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Abstract

We construct an asymptotically normal estimator β̃N for the tail index β of a distribution on (0, 1)

regularly varying at x = 1, when its N independent realizations are not directly observable. The estima-

tor β̃N is a version of the tail index estimator of Goldie and Smith (1987) based on suitably truncated

observations contaminated with arbitrarily dependent ‘noise’ which vanishes as N increases. We apply β̃N

to panel data comprising N random-coefficient AR(1) series, each of length T , for estimation of the tail

index of the random coefficient at the unit root, in which case the unobservable random coefficients are

replaced by sample lag 1 autocorrelations of individual time series. Using asymptotic normality of β̃N , we

construct a statistical procedure to test if the panel random-coefficient AR(1) data exhibit long memory.

A simulation study illustrates finite-sample performance of the introduced inference procedures.

Keywords: random-coefficient autoregression; tail index estimator; measurement error; panel data; long

memory process.

2010 MSC: 62G32, 62M10.

1 Introduction

Dynamic panels (or longitudinal data) comprising observations taken at regular time intervals for the same

individuals such as households, firms, etc. in a large heterogeneous population, are often described by time

series models with random parameters (for reviews on dynamic panel data analysis, see Arellano (2003), Bal-

tagi (2015)). One of the simplest models for individual evolution is the random-coefficient AR(1) (RCAR(1))

process

Xi(t) = aiXi(t− 1) + ζi(t), t ∈ Z, i = 1, 2, . . . , (1)

where the innovations ζi(t), t ∈ Z, are independent identically distributed (i.i.d.) random variables (r.v.s)

with Eζi(t) = 0, Eζ2i (t) <∞ and the autoregressive coefficient ai ∈ (0, 1) is a r.v., independent of {ζi(t), t ∈
Z}. It is assumed that the random coefficients ai, i = 1, 2, . . . , are i.i.d., while the innovation sequences

{ζi(t), t ∈ Z} can be either independent or dependent across i, by inclusion of a common ‘shock’ to each unit;

see Assumptions (A1)–(A4) below. If the distribution of ai is sufficiently ‘dense’ near unity, then statistical

properties of the individual evolution in (1) and the corresponding panel can differ greatly from those in the

case of fixed a ∈ (0, 1). To be more specific, assume that the AR coefficient ai has a density function g(x),
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x ∈ (0, 1), satisfying

g(x) ∼ g1(1− x)β−1, x→ 1−, (2)

for some β > 1 and g1 > 0. Then a stationary solution of RCAR(1) equation (1) has the following autoco-

variance function

EXi(0)Xi(t) = Eζ2i (0)E
a
|t|
i

1− a2i
∼ g1

2
Γ(β − 1)Eζ2i (0)t−(β−1), t→∞, (3)

and exhibits long memory in the sense that
∑

t∈Z |Cov(Xi(0), Xi(t))| = ∞ for β ∈ (1, 2]. The same long

memory property applies to the contemporaneous aggregate

X̄N (t) := N−1/2
N∑
i=1

Xi(t), t ∈ Z, (4)

of N independent individual evolutions in (1) and its Gaussian limit arising as N → ∞. For the beta

distributed squared AR coefficient a2i , these facts were first uncovered by Granger (1980) and later extended

to more general distributions and/or RCAR equations in Gonçalves and Gouriéroux (1988), Zaffaroni (2004),

Celov et al. (2007), Oppenheim and Viano (2004), Puplinskaitė and Surgailis (2010), Philippe et al. (2014)

and other works, see Leipus et al. (2014) for review. Assumption (2) and the parameter β play a crucial role

for statistical (dependence) properties of the panel {Xi(t), t = 1, . . . , T, i = 1, . . . , N} as N and T increase,

possibly at different rates. Particularly, Pilipauskaitė and Surgailis (2014) proved that for β ∈ (1, 2) the

distribution of the normalized sample mean
∑N

i=1

∑T
t=1Xi(t) is asymptotically normal if N/T β →∞ and β-

stable if N/T β → 0 (in the ‘intermediate’ case N/T β → c ∈ (0,∞) this limit distribution is more complicated

and given by an integral with respect to a certain Poisson random measure). In the case of common innovations

({ζi(t), t ∈ Z} ≡ {ζ(t), t ∈ Z}) the limit stationary aggregated process exists under a different normalization

(N−1 instead of N−1/2 in (4)) and is written as a moving-average in the above innovations with deterministic

coefficients Eaj1, j ≥ 0, which decay as Γ(β)j−β with j → ∞ and exhibit long memory for β ∈ (1/2, 1); see

Zaffaroni (2004), Puplinskaitė and Surgailis (2009). The trichotomy of the limit distribution of the sample

mean for a panel comprising RCAR(1) series driven by common innovations is discussed in Pilipauskaitė and

Surgailis (2015).

In the above context, a natural statistical problem concerns inference about the distribution of the random

AR coefficient ai, e.g., its cumulative distribution function (c.d.f.) G or the parameter β in (2). Leipus et

al. (2006), Celov et al. (2010) estimated the density g using sample autocovariances of the limit aggre-

gated process. For estimating parameters of G, Robinson (1978) used the method of moments. He proved

asymptotic normality of the estimators for moments of G based on the panel RCAR(1) data as N → ∞
for fixed T , under the condition E(1 − a2i )−2 < ∞ which does not allow for long memory in {Xi(t), t ∈ Z}.
For parameters of the beta distribution, Beran et al. (2010) discussed maximum likelihood estimation based

on (truncated) sample lag 1 autocorrelations computed from {Xi(1), . . . , Xi(T )}, i = 1, . . . , N , and proved

consistency and asymptotic normality of the introduced estimator as N,T →∞. In nonparametric context,

Leipus et al. (2016) studied the empirical c.d.f. of ai based on sample lag 1 autocorrelations similarly to

Beran et al. (2010), and derived its asymptotic properties as N,T → ∞, including those of a kernel den-

sity estimator. Moreover, Leipus et al. (2016) proposed another estimator of moments of G and proved its

asymptotic normality as N,T → ∞. Except for parametric situations, the afore mentioned results do not

allow for inferences about the tail parameter β in (2) and testing for the presence or absence of long memory

in panel RCAR(1) data.
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The present paper discusses in semiparametric context, the estimation of β in (2) from RCAR(1) panel

{Xi(t), t = 1, . . . , T, i = 1, . . . , N} with finite variance EX2
i (t) < ∞. We use the fact that (2) implies

P(1/(1−ai) > y) ∼ (g1/β)y−β, y →∞, i.e. r.v. 1/(1−ai) follow a heavy-tailed distribution with index β > 1.

Thus, if ai, i = 1, . . . , N , were observed, β could be estimated by a number of tail index estimators, including

the Goldie and Smith estimator in (9) below. Given panel data, the unobservable ai can be estimated by

sample lag 1 autocorrelation âi computed from {Xi(1), . . . , Xi(T )} for each i = 1, . . . , N . This leads to the

general estimation problem of β for ‘noisy’ observations

âi = ai + ρ̂i, i = 1, . . . , N, (5)

where the ‘noise’, or measurement error ρ̂i = âi − ai is of unspecified nature and vanishes with N →∞.

Related statistical problems where observations contain measurement error were discussed in several papers.

Resnick and Stărică (1997), Ling and Peng (2004) considered Hill estimation of the tail parameter from

residuals of ARMA series. Kim and Kokoszka (2019a, 2019b) discussed asymptotic properties and finite

sample performance of Hill’s estimator for observations contaminated with i.i.d. ‘noise’. The last paper

contains further references on inference problems with measurement error.

A major distinction between the above mentioned works and our study is that we estimate the tail behavior

of G at a finite point x = 1 and therefore the measurement error should vanish with N which is not required

in Kim and Kokoszka (2019a, 2019b) dealing with estimation of the tail index at infinity. On the other

hand, except for the ‘smallness condition’ in (13)–(14), no other (dependence or independence) conditions

on the ‘noise’ in (5) are assumed, in contrast to Kim and Kokoszka (2019a, 2019b), where the measurement

errors are i.i.d. and independent of the ‘true’ observations. The proposed estimator β̃N in (10) is a ‘noisy’

version of the Goldie and Smith estimator, applied to observations in (5) truncated at a level close to 1.

The main result of our paper is Theorem 2 giving sufficient conditions for asymptotic normality of the

constructed estimator β̃N . These conditions involve β and other asymptotic parameters of G at x = 1 and

the above-mentioned ‘smallness’ condition restricting the choice of the threshold parameter δ = δN → 0

in β̃N . Theorem 2 is applied to the RCAR(1) panel data, resulting in an asymptotically normal estimator

of β, where the ‘smallness condition’ on the ‘noise’ is verified provided T = TN grows fast enough with N

(Corollary 4). Based on the above asymptotic result, we construct a statistical procedure to test the presence

of long memory in the panel, more precisely, the null hypothesis H0 : β ≥ 2 vs. the long memory alternative

H1 : β ∈ (1, 2).

The paper is organized as follows. Section 2 contains the definition of the estimator β̃N and the main

Theorem 2 about its asymptotic normality for ‘noisy’ observations. Section 3 provides the assumptions

on the RCAR(1) panel model, together with application of Theorem 2 based on the panel data and some

consequences. In Section 4 a simulation study illustrates finite-sample properties of the introduced estimator

and the testing procedure. Proofs can be found in Section 5.

In what follows, C stands for a positive constant whose precise value is unimportant and which may change

from line to line. We write →p, →d for the convergence in probability and distribution respectively, whereas

→D[0,1] denotes the weak convergence in the space D[0, 1] with the uniform metric. Notation N (µ, σ2) is used

for the normal distribution with mean µ and variance σ2.
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2 Estimation of the tail parameter from ‘noisy’ observations

In this section we introduce an estimator of the tail parameter β in (2) based on ‘noisy’ observations in

(5), where ai ∈ (0, 1) are i.i.d. satisfying (2), and ρ̂i = ρ̂i,N are measurement errors (i.e., arbitrary random

variables) which vanish with N →∞ at a certain rate, uniformly in i = 1, . . . , N .

To derive asymptotic results about this estimator, condition (2) is strengthened as follows.

(G) ai ∈ (0, 1), i = 1, 2, . . ., are independent r.v.s with common c.d.f. G(x) := P(ai ≤ x), x ∈ [0, 1]. There

exists ε ∈ (0, 1) such that G is continuously differentiable on (1− ε, 1) with derivative satisfying

g(x) = κβ(1− x)β−1(1 +O((1− x)ν)), x→ 1−, (6)

for some β > 1, ν > 0 and κ > 0.

Assumption (G) implies that the tail of the c.d.f. of Yi := 1/(1− ai) satisfies

P(Yi > y) = κy−β(1 +O(y−ν)), y →∞. (7)

For independent observations Y1, . . . , YN with common c.d.f. satisfying (7), Goldie and Smith (1987)

introduced the following estimator of the tail index β:

βN :=

∑N
i=1 1(Yi ≥ v)∑N

i=1 1(Yi ≥ v) ln(Yi/v)
, (8)

and proved asymptotic normality of this estimator provided the threshold level v = vN tends to infinity at

an appropriate rate as N →∞.

For independent realizations a1, . . . , aN under assumption (G), we rewrite the tail index estimator in (8)

as

βN =

∑N
i=1 1(ai > 1− δ)∑N

i=1 1(ai > 1− δ) ln(δ/(1− ai))
, (9)

where δ := 1/v is a threshold close to 0.

Theorem 1. Assume (G). If δ = δN → 0 and Nδβ →∞ and Nδβ+2ν → 0 as N →∞, then

√
Nδβ(βN − β)→d N (0, β2/κ).

Theorem 1 is due to Theorem 4.3.2 in Goldie and Smith (1987). The proof in Goldie and Smith (1987) uses

Lyapunov’s CLT conditionally on the number of exceedances over a threshold. Further sufficient conditions

for asymptotic normality of βN were obtained in Novak and Utev (1990). In Section 5 we give an alternative

proof of Theorem 1 based on the tail empirical process. Our proof has the advantage that it can be more

easily adapted to prove asymptotic normality of the ‘noisy’ modification of (9) defined as

β̃N :=

∑N
i=1 1(ãi > 1− δ)∑N

i=1 1(ãi > 1− δ) ln(δ/(1− ãi))
, (10)

where δ > 0 is a chosen small threshold and for some r > 1, each

ãi := min{âi, 1− δr} (11)
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is the âi of (5) truncated at level 1− δr much closer to 1 than 1− δ in (10). An obvious reason for the above

truncation is that in general, ‘noisy’ observations in (5) need not belong to the interval (0, 1) and may exceed

1 in which case the r.h.s. of (10) with âi instead of ãi is undefined. Even if âi < 1 as in the case of the AR(1)

estimates in (17), the truncation in (11) seem to be necessary due to the proof of Theorem 2. We note a

similar truncation of âi for technical reasons is used in the parametric context in Beran et al. (2010). On

the other hand, our simulations show that when r is large enough, this truncation has no effect in practice.

Theorem 2. Assume (G). As N →∞, let δ = δN → 0 so that

Nδβ →∞ and Nδβ+2min{ν,(r−1)β} → 0. (12)

In addition, let

max
1≤i≤N

P(|ρ̂i| > ε) ≤ χ

εp
+ χ′, ∀ε ∈ (0, 1), (13)

where χ = χN , χ
′ = χ′N → 0 satisfy

√
Nδβ max

{χ′
δβ
,
( χ

δp+β

)1/(p+1)}
ln δ → 0 (14)

for some p ≥ 1. Then √
Nδβ(β̃N − β)→d N (0, β2/κ). (15)

3 Estimation of the tail parameter for RCAR(1) panel

Let Xi := {Xi(t), t ∈ Z}, i = 1, 2, . . . , be stationary random-coefficient AR(1) processes in (1), where

innovations admit the following decomposition:

ζi(t) = biη(t) + ciξi(t), t ∈ Z, i = 1, 2, . . . (16)

Let the following assumptions hold:

(A1) η(t), t ∈ Z, are i.i.d. with Eη(t) = 0, Eη2(t) = 1, E|η(t)|2p <∞ for some p > 1.

(A2) ξi(t), t ∈ Z, i = 1, 2, . . ., are i.i.d. with Eξi(t) = 0, Eξ2i (t) = 1, E|ξi(t)|2p <∞ for the same p > 1 as in

(A1).

(A3) (bi, ci), i = 1, 2, . . . are i.i.d. random vectors with possibly dependent components bi ≥ 0, ci ≥ 0

satisfying P(bi + ci = 0) = 0 and E(b2i + c2i ) <∞.

(A4) {η(t), t ∈ Z}, {ξi(t), t ∈ Z}, ai and (bi, ci) are mutually independent for each i = 1, 2, . . .

Assumptions (A1)–(A4) about the innovations are very general and allow a uniform treatment of common

shock (case (bi, ci) = (1, 0)) and idiosyncratic shock (case (bi, ci) = (0, 1)) situations. Similar assumptions

about the innovations are made in Leipus et al. (2016). Under assumptions (A1)–(A4) and (G), there exists

a unique strictly stationary solution of (1) given by

Xi(t) =
∑
s≤t

at−si ζi(s), t ∈ Z,
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with EXi(t) = 0 and EX2
i (t) = E(b2i + c2i )E(1− a2i )−1 <∞, see Leipus et al. (2016).

From the panel RCAR(1) data {Xi(t), t = 1, . . . , T, i = 1, . . . , N} we compute sample lag 1 autocorrelation

coefficients

âi :=

∑T−1
t=1 (Xi(t)−Xi)(Xi(t+ 1)−Xi)∑T

t=1(Xi(t)−Xi)2
, (17)

where Xi := T−1
∑T

t=1Xi(t) is the sample mean, i = 1, . . . , N . By the Cauchy-Schwarz inequality, the

estimator âi in (17) does not exceed 1 in absolute value a.s. Moreover, âi is invariant under the shift and

scale transformations of the RCAR(1) process in (1), i.e., we can replace Xi by {σiXi(t) + µi, t ∈ Z} with

some (unknown) µi ∈ R and σi > 0 for every i = 1, 2, . . ..

To estimate the tail parameter β from ‘noisy’ observations âi, i = 1, . . . , N , in (17) we use the estimator

β̃N in (10). The crucial ‘smallness condition’ (13) on the ‘noise’ ρ̂i = âi− ai is a consequence of the following

result.

Proposition 3 (Leipus et al. (2016)). Assume (G) and (A1)–(A4). Then for all ε ∈ (0, 1) and T ≥ 1, it

holds

P(|â1 − a1| > ε) ≤ C(T−min{p−1,p/2}ε−p + T−1)

with C > 0 independent of ε, T .

The application of Theorem 2 leads to the following corollary.

Corollary 4. Assume (G) and (A1)–(A4). As N →∞, let δ = δN → 0 so that

Nδβ →∞ and Nδβ+2min{ν,(r−1)β} → 0, (18)

in addition, let T = TN →∞ so that

√
Nδβγ ln δ → 0 if 1 < p ≤ 2, (19)

√
Nδβ max

{ 1

Tδβ
, γ
}

ln δ → 0 if 2 < p <∞, (20)

where

γ :=
1

(Tmin{p−1,p/2}δp+β)1/(p+1)
→ 0. (21)

Then √
Nδβ(β̃N − β)→d N (0, β2/κ). (22)

Remark 1. Condition (18) restricts the choice of δ and reduces to that of Theorem 1 with r increasing. In

particular, if δ = constN−b for some b > 0 then condition (18) for r ≥ 2, ν = 1 < β requires

1

β + 2
< b <

1

β
. (23)

In view of (22) it makes sense to choose b as large as possible in order to guarantee the fastest convergence

rate of the estimator of β. Assume p > 2 in (A1), (A2). If δ = constN−b and T = Na for some b > 0

satisfying (23) and a > 0, then condition (20) is equivalent to

a > max
{1 + bβ

2
,
1 + bβ

p
+ (2− β)b + 1

}
,
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which becomes less restrictive with p increasing and in the limit p =∞ becomes

a > max
{1 + bβ

2
, (2− β)b + 1

}
. (24)

Since for β ∈ (1, 2), the lower bound in (24) is 1 + (2− β)b > 4/(β+ 2) > 1, we conclude that T should grow

much faster than N . In general, our results apply to sufficiently long panels.

Similarly as in the i.i.d. case (see Goldie and Smith (1987)), the normalization in (22) can be replaced by

a random quantity expressed in terms of ãi, i = 1, . . . , N , alone. That is an actual number of observations

usable for inference.

Corollary 5. Set K̃N :=
∑N

i=1 1(ãi > 1− δ). Under the assumptions of Corollary 4,√
K̃N (β̃N − β)→d N (0, β2). (25)

The CLTs in (22) and (25) provide not only consistency of the estimator but also asymptotic confidence

intervals for the parameter β. The last result can be also used for testing of long memory in independent

RCAR(1) series which occurs if β ∈ (1, 2). Note that β = 2 appears as the boundary between long and short

memory. Indeed, in this case the autocovariance function of RCAR(1) is not absolutely summable, but the

iterated limit of the sample mean of the panel data follows a normal distribution as for β > 2 (see Nedényi

and Pap (2016), Pilipauskaitė and Surgailis (2014)). Since it is more important to control the risk of false

acceptance of long memory, we choose the null hypothesis H0 : β ≥ 2 vs. the alternative H1 : β < 2. We use

the following test statistic

Z̃N :=

√
K̃N (β̃N − 2)/β̃N . (26)

According to Corollary 5, we have

Z̃N →d


N (0, 1) if β = 2,

+∞ if β > 2,

−∞ if β < 2.

Fix ω ∈ (0, 1) and denote by z(ω) the ω-quantile of the standard normal distribution. The rejection region

{Z̃N < z(ω)} has asymptotic level ω for testing the null hypothesis H0 : β ≥ 2, and is consistent against the

alternative H1 : β < 2.

4 Simulation study

We examine finite sample performance of the estimator β̃N in (10) and the testing procedure Z̃N < z(ω)

for H0 : β ≥ 2 at significance level ω. We compare them with the estimator βN in (9) and the test

ZN :=
√
KN (βN − 2)/βN < z(ω), where KN :=

∑N
i=1 1(ai > 1 − δ), both based on i.i.d. (unobservable)

AR coefficients a1, . . . , aN .

We consider a panel {Xi(t), t = 1, . . . , T, i = 1, . . . , N}, which comprises N independent RCAR(1) series

of length T . Each of them is generated from i.i.d. standard normal innovations {ζi(t)} ≡ {ξi(t)} in (16) with

AR coefficient ai independently drawn from the beta-type density

g(x) =
2

B(α, β)
x2α−1(1− x2)β−1, x ∈ (0, 1), (27)
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with parameters α > 0, β > 1, where B(α, β) = Γ(α)Γ(β)/Γ(α+β) denotes the beta function. In this case, the

squared coefficient a2i is beta distributed with parameters (α, β). Note (27) satisfies (6) with κβ = 2β/B(α, β)

and ν = 1 if 4α+ β 6= 3. Then RCAR(1) process admits explicit (unconditional) autocovariance function

EXi(0)Xi(t) = E
a
|t|
i

1− a2i
=

B(α+ |t|/2, β − 1)

B(α, β)
∼ κΓ(β)

2
t−(β−1), t→∞, (28)

which follows by Γ(t)/Γ(t+ c) ∼ t−c, t→∞. The (unconditional) spectral density f(λ), λ ∈ [−π, π], of the

RCAR(1) process satisfies

f(λ) =
1

2π
E|1− ae−iλ|−2 ∼ κf


1, β > 2,

ln(1/λ), β = 2,

λ−(2−β), β < 2,

λ→ 0+, (29)

where κf = (2π)−1E(1 − a)−2 (β > 2) and κf = κ(2π)−1 (β = 2), κf = κβ(2π)−1
∫∞
0 yβ−1(1 + y2)−1dy

(1 < β < 2) (see Leipus et al. (2014)). From (28), (29) we see that (unconditionally) Xi behaves as I(0)

process for β > 2 and as I(d) process for β ∈ (1, 2) with fractional integration parameter d = 1−β/2 ∈ (0, 1/2).

Particularly, β = 1.5 corresponds to d = 0.25 (the middle point on the interval (0, 1/2)), whereas β = 1.75 to

d = 0.125. Increasing parameter α ‘pushes’ the distribution of the AR coefficient towards x = 1, see Figure

1 [left], and affects the asymptotic constants of g(x) as x → 1−. A somewhat unexpected feature of this

model is a considerable amount of ‘spurious’ long memory for β > 2. Figure 1 [right] shows the graph of the

spectral density in (29) which is bounded though sharply increases at the origin for β = 2.5, α ≥ 1.5. One

may expect that most time series tests applied to a (Gaussian) process with a spectral density as the one in

Figure 1 [right] for β = α = 2.5 will incorrectly reject the short memory hypothesis in favour of long memory.

See Remark 2.

Figure 1: [left] Probability density g(x), x ∈ (0, 1), in (27) for β = 2.5. [right] Spectral density f(λ), λ ∈ [0, π],

in (29) for the same value of β.

Let us turn to the description of our simulation procedure. We simulate 5000 panels for each configuration

of N , T , α and β, where
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• (N,T ) = (750, 1000), (750, 2000),

• β = 1.5, 1.75, 2, 2.25, 2.5,

• α = 0.75, 1.5, 2.5.

As usual in tail-index estimation, the most difficult and delicate task is choosing the threshold. We note that

conditions in Theorem 1 and Corollary 4 hold asymptotically and allow for different choice of δ; moreover,

they depend on (unknown) β and the second-order parameter ν. Roughly speaking, larger δ increases the

number of the usable observations (upper order statistics) in (10) and (9), hence makes standard deviation

of the estimator smaller, but at the same time increases bias since the density g(x) in (2) is more likely to

deviate from its asymptotic form on a longer interval (1− δ, 1). In the i.i.d. case or βN , the ‘optimal’ choice

of δ is given by

δ∗ :=
(β(β + ν)2

2τ2ν3κN

)1/(β+2ν)
, (30)

see equation (4.3.8) in Goldie and Smith (1987), which minimizes the asymptotic mean squared error of βN

provided the distribution of ai satisfies a generally stronger version of the second-order condition in (6):

P(ai > 1− x) = κxβ(1 + τxν + o(xν)), x→ 0+, (31)

for the same β > 1 and some parameters ν > 0, κ > 0, τ 6= 0. Then on average the computation of βN uses

E
N∑
i=1

1(ai > 1− δ∗) ∼
((1− ρ)N−ρ

B
√
−2ρ

)2/(1−2ρ)
=: k∗ (32)

upper order statistics of a1, . . . , aN , where the second-order parameters ρ := −ν/β < 0, B := (ν/β)κ−ν/βτ 6= 0

are more convenient to estimate, see e.g. Paulauskas and Vaičiulis (2017). Therefore, given the order statistics

a(1) ≤ · · · ≤ a(N), we use (random) δ = 1 − a(N−bk∗c) as a substitute for δ∗. Furthermore, since δ∗ of (30)

yields asymptotic normality of βN in (9) with non-zero mean, we choose a smaller sample fraction (k∗)ε < k∗

with ε ∈ (0, 1) and the corresponding

δ = 1− a(N−b(k∗)εc), (33)

for which the asymptotic normality of βN holds as in Theorem 1. In our simulations of βN in (9) we use δ

in (33) with several values of ε ∈ (0, 1) and k∗ is obtained by replacing ρ, B in (32) by their semiparametric

estimates, see Fraga Alves et al. (2003), Gomes and Martins (2002). We calculate the latter estimates from

a1, . . . , aN using the algorithm in Gomes et al. (2009). Because of the lack of the explicit formula minimizing

the mean squared error of β̃N , in our simulations of the latter estimator we use a similar threshold δ ∈ (0, 1),

viz.,

δ = 1− â
(N−b(k̂∗)εc), (34)

where â(1) ≤ · · · ≤ â(N) denote the order statistics calculated from the simulated RCAR(1) panel, and k̂∗ is

the analogue of k∗ computed from â1, . . . , âN . Moreover, for our simulations of β̃N we use r = 10 in (11),

though any large r could be chosen.

Table 1 illustrates the effect of ε in (33), (34) on the performance of βN , β̃N , respectively, for (N,T ) =

(750, 1000). Choosing smaller ε, the bias of the estimators decreases in most cases, whereas their standard

deviation increases. The choice ε = 0.9 seems to be near ‘optimal’ in the sense of RMSE.
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β = 1.5 β = 2 β = 2.5

ε α = 0.75 1.5 2.5 0.75 1.5 2.5 0.75 1.5 2.5

RMSE of β̃N

1 0.18 0.12 0.11 0.22 0.24 0.24 0.36 0.40 0.42

0.9 0.18 0.15 0.18 0.19 0.21 0.20 0.29 0.33 0.34

0.8 0.17 0.23 0.30 0.21 0.24 0.25 0.29 0.33 0.33

0.7 0.25 0.35 0.47 0.29 0.33 0.36 0.36 0.40 0.41

RMSE of βN

1 0.15 0.18 0.19 0.26 0.29 0.31 0.38 0.43 0.47

0.9 0.13 0.16 0.16 0.21 0.25 0.26 0.31 0.36 0.39

0.8 0.16 0.18 0.19 0.22 0.25 0.27 0.31 0.35 0.37

0.7 0.21 0.24 0.24 0.28 0.31 0.33 0.36 0.41 0.42

Bias of β̃N

1 -0.07 -0.05 -0.01 -0.19 -0.20 -0.20 -0.32 -0.36 -0.38

0.9 -0.01 0.04 0.10 -0.11 -0.10 -0.08 -0.21 -0.25 -0.25

0.8 0.05 0.13 0.22 -0.04 -0.01 0.02 -0.13 -0.15 -0.13

0.7 0.11 0.23 0.36 0.02 0.07 0.12 -0.05 -0.06 -0.03

Bias of βN

1 -0.12 -0.14 -0.15 -0.23 -0.26 -0.28 -0.35 -0.40 -0.44

0.9 -0.06 -0.08 -0.09 -0.15 -0.17 -0.19 -0.24 -0.29 -0.32

0.8 -0.03 -0.04 -0.04 -0.09 -0.11 -0.12 -0.17 -0.21 -0.22

0.7 0.00 0.00 0.00 -0.05 -0.05 -0.06 -0.10 -0.13 -0.14

Table 1: Performance of β̃N , βN for (N,T ) = (750, 1000), a2i ∼ Beta(α, β), using δ in (34), (33), respectively,

with estimated parameters B, ρ and r = 10. The number of replications is 5000.

Table 2 presents the performance of β̃N and βN with ε = 0.9, for a wider choice of parameters α, β and two

values of T . We see that the sample RMSE of both statistics β̃N and βN are very similar almost uniformly

in α, β, T (the only exception seems the case α = 2.5, β = 1.25, T = 1000). Surprisingly, in most cases the

statistic β̃N for T = 1000 seems to be more accurate than the same statistic for T = 2000 and the ‘i.i.d.’

statistic βN . This unexpected effect can be explained by a positive bias introduced by estimated ai for ε = 0.9

which partly compensates the negative bias of βN , see Table 2.

Next, we examine the performance of the test statistics Z̃N and ZN using δ in (34) and (33), respectively.

Tables 3, 4 reports rejection rates of H0 : β ≥ 2 in favour of H1 : β < 2 at level ω = 5% using Z̃N and ZN

for (N,T ) = (750, 2000) and different values of α, β and ε, r. The results are almost the same when using

Z̃N for r = 3 and r = 10. Table 3 shows that choosing ε = 0.7 for β ≥ 2.25 and all values of α, the incorrect

rejection rates of the null in favour of the long memory alternative are much smaller than 5%, despite the

spurious long memory in Figure 1 [right]. Choosing ε = 0.9, they increase a bit but are still smaller than 5%

using Z̃N , see Table 4. However, at the boundary β = 2 between short and long memory, the empirical size

of the tests is not well observed. The deviation from the nominal level is especially noticeable in the case

of the ‘i.i.d.’ statistic ZN . This size distortion may be explained by the fact that the tails of the empirical
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distribution of ZN and Z̃N are not well-approximated by tails of the limiting normal distribution. More

extensive simulations of the performance of Z̃N and ZN for other choices of ε, r, N , T are presented in the

arXiv version Leipus et al. (2018) of this paper.

Remark 2. In time series theory, several semi-parametric tests for long memory were developed, see Giraitis

et al. (2003), Gromykov et al. (2018), Lobato and Robinson (1998). Clearly, these tests cannot be applied

to individual RCAR(1) series, the latter being always short memory a.s., independently of the value of β and

the distribution of the AR coefficient ai. However, in practice one can apply the above-mentioned tests to

the aggregated RCAR(1) series {X̄N (1), . . . , X̄N (T )} in (4) whose autocovariance decays as t−(β−1), t→∞,

see (3). In Leipus et al. (2018) we report a Monte Carlo analysis of the finite sample performance of the

V/S test (see Giraitis et al. (2003)) applied to the aggregated RCAR(1) series with short memory (β = 2.5)

for the same model as above. Since the V/S statistic is quite sensitive to the choice of the tuning parameter,

Leipus et al. (2018) derived its data-driven choice by expanding the HAC estimator as proved by Abadir et

al. (2009) and minimizing its mean squared error under the null hypothesis. The simulations in Leipus et

al. (2018) show that the V/S test is not valid, in the sense that its empirical size is not close to the nominal

level. The reason why the V/S test fails for our panel model may be due to the presence of the spurious long

memory (see Figure 1).
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β = 1.25 β = 1.5 β = 1.75

α = 0.75 1.5 2.5 0.75 1.5 2.5 0.75 1.5 2.5

RMSE

β̃N , T = 1000 0.11 0.17 0.27 0.18 0.15 0.18 0.15 0.16 0.17

β̃N , T = 2000 0.10 0.12 0.15 0.12 0.14 0.14 0.16 0.17 0.17

βN 0.10 0.12 0.13 0.13 0.16 0.16 0.17 0.20 0.21

Bias

β̃N , T = 1000 0.04 0.12 0.23 -0.01 0.04 0.10 -0.05 -0.03 0.00

β̃N , T = 2000 0.00 0.04 0.09 -0.04 -0.02 0.01 -0.08 -0.08 -0.07

βN -0.04 -0.05 -0.06 -0.06 -0.08 -0.09 -0.10 -0.12 -0.14

β = 2 β = 2.25 β = 2.5

α = 0.75 1.5 2.5 0.75 1.5 2.5 0.75 1.5 2.5

RMSE

β̃N , T = 1000 0.19 0.21 0.20 0.23 0.26 0.26 0.29 0.33 0.34

β̃N , T = 2000 0.20 0.22 0.23 0.24 0.28 0.29 0.30 0.34 0.36

βN 0.21 0.25 0.26 0.26 0.30 0.32 0.31 0.36 0.39

Bias

β̃N , T = 1000 -0.11 -0.10 -0.08 -0.16 -0.17 -0.17 -0.21 -0.25 -0.25

β̃N , T = 2000 -0.12 -0.14 -0.14 -0.17 -0.20 -0.21 -0.23 -0.27 -0.28

βN -0.15 -0.17 -0.19 -0.19 -0.23 -0.25 -0.24 -0.29 -0.32

Table 2: Performance of β̃N , βN for (N,T ) = (750, 1000) and (N,T ) = (750, 2000), a2i ∼ Beta(α, β), using δ

in (34), (33), respectively, with estimated parameters B, ρ and ε = 0.9, r = 10. The number of replications

is 5000.
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β = 1.25 β = 1.5 β = 1.75

α = 0.75 1.5 2.5 0.75 1.5 2.5 0.75 1.5 2.5

Z̃N , r = 3 93.5 76.4 56.2 67.1 50.7 37.6 29.1 23.2 18.6

Z̃N , r = 10 93.5 76.4 56.2 67.1 50.7 37.6 29.2 23.2 18.6

ZN 97.0 94.0 93.5 76.8 69.6 68.7 36.7 35.7 35.8

β = 2 β = 2.25 β = 2.5

α = 0.75 1.5 2.5 0.75 1.5 2.5 0.75 1.5 2.5

Z̃N , r = 3 7.8 7.9 6.1 0.8 1.5 1.8 0.1 0.2 0.4

Z̃N , r = 10 8.0 7.9 6.1 0.9 1.5 1.8 0.1 0.2 0.4

ZN 10.8 11.6 12.3 1.7 2.6 3.0 0.2 0.2 0.6

Table 3: Rejection rates (in %) of H0 : β ≥ 2 at level ω = 5% with Z̃N , ZN for (N,T ) = (750, 2000),

a2i ∼ Beta(α, β), using δ in (34), (33), respectively, with estimated parameters B, ρ and ε = 0.7. The number

of replications is 5000.

β = 1.25 β = 1.5 β = 1.75

α = 0.75 1.5 2.5 0.75 1.5 2.5 0.75 1.5 2.5

Z̃N , r = 3 100.0 99.9 99.3 98.5 95.3 91.9 72.9 68.3 62.9

Z̃N , r = 10 100.0 99.9 99.3 98.7 95.3 91.9 76.1 68.4 62.9

ZN 100.0 99.9 99.9 99.2 97.9 97.6 81.0 78.1 78.1

β = 2 β = 2.25 β = 2.5

α = 0.75 1.5 2.5 0.75 1.5 2.5 0.75 1.5 2.5

Z̃N , r = 3 19.8 25.1 23.8 1.1 4.2 4.6 0.0 0.3 0.6

Z̃N , r = 10 26.7 25.5 23.8 2.2 4.4 4.6 0.1 0.3 0.6

ZN 32.2 34.1 37.0 3.6 5.8 8.0 0.1 0.5 1.2

Table 4: Rejection rates (in %) of H0 : β ≥ 2 at level ω = 5% with Z̃N , ZN for (N,T ) = (750, 2000),

a2i ∼ Beta(α, β), using δ in (34), (33), respectively, with estimated parameters B, ρ and ε = 0.9. The number

of replications is 5000.
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5 Proofs

Notation. In what follows, let GN (x) := N−1
∑N

i=1 1(ai ≤ x) and ĜN (x) := N−1
∑N

i=1 1(âi ≤ x), where

â1, . . . , âN are defined by (5) and a1, . . . , aN are i.i.d. with G(x) := P(a1 ≤ x), x ∈ R.

Proof of Theorem 1. We rewrite the estimator in (9) as

βN =
1−GN (1− δ)∫ 1

1−δ ln(δ/(1− x))dGN (x)
=

1−GN (1− δ)∫ 1
1−δ(1−GN (x)) dx

1−x
=

1−GN (1− δ)∫ δ
0 (1−GN (1− x))dxx

.

Next, we decompose βN − β = D−1
∑4

i=1 Ii, where

I1 := β

∫ δ

0
(GN (1− x)−G(1− x))

dx

x
, I2 := −(GN (1− δ)−G(1− δ)), (35)

I3 := −β
∫ δ

0
(1− κxβ −G(1− x))

dx

x
, I4 := 1− κδβ −G(1− δ)

and

D :=

∫ δ

0
(1−GN (1− x))

dx

x
=

1

β
(κδβ − I1 − I3). (36)

According to the assumptions (Nδβ)1/2δν → 0 and (G), we get (Nδ−β)1/2I4 → 0 and (Nδ−β)1/2I3 → 0.

From the tail empirical process theory, see e.g. Theorem 1 in Einmahl (1990), (1.1)–(1.3) in Mason (1988),

we have that

(Nδ−β)1/2(GN (1− xδ)−G(1− xδ))→D[0,1] κ
1/2B(xβ), (37)

where {B(x), x ∈ [0, 1]} is a standard Brownian motion. Therefore, we can expect that

(Nδ−β)1/2(I1 + I2)→d κ
1/2
(
β

∫ 1

0
B(xβ)

dx

x
−B(1)

)
. (38)

The main technical point to prove (38) is to justify the application of the invariance principle (37) to the

integral (Nδ−β)1/2I1, which is not a continuous functional in the uniform topology on the whole space D[0, 1].

For ε > 0, we split I1 := β(Iε0 + I1ε ), where

Iε0 :=

∫ ε

0
(GN (1− δx)−G(1− δx))

dx

x
, I1ε :=

∫ 1

ε
(GN (1− δx)−G(1− δx))

dx

x
.

By (37), (Nδ−β)1/2I1ε →d κ
1/2
∫ 1
ε B(xβ)dxx , where E|

∫ 1
ε B(xβ)dxx −

∫ 1
0 B(xβ)dxx |

2 → 0 as ε → 0. Hence, (38)

follows from

lim
ε→0

lim sup
N→∞

E|(Nδ−β)1/2Iε0 |2 = 0. (39)

In the i.i.d. case E|Iε0 |2 =
∫ ε
0

∫ ε
0 Cov(GN (1− δx), GN (1− δy))dxdyxy , where

Cov(GN (x), GN (y)) = N−1G(x ∧ y)(1−G(x ∨ y)) ≤ N−1(1−G(x ∨ y)),

and

E|Iε0 |2 ≤
C

N

∫ ε

0

dx

x

∫ x

0
(1−G(1− δy))

dy

y
≤ C

N

∫ ε

0

dx

x

∫ x

0
(δy)β

dy

y
=

C

Nδ−β

∫ ε

0
xβ−1dx =

Cεβ

Nδ−β
, (40)
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proving (39) and hence (38) too.

Finally, we obtain δ−βD →p κ/β in view of (Nδ−β)1/2(I1 + I3) = Op(1) and Nδβ →∞.
We conclude that

(Nδβ)1/2(βN − β)→d
β

κ1/2

(
β

∫ 1

0
B(xβ)

dx

x
−B(1)

)
=: W. (41)

Clearly, W follows a normal distribution with zero mean and variance

EW 2 =
β2

κ

(
2β2

∫ 1

0

dx

x

∫ x

0
yβ−1dy − 2β

∫ 1

0
xβ−1dx+ 1

)
=
β2

κ
,

which agrees with the one in Goldie and Smith (1987). The proof is complete.

In the proof of Theorem 2 we will use the following proposition.

Proposition 6. Assume (G). As N →∞, let δ = δN → 0 so that Nδβ →∞ and (13), (14) hold. Then

(Nδ−β)1/2(ĜN (1− δ)−GN (1− δ)) = op(1), (42)

(Nδ−β)1/2
∫ δ

δr
(ĜN (1− x)−GN (1− x))

dx

x
= op(1). (43)

Proof. For x ∈ [1− δ, 1], write

ĜN (x)−GN (x) =
1

N

N∑
i=1

(1(ai + ρ̂i ≤ x)− 1(ai ≤ x)) = D′N (x)−D′′N (x),

where ρ̂i := âi − ai, i = 1, . . . , N , and

D′N (x) :=
1

N

N∑
i=1

1(x < ai ≤ x− ρ̂i, ρ̂i ≤ 0),

D′′N (x) :=
1

N

N∑
i=1

1(x− ρ̂i < ai ≤ x, ρ̂i > 0).

For all γ > 0,

0 ≤ D′N (x) ≤ 1

N

N∑
i=1

1(x < ai ≤ x+ γδ) +
1

N

N∑
i=1

1(|ρ̂i| > γδ) =: I ′N (x) + I ′′N ,

where by (13)

EI ′′N ≤ max
1≤i≤N

P(|ρ̂i| > γδ) ≤ χ

(γδ)p
+ χ′ (44)

and

EI ′N (x) = P(x < a1 ≤ x+ γδ) ≤ C
∫ x+γδ

x
(1− u)β−1du ≤ Cγδβ (45)

holds uniformly for all x ∈ [1− δ, 1] according to (6). Choose

γ :=
( χ

δp+β
)1/(p+1)

, (46)

then χ/(γδ)p ∼ γδβ and the r.h.s. of (44) does not exceed C(γδβ+χ′) ≤ C max{γδβ, χ′}. Under the conditions

(13), (14), from (44), (45) it follows that

(Nδ−β)1/2
∫ δ

δr
ED′N (1− x)

dx

x
≤ C| ln δ|(Nδ−β)1/2

(
EI ′′N + sup

x∈[0,δ]
EI ′N (1− x)

)
= o(1),
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hence

(Nδ−β)1/2
∫ δ

δr
D′N (1− x)

dx

x
= op(1)

by Markov’s inequality. Since

(Nδ−β)1/2
∫ δ

δr
D′′N (1− x)

dx

x
= op(1)

is analogous, this proves (43). The same proof works for the relation (42).

Proof of Theorem 2. Rewrite

β̃N =
1− ĜN (1− δ)∫ δ

δr(1− ĜN (1− x))dxx

.

Split β̃N − β = D̃−1(
∑4

i=1 Ii +
∑4

i=1Ri), where Ii, i = 1, . . . , 4, are defined in (35) and

R1 := β

∫ δ

δr
(ĜN (1− x)−GN (1− x))

dx

x
, R2 := GN (1− δ)− ĜN (1− δ),

R3 := β

∫ δr

0
(G(1− x)−GN (1− x))

dx

x
, R4 := β

∫ δr

0
(1−G(1− x))

dx

x

and

D̃ :=

∫ δ

δr
(1− ĜN (1− x))

dx

x
= D − 1

β
(R1 +R3 +R4)

with D given by (36). By Proposition 6, (Nδ−β)1/2R2 = op(1) and (Nδ−β)1/2R1 = op(1). In view of (40),

we have E|(Nδ−β)1/2R3|2 ≤ Cδrβ = o(1) and so (Nδ−β)1/2R3 = op(1). Finally, (Nδ−β)1/2R4 = o(1) as

Nδ(2r−1)β → 0.

Proof of Corollary 4. Let χ := T−min{p−1,p/2}, χ′ := χ1/min{p−1,p/2} = T−1. Then (19)–(20) agree with (14)

and the result follows from Theorem 2.

Proof of Corollary 5. Let KN =
∑N

i=1 1(ai > 1−δ). Since Var(KN ) ≤ N(1−G(1−δ)) and N(1−G(1−δ))→
∞, Markov’s inequality yields

KN

N(1−G(1− δ))
→p 1,

consequently, (Nδβ)−1KN →p κ. By Proposition 6, we have (Nδβ)−1(K̃N −KN ) = op(1). We conclude that

(Nδβ)−1K̃N →p κ.
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