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Abstract

We discuss the sampling and the volumetric impact of stratigraphic correlation uncer-

tainties in basins and reservoirs. From an input set of wells, we evaluate the probability

for two stratigraphic units to be associated using an analog stratigraphic model. In

the presence of multiple wells, this method sequentially updates a stratigraphic column

defining the stratigraphic layering for each possible set of realizations. The resulting

correlations are then used to create stratigraphic grids in three dimensions. We apply

this method on a set of synthetic wells sampling a forward stratigraphic model built with

Dionisos. To perform cross-validation of the method, we introduce a distance comparing

the relative geological time of two models for each geographic position, and we compare

the models in terms of volumes. Results show the ability of the method to automatically

generate stratigraphic correlation scenarios, and also highlight some challenges when

sampling stratigraphic uncertainties from multiple wells.

doi:10.1016/j.cageo.2017.10.008

Introduction

The sedimentary record is generally accessible only at a small set of locations (wells

or outcrops) or through geophysical images of limited spatial resolution. Stratigraphic

correlation of such sparse data is essential to characterize the history and the proper-

ties of sedimentary basins, to determine unit geometries and the volumes of sediment

deposited through time, for example. It has, therefore, strong implications for under-

standing the complex interactions between climate, erosion, sedimentation and tectonics
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in siliciclastic environments (see for instance Molnar and England (1990); Burbank et al.

(1996); Métivier et al. (1999); Rouby et al. (2009); Charreau et al. (2011); Guillocheau

et al. (2012); Bhattacharya et al. (2016); Herman and Champagnac (2016); Nicholson

et al. (2016)). Stratigraphic correlations are also paramount to characterize stratigraphic

architectures, their relation to facies distribution and their impact on fluid flow in the

subsurface (Jackson et al., 2009; Lallier et al., 2012; Cavero et al., 2016).

As with all interpretative processes, stratigraphic correlation calls for ancillary knowl-

edge to compensate for the lack or incompleteness of spatial observations. This concep-

tual knowledge is very useful to obtain consistent interpretations, but it may also, if

inappropriate, be a source of errors in the correlations and in further analysis. In the

forward sense, it has also been shown that several depositional scenarios can produce the

same succession of stratigraphic units (Helland-Hansen and Gjelberg, 1994; Armitage

et al., 2015; Burgess and Prince, 2015), which motivates the consideration of multiple

correlation hypotheses. Even under the same set of hypotheses, correlation lines can be

uncertain and are not easily formulated in a systematic and repeatable way when drawn

manually by experts (Borgomano et al., 2008; Koehrer et al., 2011; Colombera et al.,

2012; Lallier et al., 2016).

Nonetheless, the range of possible stratigraphic correlations remains limited because

spatial distribution of sediments are not random, but rely on sedimentological and phys-

ical processes (Tetzlaff and Harbaugh, 1989; Lawrence et al., 1990; Kendall et al., 1991;

Granjeon, 1997; Burgess, 2012; Wingate et al., 2016). These processes can be imple-

mented in forward modeling software, which generate realistic 3D models to aid de-

ciphering the relations between deposition parameters and stratigraphic architectures.

Unfortunately, despite some successful attempts (Cross and Lessenger, 1999; Charvin

et al., 2009; Falivene et al., 2014; Sacchi et al., 2015), conditioning forward stratigraphic

models to seismic and well data remains a difficult computational challenge.

This paper builds on automatic stratigraphic well correlation methods, which make

up an alternative option to generate consistent well correlations and to assess the asso-

ciated uncertainties (Agterberg, 1990; Pels et al., 1996; Lallier et al., 2012; Agterberg

et al., 2013; Lallier et al., 2016). Automatic correlation is reproducible, honors spa-

tial observations and mitigates the subjectivity of interpretation. All existing automatic
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correlation methods rely on elementary correlation costs that measure the dissimilarity

between two observation points located on two distinct wells. In the case of regularly

sampled well logs, the correlation coefficient within a depth window (Olea, 1994, 2004)

or the Lp distance norm between log values (Gordon and Reyment, 1979; Wheeler, 2015)

may be used for this purpose. As these costs do not fully reflect the reasoning made by

expert-based correlation and do not easily account for sedimentary gaps, several authors

propose to use a zonation of wells in terms of intervals and a specific distance function

that reflects differences between interval features such as lithology and thickness (Smith

and Waterman, 1980; Howell, 1983; Waterman and Raymond, 1987; Fang et al., 1992;

Pels et al., 1996). Recently, Lallier et al. (2016) extended these rules for correlating car-

bonate platform and ramp sediments using stratigraphic sequences and paleo-bathymetry

interpreted along the wells. To gain more flexibility in the integration of sedimentological

knowledge during correlation, a first contribution of this paper is to compute elementary

correlation costs from analog numerical models (Section 2). To test this idea, we con-

sider environments with uniform subsidence, and without active tectonics, which would

perturb the sedimentation and create geometries more difficult to sample in an analog

model.

Another aspect of automatic well correlation concerns the management of multiple

wells. Indeed, as discussed by Lallier et al. (2016), the number of possible well corre-

lations for several wells is extremely large in real situations. As a consequence, direct

simultaneous correlation of multiple wells (Brown, 1997) is generally not feasible due

to computational limitations. Wheeler (2015) address this problem by performing all

possible pairwise correlations and then solving a global optimization problem to obtain

a deterministic and consistent result. Alternatively, Lallier et al. (2016) propose to use

a well traversal order and then to correlate pairs of wells sequentially along this path.

Pairwise correlations may then be rebuilt to alleviate possible biases due to the traversal

order. However, none of these methods can resolve layering ambiguities which may exist

when gaps are present. This raises challenges for generating geometric realizations of

3D stratigraphic architectures from the correlation results (Fig. 1). In section 1, we ad-

dress this problem by explicitly using the notion of stratigraphic columns during iterative

well correlation. This makes it possible to automatically generate possible geometries of
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Figure 1: Ambiguities when correlating wells sequentially. A: Wells 1, 2 and 3 are correlated and well
4 is about to be correlated to them. B-C: Possible results. D: Three possible stratigraphic successions
corresponding to the two possible correlations B (1) and C (2 and 3).

stratigraphic architectures between the wells.

To test the proposed method (Section 3), we use several sets of wells whose sequences

and logs are sampled from a reference stratigraphic model obtained by forward strati-

graphic simulation (Granjeon, 1997). Because no reference uncertainty exists, we study

the behavior of the obtained stochastic models as the number of wells increases. In

complement to previous work which showed the impact of well correlation uncertainty

on further reservoir modeling steps (Borgomano et al., 2008; Lallier et al., 2016) and

reservoir production behavior (Lallier et al., 2012), we focus this sensitivity analysis on

the variability of relative dating of sediments.
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1. Correlating stratigraphic columns

1.1. Local and Global Stratigraphic Columns

Our method frames the stratigraphic well correlation problem as the correlation of

several stratigraphic columns.

A stratigraphic column stores the geometric information of the stratigraphic pile. It

is composed of stratigraphic units, defined by their respective top and bottom horizons

and their conformability, which describes the layering style within each unit (baselap or

onlap, eroded, and conformable).

The wells are translated into Local Stratigraphic Columns (LSC), each corresponding

to a local record of the stratigraphic succession. The output of the stratigraphic correla-

tion of a set of LSCs is a Global Stratigraphic Column (GSC) corresponding to the area

covered by the wells involved.

1.2. Adding wells to a global correlation

As also done by Lallier et al. (2016), wells are considered iteratively during strati-

graphic correlation, following a traversal order. We prefer this path to be parallel to the

direction of greatest lateral change of the property, usually the direction following the

distality. This allows to correlate similar wells close one to another before wells bearing

more differences. At each step, the area covered by all the already correlated wells and

the well being considered (candidate well) is taken into account. This makes it possible

to differentiate between the cases described in Fig. 1 and to avoid inconsistencies which

may occur with independent pairwise correlations (Wheeler, 2015; Lallier et al., 2016).

After each stratigraphic correlation of an LSC with the previous GSC, the GSC is up-

dated to incorporate the information of this last correlation (Fig. 2A-C). This results in

a new GSC at each iteration. When all wells have been correlated, the GSC corresponds

to the stratigraphic column of the whole area.

When integrating a LSC into a GSC, several events may occur. Consider the example

of Fig. 2A-C, where each unit u, bounded by two markers, has an exponent correspond-

ing to the stratigraphic column (given by the corresponding well numbers) and a local

subscript which reflects the unit’s order in that stratigraphic column. A match corre-

sponds to the association of two units, like u1:33 and u43 in Fig. 2B-C: a single unit (u1:43 )

is then defined from the union of these two units, and added to the GSC corresponding
5



Figure 2: Stratigraphic columns updates during correlation. A: Well 4 is about to be correlated to wells
1, 2 and 3, which were correlated during previous steps. Its local stratigraphic column is composed of
the three units [u4

1, u
4
2, u

4
3] while the global stratigraphic column of the three first wells is made of the

units [u1:3
1 , u1:3

2 , u1:3
3 ]. B-C: Two possible results, with the same well marker associations corresponding

to two different stratigraphic columns: [u1:4
1 ← u1:3

1 ∪ u4
1, u

1:4
2 ← u1:3

2 ∪ u4
2, u

1:4
3 ← u1:3

3 ∪ u4
3] for B and

[u1:4
1 ← u1:3

1 ∪ u4
1, u

1:4
2 ← u1:3

2 ∪ g41 , u
1:4
3 ← g1:31 ∪ u4

2, u
1:4
4 ← u1:3

3 ∪ u4
3] for C. D: Another possible result.
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to wells 1 − 4. A gap is observed when a unit on one of the two columns is not found

on the other, like u42 in Fig. 2C. In this case, a zero-thickness unit is inserted in all wells

corresponding to the stratigraphic column without that unit. This is done by adding

the unit’s top marker at the same depth as its bottom marker. The global stratigraphic

column is also updated.

These updates ensure that all wells and the global stratigraphic column have the

same number of markers and units after each well has been added to the correlated set.

This is key to resolve ambiguities highlighted in Fig. 1. For example, when correlating

the candidate well 4 to wells 1, 2 and 3, the unit u42 can be compared globally to all units

present in the GSC1:3; depending on the global correlation costs, the method will either

merge u42 with unit u1:32 (Fig. 2B) or insert it as a zero-thickness gap g1:31 (Fig. 2C).

When updating, the conformability of a unit might change. If a conformable unit is

correlated with a unit with the top eroded (respectively baselap), the resulting unit will

be eroded (respectively baselap). If a unit with the top eroded is correlated with a unit

in baselap, or a conformable unit with a unit in baselap and eroded, the final unit will

be both in baselap and eroded.

To minimize the impact of the order of correlation of the wells on the solution, the

correlations between the pairs of wells can be iteratively destroyed and rebuilt, as pro-

posed by Lallier et al. (2016). In this case, the associations between two wells are deleted,

and the GSC is split into two LSCs. The units that may remain with null thicknesses

on these two new LSCs are removed and their top markers are deleted. Then, the two

LSCs are correlated. Another choice could be to permutate the order of correlation.

2. Cost computation from a training model

To rank the different possible stratigraphic correlations, a cost of association is com-

puted for each possible association of stratigraphic units. In this part, we will describe

the cost computation of the stratigraphic correlation between two LSCs. To do so, the

likelihood of associations is measured in an analog model. This is similar in spirit to

Multiple-Point Statistics methods (Guardiano and Srivastava, 1993) and to spatial boot-

strap methods (Journel and Bitanov, 2004; Caumon and Journel, 2005). More precisely,

we infer costs using an approach similar to Direct Sampling (Mariethoz et al., 2010),
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Figure 3: Scan of the training model with the data event, to evaluate the likelihood of a unit. A) Top
view of the data event made from 3 correlated wells (1, 2 and 3) and the candidate well (4), to be
correlated. B) Top view of the training model (black square) and 3 examples of positions of comparison
of the wells and the training model. The property of the unit on the wells is compared with the one
found in the training model, at the respective locations. The more the values of the property in the
model are similar to the ones found on the wells, the more the association is plausible.

using the analog model as a training model.

The input data used for the stratigraphic correlation is composed of well paths bearing

a set of markers bounding the different units interpreted in terms of sequence stratigraphy

and presenting one or several properties, and an analog model that should present the

same properties as the wells.

The relative positions of the wells to correlate and the ones already correlated create a

pattern: the data event (Fig. 3A). The method searches the training model with the data

event to compute the costs of the different possible associations considering a property

available both on the wells and on the training model (Fig. 3B). This property may be

discrete (e.g., facies) or continuous (e.g., porosity).

As in Direct Sampling, the test requires a certain number of scans, which is the

number of times the data event will be searched in the training model. The number of

scans is an input of the algorithm. The least expensive scan gives the conformability of

the unit and the inverse of the cost defines the relative likelihood of the pattern.

The training model can be built using process-based stratigraphic modeling, which

generates a stratigraphy from some initial topographic surface and from a set of pa-

rameters such as sediment supply and eustatic curves. Such methods are used in static

reservoir and basin modeling studies as a source of knowledge. They generate 3D models
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of a quality that generally cannot be achieved by traditional geostatistical and geometric

interpolation methods, though implementing the physics of deposition and erosion (Tet-

zlaff and Harbaugh, 1989; Burgess, 2012). Cross and Lessenger (1999) and Charvin et al.

(2009) have proposed to use inverse methods to match available subsurface data with

process-based models. Although these results are promising, they are very computation-

ally intensive and may not match dense data sets as provided for instance by seismic data

or dense drilling campaigns. Therefore, several studies propose to indirectly integrate

information from forward stratigraphic models in static geocellular models (Sacchi et al.,

2016). One of the most common methodologies uses forward stratigraphic methods to

generate training images for Multiple Point Statistics (MPS) simulation algorithms (e.g.,

Harris et al. (2011)). Following the same philosophy, we propose to use the models gen-

erated with forward stratigraphic methods to compute the cost for associating the units

observed on the wells.

The possible and probable stratigraphic correlation of the units considering their

association costs is found using the Dynamic Time Warping algorithm (DTW, Appendix

A).

A forward stratigraphic model is composed of a set of isochrone layers (layers of

same age), corresponding to the simulation time steps. As sequence stratigraphic units

are interpreted on the wells, the training model should also carry sequence stratigraphy

information. The different time steps have to be grouped to form sequence stratigraphy

units (under the hypothesis that sequence boundaries are isochrons, see Catuneanu et al.

(1998)).

The algorithm proceeds as follows, for each association to test. For each well to be

added to the GSC, the cost of a match or a gap with the previously correlated wells is

obtained by scanning the analog model (Fig. 5). For each scan in the training model, a

cell corresponding to the top of a unit is randomly picked. If the considered property is

discrete, the method rejects cells which do not belong to the same category as the unit of

the candidate well (Fig. 4). Note that this first cell is found using a random seed which

fully defines the sequence of random numbers used in the simulation. This ensures that

simulation results are reproducible.
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Figure 4: Selection of a cell in the training model corresponding to the top of the unit uw
i on the

candidate well. It must be at the top of a unit of the training model and present the same property
value as the top of the unit on the candidate well. Left: The unit considered on the candidate well,
presenting a vertical facies variation. Right: Section of a unit in the training model. The crossed cells
cannot be selected either because they are not at the top of the sequence or because they do not have the
same facies below the top of the sequence. Once the cell has been found, the entire unit in the training
model is compared to the well sequence.

2.1. Computing the match cost

When a match is tested (Fig. 5C) each candidate unit u1:Kj on the K wells already

correlated (red wells) is tested against the unit uwi of the well w being correlated (blue

well). The values of the property on these units on the wells are compared with the

values of the property observed at the respective locations in the training model with a

cost function p (Fig. 5E). The final cost of the match follows :

cmatch(uwi , u
1:K
j ) = p(uwi ) +

K∑
k=1

p(ukj ), (1)

where ui is the unit on the candidate well w and uj is the unit on the K wells already

correlated, and p is a cost measure translating the dissimilarity between the property

values in a unit on a well and in the training model. Several cases are considered to

compute this cost, depending on the type of property and on the number of property

values in the unit.

If the property is discrete and constant within the unit, the cost is 1 if different on

the well and in the training model, 0 if not. If it is continuous and constant within the

unit, the property is normalized and the cost is computed following :

p(ui) = |value(ui)− value(ui′)|, (2)
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Figure 5: Likelihood computation of a match and a gap, considering facies. A) Section in the training
model represented as a Wheeler diagram (Wheeler, 1958) in E and F. B) Facies classification. C) The
match to test. D) The gap to test. E) Two iterations of likelihood computation in the training model
for a match, following Eq. 1. F) Two iterations of likelihood computation in the training model for a
gap, following Eq. 3.
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where ui′ is the unit in the model at the relative position of the unit ui of the well.

If vertical variations exist, the first step is to convert the data on the well and in the

training model into strings. For discrete variables, a character is given for each value of

the variable, making a string of characters. For continuous variables, we use the method

described in Fang et al. (1992) and Lallier et al. (2012). A character is given for a value

range of the derivative of the function representing the property along the stratigraphic

unit. The two strings, corresponding to the stratigraphic units on the well and in the

training model, are correlated using the DTW algorithm and a simple rule: for a match

the cost is 1 if different on the well and in the training model, 0 if not. For a gap, we

propose to use a cost of 0.6 so that two gaps are always more expensive than a match.

Other values in ]0.5; 1] could also be investigated. The output of this local DTW gives

the dissimilarity between the unit on the well and the one in the model.

2.2. Computing the gap cost

When the association tested is a gap (Fig. 5D), it means a unit ui observed on one

of the stratigraphic columns is not observed on the other and is correlated to a gap gj .

The gap cost is computed following :

cgap(uwi , g
1:K
j ) = p(uwi ) +

K∑
k=1

{α ∗ t(gkj ) + β ∗ p(ukj+1)}. (3)

The property of the unit uwi is compared as for a match (Fig. 5F). As the property

can not be compared on the location of the hiatus, Eq. 3 compares the value of the

property in the unit uwj+1, located below the gap. Moreover, as a gap can be seen as a

zero-thickness unit, we penalize the insertion of gaps if thick units are encountered at

the same stratigraphic level in the training model. For this, a thickness variation t(gkj ) is

computed in the training model, between the respective locations of the candidate well

w and the K wells already correlated, following :

t(gkj ) = |thickness(uwi ′)− thickness(ukj ′)|, (4)

where uwi ′ (respectively ukj ′) is the unit in the model at the relative position of the unit

ui of the well w (respectively uj of the well k).
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The factors α and β in Eq. 3 are relative weights which balance the influence of gaps

or thin layers and the influence of the features of the underlying unit. These weights are

arbitrary and should be defined so that α + β = 1, to get a cost that is comparable to

the cost of a match.

If the gap is located at the bottom of a well, or tested at the bottom of the training

model, the property can not be tested below the gap. In that case, α equals 1 and β

equals 0.

2.3. Getting the conformability

When checking the property of a unit in the training model, we can also get the

layering style of that unit. To do so, the cells are read from the top to the bottom

of the unit. If no zero-thickness cell is found, the layering style is conformable.The

conformability is eroded if zero-thickness cells are found at the top, and baselap if the

zero-thickness cells are found at the bottom. If the top and the bottom cells are dead,

the conformability is both eroded and baselap.

When several wells are already correlated, each unit has to be checked against the

training model. So, several conformabilities can be read in the training model in the

same scan. In that case, the final conformability is the sum of the ones found for each

well, following the same rules as when updating the GSC (Section 1.2).

2.4. Stochasticity

As we do not test every single position in the training model, a stochastic component

is induced. It is also possible to change the order of correlation of the wells to obtain

different correlation outcomes. Another option to add more stochasticity could be to use

a stochastic version of the DTW (Appendix A).

3. Application and implications

The method was tested on synthetic data. First, a training model was built using

Beicip’s process-based stratigraphic method software DionisosFlow (Granjeon, 1997).

The parameters used to generate the model are detailled in the Appendix B. The model

is made of a succession of units filled with properties (Age, slope, distance to shore,

bathymetry, proportions of shale, silt, sand, and coarse sand, sedimentation rate). Any
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of these properties could be used for correlation. In this work, as a first example, we

consider the bathymetry (Fig. 6). Although it is not directly measured on wells, it can

be deduced through interpretation of the data. As a matter of fact, it has previously

been used in the literature for well correlation on real data sets (Massonnat et al., 2002;

Gari, 2007; Borgomano et al., 2008; Lallier et al., 2016). The bathymetry was used to

identify stratigraphic sequences in the sense of Embry (2002), the sequence boundaries

being the maximum regressive surfaces. We sampled the model with a set of virtual wells

whose units and logs hold the bathymetry coming from the model (Fig. 7).

This ideal case study, where there is a perfect match between the training data and

the wells, allows the ability of the simulation method to sample uncertainties to be tested.

We generated several sets of 100 stratigraphic correlations of the wells, changing the

number of wells correlated and their positions, and the number of scans in the training

model to compute the cost of the association of a pair of markers. Fig. 8 shows the

data configurations used for the correlations. For each set of parameters, one well was

randomly selected as first well in the correlation, and the others were added iteratively

in order of proximity. The first well and the adding order were the same for all the 100

correlations of one set so that the variability between realizations only stems from the

training model features.

In this study, we consider a scenario that gives more weight to the variation of

bathymetry (β = 0.7) than to the variation of sequence thicknesses (α = 0.3). In-

deed, the bathymetry presenting a trend from the proximal pole to the distal pole, it

seems more appropriate to find the best associations in the training model than thick-

ness differences that could be found in different positions. This should be confirmed by

a sensitivity analysis investigating other weighting scenarios

A model was generated from each stratigraphic correlation with Paradigm’s 3D Reser-

voir Grid Building workflow, in the SKUA-Gocad software (Mallet, 2002, chap.8). Fig.

9 displays some models built from correlation realizations obtained with the proposed

method. Using the same workflow, we built for each data configuration a model using

the top and the bottom surfaces of the training model and the wells involved in the data

configuration, correlated as in the training model.

As a consistency check, we computed the distance between the training model rebuilt

14



Figure 6: The forward model used as training model (vertical exaggeration: x150). Top: the training
model filled with the bathymetry property. Bottom: Visualization of the units thicknesses.
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Figure 7: The forward model filled with sequence stratigraphic units interpreted, and the different wells
sampling the forward model (vertical exaggeration: x150).

and the models generated from the stratigraphic correlation of the wells. This avoids

differences due to the interpolation of the model geometry, and focuses on the differences

due to the correlation of the stratigraphic units. In principle, we expect this distance to

decrease when the number of wells in the correlation and/or the number of scans in the

training model increase.

3.1. Computing relative geological time distance

Comparing the architecture of the generated 3D stratigraphic models is not straight-

forward, as the number of units, the number and the stratigraphic level of unconformities,

and the geometry of horizons may vary. Therefore, we start by assuming that the top

and bottom of the correlated stratigraphic interval are known. This assumption is con-

sistent with our model, and would also hold in most studies where a 3D seismic data set

exists, as correlation could be performed between seismic horizons (assuming negligible

interval velocity uncertainty). Within this interval, we consider the relative geological

time between models. More precisely, we sample both models with virtual wells at a

16



Figure 8: The data configurations : the different positions of the wells sampling the training model used
for the correlations. Top views of the training model (blue square) sampled by the wells (yellow dots).
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Figure 9: Example of stochastic stratigraphic models and associated distances to the reference. Four
cross-sections from proximal to distal in the center of geomodels built from possible correlations using
the same parameters (data configuration C in the Figure 8, 50 scans), compared to the cross-section
of the reference model, the training model rebuilt using the corresponding data (vertical exaggeration:
x150). The distance corresponds to the well distance (Section 3.1).
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set of horizontal (u, v) positions. A log is created along each well sampling the relative

geological time regularly. The distance between the models is then computed following :

D =
1

W

W∑
w=0

√√√√ S∑
s=0

|τstraining − τsrealization|2, (5)

where w is the index of the virtual wells and W denotes the number of positions to

test; s is the current sample along both logs, and S the number of samples. τtraining

and τrealization refer to the relative geological time of the training model rebuilt and the

model realized from the stratigraphic correlation respectively. It is computed as:

τ =
n− 1

N
+

zs − zbottom
ztop − zbottom

∗ 1

N
, (6)

where n is the index of the sequence and N the total number of sequences along the

model; zs is the depth of the sample; zbottom is the depth of the bottom of the sequence;

ztop is the depth of the top of the sequence. This computation essentially assumes that

the sedimentation rate is locally constant in a sequence.

We compute a global distance corresponding to nine wells sampled regularly in the

whole model, and a well distance corresponding to virtual wells at the position of the

wells used for the correlation.

3.2. Results

For both distances and for each set of stratigraphic correlation parameters, the min-

imum and maximum values, the first, second and third quartiles, were computed. The

results are presented as box plots in Fig. 10 and 11 for the well distance and global

distance respectively. These box plots summarize the full table of results provided in

Appendix C.

For the same number of wells and scans in the training model, the data configurations

A and B show lower distances than C and D respectively. A and B being almost as wide

as the training model, the scan area is very constrained, allowing better correlations to

be found more easily.

Surprisingly, by comparing A with B, and C with D, we can see that adding wells to

constrain the model tends to increase the distances for the same number of scans. We

need more scans to converge toward a distance equal to 0. It might be due to the fact that
19



Figure 10: Well distance box plots for each data configuration (Fig.8), for 100 realizations of correlations
with different numbers of scans in the training model (number of positions of the data event that are
tested). The well distance is a difference of relative geological time between the training model and the
model realized from the correlation of the wells, at the position of this wells, see Eq. 5.
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Figure 11: Global distance box plots for each data configuration (Fig.8), for 100 realizations of correla-
tions with different numbers of scans in the training model (number of positions of the data event that
are tested). The global distance is a difference of relative geological time between the training model and
the model realized from the correlation of the wells, at nine positions regularly sampled in the model,
see Eq. 5.
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it is more difficult to find an optimal case, the number of scans being still a fraction of

the total number of positions in the model, as there are more data to honor. Moreover,

more wells involved in the correlation implies more possible stratigraphic correlations

(Lallier et al., 2016). It may also be caused by the order chosen to do the correlations,

which correlates closer wells first. There should be less variability between close wells

than between wells that are far one from another. As a consequence, minor errors when

correlating nearby wells can have large impact on the whole correlation.

For each data configuration, increasing the number of scans tends to decrease the

global and the well distance medians. For E, a pair of sets of 100 correlations was

computed for 100 and 1000 scans. We can see that the results are quite similar for

100 scans, but differ between the two sets of 1000 scans, one of them having a median

being higher than for 50 scans. This might be also due to the order of correlation of the

wells. The first well of the correlation varying, the data that have to be honored and the

propagation of the errors during the correlation of the other wells may differ.

Fig. 11 shows about the same trends as Fig. 10. The statistics vary in detail,

because spatial interpolation of strata away from wells can either increase or decrease

the distance, depending on data layout. This highlights that the interpolation is sensitive

to small variations between realizations that have the same well distance. In other words,

two correlations that would only differ from the reference by one line may have the same

well distances, but different global distances, because interpolation may increase the

impact of small changes at data location. So, despite Fig. 10B-C showing statistical

collapses for 100 scans, Fig. 11B-C proves that the models vary slightly from each other

and that the method explores local uncertainties for a given correlation order of the wells.

3.3. Volumes

The volumes of the different units of the output models were also computed. Fig. 12

draws the cumulative volumes against relative geological time for models built from the

stratigraphic correlation of the wells of the data configuration B, with 1, 50, and 100 scans

in the training model. The comparison of these volumes shows the areas which are most

uncertain. With a few scans, there are a lot of different paths, whereas with more scans,

the curves are smoother, showing that patterns can be found when the training model

is scanned thoroughly. The sum of all the curves seems less blurry, the global trend
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Figure 12: Cumulative volumes of the 100 realizations per relative geological time (unit index / total
number of units), built from the correlations of the wells B on Fig. 8, for different numbers of scans in
the training model. The blue curve is the cumulative volumes of the training model rebuilt from the
wells used in the data configuration B. Increasing the number of scans increases the chances to find the
most probable associations, and so, decreases the number of possible paths in these graphs.

is more easily observable, and tends to follow the cumulative volumes of the training

model rebuilt. In the case presented on Fig. 12, the correlations that do not reflect

the training model, the ones that deviate from the blue line, tend to underestimate the

volumes at the bottom of the wells and consequently overestimate the volumes at their

top. This effect could be due to geometric interpolation artifacts as relative thicknesses

are considered and must sum up to one (Mallet, 2002). Adapting compositional data

interpolation methods (e.g., van den Boogaart et al. (2017); Walvoort and de Gruijter

(2001)) could be an interesting perspective to address this bias.

3.4. Discussion and perspectives

The proposed method allows to build different possible models from a set of well

data and is able to recover the same layer connectivity as the reference model from

only a few wells. As the global stratigraphic column is rebuilt for each realization, the

3D architectures can be reconstructed by interpolation, showing similar relative volume

trends as in the reference model. However several aspects of the method can be discussed.

Data

Our method requires a training model to evaluate the likelihood of existence of as-

sociation of units. It implies that this model and the well data to correlate not only
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should share the same type of measurements (facies, logs) but also that they should be

coherent. The training model must be a good representation of the units and geometry

that can exist. This means that the model should present a similar environment as the

environment in which the sediment sampled by the wells were deposited.

In this paper, we used a numerical model as training model to compute correlation

costs, but natural analog models (Colombera et al., 2012) providing the same information

as available well data could also be investigated. Indeed, the training model and the well

data must bear the same property, to be able to compare their units. This property

could be interpreted (e.g., facies), from raw measures (e.g., gamma ray, sonic, density).

The method relies on the identification of stratigraphic sequences on the well data and in

the forward model. Therefore, the resolution of the stratigraphic sequences (meaning the

stratigraphic order of the units) should be the same on the wells and in the model. Also,

the resolution of the property measured on the wells and in the training model should

be comparable. As mistakes at this interpretation step are likely to have an impact on

the output correlation, uncertainties should be accounted for. For example, the sequence

interpretation of available wells by several experts could be considered for subsequent

testing.

Moreover, as the depositional environment may vary within the analog model, the

training model is not stationary. Stationarity is a known problem in classical Multiple-

Points Statistic studies (e.g., Caers and Zhang (2002); Strebelle and Zhang (2005);

Mirowski et al. (2009)). By default, the training image must show a stationary sta-

tistical distribution, a stationary orientation, and a stationary scale (Mirowski et al.,

2009). Here, the first requirement is not fulfilled : the deposits show a clear trend from

proximal to distal. The information of distality could, therefore, be used as secondary

variable, to help to account for the orientation, as proposed by Strebelle and Zhang

(2005). The distality could also be discretized to split the training model into different

zones to sample the corresponding information, as de Vries et al. (2009) suggest.

Finally, the area covered by the training model should be wider than the one covered

by the well data to allow the search for correlation, using the data configuration, in

different places. In our case, the data configuration A showed good results while being

almost as wide as the training model but we knew a priori that it was at the right place
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in the training model.

Method and algorithm

We have seen that the average distances increase with the number of wells involved

in the correlation, and that they can increase with the number of scans too, depending

on the order of correlation of the wells. This stems from the combinatorial complexityof

the correlation problem. Indeed, the number of possible correlations increases with the

complexity of the data configuration (Lallier et al., 2016). In turn, it is more difficult to

find a matching pattern in the training model, and the errors occuring at the correlation

of the first wells are propagated to the correlation of the last wells. Moreover, these

errors differ depending on the order of correlation of the wells. Different strategies can

be considered to manage this problem.

First, the uncertainty space could be explored, by changing the order of correlation

of the wells for each realization. Second, the method can be optimized. Lallier et al.

(2016) propose to destroy and rebuild the correlations between wells sequentially, to take

more recent correlations into account. Alternatively, Wheeler (2015) suggests to use a

global alignment optimization postprocessing. Third, a multi-scale approach could be

considered, as the multiple grid concept used in MPS methods (Tran, 1994; Strebelle,

2002; Liu, 2006; Hu and Chugunova, 2008). The wells that are far from each other could

be correlated before precising the stratigraphic column with intermediate wells. In a

similar way, the stratigraphic sequences along the wells could be considered in function

of their stratigraphic order, by correlating high stratigraphic order before low orders, as

suggested by Lallier et al. (2016).

Case study

We chose to focus on only a few parameters in this case study to analyze the method

features. Further analysis should definitely be made by assessing the sensitivity of results

to variations of other parameters like α and β in Eq. 3, or the costs of the rule used to

compare a unit on a well with one in the model, for example.

The comparison cost functions p and t comparing well data and analog data in Eq.

1 and Eq. 3 could also be adapted to consider the history of the basin and to create

coherent units successions in the correlation. For example, the cost computation of

the association or the hiatus could account for the units above and below (instead of
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comparing only below a gap). Moreover this rule could be associated with other rules to

account for other geological concepts.

The forward model used in this study was very simple, and the method efficiency on

more complex models should be investigated.

More fundamentally, a variety of sedimentary variables are produced by process-based

simulations. We believe the proposed method could be used to test which parameters

(or combination of parameters) best retrieves the stratigraphic architectures from a set

of wells in a given depositional context.

After testing the sensitivity of the method, it should be tested on real data. One

difficulty with applying this method to field data is generating a training model that is

analog to the area of interest. However, a quick study of the data available can give large

scale information such as sediment source or global change of sea level. If uncertainties

remain, several forward models can be built to sample these uncertainties, and then they

can be used as training models for the stratigraphic correlation of the well data.

Results

The variations between the resulting correlations, translated in the curves of cumu-

lative volumes, are due to the different positions of gaps, interpreted as pinch-outs of

the horizons due to erosions or non-deposition. They make the sedimentation rates vary

locally, with a different distribution of the sediments and hiatuses during time (vertically

in the model).

The sedimentation rate and the role of unconformities in the stratigraphic record have

profound implications in basin studies, to understand source-to-sink processes and the

coupling between climate and tectonics (Molnar and England, 1990; Métivier et al., 1999;

Zhang et al., 2001; Molnar, 2004; Clift, 2006; Charreau et al., 2011; Herman and Cham-

pagnac, 2016; Willenbring and Jerolmack, 2016; Bhattacharya et al., 2016). Because no

mass is lost in the process of erosion, transport and sedimentation, sedimentary basins

provide key archives to reconstruct the paleo denudation rates (e.g. Hay et al. (1989);

Dromart et al. (2002); Rouby et al. (2009); Guillocheau et al. (2012); Nicholson et al.

(2016)). We believe the method proposed in this paper could help providing some lower

bounds for the distribution of hiatuses in the sediment record. A sensitivity study on the

gap cost and further work integrating recent discussions on the sedimentation rate and
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the distribution and meaning of gaps (Sadler, 1999; Sadler and Jerolmack, 2014; Miall,

2016; Tipper, 2016) are, therefore, important perspectives of this work.

The differences of volumes distribution may also have a high impact on reservoir

studies, especially for the computation of fluid volumes and fluid flow (Jackson et al.,

2009; Lallier et al., 2012; Cavero et al., 2016). Indeed, the position of pinch-outs can be

critical for reservoir compartmentalization.

In this work, we used a deterministic method to build 3D models honoring the corre-

lations and the associated stratigraphic column. In practice, significant uncertainty may

exist due to the lack of data, so methods to simulate possible stratigraphic geometries

should also be considered (Goff, 2000; Abrahamsen et al., 1992; Caumon, 2010; Cherpeau

and Caumon, 2015). Indeed, when the algorithm outputs a hiatus, there is no clue to

identify the position of the hiatus (for example the erosion line) between the wells. This

line could be drawn in a range of possible positions. The lateral thickness variation of

the units between the wells, or equivalently the geometry of the bottom and top horizons

of this unit, is also unknown and could be simulated.

Conclusions

We presented in this paper a method to output stochastic stratigraphic models, in-

cluding the geometry of the units of the area covered by the wells and their respective

topological relationships.

This is possible by building the stratigraphic column of the area during the correlation

of the well data. Indeed, the stratigraphic correlation of the wells is made by correlating

their corresponding stratigraphic columns, and updating the global stratigraphic column

after each addition of a well to the previous correlation.

The algorithm used is the Dynamic Time Warping with a single rule. The rule consists

in computing the likelihood of each association of units by searching for their occurrences

in a training model built with forward modeling methods.

The method has been tested on synthetic data and gives quite coherent results but

highlights the challenges to explore the space of possible models. Further work includes

making sensitivity analysis of the different parameters, studying the impact of the cor-

relation order of the wells, and applying the method on real data.
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Appendix A. Dynamic Time Warping

The Dynamic Time Warping (DTW) algorithm is an effective algorithm to correlate

two sequences using a set of rules. Initially developed for speech recognition, it has been

used in many fields (video, audio, graphics, bioinformatics) (Levenshtein, 1966; Sakoe

and Chiba, 1978; Myers and Rabiner, 1981; Howell, 1983; Waterman and Raymond,

1987). The rules are used to compute a cost of correlation for each pair of elements

independently. The most probable correlation of the two series, following the rules given,

will be the one with the global minimum cost. DTW was first used for stratigraphic

correlation by Smith and Waterman (1980).

The cost can be represented in a table (Fig. A.13). A cell (i, j) in the table repre-

sents a correlation between the two corresponding markers i and j of the wells 1 and 2,

respectively. There are different ways to move in the table from a cell to another. An

oblique transition corresponds to a correlation between two units. A vertical or horizon-

tal transition shows gaps (a unit observed on a well is absent on the other well). The

table is filled from the bottom left cell (1, 1) to the top right cell (n,m).
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Figure A.13: Cost table of the Dynamic Time Warping algorithm. n and m are the number of markers
of the wells 1 and 2 respectively. c(i,j) is the cost of the correlation of the markers i and j. The three

arrows are the transitions available: the horizontal and vertical transitions are gaps tj,ji,i−1 and tj,j−1
i,i

respectively, and the diagonal transition is a match tj,j−1
i,i−1 .
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Model length 100 km
Model width 100 km
Cell length 0.5 km
Cell width 0.5 km
Timespan 70 My
Time step 0.2 My

Table B.1: Model dimensions in time and space.

The cumulative costs C(i,j) are computed following the recursive formula (Lallier

et al., 2009):

C(i,j) = min


tj,j−1
i,i−1 + C(i−1,j−1)

tj,ji,i−1 + C(i−1,j)

tj,j−1
i,i + C(i,j−1)

 (A.1)

The three members in brackets are the costs for three possible transitions, two gaps

(tj,j−1
i,i−1 , tj,j−1

i,i ) and a match (tj,ji,i−1), see Fig. A.13. The cost of the previous cell in each

case is added, so that C(i, j) stands for the cumulative cost of the two units, i from the

first well, and j from the second well, and all the previous associations in the path. This

recursive formula ensures that the global minimum cost is found. Finally, the path in the

table with minimum cost is retrieved by local propagation from the upper right (n,m)

cell, representing the best correlation.

The DTW has been modified by several authors to implement a stochastic version of

the algorithm (Nakagawa and Nakanishi, 1988; Pels et al., 1996). A possibility to reflect

uncertainties of the cost computation is to randomly sample the propagation in the cost

matrix (Lallier et al., 2009).

Appendix B. Dionisos model characteristics

The model dimensions are shown in table B.1. The initial topography of the sea floor

follows the map shown in Fig. B.14 and the simulation runs for 70 My. The sediment

input rate is constant and equals 20 km3 per My. The eustasy variation is shown on

Fig. B.16. There is a global subsidence making the basement topography to be lowered

by 120m during the whole timespan. The resulting cell’s average thickness is about 1m

(Fig. B.15).
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Figure B.14: Bathymetry (m) of the basement at t=0 (vertical exaggeration: x150).

Figure B.15: Histogram of the cells thickness in the analog process-based model.
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Figure B.16: Sea level variation through time.
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Appendix C. Distances between the models from the correlation results and
the training model

The table C.2 presents the global distance and well distance of the sets of stratigraphic

correlations, for the different data configurations seen on Fig. 8, and different number of

scans in the training model.

Data configuration A B C
Scans 1 50 100 1 50 100 50 100 1000

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.02
Global P25 0.00 0.00 0.00 0.001 0.01 0.01 0.06 0.06 0.06

P50 0.05 0.00 0.00 0.15 0.01 0.01 0.06 0.06 0.06
distance P75 0.13 0.00 0.00 0.20 0.17 0.02 0.18 0.07 0.06

Max 0.27 0.04 0.07 0.26 0.26 0.27 0.61 0.60 0.13
Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Well P25 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
P50 0.13 0.00 0.00 0.10 0.00 0.00 0.01 0.01 0.01

distance P75 0.15 0.00 0.00 0.11 0.10 0.00 0.14 0.01 0.01
Max 0.27 0.13 0.13 0.20 0.17 0.18 0.23 0.20 0.02

Data configuration D E
Scans 50 100 1000 50 100 100 1000 1000

Min 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03
Global P25 0.12 0.09 0.06 0.13 0.11 0.10 0.04 0.13

P50 0.38 0.32 0.10 0.15 0.12 0.13 0.09 0.16
distance P75 0.43 0.38 0.14 0.17 0.14 0.15 0.12 0.20

Max 0.55 0.53 0.55 0.30 0.23 0.24 0.41 0.33
Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Well P25 0.10 0.10 0.07 0.08 0.07 0.07 0.08 0.00
P50 0.11 0.11 0.09 0.11 0.08 0.08 0.10 0.07

distance P75 0.14 0.15 0.11 0.14 0.09 0.10 0.14 0.08
Max 0.19 0.24 0.21 0.23 0.16 0.17 0.27 0.36

Table C.2: Minimum, first, second and third quartiles, and maximum of the global distance and the well
distance between the models realized and the training model (rebuilt using corresponding well data) for
100 realizations of stratigraphic correlations, for different numbers of scans in the training model, and
different wells used for the correlation (A, B, C, D, E correspond to the positions of the wells on the
data configurations shown on Fig. 8).
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