2
i,ε

−2tε(y)
.

In Ω1,ε, we have that

tε(y)
2

γ2i,ε
− 2tε(y) ≤ −tε(y)−

1

4
γi,ε

so that

λε

∫

Ω1,ε

|x− y|−1 (
Bi,ε(y) + Ciγ

−1
i,ε

)

eBi,ε(y)
2

dy

≤ Cγ−1
i,ε e

− 1
4 γi,ε

∫

Ω1,ε

|x− y|−1
(

µ2
i,ε + |y − xi,ε|2

)−1

dy .
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In Ω1,ε we have that |y − xi,ε| ≥ µi,ε so that

λε

∫

Ω1,ε

|x− y|−1 (
Bi,ε(y) + Ciγ

−1
i,ε

)

eBi,ε(y)
2

dy ≤ Cγ−1
i,ε e

− 1
4γi,ε

∫

Ω1,ε

|x− y|−1 |y − xi,ε|−2
dy .

Noting that Dxi,ε
(r1,ε) ∩ Ω1,ε = ∅ for ε small where

r1,ε = µi,εe
1
8 γ

2
i,ε ,

we get by direct computations that

λε

∫

Ω1,ε

|x− y|−1 (
Bi,ε(y) + Ciγ

−1
i,ε

)

eBi,ε(y)
2

dy

≤ Cγ−1
i,ε e

− 1
4γi,ε (|x− xi,ε|+ r1,ε)

−1 ln

(

2 +
|x− xi,ε|
r1,ε

)

.

Thanks to the value of r1,ε, this leads to

λε

∫

Ω1,ε

|x− y|−1 (
Bi,ε(y) + Ciγ

−1
i,ε

)

eBi,ε(y)
2

dy = o
(

γ−1
i,ε (µi,ε + |x− xi,ε|)−1

)

. (4.50)

At last, in Ω2,ε, we have that Bε (y) = O(1) so that

λε

∫

Ω2,ε

|x− y|−1 (
Bi,ε(y) + Ciγ

−1
i,ε

)

eBi,ε(y)
2

dy ≤ Cλε

∫

Ω2,ε

|x− y|−1
dy ≤ Cλε

s2i,ε

si,ε + |x− xi,ε|
.

Thanks to Claim 4.4, this leads to

λε

∫

Ω2,ε

|x− y|−1 (
Bi,ε(y) + Ciγ

−1
i,ε

)

eBi,ε(y)
2

dy ≤ Cγ−2
i,ε (si,ε + |x− xi,ε|)−1

. (4.51)

Coming back to (4.47) with (4.48), (4.49), (4.50) and (4.51), we obtain the claim. ♦
Let us reorder the concentration points in a suitable way. For this purpose, we notice that, up

to a subsequence, for any i, j ∈ {1, . . . , N}, there exists Ci,j , possibly 0 or +∞ (but nonnegative)
such that

lim
ε→0

γi,ε

γj,ε
= Ci,j . (4.52)

Note that Ci,j = C−1
j,i (with obvious conventions when Ci,j = 0 or +∞). Then there exists C̃ ≥ 1

such that

for any i, j ∈ {1, . . . , N} , either Ci,j = 0 or Ci,j = +∞ or
1

C̃
≤ Ci,j ≤ C̃ . (4.53)

It is then easily checked that we can order the concentration points in such a way that

for any i, j ∈ {1, . . . , N} , i < j ⇒ Ci,j < +∞ (4.54)

and
for any i, j ∈ {1, . . . , N} , i < j and Ci,j > 0 ⇒ ri,ε ≤ rj,ε . (4.55)

Let us give some estimates on ψε, involved in Claims 4.8 and 4.9. Using Claim 4.7, we clearly
have that λ−1

ε ∆ψε is uniformly bounded in any Lp (Ω) thanks to Trudinger-Moser inequality.
Thus we know that there exists C > 0 such that

‖ψε‖C1,α(Ω) ≤ Cλε (4.56)

for 0 < α < 1 by standard elliptic theory. Now, if λε → 0, we know that u0 ≡ 0 and we can be
a little bit more precise. Indeed,

‖∆ψε‖Lp(Ω) ≤ λε ‖fε‖L∞(Ω)

∥

∥

∥
wεe

w2
ε

∥

∥

∥

Lp(Ω)
≤ λε ‖fε‖L∞(Ω) ‖uε‖L2p(Ω)

∥

∥

∥
ew

2
ε

∥

∥

∥

L2p(Ω)
.
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Since u0 ≡ 0, we know thanks to Claim 4.7 and to Trudinger-Moser inequality that
(

ew
2
ε

)

is

bounded in any Lq. Thus we have that

‖∆ψε‖Lp(Ω) ≤ Cλε ‖uε‖L2p(Ω)

thanks to (1.5). Using Claim (4.9), we get that

‖∇ (uε − ψε)‖Lq(Ω) ≤
Cq

γ1,ε

for some Cq > 0 for all 1 ≤ q < 2. Remember that concentration points are ordered such that
(4.54) holds. This gives that

‖uε‖L2p(Ω) ≤ Cp

(

γ−1
1,ε + ‖∇ψε‖C1(Ω)

)

so that

‖∆ψε‖Lp(Ω) ≤ Cλε

(

γ−1
1,ε + ‖∇ψε‖C1(Ω)

)

.

By standard elliptic theory and since we assumed that λε → 0, we finally obtain that

if λε → 0 as ε→ 0, then ‖ψε‖C1,α(Ω) ≤ C
λε

γ1,ε
. (4.57)

Claim 4.10. We have that r1,ε ≥ δ0 for some δ0 > 0.

Proof of Claim 4.10 - We assume by contradiction that r1,ε → 0 as ε → 0. We let in the
following

D⋆
1 = {i ∈ {2, . . . , N} s.t. |xi,ε − x1,ε| = O (r1,ε)} and D1 = D⋆

1 ∪ {1} . (4.58)

After passing to a subsequence, we let

S⋆
1 =

{

x̃i = lim
ε→0

xi,ε − x1,ε

r1,ε
, i ∈ D⋆

1

}

and S1 = S⋆
1 ∪ {x̃1 = 0} . (4.59)

We also let
Ω1,ε =

{

y ∈ R
2 s.t. x1,ε + r1,εy ∈ Ω

}

. (4.60)

Note that, after passing to a subsequence (and up to a harmless rotation if necessary), we have
that

Ω1,ε → Ω0 as ε→ 0 where



















Ω0 = R
2 if

d1,ε

r1,ε
→ +∞ as ε→ 0

Ω0 = R× (−∞, L) if
d1,ε

r1,ε
→ L as ε→ 0

(4.61)

Here d1,ε = d (x1,ε, ∂Ω), as defined in (4.8). For R > 0, we shall also let

ΩR
0 = (Ω0 ∩ D0(R)) \

⋃

i∈D1

Dx̃i

(

1

R

)

. (4.62)

We shall distinguish three cases, depending on the behaviour of d1,ε = d (x1,ε, ∂Ω) and r1,ε.

Case 1 - We assume that d1,ε 6→ 0 as ε → 0, meaning that, after passing to a subsequence,
x1,ε → x1 as ε→ 0 with x1 ∈ Ω.

We let y ∈ ΩR
0 for some R > 0 and we set xε = x1,ε + r1,εy. Since d1,ε 6→ 0 and r1,ε → 0, we are

in situation a) of Claim 4.8. Note indeed that

|xε − xi,ε|
µi,ε

→ +∞ as ε→ 0 for all i = 1, . . . , N .
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It is obvious if i ∈ D1 since we clearly have in this case

|xε − xi,ε|
µi,ε

=
|xε − xi,ε|

r1,ε

r1,ε

ri,ε

ri,ε

µi,ε

with
|xε − xi,ε|

r1,ε
≥ R−1 + o(1),

r1,ε

ri,ε
≥ 2 |x̃i|−1

+ o(1) for i ∈ D⋆
1 and equal to 1 if i = 1, and

ri,ε

µi,ε

→ +∞ as ε → 0 thanks to assertion c) of Proposition 2.1. While, if i 6∈ D1, we can write

that
|xε − xi,ε|

µi,ε

≥ (1 + o(1))
|xi,ε − x1,ε|

µi,ε

≥ (2 + o(1))
ri,ε

µi,ε

→ +∞ as ε→ 0 .

Thus, applying a) of Claim 4.8, we can write that

uε (xε) = ψε (xε) +
N
∑

i=1

(4π + o(1)) γ−1
i,ε G (xi,ε, xε)

+O

(

N
∑

i=1

γ−1
i,ε

(

µi,ε

|xi,ε − xε|
+ γ−1

i,ε ln

(

si,ε

|xi,ε − xε|
+ 2

))

)

.

Now, for any i ∈ {1, . . . , N},

γ−1
i,ε

µi,ε

|xi,ε − xε|
= o

(

γ−1
i,ε

)

= o
(

γ−1
1,ε

)

thanks to (4.54) and

γ−2
i,ε ln

(

si,ε

|xi,ε − xε|
+ 2

)

= o
(

γ−1
1,ε

)

thanks to the fact that si,ε ≤ ri,ε = O (|xi,ε − xε|). Note that Claim 4.4 implies that λε =

O
(

γ−2
1,ε

)

in our case so that (4.57) gives that

ψε (xε) = O
(

γ−3
1,ε

)

= o
(

γ−1
1,ε

)

.

Thus we have that

uε (xε) =

N
∑

i=1

(4π + o(1)) γ−1
i,ε G (xi,ε, xε) + o

(

γ−1
1,ε

)

. (4.63)

We can now use (6.3) to write that

G (xi,ε, xε) =
1

2π
ln

1

r1,ε
+O (1)

if i ∈ D1 and that

G (xi,ε, xε) = G (xi,ε, x1,ε) +O(1)

if i 6∈ D1. Thus we have that

uε (xε) = (2 + o(1)) γ−1
1,ε ln

1

r1,ε



1 +
∑

i∈D⋆
1

C1,i



 (4.64)

+
∑

i6∈D1

(4π + o(1)) γ−1
i,ε G (xi,ε, x1,ε) +O

(

γ−1
1,ε

)

.
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Note that C1,i ≤ C̃ for all i > 1 thanks to (4.53). Thus we have in particular that

γ−1
1,ε ln

1

r1,ε



1 +
∑

i∈D⋆
1

C1,i



 ≤
(

1

2
+ o(1)

)

uε (xε) ≤ γ−1
1,ε ln

1

r1,ε

(

1 + (N − 1)C̃
)

. (4.65)

Note that we also have thanks to Claim 4.9 and to (4.57) that

|∇uε(x)| ≤ Cγ−1
1,ε |x1,ε − x|−1

for all x ∈ Dx1,ε (r1,ε) . (4.66)

We are thus in position to apply Claim 4.1 for i = 1 to write that, if |x| = 1
2 ,

uε (x1,ε + r1,εx) = B1,ε (r1,ε) +O
(

γ−1
1,ε

)

.

Combined with (4.65), this gives that

(2 + o(1)) γ−1
1,ε ln

1

r1,ε



1 +
∑

i∈D⋆
1

C1,i



 ≤ B1,ε (r1,ε) ≤ (2 + o(1)) γ−1
1,ε ln

1

r1,ε

(

1 + (N − 1)C̃
)

.

(4.67)
We write now thanks to Claim 5.2 of Appendix A that

B1,ε (r1,ε) = 2γ−1
1,ε ln

1

r1,ε
− γ−1

1,ε ln
(

λεγ
2
1,ε

)

+O
(

γ−1
1,ε

)

(4.68)

to deduce that

(2 + o(1)) γ−1
1,ε ln

1

r1,ε

∑

i∈D⋆
1

C1,i ≤ −γ−1
1,ε ln

(

λεγ
2
1,ε

)

≤
(

2(N − 1)C̃ + o(1)
)

γ−1
1,ε ln

1

r1,ε
. (4.69)

Fix now i ∈ D⋆
1 . It is clear that there exists δ > 0 such that ∂Dxi,ε

(δr1,ε) ⊂
{

x1,ε + r1,εy, y ∈ ΩR
0

}

for some R > 0. Thus we can write that

inf
∂Dxi,ε

(δr1,ε)
uε ≥ (2 + o(1)) γ−1

1,ε ln
1

r1,ε



1 +
∑

i∈D⋆
1

C1,i





thanks to (4.65). We can also apply b) of Claim 4.2 with rε = δr1,ε thanks to Claim 4.3 and to

the fact that
r1,ε

ri,ε
≥ 2 |x̃i|−1

+ o(1). This leads to

(2 + o(1)) γ−1
1,ε ln

1

r1,ε



1 +
∑

i∈D⋆
1

C1,i



 ≤ Bi,ε (δr1,ε) + o
(

γ−1
i,ε

)

.

We have that

Bi,ε (δr1,ε) = 2γ−1
i,ε ln

1

r1,ε
− γ−1

i,ε ln
(

λεγ
2
i,ε

)

+O
(

γ−1
i,ε

)

.

This leads together with (4.69) to

(2 + o(1)) γ−1
1,ε ln

1

r1,ε



1 +
∑

i∈D⋆
1

C1,i



 ≤
(

2(N − 1)C̃ + 2 + o(1)
)

γ−1
i,ε ln

1

r1,ε
− γ−1

i,ε ln
γ2i,ε

γ21,ε
.

This is clearly impossible if C1,i = 0. Thus we have proved that

for any i ∈ D⋆
1 , C1,i > 0 . (4.70)
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This implies thanks to (4.55) that ri,ε ≥ r1,ε for all i ∈ D⋆
1 . Then we can apply Claim 4.1 to all

i ∈ D⋆
1 thanks to Claim 4.9 and to what we just said to get that, for any x̃i ∈ D1,

γi,ε (uε (x1,ε + r1,εx)−Bi,ε (r1,ε)) → 2 ln
1

|x− x̃i|
+Hi in C1

loc (Dx̃i
(1) \ {x̃i}) as ε→ 0 (4.71)

where Hi is some harmonic function in Dx̃i
(1) satisfying Hi (x̃i) = 0 and ∇Hi (x̃i) = 0 (note

here that we assumed that r1,ε → 0 as ε→ 0). Let us set now

vε (x) = γ1,ε (uε (x1,ε + r1,εx) −B1,ε (r1,ε)) .

Thanks to Claim 4.9, we have that

|∇vε| ≤ CR in ΩR
0

for all R > 0. This clearly proves that (vε) is uniformly bounded in any ΩR
0 . Since

∆vε = λεr
2
1,εγ1,εfε (x1,ε + r1,εx) uε (x1,ε + r1,εx) e

uε(x1,ε+r1,εx)
2

in ΩR
0 , we have that

|∆vε| = O
(

λεr
2
1,εγ1,ε

(

B1,ε (r1,ε) + γ−1
1,ε

)

eB1,ε(r1,ε)
2
)

in ΩR
0 .

Thanks to (4.68), we know that

λεr
2
1,ε ≤ Cγ−2

1,εe
−γ1,εB1,ε(r1,ε)

so that

|∆vε| = O
(

γ−1
1,ε

(

B1,ε (r1,ε) + γ−1
1,ε

)

eB1,ε(r1,ε)
2−γ1,εB1,ε(r1,ε)

)

= o(1) in ΩR
0

thanks to Claim 4.3. Thus we have by standard elliptic theory that

vε → v0 in C1
loc

(

R
2 \ S1

)

as ε→ 0 (4.72)

where v0 is some harmonic funtion in R
2 \ S1 which satisfies, thanks to Claim 4.9,

|∇v0| ≤
C

|x| for |x| large. (4.73)

Thanks to (4.71), we know that

v0(x) = 2C1,i ln
1

|x− x̃i|
+ C1,iHi +Bi in Dx̃i

(1)

for all i ∈ D1 where Bi is a constant given by

Bi = (1− C1,i)

(

1 + ln
f0 (x1)

4

)

+ 2C1,i lnC1,i + lim
ε→0

((

1− γ1,ε

γi,ε

)

ln
(

λεγ
2
1,εr

2
1,ε

)

)

.

Thus we have that

v0(x) = 2 ln
1

|x| + 2
∑

i∈D⋆
1

C1,i ln
1

|x− x̃i|
+ w0

where w0 is harmonic in R
2 and satisfies thanks to (4.73) that |∇w0| ≤ C|x|−1 for |x| large. This

implies that w0 ≡ A0 for some constant A0. Thus we have that

v0(x) = 2 ln
1

|x| + 2
∑

i∈D⋆
1

C1,i ln
1

|x− x̃i|
+A0 . (4.74)

Moreover, the Hi’s of (4.71) are given by

Hi(x) = 2 ln
1

|x| + 2
∑

j∈D⋆
1 , j 6=i

C1,j ln
1

|x− x̃j |
+A0
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and they satisfy ∇Hi (x̃i) = 0 for all i ∈ D1. Note that, by the definition of r1,ε and since we
assumed that

r1,ε
d1,ε

→ +∞ as ε → 0, we know that D⋆
1 6= ∅. Let us pick up i ∈ D⋆

1 such that

|x̃i| ≥ |x̃j | for all j ∈ D⋆
1 . It is then clear that

〈∇Hi (x̃i) , x̃i〉 = −2− 2
∑

j∈D⋆
1 , j 6=i

C1,i
〈x̃i − x̃j , x̃i〉
|x̃i − x̃j |2

≤ −2 ,

which contradicts the fact that ∇Hi (x̃i) = 0. This is the contradiction we were looking for and
this proves that, if r1,ε → 0 as ε → 0, this first case can not happen, that is we must have
d1,ε → 0 as ε→ 0. ♠

Case 2 - We assume that d1,ε → 0 and that
r1,ε
dε

→ 0 as ε→ 0.

We let y ∈ ΩR
0 for some R > 0 and we set xε = x1,ε + r1,εx. Since d1,ε → 0 and r1,ε → 0, we are

in situation b) of Claim 4.8. Indeed, as in Case 1, we have that

|xε − xi,ε|
µi,ε

→ +∞ as ε→ 0 for all i = 1, . . . , N .

uε (xε) = ψε (xε) +

N
∑

i=1

4π + o(1)

γi,ε
G (xi,ε, xε)

+O

(

∑

i∈A

γ−1
i,ε

(

µi,ε

|xi,ε − xε|
+ γ−1

i,ε ln

(

si,ε

|xi,ε − xε|
+ 2

))

)

+O

(

∑

i∈B

dε

dε + di,ε

(

γ−1
i,ε µi,ε + γ−2

i,ε si,ε
)

)

where A is defined as the set of i ∈ {1, . . . , N} such that |xi,ε − xε| ≤ si,ε + o (dε) and B as
its complementary. Noting that |xi,ε − xε| ≥ Cri,ε for all i ∈ {1, . . . , N}, we have that for any
i ∈ A,

γ−1
i,ε

µi,ε

|xi,ε − xε|
+ γ−2

i,ε ln

(

si,ε

|xi,ε − xε|
+ 2

)

= o
(

γ−1
i,ε

)

and, for any i ∈ B,
dε

dε + di,ε

(

γ−1
i,ε µi,ε + γ−2

i,ε si,ε
)

= o
(

γ−1
i,ε

)

.

Thus we have that

uε (xε) = ψε (xε) +

N
∑

i=1

4π + o(1)

γi,ε
G (xi,ε, xε) + o

(

γ−1
1,ε

)

thanks to (4.54). For i ∈ D1, we have that |xi,ε − xε| = o (d1,ε) so that, thanks to (6.12),

G (xi,ε, xε) =
1

2π

(

ln
2d1,ε
r1,ε

)

+O(1) .

For any i 6∈ D1, we know that

G (xi,ε, xε) = G (xi,ε, x1,ε) + o(1)

thanks to (6.12). Thus we can write that

uε (xε) = ψε (xε) +
∑

i∈D1

2 + o(1)

γi,ε

(

ln
2d1,ε
r1,ε

)

+
∑

i6∈D1

γ−1
i,ε G (xi,ε, x1,ε) +O

(

γ−1
1,ε

)

.
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If λ0 6= 0, then we can write thanks to the fact that ψε = 0 on ∂Ω and to (4.56) that ψε (xε) =
O (d1,ε). This leads with Claim 4.4 to ψε (xε) = O

(

γ−1
1,ε

)

. If λ0 = 0, then we can use (4.57) to
arrive to the same result. Thus we finally get that

uε (xε) =
2

γ1,ε



1 +
∑

i∈D⋆
1

C1,i





(

ln
d1,ε

r1,ε

)

+
∑

i6∈D1

γ−1
i,ε G (xi,ε, x1,ε) + o

(

γ−1
1,ε

(

ln
d1,ε

r1,ε

))

. (4.75)

Note that C1,i ≤ C̃ for all i > 1 thanks to (4.53). Thus we have in particular that

2γ−1
1,ε ln

d1,ε

r1,ε



1 +
∑

i∈D⋆
1

C1,i



 ≤ uε (xε) + o

(

γ−1
1,ε ln

d1,ε

r1,ε

)

≤ 2γ−1
1,ε ln

d1,ε

r1,ε

(

1 + (N − 1)C̃
)

.

(4.76)
Here we used (6.12) to estimate G (xi,ε, x1,ε) for i 6∈ D1. Note that we also have thanks to Claim
4.9 and to (4.57) that

|∇uε(x)| ≤ Cγ−1
1,ε |x1,ε − x| for all x ∈ Dx1,ε (r1,ε) . (4.77)

The proof now follows exactly Case 1, from (4.66) to the end. We will not repeat it here. ♠

Case 3 - We assume that d1,ε → 0 as ε→ 0 and that
d1,ε

r1,ε
→ L as ε→ 0 where L ≥ 2.

We are thus in the case where, after some harmless rotation,

Ω0 = R× (−∞, L) .

We let y ∈ ΩR
0 for some R > 0 and we set xε = x1,ε + r1,εy. Since d1,ε → 0 and r1,ε → 0, we are

in situation b) of Claim 4.8. Indeed, as in Case 1, we have that

|xε − xi,ε|
µi,ε

→ +∞ as ε→ 0 for all i = 1, . . . , N .

Thus we can write that

uε (xε) = ψε (xε) +

N
∑

i=1

4π + o(1)

γi,ε
G (xi,ε, xε)

+O

(

∑

i∈A

γ−1
i,ε

(

µi,ε

|xi,ε − xε|
+ γ−1

i,ε ln

(

si,ε

|xi,ε − xε|
+ 2

))

)

+O

(

∑

i∈B

dε

dε + di,ε

(

γ−1
i,ε µi,ε + γ−2

i,ε si,ε
)

)

where A is defined as the set of i ∈ {1, . . . , N} such that |xi,ε − xε| ≤ si,ε + o (dε) and B as its
complementary. As in Case 2, we have that

γ−1
i,ε

µi,ε

|xi,ε − xε|
+ γ−2

i,ε ln

(

si,ε

|xi,ε − xε|
+ 2

)

= o
(

γ−1
i,ε

)

for all i ∈ A while
dε

dε + di,ε

(

γ−1
i,ε µi,ε + γ−2

i,ε si,ε
)

= o
(

γ−1
i,ε

)

for all i ∈ B. Thus we have that

uε (xε) = ψε (xε) +

N
∑

i=1

4π + o(1)

γi,ε
G (xi,ε, xε) + o

(

γ−1
1,ε

)

.
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If i ∈ D1, we have that

G (xi,ε, xε) =
1

2π
ln

|ỹi − y|
|x̃i − y| + o(1)

where

ỹi = R (x̃i) ,

R being the reflection with respect to the straight line R× {L}. Here we used (6.12). If i 6∈ D1,
we have that

G (xi,ε, xε) = o(1)

thanks to (6.12). Thus we can write, remembering (4.54), that

uε (xε) = ψε (xε) + 2γ−1
1,ε

∑

i∈D1

C1,i ln
|ỹi − y|
|x̃i − y| + o

(

γ−1
1,ε

)

.

Using (4.56), we know that
ψε (xε)

r1,ε
→ A (L− y2)

where y = (y1, y2) for some A independent of y. Moreover, we have that A ≥ 0 by the maximum
principle since ∆ψε ≥ 0 in Ω and ψε = 0 on ∂Ω. If λ0 6= 0, we can use Claim 4.4 to deduce that

γ1,εψε (xε) → B (L− y2)

for some B > 0, independent of y. If λ0 = 0, then (4.57) implies that

γ1,εψ1,ε (xε) = O (λεr1,ε) = o(1) .

Thus, up to change the B above, we can write that

γ1,εuε (xε) → B (L− y2) + 2
∑

i∈D1

C1,i ln
|ỹi − y|
|x̃i − y| as ε→ 0 . (4.78)

Then, by the equation satisfied by uε, it is clear that

vε(x) = γ1,εuε (x1,ε + r1,εx)

has a Laplacian uniformly converging to 0 in any ΩR
0 . Thus, by standard elliptic theory, we can

conclude that

γ1,εuε (x1,ε + r1,εy) → B (L− y2) + 2
∑

i∈D1

C1,i ln
|ỹi − y|
|x̃i − y| in C1

loc (Ω0 \ S1) as ε→ 0 . (4.79)

Writing that

|∇ψε| ≤ Cλε in Dx1,ε (r1,ε)

thanks to (4.56), we get with Claim 4.4 that

|∇ψε| ≤ C
√

λεd
−1
1,εγ

−1
1,ε in Dx1,ε (r1,ε)

so that we can use Claim 4.9 and (4.54) to obtain that

|∇uε| ≤ Cγ−1
1,ε |x1,ε − xε|−1

in Dx1,ε (r1,ε) .

We are thus in position to apply Claim 4.1 to i = 1. In particular, combined with (4.79), we get
that

γ1,εB1,ε (r1,ε) = O (1) .

This leads with Claim 5.2 of Appendix A to

ln
(

λεr
2
1,εγ

2
1,ε

)

= O (1) .
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Thus we have that, up to a subsequence,

λεfε (x1,ε) r
2
1,εγ

2
1,ε → α0 as ε→ 0 (4.80)

for some α0 > 0. Let now i ∈ D1 be such that the second coordinate of x̃i satisfies (x̃i)2 < L

and

(x̃i)2 ≥ (x̃j)2 or (x̃j)2 = L for all j ∈ D1 .

Note that such a i does exists since 1 ∈ D1. Moreover, we have that

L > (x̃i)2 ≥ (x̃1)2 = 0 .

Note also that di,ε ≥ (L− (x̃i)2 + o(1)) r1,ε so that Claim 4.4 implies that

O(1) = λεfε (x1,ε) γ
2
i,εd

2
i,ε =

γ2i,ε

γ21,ε

d2i,ε

r21,ε
λεfε (x1,ε) γ

2
1,εr

2
1,ε ≥

(

(L− (x̃i)2)
2
α0 + o(1)

) γ2i,ε

γ21,ε

thanks to (4.80). This implies that C1,i 6= 0. Thanks to (4.55), we then have that ri,ε ≥ r1,ε.
Once again, thanks to Claim 4.9 and to (4.54), we see now that

|∇uε| ≤ Cγ−1
i,ε |xi,ε − xε|−1 in Dxi,ε

(r1,ε)

and that we can apply Claim 4.1. In particular, using (4.80), we get that

γi,εuε (x1,ε + r1,εx) → 2 ln
1

|x− x̃i|
+Hi − ln

(

α0

4C2
1,i

)

in C1
loc (Dx̃i

(1) \ {x̃i}) as ε→ 0

where Hi is harmonic in Dx̃i
(1) and satisfies ∇Hi (x̃i) = 0 (since r1,ε → 0 as ε→ 0 by assump-

tion). Now, combining this with (4.79), we know that

Hi =
B

C1,i
(L− x2) + 2

∑

j∈D1,j 6=i

C1,j

C1,i
ln

|ỹj − x|
|x̃j − x| + 2 ln |ỹi − x|+ ln

(

α0

4C2
1,i

)

.

The derivative of Hi with respect to the second coordinate at x̃i is

∂Hi

∂x2
(x̃i) = − B

C1,i
+ 2

∑

j∈D1,j 6=i

C1,j

C1,i

(

(x̃i)2 − (ỹj)2
|ỹj − x̃i|2

− (x̃i)2 − (x̃j)2
|x̃j − x̃i|2

)

+ 2
(x̃i)2 − (ỹi)2
|ỹi − x̃i|2

.

Note now that

(ỹj)2 = 2L− (x̃j)2
so that

∂Hi

∂x2
(x̃i) = − B

C1,i
+ 2

∑

j∈D1,j 6=i

C1,j

C1,i

(

(x̃i)2 + (x̃j)2 − 2L

|ỹj − x̃i|2
− (x̃i)2 − (x̃j)2

|x̃j − x̃i|2

)

+ 4
(x̃i)2 − L

|ỹi − x̃i|2
.

We claim that
(x̃i)2 + (x̃j)2 − 2L

|ỹj − x̃i|2
≤ (x̃i)2 − (x̃j)2

|x̃j − x̃i|2
(4.81)

for all j ∈ D1 with j 6= i. This will imply that

∂Hi

∂x2
(x̃i) < 0 ,

all the terms above being nonpositive, the last one being negative. This will give a contradiction
with the fact that ∇Hi (x̃i) = 0, thus proving that this last case is not possible either. In order
to prove (4.81), we first notice that

|x̃i − ỹj |2 = |x̃i − x̃j |2 + 4 (L− (x̃i)2)
(

L− (x̃j)2
)

.
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Thus we can write that
(

(x̃i)2 + (x̃j)2 − 2L
)

|x̃i − x̃j |2 −
(

(x̃i)2 − (x̃j)2
)

|x̃i − ỹj |2

= 2 |x̃i − x̃j |2
(

(x̃j)2 − L
)

− 4 (L− (x̃i)2)
(

L− (x̃j)2
) (

(x̃i)2 − (x̃j)2
)

= 2
(

(x̃j)2 − L
)

(

|x̃i − x̃j |2 + 2 (L− (x̃i)2)
(

(x̃i)2 − (x̃j)2
)

)

≤ 0

since (x̃j)2 − L ≤ 0 and if (x̃j)2 − L 6= 0, (x̃i)2 − (x̃j)2 ≥ 0. This clearly proves (4.81) and, as
already said, proves that this last case is not possible. ♠

The study of these three cases proves that the assumption r1,ε → 0 is absurd and thus proves
the claim. ♦
Note that this claim implies that

x1,ε → x1 as ε→ 0 with x1 ∈ Ω . (4.82)

We also have thanks to Claims 4.4 and 4.10 that

λε = O
(

γ−2
1,ε

)

so that λ0 = 0 and u0 ≡ 0. Moreover, we can transform (4.57) into

‖∇ψε‖C1,α(Ω) = O
(

γ−3
1,ε

)

. (4.83)

Let us now give a simple consequence of the previous claim :

Claim 4.11. After passing to a subsequence,

λεγ
2
1,ε → α0 as ε→ 0

for some

0 < α0 ≤ 4

f0 (x1) d (x1, ∂Ω)
2 .

Proof of Claim 4.11 - We already said that λε = O
(

γ−2
1,ε

)

. Claim 4.9 with (4.83) gives that

|∇uε| ≤ C

N
∑

i=1

γ−1
i,ε (µi,ε + |x− xi,ε|)−1

in Ω .

This gives in particular that

|∇uε| ≤ Cγ−1
1,ε |x− x1,ε|−1

in Dx1,ε (δ0) where δ0 is as in Claim 4.10. Thus we are in position to apply Claim 4.1 to i = 1.
This gives in particular that

γ1,ε (uε(x)−B1,ε (δ0)) = O(1)

for all |x− x1,ε| = δ0
2 . Now Claim 4.8 combined with (4.83) gives that

γ1,εuε (x) = O(1) on ∂Dx1,ε

(

δ0

2

)

so that the above leads to
γ1,εB1,ε (δ0) = O(1) .

Since
γ1,εB1,ε (δ0) = − ln

(

λεγ
2
1,ε

)

+O(1) ,

we obtain that
ln
(

λεγ
2
1,ε

)

= O(1) .
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This clearly permits to prove the claim. ♦
Claim 4.12. We have that ri,ε ≥ δ1 for some δ1 > 0 for all i = 1, . . . , N .

Proof of Claim 4.12 - We shall prove it by induction on i. This is already proved for i = 1 in
the previous claim. Fix 2 ≤ i ≤ N and assume that

rj,ε ≥ δ1 > 0 for all j < i . (4.84)

In particular, after passing to a subsequence, we have that

xj,ε → xj as ε→ 0 with xj ∈ Ω . (4.85)

Assume by contradiction that

ri,ε → 0 as ε→ 0 . (4.86)

By (4.55), this implies that Cj,i = 0 for all j < i so that

γj,ε = o (γi,ε) for all j < i . (4.87)

We shall now proceed as in the proof of Claim 4.10 and distinguish three cases.

We let in the following

D⋆
i = {j > i s.t. |xi,ε − xj,ε| = O (ri,ε)} and Di = D⋆

i ∪ {i} . (4.88)

After passing to a subsequence, we let

S⋆
i =

{

x̃j = lim
ε→0

xj,ε − xi,ε

ri,ε
, j ∈ D⋆

i

}

and Si = S⋆
i ∪ {x̃i = 0} . (4.89)

We also let

Ωi,ε =
{

y ∈ R
2 s.t. xi,ε + ri,εy ∈ Ω

}

. (4.90)

Note that, after passing to a subsequence (and up to a harmless rotation if necessary), we have
that

Ωi,ε → Ω0 as ε→ 0 where



















Ω0 = R
2 if

di,ε

ri,ε
→ +∞ as ε→ 0

Ω0 = R× (−∞, L) if
di,ε

ri,ε
→ L as ε→ 0

(4.91)

Here di,ε = d (xi,ε, ∂Ω), as defined in (4.8). For R > 0, we shall also let

ΩR
0 = (Ω0 ∩D0(R)) \

⋃

j∈Di

Dx̃j

(

1

R

)

. (4.92)

Case 1 - We assume that di,ε 6→ 0 as ε → 0, meaning that, after passing to a subsequence,
xi,ε → xi as ε→ 0 with xi ∈ Ω.

We let y ∈ ΩR
0 for some R > 0 and we set xε = xi,ε+ ri,εy. Since di,ε 6→ 0 and ri,ε → 0 as ε→ 0,

we are in situation a) of Claim 4.8. Note indeed that

|xε − xj,ε|
µj,ε

→ +∞ as ε→ 0 for all j = 1, . . . , N .

It is obvious if j < i since rj,ε ≥ δ1 > 0 and ri,ε → 0 as ε → 0. It is also obvious if j ∈ Di since
we clearly have in this case

|xε − xj,ε|
µj,ε

=
|xε − xj,ε|

ri,ε

ri,ε

rj,ε

rj,ε

µj,ε
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with
|xε − xj,ε|

ri,ε
≥ R−1 + o(1),

ri,ε

rj,ε
≥ 2 |x̃j |−1 + o(1) for j ∈ D⋆

i and equal to 1 if j = i, and

rj,ε

µj,ε

→ +∞ as ε → 0 thanks to assertion c) of Proposition 2.1. While, if j > i and j 6∈ Di, we

can write that

|xε − xj,ε|
µi,ε

≥ (1 + o(1))
|xi,ε − xj,ε|

µj,ε

≥ (2 + o(1))
rj,ε

µj,ε

→ +∞ as ε→ 0 .

Thus, applying a) of Claim 4.8, we can write that

uε (xε) = ψε (xε) +

N
∑

j=1

(4π + o(1)) γ−1
j,ε G (xj,ε, xε)

+O

(

N
∑

i=1

(

γ−1
j,ε

µj,ε

|xj,ε − xε|
+ γ−2

j,ε ln

(

sj,ε

|xj,ε − xε|
+ 2

))

)

.

For j < i, we have that

(4π + o(1)) γ−1
j,ε G (xj,ε, xε) = 4πγ−1

1,εC1,jG (xj , xi) + o
(

γ−1
1,ε

)

thanks to the assumption that xi,ε → xi with xi ∈ Ω, to (4.85) and to (4.52), (4.54). We also
obviously have that

γ−1
j,ε

µj,ε

|xj,ε − xε|
+ γ−2

j,ε ln

(

sj,ε

|xj,ε − xε|
+ 2

)

= o
(

γ−1
1,ε

)

.

We also know thanks to (4.83) that ψε (xε) = o
(

γ−1
1,ε

)

. For j > i, we can proceed exactly as in
Case 1 of Claim 4.10 to finally obtain that

uε (xε) = 4πγ−1
1,ε

i−1
∑

j=1

C1,jG (xj , xi) + o
(

γ−1
1,ε

)

+(2 + o(1)) γ−1
i,ε ln

1

ri,ε



1 +
∑

j∈D⋆
i

Ci,j



 (4.93)

+
∑

j>i, j 6∈Di

(4π + o(1)) γ−1
j,ε G (xi,ε, xj,ε) +O

(

γ−1
i,ε

)

This gives in particular that uε ≥ Cγ−1
1,ε on ∂Dxi,ε

(ri,ε) for some C > 0. Using b) of Claim 4.2,
we deduce that

Cγ−1
1,ε ≤ Bi,ε (ri,ε) +O

(

γ−1
i,ε

)

= −γ−1
i,ε ln

(

λεγ
2
i,εr

2
i,ε

)

+O
(

γ−1
i,ε

)

.

Since γ1,ε = o (γi,ε), see (4.87), we deduce that

λεγ
2
i,εr

2
i,ε → 0 as ε→ 0 .

Thanks to Claim 4.11, this gives that

γi,εri,ε = o (γ1,ε) . (4.94)

We apply now Claim 4.9 combined with (4.83) and this last estimate to write that

|∇uε (x)| ≤ Cγ−1
i,ε |xi,ε − x|−1

+ Cγ−1
1,ε ≤ C′γ−1

i,ε |xi,ε − x|−1

in Dxi,ε
(ri,ε). Thus we can apply Claim 4.1 to i : this gives that, if |x| = 1

2 ,

uε (xi,ε + ri,εx) = Bi,ε (ri,ε) +O
(

γ−1
i,ε

)

.
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Combined with (4.93), this leads to

Bi,ε (ri,ε) = 4πγ−1
1,ε

i−1
∑

j=1

C1,jG (xj , xi) + o
(

γ−1
1,ε

)

+(2 + o(1)) γ−1
i,ε ln

1

ri,ε



1 +
∑

j∈D⋆
i

Ci,j





+
∑

j>i, j 6∈Di

(4π + o(1)) γ−1
j,εG (xi,ε, xj,ε) +O

(

γ−1
i,ε

)

.

Since

Bi,ε (ri,ε) = −γ−1
i,ε ln

(

λεγ
2
i,εr

2
i,ε

)

+O
(

γ−1
i,ε

)

,

this leads to

− ln
(

λεγ
2
i,εr

2
i,ε

)

= γi,εγ
−1
1,ε



4π

i−1
∑

j=1

C1,jG (xj , xi) + o(1)





+2 ln
1

ri,ε



1 +
∑

j∈D⋆
i

Ci,j



 (4.95)

+
∑

j>i, j 6∈Di

(4π + o(1))Ci,jG (xi,ε, xj,ε) + o

(

ln
1

ri,ε

)

.

Thanks to Claim 4.11 and (4.87), we deduce that

4π
i−1
∑

j=1

C1,jG (xj , xi) + o(1) +
γ1,ε

γi,ε
ln

1

ri,ε



2
∑

j∈D⋆
1

Ci,j + o(1)



 ≤ 0 . (4.96)

Let k ∈ D⋆
i . It is clear that there exists δ > 0 such that ∂Dxk,ε

(δri,ε) ⊂
{

xi,ε + ri,εy, y ∈ ΩR
0

}

for some R > 0. Thus we can write that

inf
∂Dxk,ε

(δri,ε)
uε ≥ Cγ−1

1,ε + 2γ−1
i,ε ln

1

ri,ε



1 +
∑

j∈D⋆
i

Ci,j + o(1)





thanks to (4.93). We can also apply b) of Claim 4.2 with rε = δri,ε thanks to Claim 4.3 and to

the fact that
ri,ε

rk,ε
≥ 2 |x̃k|−1

+ o(1). This leads to

Cγ−1
1,ε + 2γ−1

i,ε ln
1

ri,ε



1 +
∑

j∈D⋆
i

Ci,j + o(1)





≤ Bk,ε (δri,ε) + o
(

γ−1
k,ε

)

= −γ−1
k,ε ln

(

λεr
2
i,εγ

2
k,ε

)

+O
(

γ−1
k,ε

)

.

Combined with (4.95), this gives that

Cγ−1
1,ε + 2γ−1

i,ε ln
1

ri,ε



1 +
∑

j∈D⋆
i

Ci,j + o(1)



 ≤ γ−1
k,εγi,εγ

−1
1,ε



4π

i−1
∑

j=1

C1,jG (xj , xi) + o(1)





+O

(

γ−1
k,ε ln

1

ri,ε

)

− γ−1
k,ε ln

(

γ2k,ε

γ2i,ε

)

.
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Assume by contradiction that γi,ε = o (γk,ε). We then have that

Cγ−1
1,ε + 2γ−1

i,ε ln
1

ri,ε



1 +
∑

j∈D⋆
i

Ci,j + o(1)



 ≤ o
(

γ−1
1,ε

)

+ o

(

γ−1
i,ε ln

1

ri,ε

)

,

which is absurd. Thus we have proved that

Ci,j > 0 for all j ∈ D⋆
i . (4.97)

Since
ri,ε
di,ε

→ +∞ as ε → 0 and since
|xi,ε−xj,ε|

ri,ε
→ +∞ for all j < i, we are sure that D⋆

i 6= ∅
and, with (4.97), that

∑

j∈D⋆
i

Ci,j > 0 .

Then (4.96) leads to a contradiction. This proves that this first case is absurd. ♠
Case 2 - We assume that di,ε → 0 and that

ri,ε
di,ε

→ 0 as ε→ 0.

We let xi = lim
ε→0

xi,ε. Note that xi ∈ ∂Ω. We let y ∈ ΩR
0 for some R > 0 and we set xε =

xi,ε + ri,εy. Since di,ε → 0 and ri,ε → 0, we are in situation b) of Claim 4.8. Indeed, as in Case
1, we have that

|xε − xj,ε|
µj,ε

→ +∞ as ε→ 0 for all j = 1, . . . , N .

Thus we have that

uε (xε) = ψε (xε) +

N
∑

j=1

4π + o(1)

γj,ε
G (xj,ε, xε)

+O





∑

j∈A

(

γ−1
j,ε

µj,ε

|xj,ε − xε|
+ γ−2

j,ε ln

(

sj,ε

|xj,ε − xε|
+ 2

))





+O





∑

j∈B

dε

dε + dj,ε

(

γ−1
j,ε µj,ε + γ−2

j,ε sj,ε
)





where A is defined as the set of j ∈ {1, . . . , N} such that |xj,ε − xε| ≤ sj,ε + o (dε) and B as
its complementary. Noting that |xj,ε − xε| ≥ Crj,ε for all j ∈ {1, . . . , N}, we have that for any
j ∈ A,

γ−1
j,ε

µj,ε

|xj,ε − xε|
+ γ−2

j,ε ln

(

sj,ε

|xj,ε − xε|
+ 2

)

= o
(

γ−1
j,ε

)

.

And, for any j ∈ B,
dε

dε + dj,ε

(

γ−1
j,ε µj,ε + γ−2

j,ε sj,ε
)

= o
(

γ−1
j,ε

)

.

Note also that, if j < i, we have that j ∈ B thanks to (4.84) and that

dε

dε + dj,ε

(

γ−1
j,ε µj,ε + γ−2

j,ε sj,ε
)

= o
(

dεγ
−1
j,ε

)

.

Thus we have that

uε (xε) = ψε (xε) +
N
∑

j=1

4π + o(1)

γj,ε
G (xj,ε, xε) + o

(

γ−1
i,ε

)

+ o
(

dεγ
−1
1,ε

)

.

We can write thanks to (4.83) and since ψε = 0 on ∂Ω that

ψε (xε) = O
(

dεγ
−3
1,ε

)

.
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Then we have that, for any j < i,

G (xj,ε, xε) = −dε∂νG (xj , xi) + o (dε) .

And, for j ≥ i, we have thanks to (6.12) that

G (xj,ε, xε) =
1

2π
ln

2di,ε
ri,ε

+
1

2π
ln

ri,ε

|xj,ε − xε|
+O

(

ri,ε

di,ε

)

+O (di,ε)

if j ∈ Di and that

G (xj,ε, xε) = G (xi,ε, xj,ε) + o(1)

if j 6∈ Di. We thus arrive to

uε (xε) = 4π
di,ε

γ1,ε





i−1
∑

j=1

C1,j (−∂νG (xj , xi))





+2





∑

j∈D1

Ci,j + o(1)



 γ−1
i,ε

(

ln
2di,ε
ri,ε

)

(4.98)

+
∑

j>i, j 6∈Di

(4π + o(1)) γ−1
j,εG (xi,ε, xj,ε) + o

(

di,εγ
−1
1,ε

)

.

This gives in particular that uε ≥ Cdi,εγ
−1
1,ε on ∂Dxi,ε

(ri,ε) for some C > 0. Using b) of Claim
4.2, we deduce that

Cdi,εγ
−1
1,ε ≤ Bi,ε (ri,ε) +O

(

γ−1
i,ε

)

= −γ−1
i,ε ln

(

λεγ
2
i,εr

2
i,ε

)

+O
(

γ−1
i,ε

)

.

Thanks to Claim 4.11, this gives that

C
di,εγi,ε

γ1,ε
≤ − ln

(

γ2i,εr
2
i,ε

γ21,ε

)

+O(1) .

Since
di,ε

ri,ε
→ +∞ as ε→ 0 in our case, this implies that

γi,εri,ε = o (γ1,ε) . (4.99)

We apply now Claim 4.9 combined with (4.83), (4.84) and this last estimate to write that

|∇uε (x)| ≤ Cγ−1
i,ε |xi,ε − x|−1

+ Cγ−1
1,ε ≤ C′γ−1

i,ε |xi,ε − x|−1

in Dxi,ε
(ri,ε). Thus we can apply Claim 4.1 to i : this gives that, if |x| = 1

2 ,

uε (xi,ε + ri,εx) = Bi,ε (ri,ε) +O
(

γ−1
i,ε

)

.

Combined with (4.98) and (4.99), this leads to

Bi,ε (ri,ε) = 4π
di,ε

γ1,ε





i−1
∑

j=1

C1,j (−∂νG (xj , xi)) + o(1)





+2





∑

j∈Di

Ci,j + o(1)



 γ−1
i,ε

(

ln
2di,ε
ri,ε

)

(4.100)

+
∑

j>i, j 6∈Di

(4π + o(1)) γ−1
j,εG (xi,ε, xj,ε) .
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Since

Bi,ε (ri,ε) = −γ−1
i,ε ln

(

λεγ
2
i,εr

2
i,ε

)

+O
(

γ−1
i,ε

)

= −γ−1
i,ε ln

(

γ2i,εd
2
i,ε

γ21,ε

)

− 2γ−1
i,ε ln

(

ri,ε

di,ε

)

+O
(

γ−1
i,ε

)

thanks to Claim 4.11, this leads to

− ln

(

γ2i,εd
2
i,ε

γ21,ε

)

= 4π
di,εγi,ε

γ1,ε





i−1
∑

j=1

C1,j (−∂νG (xj , xi)) + o(1)





+2





∑

j∈D⋆
i

Ci,j + o(1)





(

ln
di,ε

ri,ε

)

(4.101)

+
∑

j>i, j 6∈Di

(4π + o(1))
γi,ε

γj,ε
G (xi,ε, xj,ε) ,

from which we can infer that, for ε small,

2
γ1,ε

di,εγi,ε
ln

(

γ1,ε

di,εγi,ε

)

≥ 2π

i−1
∑

j=1

C1,j (−∂νG (xj , xi)) (4.102)

+2





∑

j∈D⋆
i

Ci,j + o(1)





γ1,ε

di,εγi,ε

(

ln
di,ε

ri,ε

)

.

Let j ∈ D⋆
i . Note that, since

di,ε

ri,ε
→ +∞ as ε → 0, we know that D⋆

i 6= ∅. There exists δ > 0

such that ∂Dxj,ε
(δri,ε) ⊂ ΩR

0 for some R > 0. Thus we can write that

inf
∂Dxj,ε

(δri,ε)
uε ≥

(

1 + o(1)
)

Bi,ε (ri,ε)

thanks to (4.98) and (4.100). We can also apply b) of Claim 4.2 with rε = δri,ε thanks to Claim

4.3 and to the fact that
ri,ε

rj,ε
≥ 2 |x̃j |−1 + o(1). This leads to

Bj,ε (δri,ε) ≥
(

1 + o(1)
)

Bi,ε (ri,ε) .

Since

Bj,ε (δri,ε) = −γ−1
j,ε ln

(

λεγ
2
j,εr

2
i,ε

)

+O
(

γ−1
j,ε

)

and

Bi,ε (ri,ε) = −γ−1
i,ε ln

(

λεγ
2
i,εr

2
i,ε

)

+O
(

γ−1
i,ε

)

thanks to Claim 4.11, we obtain that

−γ−1
j,ε ln

(

λεγ
2
j,εr

2
i,ε

)

+O
(

γ−1
j,ε

)

≥ −
(

1 + o(1)
)

γ−1
i,ε ln

(

λεγ
2
i,εr

2
i,ε

)

+O
(

γ−1
i,ε

)

.

This implies since γi,ε = O (γj,ε), see (4.54), that

ln
(

λεγ
2
i,εr

2
i,ε

)

(

1 + o(1)− γi,ε

γj,ε

)

≥ −C

for some C > 0. Since
ri,ε
di,ε

→ 0 as ε → 0, we get with Claim 4.4 that λεr
2
i,εγ

2
i,ε → 0 as ε → 0

and the above implies that Ci,j ≥ 1. Thus we have obtained that

Ci,j ≥ 1 for all j ∈ D⋆
i . (4.103)
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Thanks to (4.55), we know that rj,ε ≥ ri,ε for all i ∈ D⋆
i . Using Claim 4.9, (4.83) and (4.84), we

thus obtain that

|∇uε| ≤ C



γ−1
1,ε + γ−1

i,ε

∑

j∈Di

|xj,ε − x|−1





in Dxi,ε
(Rri,ε) for all R > 0. Thanks to (4.99), this leads to

|∇uε| ≤ Cγ−1
i,ε

∑

j∈Di

|xj,ε − x|−1

in Dxi,ε
(Rri,ε) for all R > 0. We are now in position to follow exactly the end of the proof of

Case 2 of Claim 4.10. We can prove that

γi,ε (uε (xi,ε + ri,εx)−Bi,ε (ri,ε)) → 2 ln
1

|x| + 2
∑

j∈D⋆
i

Ci,j ln
1

|x− x̃j |
+A0

in C1
loc

(

R
2 \ Si

)

as ε→ 0 for some constant A0 and then get a contradiction with Claim 4.1 for
j ∈ D⋆

i (which is non-empty) such that |x̃j | ≥ |x̃k| for all k ∈ D⋆
i . Note here that we assumed

that ri,ε → 0 as ε→ 0, see (4.86). This proves that this second case can not happen either. ♠

Case 3 - We assume that di,ε → 0 as ε→ 0 and that
di,ε

ri,ε
→ L as ε→ 0 where L ≥ 2.

We are thus in the case where, after some harmless rotation,

Ω0 = R× (−∞, L) .

We let y ∈ ΩR
0 for some R > 0 and we set xε = xi,ε + ri,εx. Since di,ε → 0 and ri,ε → 0, we are

in situation b) of Claim 4.8. Indeed, as in Case 1, we have that

|xε − xj,ε|
µj,ε

→ +∞ as ε→ 0 for all j = 1, . . . , N .

Thus we can write that

uε (xε) = ψε (xε) +

N
∑

j=1

4π + o(1)

γj,ε
G (xj,ε, xε)

+O





∑

j∈A

(

γ−1
j,ε

µj,ε

|xj,ε − xε|
+ γ−2

j,ε ln

(

sj,ε

|xj,ε − xε|
+ 2

))





+O





∑

j∈B

dε

dε + dj,ε

(

γ−1
j,εµj,ε + γ−2

j,ε sj,ε
)





where A is defined as the set of j ∈ {1, . . . , N} such that |xj,ε − xε| ≤ sj,ε + o (dε) and B as its
complementary. As in Case 2, we have that

γ−1
j,ε

µj,ε

|xj,ε − xε|
+ γ−2

j,ε ln

(

sj,ε

|xj,ε − xε|
+ 2

)

= o
(

γ−1
j,ε

)

for all j ∈ A while
dε

dε + dj,ε

(

γ−1
j,εµj,ε + γ−2

j,ε sj,ε
)

= o
(

γ−1
j,ε

)

for all j ∈ B. Note also that, if j < i, we have that j ∈ B thanks to (4.84) and that

dε

dε + dj,ε

(

γ−1
j,ε µj,ε + γ−2

j,ε sj,ε
)

= o
(

dεγ
−1
j,ε

)

= o
(

ri,εγ
−1
j,ε

)

.
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Thus we have that

uε (xε) = ψε (xε) +
N
∑

i=1

4π + o(1)

γi,ε
G (xi,ε, xε) + o

(

γ−1
i,ε

)

+ o
(

ri,εγ
−1
1,ε

)

.

We can write thanks to (4.83) and since ψε = 0 on ∂Ω that

ψε (xε) = O
(

ri,εγ
−3
1,ε

)

.

Then we have that, for any j < i,

G (xj,ε, xε) = −dε∂νG (xj , xi) + o (ri,ε) .

And, for j ≥ i, we have that

G (xj,ε, xε) =
1

2π
ln

|ỹj − y|
|x̃j − y| + o(1)

if j ∈ Di where
ỹj = R (x̃j) ,

R being the reflection with respect to the straight line R × {L}. Here we used (6.12). At last,
for j ≥ i and j 6∈ Di, we have that

G (xj,ε, xε) = o(1)

thanks to (6.12). This leads to

uε (xε) = 4πdεγ
−1
1,ε

i−1
∑

j=1

(−C1,j∂νG (xj , xi))

+
∑

j∈Di

2 + o(1)

γj,ε
ln

|ỹj − y|
|x̃j − y| + o

(

γ−1
i,ε

)

+ o
(

ri,εγ
−1
1,ε

)

.

This gives in particular that uε ≥ Cri,εγ
−1
1,ε on ∂Dxi,ε

(ri,ε) for some C > 0. Using b) of Claim
4.2, we deduce that

Cri,εγ
−1
1,ε ≤ Bi,ε (ri,ε) +O

(

γ−1
i,ε

)

= −γ−1
i,ε ln

(

λεγ
2
i,εr

2
i,ε

)

+O
(

γ−1
i,ε

)

.

Thanks to Claim 4.11, this gives that

C
ri,εγi,ε

γ1,ε
≤ − ln

(

γ2i,εr
2
i,ε

γ21,ε

)

+O(1) .

This proves that
ri,εγi,ε = O (γ1,ε)

so that, up to a subsequence,
ri,εγi,ε

γ1,ε
→ B0 as ε→ 0 . (4.104)

Then, by the equation satified by uε, it is clear that

vε(x) = γi,εuε (x1,ε + ri,εx)

has a Laplacian uniformly converging to 0 in any ΩR
0 . Thus, by standard elliptic theory, we can

conclude that

γi,εuε (xi,ε + ri,εx) → B1 (L− y2) + 2
∑

j∈Di

Ci,j ln
|ỹj − y|
|x̃j − y| in C1

loc (Ω0 \ S1) as ε→ 0 . (4.105)

Using (4.83), (4.104), (4.105) and Claim 4.9, we have that

|∇uε| ≤ Cγ−1
i,ε |xi,ε − x|−1

in Dxi,ε
(ri,ε) .
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We are thus in position to apply the results of Section 3 to uε (xi,ε + ·) in the disk D0 (ri,ε). In
particular, applying c) of Proposition 3.1 and combining it with (4.105), we get that

γi,εBi,ε (ri,ε) = O (1) .

This leads with Claim 5.2 of Appendix A to

ln
(

λεr
2
i,εγ

2
i,ε

)

= O (1) .

Thanks to Claim 4.11, we thus have that B0 > 0 in (4.104) and B1 > 0 in (4.105). We can then
proceed exactly as in Case 3 of Claim 4.10 to get a contradiction in this last case. ♠

The study of these three cases, all leading to a contradiction, proves that (4.87) is absurd
when we assume (4.84). As already said, this permits to prove the claim by induction on i. ♦

We are now in position to prove Theorem 1.2. We know thanks to Claim 4.12 that

xi,ε → xi as ε→ 0 where xi ∈ Ω . (4.106)

Claim 4.4 then gives that λεγ
2
i,ε = O(1) for all i = 1, . . . , N . Thanks to Claim 4.11 and (4.54),

this implies that, up to a subsequence

1√
λεγi,ε

→ mi as ε→ 0 (4.107)

for all i = 1, . . . , N with mi > 0. Thanks to Claim 4.8, to (4.83) and to the equation satisfied by
uε, by standard elliptic theory, we obtain that

uε√
λε

→ 4π

N
∑

i=1

miG (xi, x) in C1
loc (Ω \ S) (4.108)

where S = {xi}i=1,...,N . Moreover, using again (4.83) this time together with Claim 4.9, we
know that

|∇uε| ≤ C
√

λε

N
∑

i=1

|xi,ε − x|−1

in Ω. We are thus in position to apply Claim 4.1 for all i = 1, . . . , N . This gives that

γi,ε (uε (xi,ε + δx)−Bi,ε (δ)) → 2 ln
1

|x| +Hi(x) in C1
loc (D0(1) \ {0}) as ε→ 0 (4.109)

where Hi (0) = 0 and ∇Hi (0) = − 1
2δ

∇f0(xi)
f0(xi)

. Let us write thanks to Claim 5.2 that

Bi,ε (δ) = γi,ε − γ−1
i,ε

(

1 + γ−2
i,ε

)

ln

(

1 +
δ2

4µ2
i,ε

)

+O
(

γ−2
i,ε

)

= γi,ε − γ−1
i,ε

(

1 + γ−2
i,ε

)

ln
1

µ2
i,ε

− γ−1
i,ε ln

δ2

4
+ o

(

γ−1
i,ε

)

= −γ−1
i,ε − γ−1

i,ε ln
(

f0 (xi)λεγ
2
i,ε

)

− γ−1
i,ε ln

δ2

4
+ o

(

γ−1
i,ε

)

so that, thanks to (4.107),

γi,εBi,ε (δ) → − ln
δ2f0 (xi)

4m2
i

− 1 .

Coming back to (4.109) with this, we get that

γi,εuε (x) → 2 ln
1

|x− xi|
+Hi

(

x− xi

δ

)

− ln
f0 (xi)

4m2
i

− 1 in C1
loc (Dxi

(δ) \ {xi}) as ε→ 0 .

(4.110)
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On the other hand, using (4.107) and (4.108), we also have that

γi,εuε (x) →
4π

mi

N
∑

j=1

mjG (xj , x) in C1
loc (Dxi

(δ) \ {xi}) as ε→ 0 . (4.111)

Combining (4.110) and (4.111), we get that

miHi

(

x− xi

δ

)

= 4π

N
∑

j=1

mjG (xj , x)− 2mi ln
1

|x− xi|
+mi ln

f0 (xi)

4m2
i

+mi .

Writing

G (x, y) =
1

2π

(

ln
1

|x− y| +H (x, y)

)

,

this leads to

miHi

(

x− xi

δ

)

= 4π
∑

j 6=i

mjG (xj , x) + 2miH (xi, x) +mi ln
f0 (xi)

4m2
i

+mi .

The conditions that Hi(0) = 0 and ∇Hi(0) = − 1
2δ

∇f0(xi)
f0(xi)

read as

4π
∑

j 6=i

mjG (xj , xi) + 2miH (xi, xi) +mi ln
f0 (xi)

4m2
i

+mi = 0 (4.112)

and

4π
∑

j 6=i

mj∇yG (xj , xi) + 2mi∇yH (xi, xi) = −1

2
mi

∇f0 (xi)
f0 (xi)

. (4.113)

This ends the proof of Theorem 1.2, up to change the mi’s as in the statement of the theorem.
♦

5. Appendix A - The standard bubble

In this appendix, we develop the exact form of the standard bubble Bε which is defined as
the radial solution of

∆Bε = µ−2
ε γ−2

ε Bεe
B2

ε−γ2
ε in R

2 with Bε(0) = γε (5.1)

where γε → +∞ and µε → 0 as ε → 0. Note that, by standard ordinary differential equations
theory, this function is defined on [0,+∞) and is decreasing.

We perform the change of variables

t = ln

(

1 +
r2

4µ2
ε

)

(5.2)

so that we can rewrite equation (5.1) as

et
((

1− e−t
)

B′
ε

)′
= −Bε

γ2ε
e2t+B2

ε−γ2
ε . (5.3)

We shall need the following lemma which can be proved by direct computations :

Lemma 5.1. The solution ϕ of

L (ϕ) = et
((

1− e−t
)

ϕ′
)′
+ 2ϕ = F

with ϕ(0) = 0 and F smooth is

ϕ(t) =

∫ t

0

e−sF (s)

(

(

1− 2e−t
) (

1− 2e−s
)

ln
et − 1

es − 1
+ 4

(

e−s − e−t
)

)

ds .



56 OLIVIER DRUET AND PIERRE-DAMIEN THIZY

Proof of Lemma 5.1 - We clearly have that ϕ(0) = 0 so that we just have to check that ϕ
satisfies the given differential equation. Let us differentiate to obtain that

ϕ′(t) =

∫ t

0

e−sF (s)

(

2e−t
(

1− 2e−s
)

ln
et − 1

es − 1
+
et − 2

et − 1

(

1− 2e−s
)

+ 4e−t

)

ds

so that

(

1− e−t
)

ϕ′(t) =

∫ t

0

e−sF (s)

(

2
et − 1

e2t

(

1− 2e−s
)

ln
et − 1

es − 1
+
et − 2

et

(

1− 2e−s
)

+ 4
et − 1

e2t

)

ds .

Differentiating again, we get that

((

1− e−t
)

ϕ′
)′
(t) = e−tF (t)

(

et − 2

et

(

1− 2e−t
)

+ 4
et − 1

e2t

)

+

∫ t

0

e−sF (s)

(

−2e−t
(

1− 2e−t
) (

1− 2e−s
)

ln
et − 1

es − 1
+ 8e−2t − 8e−te−s

)

ds

= e−tF (t)− 2e−tϕ(t) ,

which proves the lemma. ♦
Let us define

ϕ0(t) =

∫ t

0

e−s
(

s− s2
)

(

(

1− 2e−t
) (

1− 2e−s
)

ln
et − 1

es − 1
+ 4

(

e−s − e−t
)

)

ds (5.4)

so that, by lemma 5.1,

L (ϕ0) (t) = t− t2 . (5.5)

We claim now that

|ϕ0(t) + t| ≤ C0 and ϕ′
0(t) → 1 as t→ +∞ (5.6)

for some C0 > 0. Let us write that

ϕ0(t) =

∫ t

0

e−s
(

s− s2
)

(

2e−t
(

1− 2e−s
)

ln
et − 1

es − 1
+
et − 2

et − 1

(

1− 2e−s
)

+ 4e−t

)

ds

=

(

2e−t ln
(

et − 1
)

+
et − 2

et − 1

)∫ t

0

e−s
(

s− s2
) (

1− 2e−s
)

ds

+e−t

∫ t

0

e−s
(

s− s2
)

(

2
(

1− 2e−s
)

ln
1

es − 1
+ 4

)

ds

=

(

2e−t ln
(

et − 1
)

+
et − 2

et − 1

)

((

1 + t+ t2
)

e−t − t2e−2t − 1
)

+O
(

e−t
)

= −1 +O
((

1 + t2
)

e−t
)

.

This proves the second part of (5.6) by passing to the limit t → +∞ and the first part by
integration.

We set now

Bε(t) = γε −
t

γε
+ γ−3

ε ϕ0 +Rε . (5.7)

Claim 5.1. There exists D0 > 0 such that

|R′
ε(t)| ≤ D0γ

−5
ε for all 0 ≤ t ≤ γ2ε − Tε

where Tε is any sequence such that Tε = o (γε) and γ
k
ε e

−Tε → 0 as ε→ 0 for all k.
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Proof of Claim 5.1 - Fix such a sequence Tε. Let D0 > 0 that we shall choose later. Since
R′

ε(0) = 0, there exists 0 < tε ≤ γ2ε − Tε such that

|R′
ε(t)| ≤ D0γ

−5
ε for all 0 ≤ t ≤ tε . (5.8)

Note that this implies since Rε(0) = 0 that

|Rε(t)| ≤ D0γ
−5
ε t for all 0 ≤ t ≤ tε . (5.9)

We will prove that, for some choice of D0, this tε may be chosen equal to γ2ε − Tε, which will
prove the claim. Now, assume this is not the case, then, for the maximal tε such that (5.8) holds,
we have that

|R′
ε (tε)| = D0γ

−5
ε . (5.10)

This is the statement we will contradict by an appropriate choice of D0. Let us use (5.3), (5.5)
and (5.7) to write that

L (Rε) = Fε

where

Fε =
1

γε
− Bε

γ2ε
e2t+B2

ε−γ2
ε + 2Rε − γ−3

ε

(

t− t2 − 2ϕ0

)

.

For 0 ≤ t ≤ min {tε, Tε}, we have that

2t+B2
ε − γ2ε =

t2

γ2ε
+ 2γεRε + 2γ−2

ε

(

1− t

γ2ε

)

ϕ0 + o
(

γ−4
ε

)

and that
Bε

γ2ε
= γ−1

ε − γ−2
ε t+ γ−5

ε ϕ0 + o
(

γ−6
ε

)

thanks to (5.6) and (5.9). Thus we have in particular that

∣

∣2t+B2
ε − γ2ε

∣

∣ ≤ 2t2

γ2ε
+ 2D0γ

−4
ε t+ 2γ−2

ε (C0 + 1) + o
(

γ−4
ε

)

= o(1)

again with (5.6) and (5.9). We can write that
∣

∣

∣e
2t+B2

ε−γ2
ε − 1−

(

2t+B2
ε − γ2ε

)

∣

∣

∣ ≤ 2
(

2t+B2
ε − γ2ε

)2

≤ 20γ−4
ε

(

t4 + (C0 + 1)
2
)

for all 0 ≤ t ≤ min {tε, Tε} for ε small. Coming back to Fε, this leads to

|Fε| ≤ D1

(

1 + t4
)

γ−5
ε

for all 0 ≤ t ≤ min {tε, Tε} whereD1 depends on C0 but not onD0. We can use the representation
formula of Lemma 5.1 to deduce that

|R′
ε(t)| ≤ D1γ

−5
ε

∫ t

0

e−s
(

1 + s4
)

∣

∣

∣

∣

2e−t
(

1− 2e−s
)

ln
et − 1

es − 1
+
et − 2

et − 1

(

1− 2e−s
)

+ 4e−t

∣

∣

∣

∣

ds

≤ D2γ
−5
ε

for all 0 ≤ t ≤ min {Tε, tε} where D2 depends only on C0, not on D0. Up to choose D0 > 2D2,
we get that tε > Tε thanks to (5.10). Moreover we have that

|R′
ε (Tε)| ≤ D2γ

−5
ε . (5.11)

From now on, we assume that tε ≥ Tε. For all Tε ≤ t ≤ γ2ε − Tε, we can write that

|Fε(t)| ≤ Cγεe
t2

γ2
ε
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for some C > 0, depending on D0 and C0. Then we write that

|R′
ε(t)−R′

ε (Tε)| ≤ Cγε

∫ t

Tε

e
s2

γ2
ε
−s
∣

∣

∣

∣

2e−t
(

1− 2e−s
)

ln
et − 1

es − 1
+
et − 2

et − 1

(

1− 2e−s
)

+ 4e−t

∣

∣

∣

∣

ds

≤ Cγε

∫ t

Tε

e
s2

γ2
ε
−s
ds

= O

(

γε

∫ γ2
ε−Tε

Tε

e
s2

γ2
ε
−s
ds

)

= O

(

γε

∫ 1
2γ

2
ε

Tε

e
s2

γ2
ε
−s
ds

)

= O

(

γε

∫ 1
2γ

2
ε

Tε

e−
1
2 s ds

)

= O
(

γεe
− 1

2Tε

)

= o
(

γ−5
ε

)

.

Combined with (5.11), this gives that

|R′
ε(t)| ≤ D2γ

−5
ε + o

(

γ−5
ε

)

.

This proves that (5.10) is impossible, up to choose D0 ≥ 2D2. This ends the proof of this claim.
♦.

If we want to push a little bit further the estimates, we can get

Claim 5.2. There exists C0 > 0 such that
∣

∣

∣

∣

Bε − γε +
t

γε
+

t

γ3ε

∣

∣

∣

∣

≤ C0γ
−2
ε

for all 0 ≤ t ≤ γ2ε .

Proof of Claim 5.2 - It is clear that it holds for any 0 ≤ t ≤ γ2ε − Tε for Tε as in Claim 5.1.
This is a consequence of Claim 5.1 and of (5.6). We also know that

Bε

(

γ2ε − Tε
)

=
Tε

γε
− 1

γε
+
Tε

γ3ε
+O

(

γ−3
ε

)

. (5.12)

and that

B′
ε

(

γ2ε − Tε
)

= − 1

γε
− 1

γ3ε
+O

(

γ−5
ε

)

. (5.13)

Let us integrate twice the equation (5.3) between γ2ε − Tε and tε = γ2ε − αε for 0 ≤ αε ≤ Tε to
write that

Bε (tε) = Bε

(

γ2ε − Tε
)

+B′
ε

(

γ2ε − Tε
)

(

1− eTε−γ2
ε

)

ln

(

eγ
2
ε−αε − 1

eγ
2
ε−Tε − 1

)

(5.14)

− 1

γ2ε

∫ γ2
ε−αε

γ2
ε−Tε

ln

(

etε − 1

et − 1

)

Bε(t)e
t+Bε(t)

2−γ2
ε dt .

Using (5.12) and (5.13), and remembering that αε ≤ Tε = o (γε), we obtain that

Bε (tε) = γε −
tε

γε
− tε

γ3ε
+O

(

γ−3
ε

)

− 1

γ2ε

∫ γ2
ε−αε

γ2
ε−Tε

ln

(

etε − 1

et − 1

)

Bε(t)e
t+Bε(t)

2−γ2
ε dt . (5.15)
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Assume that the statement of the Claim holds up to tε. If we are able to prove that, under this
condition,

∫ γ2
ε−αε

γ2
ε−Tε

ln

(

etε − 1

et − 1

)

Bε(t)e
t+Bε(t)

2−γ2
ε dt = o(1) , (5.16)

then the argument already used in the previous claim will conclude.
If

∣

∣

∣

∣

Bε − γε +
t

γε
+

t

γ3ε

∣

∣

∣

∣

≤ C0γ
−2
ε

for all 0 ≤ t ≤ tε, then we can write that

ln

(

etε − 1

et − 1

)

|Bε(t)| et+Bε(t)
2−γ2

ε = O
(

γ−1
ε

(

1 + s2
)

e−s
)

in
[

γ2ε − Tε, tε
]

with t = γ2ε − s so that it is easily checked that

∫ γ2
ε−αε

γ2
ε−Tε

ln

(

etε − 1

et − 1

)

Bε(t)e
t+Bε(t)

2−γ2
ε dt = O

(

γ−1
ε

)

,

which ends the proof of this claim. ♦
Claim 5.3. There exists C1 > 0 such that

∣

∣B′
ε(t) + γ−1

ε

∣

∣ ≤ C1γ
−2
ε

for all 0 ≤ t ≤ γ2ε .

Proof of Claim 5.3 - Let us start from the fact that

B′
ε(t) = −γ−2

ε

et

et − 1

∫ t

0

Bε(s)e
s+Bε(s)

2−γ2
ε ds

obtained by integrating (5.3). This leads to

∣

∣B′
ε(t) + γ−1

ε

∣

∣ ≤ γ−2
ε

et

et − 1

∫ t

0

∣

∣

∣Bε(s)e
2s+Bε(s)

2−γ2
ε − γε

∣

∣

∣ e−s ds .

Let us use Claim 5.2 to write that
∣

∣

∣Bε(s)e
2s+Bε(s)

2−γ2
ε − γε

∣

∣

∣ ≤ Cγε

(

e
s2

γ2
ε − 1

)

e−s + C
s+ γε

γε
e

s2

γ2
ε
−s

for some C > 0 independent of ε and of 0 ≤ s ≤ γ2ε . Thus we get that

∣

∣B′
ε(t) + γ−1

ε

∣

∣ ≤ Cγ−1
ε

et

et − 1

∫ t

0

(

e
s2

γ2
ε − 1

)

e−s ds+ Cγ−3
ε

et

et − 1

∫ t

0

(s+ γε) e
s2

γ2
ε
−s
ds .

Arguing as above, one gets that

et

et − 1

∫ t

0

(

e
s2

γ2
ε − 1

)

e−s ds ≤ Cγ−2
ε

and that
et

et − 1

∫ t

0

(s+ γε) e
s2

γ2
ε
−s
ds ≤ Cγε

for all 0 ≤ t ≤ γ2ε . This permits to end the proof of the claim. ♦
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6. Appendix B - Estimates on the Green function

We list and prove some useful estimates on the Green function of the Laplacian with Dirichlet
boundary condition in some smooth domain Ω. We fix such a two-dimensional domain and we
let G (x, y) be such that

∆xG(x, y) = δy with G (x, y) = 0 if x ∈ ∂Ω .

It is well known that G is symmetric and smooth outside of the diagonal. Except on the disk of
radius R where G is explicitly given by

G (x, y) =
1

4π
ln

∣

∣

∣

|y|
R
x− Ry

|y|

∣

∣

∣

2

|x− y|2

and so where all the estimates below follow from explicit computations, we need to be a little
bit careful to estimate the Green function for various x and y.

We know that

G (x, y) =
1

2π
ln

1

|x− y| +Hy(x) (6.1)

where

∆xHy(x) = 0 in Ω and Hy(x) = − 1

2π
ln

1

|x− y| on ∂Ω .

First, if y ∈ K for some compact subset K of Ω, we clearly have that

|Hy (x)| ≤ CK and |∇Hy(x)| ≤ CK (6.2)

for some CK > 0 for all x ∈ Ω so that
∣

∣

∣

∣

G (x, y)− 1

2π
ln

1

|x− y|

∣

∣

∣

∣

≤ CK ,

∣

∣

∣

∣

∣

∇xG (x, y) +
1

2π

x− y

|x− y|2

∣

∣

∣

∣

∣

≤ CK , (6.3)

|∇xG (x, y)| ≤ CK |x− y|−1
,

∣

∣

∣

∣

G (x, y)− G (z, y)− 1

2π
ln

|z − y|
|x− y|

∣

∣

∣

∣

≤ CK |x− z|

for all x, y, z ∈ K ⊂⊂ Ω (distinct points).
We let now (yε) be a sequence of points in Ω such that

dε = d (yε, ∂Ω) → 0 as ε→ 0 . (6.4)

We let now ỹε ∈ R
2 be such that

ỹε = 2π (yε)− yε (6.5)

where π is the projection on the boundary of Ω. Note that π (yε) is unique thanks to (6.4) and
to the fact that Ω is smooth. Moreover, we have that

ỹε = yε + 2dενε (6.6)

where νε is the unit outer normal of ∂Ω at π (yε). We let now

G (x, yε) =
1

2π
ln

|x− ỹε|
|x− yε|

+ H̃ε (x) (6.7)

where H̃ε is harmonic in Ω and satisfies

H̃ε (x) = − 1

2π
ln

|x− ỹε|
|x− yε|

on ∂Ω . (6.8)
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It is easily checked since Ω ∈ C2 that
∣

∣

∣H̃ε (x)
∣

∣

∣ ≤ CΩdε

for some CΩ > 0 independent of ε and for all x ∈ ∂Ω. Thus we have that
∣

∣

∣H̃ε (x)
∣

∣

∣ ≤ CΩdε in Ω . (6.9)

It is also easily checked that
∣

∣

∣
∇T H̃ε (x)

∣

∣

∣
≤ CΩ (6.10)

for all x ∈ ∂Ω where ∇T denotes the tangential derivative. Thus we have that
∣

∣

∣∇H̃ε (x)
∣

∣

∣ ≤ CΩ
dε

dε + d (x, ∂Ω)
in Ω . (6.11)

Let us give some useful consequences of (6.9) and (6.11). Let yε be such that dε = d (yε, ∂Ω) → 0
as ε→ 0, then we have that for any sequence (xε) in Ω

G (xε, yε) = O

(

dε

|xε − yε|

)

if dε = O (|xε − yε|)

G (xε, yε) =
1

2π
ln

2dε
|xε − yε|

+O

( |xε − yε|
dε

)

+O (dε) if |xε − yε| = o (dε)

|∇xG (xε, yε)| = O

(

dε

dε + d (xε, ∂Ω)

)

if dε = O (|xε − yε|)

|∇xG (xε, yε)| =
1

2π |xε − yε|
+O

(

1

dε

)

if |xε − yε| = o (dε)

(6.12)

These are the only estimates which were used in this paper.
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