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Abstract

It is well-known that random-coefficient AR(1) process can have long memory depending on the index

β of the tail distribution function of the random coefficient, if it is a regularly varying function at unity.

We discuss estimation of β from panel data comprising N random-coefficient AR(1) series, each of length

T . The estimator of β is constructed as a version of the tail index estimator of Goldie and Smith (1987)

applied to sample lag 1 autocorrelations of individual time series. Its asymptotic normality is derived

under certain conditions on N , T and some parameters of our statistical model. Based on this result, we

construct a statistical procedure to test if the panel random-coefficient AR(1) data exhibit long memory. A

simulation study illustrates finite-sample performance of the introduced estimator and testing procedure.
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1 Introduction

Dynamic panels comprising observations taken at regular time intervals for the same individuals such as

households, firms, etc. in a large heterogeneous population, are often described by simple autoregressive

models with random parameters. One of the simplest and the most studied models for individual evolution

is the random-coefficient AR(1) (RCAR(1)) process

X(t) = aX(t− 1) + ζ(t), t ∈ Z, (1)

where the innovations {ζ(t), t ∈ Z} are independent identically distributed (i.i.d.) random variables (r.v.s)

with Eζ(0) = 0, Eζ2(0) <∞ and the autoregressive coefficient a ∈ (0, 1) is a r.v., independent of {ζ(t), t ∈ Z}.
If the distribution of a is sufficiently dense near unity, then statistical properties of the individual evolution

in (1) and the corresponding panel can differ greatly from those in the case of fixed a ∈ (0, 1). To be more

specific, assume that the AR coefficient a has a density function g(x), x ∈ (0, 1), satisfying

g(x) ∼ g1(1− x)β−1, x→ 1−, (2)

for some β > 1 and g1 > 0. Then a stationary solution of RCAR(1) equation (1) has the following autoco-

variance function

EX(0)X(t) = E
at

1− a2
∼ g1

2
Γ(β − 1)t−(β−1), t→∞,
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and exhibits long memory in the sense that
∑

t∈Z |Cov(X(0), X(t))| =∞ for β ∈ (1, 2). The same long mem-

ory property applies to the contemporaneous aggregate of N independent individual evolutions {Xi(t), t ∈ Z},
i = 1, . . . , N , of (1) and its Gaussian limit arising as N →∞. For Beta distributed a, these facts were first un-

covered by Granger [9] and later extended to more general distributions and/or RCAR equations in Gonçalves

and Gouriéroux [8], Zaffaroni [23], Celov et al. [3], Oppenheim and Viano [16], Puplinskaitė and Surgailis [20],

Philippe et al. [17] and other works. Assumption (2) and the parameter β play a crucial role for statistical

(dependence) properties of the panel {Xi(t), t = 1, . . . , T, i = 1, . . . , N} as N and T increase, possibly at

different rates. Particularly, Pilipauskaitė and Surgailis [18] proved that for β ∈ (1, 2) the distribution of the

normalized sample mean
∑N

i=1

∑T
t=1Xi(t) is asymptotically normal if N/T β →∞ and β-stable if N/T β → 0

(in the ‘intermediate’ case N/T β → c ∈ (0,∞) this limit distribution is more complicated and given by an

integral with respect to a certain Poisson random measure). A similar but non-identical trichotomy of the

limit distribution of the sample mean for a panel comprising RCAR(1) series driven by common innovations

is proved in Pilipauskaitė and Surgailis [19].

In the above context, a natural statistical problem concerns inference on the distribution of the random

AR coefficient a, e.g., its cumulative distribution function (c.d.f.) G or the parameter β in (2). Leipus et al.

[10], Celov et al. [4] estimated the density g using sample autocovariances of the limit aggregated process. For

estimating parameters of G, Robinson [21] used the method of moments. He proved asymptotic normality

of the estimators for moments of G based on the panel RCAR(1) data as N → ∞ for fixed T , under the

condition E(1 − a2)−2 < ∞ which does not allow for long memory in {X(t), t ∈ Z}. For the parameters of

Beta distribution, Beran et al. [1] discussed maximum likelihood estimation based on (truncated) sample lag

1 autocorrelations computed from {Xi(1), . . . , Xi(T )}, i = 1, . . . , N , and proved consistency and asymptotic

normality of the introduced estimator as N,T → ∞. In nonparametric context, Leipus et al. [11] studied

the empirical c.d.f. of a based on (truncated) sample lag 1 autocorrelations similarly to [1], and derived its

asymptotic properties as N,T → ∞, including those of a kernel density estimator. Moreover, [11] proposed

a nonparametric estimator of moments of G and proved its asymptotic normality as N,T → ∞. Except for

parametric situations, the afore mentioned results do not allow for inferences about the tail parameter β in

(2) and testing for the presence or absence of long memory in panel RCAR(1) data.

The present paper discusses in semiparametric context, the estimation of β in (2) from RCAR(1) panel

{Xi(t), t = 1, . . . , T, i = 1, . . . , N} with finite variance EX2
i (t) <∞. We use the fact that (2) implies P(1/(1−

a) > y) ∼ (g1/β)y−β, y →∞, i.e. r.v. 1/(1− a) follows a heavy-tailed distribution with index β > 1. Thus, if

a1, . . . , aN were observed, β could be estimated by a number of tail index estimators. Given panel data, we

estimate unobservable ai by (truncated) sample lag 1 autocorrelation ãi computed from {Xi(1), . . . , Xi(T )}
similarly to [1, 11], for each i = 1, . . . , N . We then apply to observations 1/(1− ã1), . . . , 1/(1− ãN ) the tail-

index estimator introduced by Goldie and Smith [7], also studied by Novak and Utev [13], Novak [14, 15]. The

main result of our paper is Theorem 2 giving sufficient conditions for asymptotic normality of the constructed

estimator β̃N . These conditions involve β, rates of growth of N , T and a threshold parameter δ = δN → 0

whose choice depends on the second-order regularity parameter ν of G, see (3) below, and the 2p-moment of

innovations. Based on the above asymptotic result, we construct a statistical procedure to test the presence

of long memory in the panel, more precisely, the null hypothesis H0 : β ≥ 2 vs. the long memory alternative

H1 : β ∈ (1, 2).

The paper is organized as follows. In Section 2 we make the assumptions about the statistical (panel)

model. We also define the estimator β̃N based on the panel data and state the main Theorem 2. Section 3
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details the choice of the threshold δN in terms of other parameters of our RCAR(1) model. In Section 4 a

simulation study illustrates finite-sample properties of the estimator β̃N and the testing procedure for long

memory. Proofs can be found in Section 5.

In what follows, C stands for a positive constant whose precise value is unimportant and which may change

from line to line. We write →p, →d for the convergence in probability and distribution respectively, whereas

→D[0,1] denotes the weak convergence in the space D[0, 1] with the uniform metric. Notation N (µ, σ2) is used

for the normal distribution with mean µ and variance σ2.

2 Assumptions and the main results

To derive asymptotic results about estimation of β in the RCAR(1) panel model, condition (2) is strengthened

as follows.

(G) a is a (0, 1)-valued r.v. with G(x) := P(a ≤ x), x ∈ [0, 1]. There exists ε ∈ (0, 1) such that G is

continuously differentiable on (1− ε, 1) with derivative satisfying

g(x) = κβ(1− x)β−1(1 +O((1− x)ν)), x→ 1−, (3)

for some β > 1, ν > 0 and κ > 0.

Let Y := 1/(1− a). Assumption (G) implies that

P(Y > y) = κy−β(1 +O(y−ν)), y →∞. (4)

Let Y1, . . . , YN be i.i.d. r.v.s with a c.d.f. satisfying (4). To estimate the tail index β in (4), Goldie and

Smith [7] introduced the estimator

βN :=

∑N
i=1 1(Yi ≥ v)∑N

i=1 1(Yi ≥ v) ln(Yi/v)
, (5)

where v = vN → ∞ is a threshold level, and proved asymptotic normality and other properties of this

estimator.

For independent realizations a1, . . . , aN of a under assumption (G), we rewrite the tail-index estimator in

(5) as

βN =

∑N
i=1 1(ai > 1− δ)∑N

i=1 1(ai > 1− δ) ln(δ/(1− ai))
, (6)

where δ := 1/v is a threshold close to 0.

Theorem 1. Assume that a, a1, . . . , aN are i.i.d. r.v.s and (G) holds. If δ = δN → 0 and Nδβ → ∞ and

Nδβ+2ν → 0 as N →∞, then √
Nδβ(βN − β)→d N (0, β2/κ).

Theorem 1 is due to Goldie and Smith [7, Thm. 4.3.2]. The proof in [7] uses Lyapunov’s CLT conditionally

on the number of exceedances over a threshold. Further sufficient conditions for asymptotic normality of

βN were obtained in Novak [13, 14]. In Section 5 we give an alternative proof of Theorem 1 based on the

tail empirical process. Our proof has the advantage that it can be more easily adapted to prove asymptotic

normality of the estimator β̃N in (11) of parameter β in the panel RCAR(1) model.
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Let Xi := {Xi(t), t ∈ Z}, i = 1, 2, . . . , be stationary random-coefficient AR(1) processes

Xi(t) = aiXi(t− 1) + ζi(t), t ∈ Z, (7)

where innovations {ζi(t), t ∈ Z} admit the following decomposition:

ζi(t) = biη(t) + ciξi(t), t ∈ Z. (8)

Let the following assumptions hold:

(A1) η, η(t), t ∈ Z, are i.i.d. with Eη = 0, Eη2 = 1, E|η|2p <∞ for some p > 1.

(A2) ξ, ξi(t), t ∈ Z, i = 1, 2, . . ., are i.i.d. with Eξ = 0, Eξ2 = 1, E|ξ|2p <∞ for the same p > 1 as in (A1).

(A3) (b, c), (b1, c1), (b2, c2), . . ., are i.i.d. random vectors with possibly dependent components b ≥ 0, c ≥ 0

satisfying P(b+ c = 0) = 0 and E(b2 + c2) <∞.

(A4) a, a1, a2, . . . are i.i.d. satisfying assumption (G).

(A5) {η(t), t ∈ Z}, {ξi(t), t ∈ Z}, ai and (bi, ci) are mutually independent for each i = 1, 2, . . .

Assumptions (A1)–(A3) about the innovations are very general and allow a uniform treatment of common

shock (case (b, c) = (1, 0)) and idiosyncratic shock (case (b, c) = (0, 1)) situations. Similar assumptions about

the innovations are made in [11]. If b or c are random (nonconstant), the innovations {ζi(t)} in (8) form

a possibly dependent but otherwise uncorrelated stationary process with Eζi(0) = 0, Eζ2i (0) = E(b2 + c2),

Eζi(0)ζi(t) = 0, t 6= 0. Under assumptions (A1)–(A5), for each i = 1, 2, . . . there exists a unique strictly

stationary solution of (7) given by

Xi(t) =
∑
s≤t

at−si ζi(s), t ∈ Z,

with EXi(0) = 0 and EX2
i (0) = E(b2 + c2)E(1− a2)−1 <∞, see [11].

From the panel RCAR(1) data {Xi(t), t = 1, . . . , T, i = 1, . . . , N} we compute sample lag 1 autocorrelation

coefficients

âi :=

∑T−1
t=1 (Xi(t)−Xi)(Xi(t+ 1)−Xi)∑T

t=1(Xi(t)−Xi)2
, (9)

where Xi := T−1
∑T

t=1Xi(t) is the sample mean, i = 1, . . . , N . By the Cauchy-Schwarz inequality, the

estimator âi in (9) does not exceed 1 in absolute value a.s. Moreover, âi is invariant to shift and scale

transformations of {Xi(t)} in (7), i.e., we can replace {Xi(t)} by {σiXi(t) +µi} with some (unknown) µi ∈ R
and σi > 0 for every i = 1, 2, . . ..

Next, we choose a threshold level δ > 0 and introduce a truncated estimator

ãi := min(âi, 1− δ2) (10)

for i = 1, . . . , N . We then define the ‘RCAR’ version of the Goldie-Smith estimator in (6) as

β̃N :=

∑N
i=1 1(ãi > 1− δ)∑N

i=1 1(ãi > 1− δ) ln(δ/(1− ãi))
. (11)

In what follows, let T = TN be a positive integer-valued function of N , such that limN→∞ TN = ∞. Let

also δ = δN > 0 be a function of N such that limN→∞ δN = 0. For ease of presentation we suppress the

dependence of T and δ on N .
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Theorem 2. Assume (A1)–(A5). Let N →∞ so that Nδβ+2(β∧ν) → 0 and Nδβ/(ln δ)4 →∞ and

√
Nδβγ ln δ → 0 if 1 < p ≤ 2, (12)

√
Nδβ((Tδβ)−1 ∨ γ) ln δ → 0 if p > 2, (13)

where γ = γN := (T (p−1)∧(p/2)δp+β)−1/(p+1). Then

√
Nδβ(β̃N − β)→d N (0, β2/κ).

Corollary 3. Set K̃N :=
∑N

i=1 1(ãi > 1− δ). Under assumptions of Theorem 2,√
K̃N (β̃N − β)→d N (0, β2).

Remark 1. The reason for truncating sample lag 1 autocorrelation âi at a level less than 1 as in (10) is

explained in Beran et al. [1]. In principle, in the estimator (11) we could use a different truncation level from

1− δ2 in (10), however this new level would enter and further complicate conditions (12)–(13).

3 The choice of the threshold in Theorem 2

Let us discuss conditions for the choice of the threshold δ = δN in Theorem 2. Note that (A4) restricts this

result to the case β > 1. Assume p ≥ 2 in (A1), (A2) and also that T = TN , δ = δN increase as

T ∼ C1N
a, δ ∼ C2N

−b

for some a > 0, b > 0 and C1 > 0, C2 > 0. Then Nδβ/(ln δ)4 →∞ is equivalent to

β <
1

b
. (14)

Condition Nδβ+2(β∧ν) → 0 is equivalent to

max
{ 1

3b
,

1

b
− 2ν

}
< β, (15)

whereas (13) is satisfied if and only if

1 + p(1− a + 2b)

b(p− 1)
< β <

2a− 1

b
. (16)

Inequalities (14)–(16) can be summarized as

max
{

1,
1

3b
,

1

b
− 2ν,

1 + p(1− a + 2b)

b(p− 1)

}
< β < min

{1

b
,
2a− 1

b

}
. (17)

In order that the interval for β in (17) is nonempty, we restrict the set of possible values of the parameters a

and b. Particularly, this is the case and (17) holds if
1 < β <

1

b
,

max
{1

3
,

1

1 + 2ν

}
≤ b < 1, a ≥ (1 + b)(1 + p)

p
, ν > 0.

(18)
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Indeed, the upper bound in (17) is obvious since (18) implies a > 1 and the lower bound in (17) holds due to

max
{ 1

3b
,

1

b
− 2ν,

1 + p(1− a + 2b)

b(p− 1)

}
≤ 1, a > 1,

which follow from (18).

Albeit being only sufficient for Theorem 2, inequalities (18) provide some limitations and recommendations

for estimation of β. Note that (18) restricts the range of β to the interval (1, 3) provided the second-order

parameter ν in (3) satisfies ν ≥ 1 (which roughly means that the density g(x), x ∈ (0, 1), is well-approximated

by power function C(1 − x)β−1 in the vicinity of x = 1). Condition β < 1/b in (18) says that for larger

values of β the threshold δ should decrease slower with N , or should be taken larger for fixed N , compared

to the choice of δ for smaller β. Finally, the lower bound for a in (18) reflects the fact that the panel length

T ∼ C1N
a should grow much faster than N , with exponent a > 1 + b > 4/3 in the limiting case p = ∞, in

other words, the results of the present paper apply to long panels, similarly to [11].

4 Simulation study

The simulation study compares finite-sample performance of the estimators βN in (6) and β̃N in (11) based on

unobservable AR coefficients a1, . . . , aN and their estimates â1, . . . , âN from a simulated panel respectively.

We simulate N independent RCAR(1) processes Xi, i = 1, . . . , N of length T , each of them driven by

i.i.d. standard normal innovations {ζi(t)} ≡ {ξi(t)} in (8), with random coefficients ai drawn from the Beta

distribution with a density function

g(x) =
1

B(α, β)
xα−1(1− x)β−1, x ∈ [0, 1], (19)

where parameters α = 2 and β > 1. Then g satisfies (3) with the same β and κ = (βB(α, β))−1 and ν = 1.

The simulation procedure is the following:

(S1) We simulate 10000 panels for each configuration of N , T , β, where N = 1000, T = 1000, 5000, 10000,

β = 1.5, 1.75, 2, 2.25, 2.5, 2.75.

(S2) For each simulated N × T panel we compute β̃N and βN for different values of δ =

0.01, 0.011, 0.012, . . . , 0.5. (The computation of βN uses only the simulated sample a1, . . . , aN .)

(S3) In each case, we choose the optimal threshold δ by a heuristic criterion called the automated Eye-Ball

method (see [5]). Figure 1 illustrates this choice in the case of a single simulated panel. The automated

choice matches the visual mean of the estimate over all values of δ. The optimal β̃N produced by this

method in Figure 1 is very close to the true value of the parameter.

(S4) In each experiment, we compute the empirical bias and standard deviation of βN and β̃N .

The results of our simulation experiments are presented in Table 1. Surprisingly, Table 1 shows a rather

good agreement of the (root) mean squared errors between the two very different estimators βN and β̃N .

The bias differences between the estimators for T = 1000 are more pronounced but they decrease with T

increasing. We conclude that the AR coefficients in these experiments are estimated accurately enough so

that we do not see the estimation effect on the behaviour of β̃N compared to βN . We note that our experiment
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Figure 1: The graph of β̃N as a function of δ computed for a single simulated panel. The (green) horizontal

line indicates the true value of β and the (red) ⊕ symbol marks the optimal value of β̃N selected by the

automated Eye-Ball method.

is in agreement with the recommendation at the end of the previous section that the length T of the panel

must be large enough with respect to N .

Recall from Introduction that for β ∈ (1, 2) the panel RCAR(1) data exhibit long memory. To test the null

hypothesis H0 : β ≥ 2 vs. the long memory alternative H1 : β < 2 we use the following statistic

Z̃N :=

√
K̃N (β̃N − 2)/β̃N ,

where K̃N =
∑N

i=1 1(ãi > 1− δ), see Corollary 3. According to this corollary, Z̃N →d N (0, 1) for β = 2 and

Z̃N →p +∞ for β > 2, whereas Z̃N →p −∞ under H1 : β < 2. Hence, for a fixed significance level ω ∈ (0, 1)

we reject H0 if Z̃N < z(ω), where z(ω) is the ω-quantile of the standard normal distribution.

The same limit results hold for the test statistic

ZN :=
√
KN (βN − 2)/βN ,

where βN defined in (6) and KN :=
∑N

i=1 1(ai > 1− δ) are computed from known AR coefficients a1, . . . , aN .

We compare the empirical performance of Z̃N and ZN from the same simulations as in Table 1, as follows:

(S5) For each simulated values β̃N and βN in (S1)–(S3) we compute the p-value of Z̃N and ZN .

(S6) The empirical c.d.f.s of computed p-values of Z̃N and ZN for β = 1.5, 1.75, 2, 2.25, 2.5, 2.75 are plotted

in Figure 2. We also provide in Table 2 the empirical probabilities for these statistics to reject H0 at

5% level of significance.

Table 2 confirms the impression got from Table 1, that for N = 1000 and T ≥ 5000, the empirical

probabilities to reject the null hypothesis are similar when using test statistics ZN and Z̃N based on estimators

βN and β̃N respectively. However, for T = 1000 the empirical size of Z̃N disagrees with the nominal level.

Figure 2 shows that under the null β = 2 the empirical probability to reject H0 is close to nominal almost

uniformly in p. Note that for β > 2, the probability graphs deviate from the straight line in the direction

7
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Figure 2: Empirical c.d.f. of p-values of the statistics ZN (red) and Z̃N (black) for testing β ≥ 2 vs. β < 2.

N = 1000, T = 5000. The AR coefficient has Beta distribution in (19) with parameters (2, β). The green

line represents the c.d.f. of the uniform distribution on [0, 1]. The number of replications of each experiment

is 10000.
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β = 1.5 1.75 2 2.25 2.5 2.75

βN bias 0.002 -0.016 -0.044 -0.074 -0.099 -0.141

sd 0.287 0.340 0.394 0.445 0.490 0.545

mse 0.082 0.115 0.157 0.204 0.250 0.317

β̃N T = 1000 bias 0.222 0.150 0.077 0.025 -0.015 -0.071

sd 0.244 0.301 0.356 0.418 0.469 0.519

mse 0.109 0.113 0.133 0.176 0.22 0.274

β̃N T = 5000 bias 0.059 0.026 -0.006 -0.044 -0.084 -0.123

sd 0.267 0.325 0.381 0.432 0.502 0.537

mse 0.074 0.106 0.145 0.188 0.259 0.304

β̃N T = 10000 bias 0.033 0.011 -0.023 -0.052 -0.079 -0.126

sd 0.276 0.332 0.391 0.445 0.489 0.545

mse 0.077 0.110 0.154 0.200 0.245 0.313

Table 1: Empirical performance of βN and β̃N for an i.i.d. sample a1, . . . , aN and for a simulated RCAR(1)

N ×T panel respectively with N = 1000. The random AR coefficient ai is Beta distributed according to (19)

with parameters (2, β). The number of replications of each experiment is 10000.

β =1.5 1.75 2 2.25 2.5 2.75

ZN 0.465 0.173 0.063 0.031 0.021 0.018

Z̃N T = 1000 0.174 0.052 0.023 0.014 0.013 0.010

T = 5000 0.386 0.137 0.048 0.024 0.024 0.016

T = 10000 0.419 0.148 0.055 0.027 0.019 0.017

Table 2: Empirical probability to reject H0 : β ≥ 2 at significance level 5%, using ZN and Z̃N with N = 1000.

The AR coefficient is Beta distributed with parameters (2, β). The number of replications of each experiment

is 10000.

of zero, in agreement with our asymptotic results. The graphs in Figure 2 corresponding to β = 1.5 and

β = 1.75 illustrate the power of the two tests and their consistency. Again, for T = 5000 the graphs for ZN

and Z̃N seem to be very close.

5 Proofs

Notation. In what follows, let GN (x) := N−1
∑N

i=1 1(ai ≤ x), where a1, . . . , aN are i.i.d. with G(x) :=

P(a1 ≤ x), x ∈ [0, 1]. Let ĜN (x) := N−1
∑N

i=1 1(âi ≤ x), where â1, . . . , âN defined by (9) have a common

c.d.f. Ĝ(x) := P(â1 ≤ x), x ∈ [0, 1].

The following result of [11] will be useful in the sequel.

Proposition 4 (Leipus et al. [11]). Under assumptions (A1)–(A5), for all ε ∈ (0, 1) and T ≥ 1, it holds

P(|â1 − a1| > ε) ≤ C(T−((p−1)∧(p/2))ε−p + T−1)

with C > 0 independent of ε, T .
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The proof of Theorem 2 uses Proposition 5.

Proposition 5. Let assumptions (A1)–(A5) hold. Let N → ∞ so that Nδβ/(ln δ)4 → ∞ and (12), (13)

hold. Then

| ln δ|(Nδ−β)1/2 sup
x∈[1−δ,1]

|ĜN (x)−GN (x)| = op(1).

Proof. We follow the proof of Theorem 3.1 in [11]. For x ∈ [1− δ, 1], write

ĜN (x)−GN (x) =
1

N

N∑
i=1

(1(ai + ρ̂i ≤ x)− 1(ai ≤ x)) = D′N (x)−D′′N (x),

where ρ̂i := âi − ai, i = 1, . . . , N , and

D′N (x) :=
1

N

N∑
i=1

1(x < ai ≤ x− ρ̂i, ρ̂i ≤ 0),

D′′N (x) :=
1

N

N∑
i=1

1(x− ρ̂i < ai ≤ x, ρ̂i > 0).

For all γ > 0, we have

D′N (x) ≤ 1

N

N∑
i=1

1(x < ai ≤ x+ γδ) +
1

N

N∑
i=1

1(|ρ̂i| > γδ) =: I ′N (x) + I ′′N .

(Note that I ′′N does not depend on x.) Choose γ = γN := (T (p−1)∧(p/2)δp+β)−1/(p+1) = o(1) in view of (12),

(13) and Nδβ/(ln δ)4 →∞. Then Proposition 4 yields

EI ′′N = P(|ρ̂1| > γδ) ≤ C(T−((p−1)∧(p/2))(γδ)−p + T−1)

and thus | ln δ|(Nδ−β)1/2EI ′′N = o(1). Next,

| ln δ|(Nδ−β)1/2I ′N (x) = | ln δ|(Nδ−β)1/2[GN (x+ γδ)−G(x+ γδ)−GN (x) +G(x)] (20)

+| ln δ|(Nδ−β)1/2[G(x+ γδ)−G(x)].

For the same γ = o(1), relation (3) implies

ΓN := sup
x∈[1−δ,1]

|G(x+ γδ)−G(x)| ≤ C sup
x∈[1−δ,1]

∫ x+γδ

x
(1− u)β−1du ≤ Cδβ−1γδ = Cγδβ,

hence, by (12), (13), | ln δ|(Nδ−β)1/2ΓN = O(| ln δ|(Nδβ)1/2γ) = o(1), whereas the first term on the r.h.s. of

(20) vanishes in the uniform metric in probability, because γδ(ln δ)4 → 0 and Nδβ/(ln δ)4 →∞, see Lemma 6.

Since D′′N (x) is analogous to D′N (x), this proves the proposition.

Define UN (x) := (Nδ−β)1/2(GN (x)−G(x)), x ∈ [0, 1], and the modulus of continuity of UN restricted on

[1− δ, 1]:

ωN (h) := sup
1−δ≤x≤y≤1,

y−x≤h

|UN (y)− UN (x)|, h > 0.

10



Lemma 6. Assume that (G) holds. Then for all h > 0 and all ε > 0,

ε4P(ωN (h) > ε) ≤ C(h+ (Nδβ)−1),

where C is a constant independent of h, ε, δ, N .

Proof. Let 1− δ ≤ x ≤ y ≤ z ≤ 1. By [2, p. 150, (14.9), (14.10)],

E|UN (y)− UN (x)|2|UN (z)− UN (y)|2 ≤ 3δ−2βP(a ∈ (x, y])P(a ∈ (y, z])

≤ 3δ−2βP(a ∈ (x, z])2.

Similarly, considerations of the 4th central moment of a binomial variable lead to

E|UN (y)− UN (x)|4 ≤ 3δ−2βP(a ∈ (x, y])2 + (Nδ2β)−1P(a ∈ (x, y]).

Now fix m ≥ 1 and split [1− δ, 1] = ∪mi=1∆i, where ∆i = [1− δi/m, 1− δ(i− 1)/m). Therefore, by [22, p. 49,

Lemma 1], for all m ≥ 1 and all ε > 0 we have

ε4P(ωN (1/m) ≥ 6ε) ≤ 3(K + 1)δ−2βP(a ∈ [1− δ, 1]) max
1≤i≤m

P(a ∈ ∆i)

+(Nδ2β)−1P(a ∈ [1− δ, 1]),

where K is some universal constant independent of m, ε, δ, N . Finally, (G) implies P(a ∈ [1− δ, 1]) ≤ Cδβ

and max1≤i≤m P(a ∈ ∆i) ≤ Cδβ/m, which proves the lemma.

Proof of Theorem 1. We rewrite the estimator in (6) as

βN =
1−GN (1− δ)∫ 1

1−δ ln(δ/(1− x))dGN (x)
=

1−GN (1− δ)∫ 1
1−δ(1−GN (x)) dx

1−x
=

1−GN (1− δ)∫ δ
0 (1−GN (1− x))dxx

.

Next, we decompose βN − β = D−1
∑4

i=1 Ii, where

I1 := β

∫ δ

0
(GN (1− x)−G(1− x))

dx

x
, I2 := −(GN (1− δ)−G(1− δ)), (21)

I3 := −β
∫ δ

0
(1− κxβ −G(1− x))

dx

x
, I4 := 1− κδβ −G(1− δ)

and

D :=

∫ δ

0
(1−GN (1− x))

dx

x
=

1

β
(κδβ − I1 − I3). (22)

According to the assumptions (Nδβ)1/2δν → 0 and (G), we get (Nδ−β)1/2I4 → 0 and (Nδ−β)1/2I3 → 0.

From the tail empirical process theory, see e.g. [6, Thm. 1], [12, (1.1)–(1.3)], we have that

(Nδ−β)1/2(GN (1− xδ)−G(1− xδ))→D[0,1] κ
1/2B(xβ), (23)

where {B(x), x ∈ [0, 1]} is a standard Brownian motion. Therefore, we can expect that

(Nδ−β)1/2(I1 + I2)→d κ
1/2
(
β

∫ 1

0
B(xβ)

dx

x
−B(1)

)
. (24)
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The main technical point to prove (24) is to justify the application of the invariance principle (23) to the

integral (Nδ−β)1/2I1, which is not a continuous functional in the uniform topology on the whole space D[0, 1].

For ε > 0, we split I1 := β(Iε0 + I1ε ), where

Iε0 :=

∫ ε

0
(GN (1− δx)−G(1− δx))

dx

x
, I1ε :=

∫ 1

ε
(GN (1− δx)−G(1− δx))

dx

x
.

By (23), (Nδ−β)1/2I1ε →d κ
1/2
∫ 1
ε B(xβ)dxx , where E|

∫ 1
ε B(xβ)dxx −

∫ 1
0 B(xβ)dxx |

2 → 0 as ε → 0. Hence, (24)

follows from

lim
ε→0

lim sup
N→∞

E|(Nδ−β)1/2Iε0 |2 = 0. (25)

In the i.i.d. case E|Iε0 |2 =
∫ ε
0

∫ ε
0 Cov(GN (1− δx), GN (1− δy))dxdyxy , where

Cov(GN (x), GN (y)) = N−1G(x ∧ y)(1−G(x ∨ y)) ≤ N−1(1−G(x ∨ y)),

and

E|Iε0 |2 ≤
C

N

∫ ε

0

dx

x

∫ x

0
(1−G(1− δy))

dy

y
≤ C

N

∫ ε

0

dx

x

∫ x

0
(δy)β

dy

y
=

C

Nδ−β

∫ ε

0
xβ−1dx =

Cεβ

Nδ−β
, (26)

proving (25) and hence (24) too.

Finally, we obtain δ−βD →p κ/β in view of (Nδ−β)1/2(I1 + I3) = Op(1) and Nδβ →∞.
We conclude that

(Nδβ)1/2(βN − β)→d
β

κ1/2

(
β

∫ 1

0
B(xβ)

dx

x
−B(1)

)
=: W. (27)

Clearly, W follows a normal distribution with zero mean and variance

EW 2 =
β2

κ

(
2β2

∫ 1

0

dx

x

∫ x

0
yβ−1dy − 2β

∫ 1

0
xβ−1dx+ 1

)
=
β2

κ
,

which agrees with the one in [7]. The proof is complete.

Proof of Theorem 2. Rewrite

β̃N =
1− ĜN (1− δ)∫ δ

δ2(1− ĜN (1− x))dxx

.

Split β̃N − β = D̃−1(
∑4

i=1 Ii +
∑4

i=1Ri), where Ii, i = 1, . . . , 4, are defined in (21) and

R1 := β

∫ δ

δ2
(ĜN (1− x)−GN (1− x))

dx

x
, R2 := GN (1− δ)− ĜN (1− δ),

R3 := β

∫ δ2

0
(G(1− x)−GN (1− x))

dx

x
, R4 := β

∫ δ2

0
(1−G(1− x))

dx

x

and

D̃ :=

∫ δ

δ2
(1− ĜN (1− x))

dx

x
= D − 1

β
(R1 +R3 +R4)

with D given by (22). By Proposition 5, (Nδ−β)1/2R2 = op(1) and (Nδ−β)1/2R1 = op(1). In view of (26),

we have E|(Nδ−β)1/2R3|2 ≤ Cδ2β = o(1) and so (Nδ−β)1/2R3 = op(1). Finally, (Nδ−β)1/2R4 = o(1) as

Nδ3β → 0.
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Proof of Corollary 3. Let KN =
∑N

i=1 1(ai > 1− δ). By Proposition 5, we have (Nδβ)−1(K̃N −KN ) = op(1).

Since Var(KN ) ≤ N(1−G(1− δ)) and N(1−G(1− δ))→∞, Markov’s inequality yields

KN

N(1−G(1− δ))
→p 1,

consequently, (Nδβ)−1KN →p κ. We conclude that (Nδβ)−1K̃N →p κ.
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[11] Leipus, R., Philippe, A., Pilipauskaitė, V. and Surgailis, D. (2017). Nonparametric estimation of the distribution of the

autoregressive coefficient from panel random-coefficient AR(1) data. J. Multiv. Anal. 153, 121–135.

[12] Mason, D.M. (1988) A strong invariance theorem for the tail empirical process Ann. Inst. Henri Poincaré 24, 491–506.
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