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Abstract—Technologic advancements have contributed to the 

spread of sharing economy concepts, a developing phenomenon 

that favors the shift from private mobility to service-use (shared 

mobility). One-way carsharing is a most recent and popular kind of 

shared mobility, that is growing and developing rapidly in various 

forms. These systems are considered to have a transformative 

impact on future urban transportation. Despite all of the benefits 

that have been reported from the use of new one-way carsharing 

(e.g. Autonomous Mobility-on-Demand systems), their impacts on 

the mobility are not certain yet. This comes from the fact that in 

such services supply and demand influence each other in a 

significant way in short-, mid-, and long-term. Also service 

characteristics at the level of each vehicle strongly affect the 

demand. In this paper methods, paradigms, toolkits and platforms 

used in the literature for the demand estimation of the new one-way 

carsharing systems, as well as their potential drawbacks are 

discussed. A review of the literature reveals that despite the 

considerable number of studies related to balancing vehicle stocks 

across stations in one-way systems, the investigation about demand 

estimation of such services for which the complex relationship 

between supply and demand is considered, remain very limited. 

The majority of current platforms and toolkits used for demand 

estimation of new one-way carsharing systems are based on 

activity-based multi-agent simulations. In these simulations several 

main components are not yet taken into account, which could 

dramatically change the results. Data detail, accessibility and 

reliability, high computational time, calibration and validation still 

remain major challenges for travel demand estimation for one-way 

carsharing systems. 

Keywords—Carsharing, Shared Autonomous Vehicle, Shared 

Mobility, Free-floating, Station-based, Travel demand estimation, 

Agent-base simulation, Autonomous Mobility-on-Demand, Shared-
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I.  INTRODUCTION 

In the last years the growth of service-oriented transport 
alternatives is shifting the private mobility from ownership to 
service access/use. Carsharing is one of the first concepts for 
such alternatives, introduced for the first time in Switzerland in 
the middle of 20th century and gained worldwide popularity in 
the 1990s [1]. Developing the strategy for enabling users to gain 

short-term access to any other conventional private modes (such 
as bicycle) results gradually in the increase of popularity of 
“shared-use vehicle systems”.  Nowadays car producers are also 
directly involved in vehicle-sharing operations with the scope of 
finding new channels to market the produced cars and to gain the 
financial benefits of new car rental service systems [2].  

Technologies including social networking, location-based 
services, the Internet, electric vehicles, keyless vehicle access, in-
vehicle and mobile global positioning system (GPS) receivers 
have played a major role in the growth of carsharing over time 
[3]. Due to the development of technologies related to automated 
vehicle, it is expected that next generation of carsharing systems 
will be based upon these vehicles [4], [5]. Shared autonomous 
vehicles (SAVs) have the potential to take over a significant 
amount of traffic handled nowadays by conventionally driven 
vehicles, especially taking in consideration that these new 
services could potentially be integrated with public transportation 
by solving the “last mile problem”[6]. In addition SAVs can 
anticipate future demand and relocate in advance to better match 
vehicle supply and travel demand [7]. 

New carsharing systems are considered to have a 
transformative impact on many cities by enhancing transportation 
accessibility, increasing multimodality, changing vehicle 
ownership rate, and providing new ways to access services [3]. 
To predict this impact before placing any services in operation, it 
is necessary to estimate the eventual travel demand. This is 
usually done by travel models. Travel models produce 
quantitative information about travel demand and transportation 
system performance that can be used to evaluate alternatives and 
make informed decisions. 

 The aim of this paper is to give a holistic view into the 
existing methods of travel demand estimation for one-way 
carsharing systems. We outline also the identification of 
appropriate platforms (travel models) to model innovative 
carsharing services when they are applied for a multimodal 
integrated transportation system. To the authors’ best knowledge 
this paper presents for the first time a through comparison of all 
methods, platforms and toolkits used to estimate the demand of 
new one-way carsharing systems and discusses their potential 



drawbacks. Another important contribution of this study is the 
illustration of why and how activity-based multi-agent 
simulations are often used to demand estimation of such new 
systems and which limitations they have. 

 This paper is structured as follows. Initially different types of 
carsharing systems are classified. Then all travel demand 
estimation methods for one-way services are described, as well as 
existing literature on this subject is reviewed. After that 
application of these methods is analyzed and criticized. Finally, 
the conclusion as a base for future work is provided. 

II. CARSHARING CLASSIFICATION 

Carsharing is generally defined as short-term vehicle access 
among a group of members who share a vehicle fleet that is 
maintained, managed, and insured by a third-party organization 
[8]. With respect to the operating model carsharing systems can 
be classified in two general types: (1) round-trip, in which users 
must return the car to its departing point, and (2) one-way, in 
which users may drop off the car to a different location from 
where they started [9]. In the last decade round-trip carsharing 
systems were more common, but over the last years with the 
important development on electric vehicles, smart phones and 
information technologies there has been a significant growth of 
one-way systems [10], [11].  

One-way carsharing systems could fall in three general types: 
(1) station-based, (2) free-floating, and (3) shared autonomous 
vehicles (SAVs). One-way station-based carsharing provide short 
term car rentals enabling users to take a car from the initial 
station and return it to any other station. The advantages of such 
services include the reliability and predictability of car locations 
and parking, as well as the ability to reserve cars in advance. 
However, this comes for the price of less freedom of movement 
and spontaneity for members. Free-floating carsharing - where 
cars may be picked up by members wherever they are available 
and parked anywhere on the street, within the service area -has 
appeared afterwards. This type of carsharing is more financially 
attractive for short trips and allows greater flexibility [12].  

One-way carsharing present new and important operational 
challenges, such as vehicle rebalancing and parking management 
[8], [13]. It’s expected that with autonomous vehicle technology 
there will be no more such challenges in the future. This is the 
reason why self-driving capability has the potential for more 
vehicles sharing, including robotaxis, and more sharing of private 
vehicles [4]. It should be mentioned that concerning park space 
problem for free-floating services as the vehicle can be parked 
anywhere on the street, there won’t be any problem related to the 
limitation of park space in the contrary to station-based services. 
But comparing to SAVs there will be more limitation for finding 
park space in congested areas. 

Table I illustrates all types of carsharing systems. A complete 
classification of carsharing and more overall “shared-use vehicle 
systems” is described in [14]. One-way carsharing services are 
the ones in the focus of this paper. Various economic models of 

station-based and free-floating carsharing are under development 
nowadays and considerable efforts are being made for the 
planning of future SAVs. Thus, the estimates of travel demand 
for these new innovative systems turn more and more important. 

TABLE I.  CLASSIFICATION OF CARSHARING SYSTEMS 

 

Carsharing types 

Round-trip 

One-way 

Station-

based 

Free-

floating 
SAVs 

Pick-up 

Specified 

points 

Any rental 

station 

Anywhere 

available 
Anywhere 

Drop-off 
Same 

point 
Any station  

Anywhere 

authorized 
Anywhere 

Park space 

problem 
No Yes No/Yes No 

Rebalancing 

problem 
No Yes Yes No 

III. DEMAND ESTIMATION 

A. Approaches 

To estimate travel demand of one-way carsharing systems 
several approaches might be applied depending on data 
availability, expected accuracy and study scale. In general, these 
approaches fall into three categories or better say evolutionary 
levels: (1) survey and analysis, (2) discrete choice modeling, and 
(3) agent-based simulation.  

Less precise methods are based on survey and analysis. These 
methods are designed to produce rough estimations of potential 
demand and range from demand elasticity analysis (e.g. pivot-
point) to modal diversion estimation [15]. These approaches have 
been developed when one can have already existing data, thus 
hindering the prediction when it comes to new innovative 
systems. It is nevertheless important to take this approach into 
account because by coupling with regression or logit models it 
may be used for service membership prediction [16].  

The second group of methods are discrete choice models. 
They have been employed widely in travel demand analysis with 
the most common application being in the choice of travel mode, 
aim and destination [15]. Within this approach stated-preference 
(SP) surveys are also required. One of the most important 
parameters used in discrete choice models is travel time (indoor, 
waiting, etc.). The time (commonly converted to equivalent cost) 
is usually calculated by separate traffic simulators.  

More sophisticated and common solutions for estimating the 
travel demand of one-way carsharing systems are agent-based 
transport simulations. Their roots lay on activity-based travel 
demand models and are commonly characterized by a similar 
feature[17]. An agent-based simulation is developed in which 
travel demand emerges from the interactions of four types of 
agents in the transportation system: node, arc, traveler and 
vehicle. This approach is mostly used for demand estimation of 
one-way carsharing, ridesharing SAVs, and Autonomous 
Mobility-on-Demand (AMoD) systems. 



B. Challenges 

In general, three major challenges facing travel demand 
estimation of innovative one-way carsharing systems have been 
found in the literature: (1) data detail, accessibility and reliability, 
(2) high computational time, and (3) calibration and validation. 

The most important challenge is data. As various types of 
these systems are not yet in operation issue-specific SP surveys 
are needed. Such surveys are costly and might not necessarily 
result in reliable and complete models. Also in order to assign 
travelers to the right alternative, travel needs to be modeled at the 
individual level with explicit modeling of the modal choice, 
which requires individual socio-demographic data. Likewise, in 
order to create a model sensitive to short-distance trips (trips in 
which new carsharing services are more interesting for travelers) 
extremely fine-grained spatial information at the parcel level is 
needed. All these data are not necessarily accessible and 
available. 

A second challenge is computation time. In theory there are 
two major components of transportation models: travel demand 
(represented classically by the trip matrix) and traffic assignment 
(estimates the traffic flows on a network). Traffic assignments 
can be either static -as in most four step trip-based models (FSM) 
- or dynamic, as recently applied especially in activity-based 
models. The assignment outputs -mainly traffic volumes and 
travel times- in their turn are used as inputs to the travel demand 
models. The big challenges for coupling these two components of 
modeling is that the models typically compute probabilities for a 
large number of alternatives at the individual level, which 
demands an explicit choice set. To account for such alternative 
sets in assignment or simulation procedures for real size networks 
and huge number of individuals would result in very long 
computation times. 

Finally, there is be a big challenge regarding to calibration 
and validation of models. For innovative one-way carsharing 
forms (e.g. SAVs) there are no real data on hand, so it is difficult 
to validate if the model runs correctly or not. 

C. Application in Literature 

Significant literature can be found on the topic of carsharing, 
especially describing how to explore the demand of real round-
trip services. Jorge and Correia [18] have reviewed all the studies 
where car-sharing has been modelled after 2000 and they 
concluded that despite the considerable number of studies related 
to demand modeling for round-trip systems, there is a clear 
predominance of studies about balancing vehicle stocks across 
stations in one-way systems, mainly through relocation 
operations performed by the company or the users. However, 
there are some studies concerning travel demand estimation of 
one-way carsharing.  

Catalano et al. [19] estimated the potential demand for one-
way car-sharing and car-pooling in Palermo, Italy. They used a 
SP survey for calibrating a multinomial logit model and applied it 

to a future scenario characterized by some transport policy 
actions. Kouwenhoven et al. [20] used SP and discrete choice 
modeling (IMPACT4) to estimate the potential demand for the 
Autolib’ service (one-way station-based carsharing) in Paris. In 
this study service membership was modeled separately. Several 
other works have been done, proposing the use of spatial and 
temporal disaggregate models. Ciari et al. [21] used for the first 
time an agent-based approach to model one-way carsharing. 
Their research used the open source multi-agent simulation tool 
MATSim [22] and was based on their previous research aimed to 
simulate classic two-ways carsharing. In this research demand is 
considered as independent from the supply and vice-versa. Ciari 
et al. [23] used the same platform later to consider station-based 
and free-floating carsharing in both their demand and supply side 
case-study in Berlin. Balac et al. [24] used also MATSim to 
investigate the effects of supply on the demand of the existing 
round-trip service in Zurich and compared the results with those 
of one-way station-based systems. They concluded that there is 
still untapped potential for round-trip carsharing.  

The more complex supply—demand relationship has been 
studied by Martínez et al. [25] by using a different agent-based 
simulation tool applied to Lisbon. They propose a new agent-
based model that simulates a one-way carsharing system as part 
of the transport supply in a city, accurately describing the 
demand mode choice and the operation of the system. In their 
simulation travel times were obtained from AIMSUN [26] for 
each arc of the network, varying with the time of the day. Also an 
optimization model was developed to estimate the location and 
relative dimension of the stations, based on the mobility patterns 
of Lisbon. Heilig et al. [27] used a travel demand model (trip-
based) based on the principle of agent-based simulation, to model 
both round-trip and one-way (free-floating) carsharing systems. 
In their work for the first time carsharing usage was simulated for 
more than one day.  

The demand for SAVs also have been recently explored by 
using activity-based multi-agent simulation tools. Fagnant et al. 
[7] used MATSim to estimate the demands for a fleet of SAVs 
(with a low level of market penetration: 1.3% of regional trips) 
serving travelers in Austin, Texas. Hörl et al. [28] explored the 
demand for autonomous taxis with the same tool by simulation of 
different scenarios. Azevedo et al. [29] used an integrated agent-
based traffic simulator built on disaggregated behavior models in 
both demand and supply (SimMobility [30]) to study the 
potential impacts of introducing of an AMoD service in a car-
restricted zone of Singapore. In their work individual preferences 
to use autonomous vehicle were kept unchanged and only cost of 
the service was assumed as 40% less than the regular taxi service 
in Singapore. 

Table II presents a summary of the studies where travel 
demand of one-way carsharing systems has been estimated. For 
each study the demand estimation approach used, the type of 
carsharing and the case study are indicated. The references are in 
chronological order. 



TABLE II.  SUMMARY OF THE STUDIES ON TRAVEL DEMAND ESTIMATION FOR ONE-WAY CARSHARING SYSTEMS 

Authors Year Case study Demand estimation approach 
Type of shared-use 

vehicle services 

Catalano, Lo Casto and Miglior  2008 
Palermo 

urban area 
SP + random utility model One-way station-based 

Kouwenhoven, Kroes, Gazave and 

Tardivel 
2011 Autolib SP + discrete choice model One-way station-based 

Ciari, Dobler, and Axhausen 2012 Zurich area Activity-based multi-agent simulation (MATSim) One-way station-based 

Ciari, Bock and Balmer 2014 Berlin Activity-based multi-agent simulation (MATSim) 
One-way station-based 

and free-floating 

Balac, Ciari and Axhausen 2015 Zurich area Activity-based multi-agent simulation (MATSim) 
Round-trip 

and one-way station-based 

Heilig, Mallig, Schroder, 
Kagerbauer, & Vortisch 

2015 
Greater 

Stuttgart area 
Aent-based simulation (MobiTopp) + 

Traffic simulation (VISUM) 
Round-trip 

and one-way free-floating 

Fagnant, Kockelman and Bansal 2015 Austin Activity-based multi-agent simulation (MATSim) SAVs 

Hörl, Earth and Axhausen 2016 Sioux Falls Activity-based multi-agent simulation (MATSim) 
Free-floating 

and SAVs 

Azevedo et al. 2016 Singapore 
Multi-scale integrated activity-, agent-based Simulation 

(SimMobility) 
SAVs 

(non-carpooling) 

Martínez, Almeida Correia, Moura 

and Lopes 
2017 Lisbon Agent-based modeling + Traffic simulation (AIMSUN) One-way station-based 

 

As mentioned before in the literature the largest attention was 
given to the possibility of fleets to become unbalanced and the 
works on travel demand estimation of this services are limited 
[18], [24]. However there are some studies about the influence of 
different factors on demand related to one-way station-based and 
free-floating services [31], or membership prediction [16], [32]. 
Also there are many works in which the preferences of travelers 
to use SAVs have been studied [33]–[38]. All these studies do 
not focus on whole travel demand model but their results could 
potentially be useful for model calibration. 

IV. ANALYSIS 

A. Travel Model 

As shown in the table II most of the above mentioned studies 
use an activity-based approach for estimating travel demands for 
one-way carsharing. Activity-based travel demand estimation is 
the application of discrete choice analysis methods to model the 
decision making process that motivates daily trip tours. A trip 
tour is the sequence or chain of trips in time and space 
throughout a particular day. However, in transportation 
modelling trip-based models are more popular. These models are 
often referred to as “four step models (FSMs)” because they 
commonly include four primary components: (1) trip generation, 
(2) trip distribution, (3) mode choice, and (4) traffic assignment.  
FSMs have evolved over many decades and are widely used and 
the question is why for demand forecasting of one-way 
carsharing systems, activity-based models are employed? There 
are some reasons for that:  

Firstly, FSMs do not consider the entire tour made by an 
individual and typically have high numbers of non-home-based 
trips, which do not include important information such as trip 

purpose, traveler income, or relation to other trips in the person’s 
day. These trips are considered to be captured more by one-way 
systems [14]. That has been approved in the literature. Heilig et 
al. [39] use a trip-based aggregated model for simplification and 
ignored sub-tours. They admitted in their revised paper that this 
simplification could be the reason why their modeled outputs do 
not match the real data. Martínez et al. [40] also used trip-based 
approach in their first simulation for Lisbon city but they 
developed afterwards an activity-based model to simulate shared 
mobility systems in larger area (Lisbon Metropolitan Area).  

Secondly, the mode choice functionality in FSMs is based on 
behavioral models that usually rely on revealed preferences (RP) 
data, which for new services -as these new systems are not in 
operation yet- is not available, especially in the case of SAVs.  

Thirdly, to model one-way carsharing both spatial and 
temporal location of vehicles are needed which aggregated FSMs 
cannot provide.  

Fourthly, typically FSMs are not sensitive to short-distance 
trips. This is because in any FSMs some aggregated spatial 
zoning (traffic analysis zone) are used. Heilig et al. [39] pointed 
that in their model access and egress trips to the carsharing are 
not modeled explicitly due to the zone-based spatial resolution. 
Martínez et al. [25] used extremely fine-grained spatial zoning 
(homogeneous grid of 200 m x 200 m cells) for their simulation. 

Finally, activity-based models are more sensitive to pricing 
policies. Therefore, for one-way carsharing systems it would be 
of more use in order to study the financial and economic aspects 
of the services. 



B. Agent-based Simulation 

In activity-based approaches, every individual is a decision 
maker who confronts a huge choice set of various activity 
patterns in the time-space domain. Each combination of activities 
and their locations, starting and ending points, and durations 
forms a unique activity pattern. Individuals select the patterns 
that maximize their utilities by somehow solving a large-scale 
combinatorial optimization problem conditional on others’ 
decisions. Thus such disaggregate models require faster solution 
algorithms. One solution is agent-based simulation. It typically 
refers to a computational method and simulation for studying the 
actions and interactions of a set of autonomous entities. It is also 
called a multi-agent system or agent-based system [17]. Agent-
based transport simulations usually derive travel demand from 
activity-based modeling approaches but employ microscopic and 
completely time-dynamic traffic simulation of each agent’s 
individual demand based on system constraints given by the 
transport network and its attributes [41]. 

C. Activity-based Multi-agent Simulation: Overall Framework 

Within most of the reviewed literature, demand estimation 
frameworks of one-way carsharing systems are structured as 
follows: (1) a “synthetic population” (synthetic individuals) is 
created from demographic data, (2) activity plans and activity 
locations are generated (selected) for each synthetic individual, 
also mode and route choice decisions are done for each 
individual, (3) the traffic simulation (particularly micro 
simulation) and plan execution are done to find performance 
measures, (4) activity planning, route and mode decisions are 
revised for each individual, and (5) iteration process is repeated 
until average performance measures for all agents stabilize. 

For the first step of this framework some generators have 
been used in different studies. In fact, each activity-based model 
does require the development of a synthetic population that 
represents a region’s travelers and their detailed attributes. 
Population generator or synthesizer generate detailed household 
or traveler characteristics in a way that is consistent with known 
aggregate population or travel characteristics. The generation of 
synthetic population in the most cases rely on PUMS (Public Use 
Microdata Sample) availability and details. To draw synthetic 
population from samples some methods (e.g. IPF, IPU, CO) have 
been employed. Activity chains are also extracted from micro 
census and travel surveys. The most important challenge in this 
steps is data detail and availability. The more data is inserted to 
the generator, the more synthetic individuals and its activity plan 
is accurate.    

In the second step for every traveler in the synthetic 
population, a fully descriptive daily activity plan, including 
locations of daily activities such as work or education needs to be 
derived (the activities’ location, its durations, start and end time, 
and the trips connecting two activities, including mode and 
route). The main process is related to a discrete choice approach 
that is based on the assumption of random utility maximization. 
In fact, almost all agent-based transport simulations do not 

involve discrete choice models as they are used in conventional 
transport demand models, but these simulations are more based 
on finding stochastically the maximized utility for various 
choices sets. In agent-based simulation every agent has the ability 
to learn and adapt its behaviors based on experience, which 
requires some form of memory. Discrete choice capability 
provides agents to select one plan from their memory. For this 
aim, in the first stage an initial set of individual choices or plans 
has to be determined. Then during the plan execution these set of 
choices would be examined.  

The third step is focused on plan execution and traffic 
simulation. It can be done with other tools integrated to the 
model either by agent-based tools oneself. In the latter case it’s 
observed that the traffic theory integrated to the model have been 
simplified to reduce computational time and complexity (e.g. in 
the case of MATSim). For instance, it couldn’t be concluded if 
this simplification results in the important changes on outputs or 
not. In some agent-based tools a plugin is created to import 
especially the network to the model (e.g. from Open Street Map). 
But in almost all cases this imported network has been modified 
and cleaned manually. The performance measures are estimated 
in the end of each plan execution. In SimMobility time-variable 
measures (e.g. waiting time, travel time) and costs are used for 
this aim. The performance measure in the case of MATSim is 
commonly a score (the sum of activity and travel utility scores).  

In the fourth step, an activity plan for each individual and 
respected mode and route choice (set of individual choices) are 
revised, regenerated and modified in the closed loop. MATSim 
applies genetic algorithm (GA) to revise activity plans. 

Finally the model(s) will iterate many times until a systematic 
relaxation reached [42]. Computational time is one of the 
challenges that can be observed during the simulation. Usually 
this term depends on the number of agents and network’s size. 
Some others challenges could be met during demand estimation 
process of new services dependent on service type (e.g. 
validation and calibration in the case of SAVs).  

D. Platforms 

Among the well-known activity-based multi-agent platforms, 
MATSim, SimMobility, and MobiTopp [43] are used to model 
new carsharing systems.  

MATSim (Multi-Agent Transport Simulation) is the open 
source platform implemented in Java that is designed to run 
millions of agents in a metropolitan area. MATSims’ framework 
consists of several modules which can be combined or used 
stand-alone. Network simulation in this platform is queue-based. 
MATSim is currently considered to be the most widely applied 
model for new innovative services [7], [28], [44], [45].  

SimMobility is the multi-modal multi-scale platform that 
considers land-use, transportation, and communication 
interactions. This platform consists of three different sub-models: 
(1) short-term, (2) mid-term, and (3) long-term; and is designed 
to run millions of agents from second-by-second to year-by-year 



[46]. SimMobility particularly focuses on impacts on 
transportation networks, intelligent transportation services and 
vehicular emissions, thereby its objectives and applications are 
wider than MATSim.  

MobiTopp is the first activity-based multi-agent platform that 
has been intended for an analysis period of one week when it was 
initially designed. This platform does not contain an internal 
traffic assignment procedure and relies on external tools [47]. 

E. Limitations 

During travel demand estimation of one-way carsharing using 
activity-based multi-agent simulation, several main components 
are not yet taken into account, which could dramatically change 
the results: 

Firstly, despite their emphasis on activities the majority of the 
activity-based multi-agent simulators are essentially 
microsimulation tour based models using a random utility choice-
modelling framework. So long-term decisions of the household 
and its members, as well as mid-term schedules for each 
individual are not taken into account in the simulations (except 
SimMobility).  

Secondly, to speed up the computation all traffic simulators 
used in comprehensive multi-agent platforms or those that are 
coupled with activity demand models have simplified 
microscopic rules. For instance, MATSim utilizes parallel 
computation of the spatial queue model in microsimulation -
because the queue model needs less data and computing 
resources and it runs much faster- but a noticeable shortcoming 
of this model is that the traffic dynamics may not be realistic, and 
the speed of the backward wave may not be modeled correctly. 
However, MATSim is designed to run millions of agents in a 
metropolitan area and in this regard, it is computationally fast. 

Thirdly, all service operational characteristics are not taken 
into account in these simulations. For example, initial distribution 
of vehicles in the network or redistribution strategy during 
services are the terms that have not been yet introduced to the 
simulations but they could result in important changes of 
demand. 

Finally, as innovative carsharing systems (i.e. SAVs or 
AMoD) are expected to be used collectively, it is necessary to 
make these simulations sensitive to sharing strategies of rides, 
which is not well investigated yet. 

V. CONCLUSION 

In this paper methods and approaches used in the literature to 
estimate demands for one-way carsharing systems were 
presented, illustrated and analyzed. Also potential drawbacks in 
particular with regard to demand estimation of new innovative 
one-way carsharing systems were discussed. In today’s literature, 
the investigation about demand estimation of such systems in 
which the complex relationship between supply and demand is 
considered, remain very limited. In this paper also platforms and 

toolkits used for the modeling process were presented and 
criticized. Almost all of these platforms are based on activity-
based multi-agent simulation. Activity-based approach provides 
the feedback of travel time to a multidimensional decision 
domain, including not only travelers’ route and mode choice 
decisions but also a set of activity decisions (e.g. activity 
location, schedule, etc.). Above mentioned simulations adopt 
heuristic rules in feedbacks to achieve approximate convergence 
and consistency. To estimate travel demand of innovative 
services (such as SAVs or AMoD) several components specially 
related to supply side are not yet taken into account. This comes 
from the fact that the simulation takes a huge time to run millions 
of agents. Therefore it is practically only possible to evaluate a 
limited number of pre-determined scenarios. One solution could 
be to reduce the number of agents (as in the case of MATSim for 
several cities). But to study multi-modal transportation systems, 
network and public transport capacities should be reduced 
similarly. This requires more investigations especially that the 
accuracy of this approach is not yet approved in the literature. 
The study area could be also reduced but in this case the potential 
demand from the agents who live out of the area or those who 
cross the area would be neglected. Data detail, accessibility and 
reliability still remain the major challenges. These data are 
required first to generate synthetic population and secondly to 
calibrate the simulation. Some local or international sources 
could be useful to this aim (e.g. IPUMS). To simulate innovative 
one-way carsharing systems such as SAVs or AMoD, as there are 
no real data on hand, it would be difficult to validate the 
simulation outputs.  

Future work will involve investigations on how to integrate 
feasibly supply characteristics of new carsharing systems (riding 
and redistribution strategies of operation, fleet specification, 
service quality etc.) at the fine level of detail to the travel demand 
models. 
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