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Characterization of color images
with multiscale monogenic maxima

Raphaël Soulard and Philippe Carré

Abstract—Can we build a feature-based analysis that fully
characterizes images? The literature answers with edge-based
reconstruction methods inspired by Marr’s paradigm but limited
to the greyscale case. This paper studies the color case.

A new sparse representation is carried out with the monogenic
concept and the Mallat-Zhong wavelet maxima method.

Our monogenic maxima provide efficient contour shape and
color characterization, as a sparse set of local features including
amplitude, phase, orientation and ellipse parameters. This rich
description takes the wavelet maxima representation further
towards the wide topic of keypoint analysis.

We propose a reconstruction process that retrieves the image
from its monogenic maxima. While known works all rely on con-
strained optimization, implying an iterative use of the filterbank,
we propose to interpolate the data in the feature domain by
exploiting the visual knowledge from the feature-set. This direct
retrieval is accurate enough so that no iteration is required.

The main question is finally answered with comparative
experiments. It is shown that a reasonably small amount of
features is sufficiently informative for visually appealing image
retrieval. The features appear numerically stable to rotation, and
can be intuitively simplified to perform image regularization.

Index Terms—feature extraction, image color analysis, image
reconstruction, monogenic wavelets, wavelet maxima

I. INTRODUCTION

The main information in images is often contained in
irregularities and transient phenomena, observed as contours
and textures. In the computer vision literature, the contours are
generally analyzed by using the gradient operator, sometimes
used in a multiscale fashion [3], and/or enhanced with the
structure tensor formalism [13]. This kind of analysis based on
first order derivatives is able to detect edges while characteriz-
ing their strength and orientation, as well as their regularity in
the multiscale case. As a low-level feature extraction step, it
is generally aimed at being exploited in a more general edge-
based pattern recognition application.

Since David Marr conjectured that the edge information is
sufficient to fully retrieve images [23], several reconstruction
methods from low-level features have been proposed [14],
[18], [22]. The pioneering “Mallat-Zhong” wavelet maxima
representation [22] opened the way to sparse low-level image
analysis. Inspired by the Canny edge detection, this tool is
able to extract the edges and estimate their regularity in a
multiscale fashion. Thanks in part to the wavelet theory, a close
approximation of the input image can be retrieved from the
edge-related information (and a low frequency component).

This article was accepted for publication in IEEE Transactions on Pattern
Analysis and Machine Intelligence, October 2017.
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Fifteen years later, the well-known limits of separable schemes
motivated to define the steerable “Marr-like pyramid” [31],
recently optimized in [5], [25], [29], where the rotation-
covariant Riesz transform replaces the gradient. These non-
separable wavelet frames greatly enhance the invariance of
the analysis and the quality of the reconstruction.

Retrieving approximate reconstruction from features con-
firms the Marr conjecture, and also gives important insights
about the information carried by the features. While the liter-
ature is strictly limited to greyscale images, we here address
the color case: Is it possible to reconstruct a color image based
on its contours, and if so, how should the color contours be
defined? This has not yet been answered to our knowledge.

In our previous work [27], we have proposed a color
monogenic wavelet transform that leads to a new generation of
low-level features, with multivalued coefficients being directly
interpretable in terms of local shape and color properties. This
can be viewed as an enriched multiscale gradient-like analysis,
where not only the local orientation is estimated, but also
the phase and color properties. The present paper extends the
wavelet maxima representation to a color monogenic version,
allowing the use of multi-channel images and with improved
contour analysis. This richer description takes the wavelet
maxima representation further towards the wide topic of key-
point analysis by taking monogenic maxima as “feature sets”.
On the other hand, the finer analysis of the contours can help
improving the reconstruction. While the above cited papers
all rely on iterative constrained optimization, we propose to
exploit the intuition about features to interpolate the wavelet
coefficients around the maxima, so that no iteration is required.
This choice is also aimed at improving our understanding of
the color monogenic features - still recent concepts. In con-
trast with many pattern recognition approaches for which the
analysis method is driven by statistical tools and recognition
performance, we here focus on the geometric aspect of the
low-level measures.

The (approximative) reconstruction property confirms the
“color Marr conjecture” being addressed in the present paper.
It also makes the maxima-based analysis a sparse representa-
tion, which has several advantages. First, the quality and rela-
tive completeness of the analysis can be assessed by observing
the associated reconstruction. A good similarity between the
original image and the retrieved one confirms that the con-
tour information is efficiently extracted at the analysis stage.
Second, visual elements can be clearly identified by isolating
some features and observing the corresponding reconstructed
image. One can control the feature selection/quantization to
enhance sparsity. Finally, these tools are not only useful for
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pattern analysis but also open the way to processing tasks such
as denoising.

Because the monogenic theory takes wavelets to a higher
level by extending coefficients to actual feature vectors, di-
rectly interpretable as shape and color information, we expect
better sparsity from the wavelet maxima representation. This
paper proposes the first color extension of the wavelet maxima
based image representation.

Section II reviews the Riesz-based multiscale analysis of
contours used in the literature, as well as its color extension
from [27]. Two original contributions are added: The color
extension is formulated for any number of color channels,
and an original wavelet design more adapted to the purpose
is proposed. In section III, we present the color monogenic
version of the wavelet maxima representation. The multiscale
analysis of color contours is described in details. Section IV
describes the proposed reconstruction method from the color
contour information, and examples of reconstruction, image
rotation and denoising are finally presented in section V.

Notations :
D-vectors: x=(x1, . . . , xD) ∈ RD
Euclidean norm: ‖x‖ =

√∑
x2i

Complex algebra: z = <{z}+ j={z} = |z|ej arg(z)
Fourier transform: F{f}(ω) =

∫
f(t)e−jωtdt

II. MULTISCALE CONTOUR ANALYSIS

This section presents the multiscale edge analysis used in
the literature, its evolution to a more general contour analysis,
and its color extension from our previous work.

A. Riesz-based edge analysis

Given any D-dimensional signal s(x), edge detection is
generally based on the gradient defined as:

(∇s)(x) =
[
∂s(x)

∂x1
. . .

∂s(x)

∂xD

]T
F←→ −jω ŝ(ω) (1)

The orignal multiscale gradient is carried out by prior low-pass
filtering with varying cutoff frequency, resulting in a sequence
of band-pass operations (since ∇ is naturally high-pass). But
a new generation of gradient-like tools is rather based on the
Riesz transform:

(Rs)(x) = p.v.

∫
s(x− τ )τ
2π‖τ‖3

dτ
F←→ − jω

‖ω‖
ŝ(ω) (2)

The Riesz transform has a unitary frequency gain, making it
a pure phase-shifting filter that can be seen as an “all-pass
gradient filter”. The multiscale Riesz-transform is naturally
performed jointly with an isotropic filterbank. It has been
shown that R maps any isotropic wavelet frame to another
frame [12], [29], with D-valued coefficients (gradient-like x-
and y- components for D = 2). We will use the Riesz wavelet
frames from [29], that are perfectly isotropic, and tunable by
a proper choice of the radial frequency response.

Ii−1 Hi

Gi

R

Ii

si

si,1
si,2 R−1

1
2

Gi

Hi Ii−1

Fig. 1. Undecimated monogenic filterbank flowchart for D = 2.

B. Numerical scheme

We propose to use the undecimated filterbank design, like
in [22], because it allows for robust spatial localization of the
maxima as well as interscale connection. Note that the further
maxima selection will dramatically reduce the redundancy, so
that the final amount of data will not be affected by such
a choice, compared to the pyramid-like dyadic subsampling
scheme from [29]. The tight frame condition is thus released,
and the resulting filterbank is depicted in the flowchart of
the Fig. 1. This flowchart shows the i-th iteration of both
the isotropic filterbank and its corresponding Riesz transform.
The synthesis part on the right hand side shows a combined
reconstruction of the two filterbanks, according to the mono-
genic setting explained below. The scale goes from finest
i = 1 to coarsest i = L. The input image I(x) = I0(x)
is encoded through its low-frequency residual IL(x) and L
isotropic subbands si(x), as well as L scales of the multiscale
Riesz-transform as:

(Rsi)(x) = (si,1(x) . . . si,D(x))
T (3)

Because the essential action of the Riesz transform is a pure
phase-shifting operation, the low-pass and high-pass filters Hi

and Gi are required to be perfectly neutral with respect to
the signal’s phase. Their frequency response must then be
radial, positive and real-valued. In this context, the perfect
reconstruction of the filterbank is ensured by:

Ĥi(ω) =

√
1− Ĝi(ω)2 Ĝi(ω) =

√
1− Ĥi(ω)2 (4)

The filters verify the dyadic rule Ĥi(ω) = Ĥ1(2
i−1ω), and

we propose the following high-pass filter:

Ĝ1(ω) = 1− e−‖ω‖
2/2 (5)

This definition has the advantage of being simple and gen-
erating a compact wavelet. The filterbank is normalized with
constant factors, and computed in the FFT domain [29].

Whether it is based on the gradient (Mallat-Zhong) or
the Riesz transform (Marr-like pyramid), the existing edge-
based maxima representations are only optimal for edge-
like contours, while the line-like contours are not properly
encoded. This phase-variance is due to the sole use of Rsi.
We propose to overcome this limitation with the monogenic
framework, able to detect the local amplitude and phase of
D-dimensional signals, by a joint use of si and Rsi.

C. Local amplitude, phase and frequency

The local amplitude and phase concepts are well known in
1d within the framework of the analytic signal, based on the
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Hilbert transform. The amplitude draws an ‘envelope’ over
the signal’s variations, and the phase describes the kind of
variation occurring where the amplitude is high. The local
frequency is finally obtained by differentiating the phase.

Their extension to D-dimensional signals have long been
handled with a set of quadrature filters and limited to 2d sig-
nals [1], [2], [9], [10]. A definitive method has more recently
become popular as the monogenic analysis [7], [16], [24],
which is isotropic (rotation covariant) and D-dimensional.

The 1d amplitude and phase concepts can be transferred by
locally considering the signal as directional. To this end, the
directional Riesz-transform is defined as:

(Ruisi)(x) = (Rsi(x))Tui(x) (6)

where ui(x) is a unit D-vector that locally steers the anal-
ysis (Note that this definition is identical to the directional
derivative based on the gradient).

To properly analyze the amplitude envelope and phase of
contours, the steering must be locally set to the signal’s main
orientation. A natural choice is the pointwise Riesz direction
ui = (Rsi)/‖Rsi‖, analogous to gradient direction, which
reducesRuisi to the Riesz norm ‖Rsi‖. Although the original
works on monogenic analysis do this, it is sometimes better
to use the more robust local orientation information obtained
from the structure tensor (presented below), that may slightly
differ from the pointwise Riesz direction (see also [27], [30]).

The directional Riesz transform steered towards the signal’s
main orientation is the D-dimensional counterpart of the
Hilbert transform. It performs π/2-phase-shifting, so that the
multiscale amplitude and phase features can be defined by:

Ai(x) = | si(x) + j(Ruisi)(x) | (amplitude) (7)
ϕi(x) = arg{ si(x) + j(Ruisi)(x) } (phase) (8)

We obtain the following modulation model of the signal:

si(x) = Ai(x) cos(ϕi(x)) (9)

where Ai is slowly varying with respect to ϕi, and forms an
efficient contour detector. The advantage of the monogenic
amplitude Ai over gradient-like norms is its phase invariance
i.e. it detects lines and edges as well, without producing
the well-known “double response” around lines. As a new
feature, the phase ϕi provides a line/edge classification of con-
tours, complementary to the orientation information from ui.
Analogously to the classical gradient-based wavelet maxima
representation, the local maxima of Ai indicate the locations
of contours. At those points, the phase ϕi and orientation θi
describe the shape in a richer way than the usual gradient
direction. We will also use the local frequency information,
computed as the ui-directional derivative of ϕi:

νi(x) = (∇ϕi(x))Tui(x) (frequency) (10)

The frequency was pointed out as a “texture feature” [1], and
also contains fine hints about line width and edge smoothness,
in combination with the evolution of the amplitude through
scales. At the reconstruction stage, νi will be a crucial piece
of information to linearly interpolate the phase.

An efficient local description of the whole image can then
be provided by recording the values of (Ai, ϕi, θi, νi) at the
locations of the amplitude maxima. This extended “feature
vector” with phase-invariance should improve the existing
method based on the sole gradient norm and direction. Note
that the original translation invariance property still holds.

The monogenic framework does not handle non-directional
structures. In a future work, evolutions of the monogenic
model [8], [32] taking into account more complex shapes could
be used to further enrich the local description of the signal.

We propose now to extend the feature set with color-related
features from our previous work [27]. Here, we rewrite the
elliptical monogenic analysis for any number of color channels
C, so as to open the way to multi-spectral monogenic repre-
sentation, which is an interesting potential area of research.

D. Multi-channel local orientation

The first step towards the color monogenic framework is
the well established color analysis of edges popularized by
Di Zenzo [6], relying on the structure tensor. The structure
tensor formalism combines the gradient with local smoothing
to perform robust orientation analysis, and is well defined for
multidimensional and multivalued images [13], [28]. Replac-
ing the gradient by the Riesz transform may have an impact
on the frequency response of the analysis, but actually allows
the same optimal orientation estimation [15], [30]. Given a
D-dimensional C-channel image, we consider its i-th scale:

si(x) =

s1i (x1, . . . , xD). . .
sCi (x1, . . . , xD)

 (11)

obtained by applying channelwise the isotropic part of the
filterbank (Section II-A). The Riesz-based structure tensor is
defined by the following symmetric D× D matrix:

Ti(x) = f ∗
C∑
c=1

(Rsci )(Rsci )T (12)

where f(x) is an isotropic smoothing filter.
It can be shown that the local variation of si(x) - in

the sense of Euclidean distance - is maximum in the spatial
direction of vi, where vi is the eigenvector tied to the highest
eigenvalue of Ti. This makes the structure tensor a powerful
edge detector with accurate orientation analysis.

In the case of images (D = 2), and whatever the number of
color channels, the main eigenvector is:

vi = [ cos(θi(x)) sin(θi(x)) ]
T (13)

with the following closed-form expression for the orientation:

θi(x) =
1

2
arg
{
Ti1,1−Ti2,2 + 2jTi1,2

}
∈
[
−π
2
;
π

2

]
(14)

This value can replace the Riesz orientation for more robust
monogenic analysis. This modification alters the perfect re-
construction of the monogenic filterbank, but can be made
negligible by choosing a small smoothing filter. In this work, f
is a Gaussian filter with variance σ2 = 0.52. This is sufficiently
small for the estimated θ to be very close to the Riesz
orientation, and sufficiently large for a stable computation.
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The analysis can be enriched with the coherence measure:

ci(x) =

√(
Ti1,1 − Ti2,2

)2
+ 4T2

i1,2

Ti1,1 +Ti2,2
∈ [0; 1] (15)

The coherence is as close to 1 as the local structure is
directional and the orientation measure relevant. In our work,
this feature will be used to discriminate isotropic shapes. A
discussion about 3d coherence measure can be found in [11],
and the topic is open for D > 3.

E. Color monogenic analysis

We review here the elliptical monogenic features proposed
in [27], and inspired by [19].

The signal’s local orientation is defined for any dimension
D and any number of color channels C thanks to the structure
tensor (see II-D). We assume that we can consider this same
spatial orientation for all the channels of si so we set

ui = vi (16)

in eq. (6) to form a vector-valued directional Riesz transform:

(Ruisi)(x) =
[
(Ruis

1
i )(x) . . . (Ruis

C
i )(x)

]T
(17)

This operation performs channel-wise phase-shifting of si(x)
in the direction ui(x). The direction of analysis is locally
the same for all color channels, accordingly to the directional
model upon which both the structure tensor and the monogenic
frameworks are based. This gives access to scalar amplitudes
Aci and phases ϕci obtained from eqs. (7)-(8) as:

si(x) + j(Ruisi)(x) =

 A1
i (x)e

jϕ1
i (x)

. . .

AC
i (x)e

jϕC
i (x)

 (18)

Then a non-marginal approach is adopted so that these 2C
parameters are converted into more intuitive features: unique
amplitude and phase completed by color parameters.

As pointed out in [7], the monogenic amplitude is expected
to be locally smooth w.r.t. phase variations, while the phase
itself is expected to be locally linear. The frequency, as the
derivative of a linear function, should be locally constant. We
need to add the following hypothesis: the local frequency is
expected to be the same at all color channels. This is true
for most real-life contours for which the color-channels are
highly correlated. Whether it is an edge or a line, the channels
often have similar behaviors - up to a multiplicative factor. By
assuming that every channel’s phase evolves with the same
frequency νi(x), the signal locally boils down to a 1d vector
sinusoid drawing a cyclic elliptical path in RC, with frequency
νi(x). This curve is the generalization of the sinusoid from
which new amplitude and phase concepts can be defined.

The amplitude is intuitively re-defined as the ellipse’s size:

Ai(x) =

√√√√ C∑
c=1

(Aci (x))
2 (Amplitude) (19)

The local maxima of Ai will be studied in the next section,
as a phase-invariant color generalization of Canny-like edge

detection. At maxima locations, all other local features will be
recorded. Let us now extend the phase concept. The classical
definition can be understood as the relative coordinate of
a sinusoid’s peak. The “peak” of an elliptical oscillation is
represented by its apogee, which 1d coordinate can be found
analytically, providing the definition of the phase:

ϕi(x) =
1

2
arg

{
C∑
c=1

(Aci (x) )
2 e2jϕ

c
i (x)

}
(Color phase)

(20)
This formula can be roughly viewed as a weighted average
of the channel-wise phases. We will see that ϕi still performs
the same efficient classification of lines and edges. A complete
representation of s by its features requires additional param-
eters, able to fully characterize the ellipse’s semi-major and
semi-minor axes e and e⊥ defined by:

e

e⊥

x1

x2

x3

e+je⊥ =
1

Aiejϕi

A1
i e

jϕ1
i

. . .

AC
i e

jϕC
i



(21)
so that the multivalued signal is retrieved as the real part of:

s(x) + j(Rus)(x) = A(x) ejϕ(x) (e(x) + je⊥(x)) (22)

This is the proposed color monogenic signal. The 2C − 2
parameters of e+ je⊥ are expected to convey comprehensive
color information. The first one is the linearity feature:

λ = ‖e‖2 − ‖e⊥‖2 = 1− 2‖e⊥‖2 ∈ [0; 1] (23)

This parameter defines the semi-major and semi-minor axes
lengths ‖e‖ and ‖e⊥‖. In most cases, λ is close to 1, meaning
that the semi-minor axis e⊥ is negligible, which reduces the
ellipse to a linear path between two main colors, pointed by
e and −e. The vector e carries the information of main color
axis, and can be encoded by C−1 angles. For 3 color channels
(C = 3), we use the two angle encoding proposed in [27]:

e =

√
1 + λ

2

cosα1 cosα2

sinα1 cosα2

sinα2

 (24)

In some cases like around textured areas, e⊥ may be signif-
icant (λ < 1). It can be defined by its spherical coordinates
within the subspace orthogonal to e, which requires C − 2
angles. For C = 3, we use the angle α3 proposed in [27]:

e⊥ =

√
1− λ
2

Rα1Rα2

 0
cosα3

sinα3

 (25)

with the rotation matrices:

Rα1
=

cosα1 − sinα1 0
sinα1 cosα1 0
0 0 1

 Rα2
=

cosα2 0 − sinα2

0 1 0
sinα2 0 cosα2


(26)
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Of course different axes could have been chosen for the spheri-
cal coordinates. As well, different angle wrappings are possible
and several angle settings are equivalent (see Appendix). We
here retain the setting from [27] where (ϕ, α3) ∈ [−π;π] while
(θ, α1, α2) ∈ [−π/2;π/2].

This elliptical model combined with the Riesz-based struc-
ture tensor extends the monogenic analysis to any spatial
dimension D and any number of color channels C. It applies on
2d as well as 3d images, taking values in several color spaces,
including multispectral images. In all cases, unique amplitude
A, phase ϕ and linearity λ are extracted, the color axis e is
encoded by C − 1 angles and the orthogonal axis by C − 2
angles. Note that the color space should be Euclidean so that
the structure tensor and the elliptical path are well defined. In
this paper, we use the RGB space.

Now that the local features are defined, let us use the color
monogenic filterbank for maxima-based multiscale contour
analysis.

III. CHARACTERIZATION OF CONTOURS WITH
MONOGENIC MAXIMA

This section presents the proposed maxima-based repre-
sentation of color images, using the multiscale monogenic
analysis introduced above.

A. Geometric and color information

Let us here study in details how the color monogenic
features describe the color contours. We propose to observe
the response to a simple synthetic input image containing a
yellow rectangle on a red background with a blue line inside.
By focusing on one row that crosses the image, we expect to
detect from left to right: one edge from red to yellow, one blue
line on yellow background, and one other edge from yellow to
red. We plot on the Fig. 2 the monogenic analysis on several
scales, along this row. On top of the figure is the trimmed
image, containing the two edges and the line, and from top
to bottom are plotted three groups of curves, corresponding
to scales 3 to 5. Within each group, we plotted the amplitude
A, the phase ϕ, the two angles of the color axis (α1, α2) and
finally the orientation θ.

According to the above mentionned phase-invariance of the
monogenic contour detector, we verify that the amplitude A
shows well centered peaks above edges and lines as well,
which is crucial for the maxima representation. Now we can
observe the behavior of the other features around the peaks.

Let us begin with the phase. This circular data plotted
in [−π;π] shows “false” discontinuities around ±π, but has
actually a continuous behavior (wrapping effect). For all
displayed scales, the phase ϕ takes a stable value of π/2
for the first edge, π for the line and −π/2 for the second
edge. This is exactly what is expected from the monogenic
model in terms of contour classification. We experimentally
noticed that the evolution of ϕ in the neighbourhood looks
linear, and seems to become “exponential-like” in a larger
neighbourhood, with apparent assymptotic behavior towards
±π/2. The local frequency ν is of interest to characterize
the slope of ϕ. The frequency tends to evolve by octaves

A3

ϕ3

α2,3

α1,3

θ3

A4

ϕ4

α2,4

α1,4

θ4

A5

ϕ5

α2,5

α1,5

θ5

π/2

0.45π

0

−0.46π

π/2

0.45π

0

−0.46π

π/2

0.45π

0

−0.46π

±π

0.2π
−0.17π
−0.46π

±π

0.2π
−0.17π
−0.46π

±π

0.2π
−0.17π
−0.46π

−π/2

0.45π

0

−0.46π

−π/2

0.45π

0

−0.46π

−π/2

0.45π

0

−0.46π

Fig. 2. Linewise observation of monogenic features on 3 scales.

through the dyadic scales, suggesting a Fourier-like harmonic
decomposition of the contours. It is clear that the recording of
ϕ and ν at the sole location of the amplitude’s maximum is
sufficient to characterize ϕ in the neighbourhood.

Now let us observe the color axis. The values of α1 and
α2 are very stable and constant in a large neighbourhood.
In addition, they take the same values for the two edges,
according to the fact that these edges involve the two same
colors. More precisely, the encoded color axis is parallel to
the axis that joins the red and the yellow in the RGB space.
In the case of the blue line, the values of α1 and α2 define an
axis parallel to the axis joining the blue and the yellow. This
confirms the assumption that the color axis is locally constant
and can be trivially characterized by its value at maxima.

The orientation is as well very stable, equaling −0.46π (≈
−83◦) according to the orientation of the objects in the test
image (Also displayed in the Fig. 3 with lower resolution).
The behavior of the features is also stable through scales.

Not plotted here, we have λ = 1 everywhere, at all scales.
Our contours involve a simple linear color path between two
main colors, which requires only the color axis (α1, α2) to be
fully encoded. Thus the angle α3 is irrelevant (not plotted).

The fact that the monogenic feature values at maxima
location are sufficient to describe their neighbouring values
proves that they convey rich information. Let us now exploit
this property through a maxima based image representation.

B. Bidimensional amplitude maxima detection

The Canny-edge detection, as well as the Mallat-Zhong
maxima method and the Marr-like pyramid based edge de-
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Test image A3(x) m3(x)

Sparse selection along ridges Phase-based repositioning

Fig. 3. Amplitude maxima detection and selection at third scale.

tection, all use an oriented 1d maximum detection, using the
prior knowledge of the signal’s orientation. Given an amplitude
sample Ai(x0), the corresponding local orientation θi(x0) is
quantized to compare with the two neighbour samples Ai(x−)
and Ai(x+) in the direction orthogonal to the contour. Here
we consider the following local differences:

d+(x0) = Ai(x0)−Ai(x+) (27)
d−(x0) = Ai(x0)−Ai(x−) (28)

The location x0 is recorded if d+ > 0 and d− > 0, indicating
that a strict 1d maximum is found.

In this paper, we propose to go one step further by not only
detecting maxima, but also measuring their sharpness, so as
to refine the selection by discarding the “weakest” ones. This
can be used to adjust the sparsity of the representation. The
sharpness measure of a retained maximum at location x0 is
defined by the estimated slope of the underlying ridge:

mi(x0) =
d+(x0) + d−(x0)

Ai(x0)[cos θi(x0) sin θi(x0)](x+ − x−)
(29)

The term on the numerator is the average absolute difference
between amplitude samples. The weighting term Ai normal-
izes the measure so that small but sharp maxima are well con-
sidered. The remaining terms in the denominator correct the
bias introduced by the quantization according to a directional
ridge model. Note that in practice, very small maxima are
discarded with an experimental amplitude threshold of 0.04.
An example of sharpness measure is shown on the Fig. 3,
where we can see that all the contours are well detected.

1) Enhance the sparsity: In the literature [5], [22], [25],
[31], all detected maxima are kept in order to favor closed
contours, which facilitates the reconstruction procedure. On
undecimated coarser scales, the overly smooth amplitude gen-
erates a very redundant succession of maxima. In the present
work, we propose to handle a certain resolution adapted to the
scale, by selecting the most important maximum in a given
neighbourhood of radius σ. The radius should be increasing
with the scale, and according to the low-pass filter spatial
support. Our wavelet design turns out to correspond to a near-
Gaussian low-pass filter, which RMS width experimentally
provides σ = 0.7×2i−1. The process is to sort all maxima by

decreasing sharpness mi, and to progressively insert them by
checking that they do not overlap a previously inserted one.
The Fig. 3 (lower row, first plot) shows the obtained regular
positioning of the most important maxima, with average
distance superior to σ = 2.8 pixels (i=3). We will see on the
next section that an efficient reconstruction is still possible in
spite of the least amount of maxima, with equal visual quality.

Note that it is possible to use the phase information to
estimate subpixel maxima positions, as illustrated on the Fig. 3
(last image). We have proposed to estimate the positions from
a linear phase model. This aspect has no influence on the
reconstruction, this is why the method will not be detailed here
due to a lack of space. However the phase-based repositioning
method will be important for future application (for example
color image indexing).

Let us now study the whole feature extraction aimed at
constructing local descriptors.

C. Local feature extraction

Once a maximum location has been found, the monogenic
feature set can be formed by just picking up the corresponding
samples in the wavelet transform. In cases where the location
has been refined with subpixel accuracy, the nearest sample
still contains a stable information for orientation θ and color
features (λ, α1, α2, α3), because these features are locally
constant. However, the remaining features - amplitude, phase
and coherence - need a deeper consideration, and the local
frequency has to be computed.

1) Amplitude: If the maximum lies between samples, the
nearest amplitude sample should correspond to a mildly at-
tenuated version of the actual value. The attenuation can be
experimentally computed by using the interpolation function
that will be defined in the next section, fed with the relative
coordinate of the nearest sample. The final amplitude feature
is then obtained by boosting the nearest sample accordingly.

2) Phase: The subpixel shifted cases indicate by definition
that the phase value should be a multiple of π/2. Then we
just have to set the feature vector with this multiple

3) Coherence: This feature equals c=1 on straight edges
and lines. Note the particular case of lines, for which the
Riesz-part is null on maxima (as a gradient-like analysis)
and the information is fetched from the neighbourhood by
the tensor. This is why we still have c = 1 and stable θ
value on lines. However, this no longer applies on isotropic
shapes, well detected by the monogenic framework with a
central amplitude maximum and a phase of 0 or ±π, but
considered irrelevant by the structure tensor, with c< 1. The
analysis is yet coherent around the center of the shape, which
borders are seen like edges, making the coherence go back
to c = 1 in a close neighbourhood. This one is as small as
the tensor’s smoothing kernel is compact (We have chosen a
very compact Gaussian kernel with σ = 0.5). This results in
unstable behaviors for the coherence on isotropic shapes. In
this work, isotropic shapes are detected by simply thresholding
c. The coherence value in the feature vector will be simply
picked up from the nearest sample. Note that c is the sole
feature that will not be interpolated (Section IV).
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A ∈ R+ Amplitude Energy of contour
ϕ ∈ [−π;π] Phase Type of contour (line or edge)
θ ∈ [−π

2
; π
2
] Orientation Orientation of contour (c ≈ 1)

λ ∈ [0; 1] Linearity Color complexity
α1 ∈ [−π

2
; π
2
] Ellipse position 1 Color axis

α2 ∈ [−π
2
; π
2
] Ellipse position 2 Color axis

α3 ∈ [−π;π] Ellipse position 3 Second axis direction (λ<1)
c ∈ [0; 1] Coherence Directionality of contour
ν ∈ [0;π] (rad/px) Frequency Contour width/Texture feature

(a) Elliptical monogenic feature set. (b) Maxima on scales 2 (green), 3 (blue) and 4 (brown).

Fig. 4. Elliptical monogenic maxima representation (C = 3, D = 2).

4) Frequency: Like in [27], we compute the local frequency
by central finite differences. This requires the neighbouring
phase samples to be unwrapped around ϕ(x0), as detailed in
the Appendix. Then the local orientation θ has to be quantized
for proper sample selection in the same way as for amplitude
sharpness (see section III-B). The frequency is computed as:

νi(x0) =
ϕ(x+)− ϕ(x−)

[cos θi(x0) sin θi(x0)](x+ − x−)
(30)

where the denominator includes bias correction due to the
quantization of θ and based on a linear model.

The complete proposed feature set is listed in table 4a, and
an example of analysis is shown on the Fig. 4b, with a real
color image. The circles represent the very small number of
retained coefficients for the characterization of the contours at
each scale. This kind of local description is promising for
working towards keypoint descriptors like the well known
SIFT method [20], that could be enriched with the phase
concept and our color extension. We are currently working
on this topic. In the present paper, these features will be used
to drive the reconstruction around the maxima (Section IV).

D. Maxima evolution through scales

As already studied with the separable multiscale gradient
[22], the structure of objects can be appreciated from the
cross-scale evolution of their maxima. This information is
related to the regularity of the shapes, which can be formalized
by Lipschitz exponents. In the case of monogenic (phase-
invariant) analysis, we often observe a clear “maxima jump”
between two consecutive specific scales. This jump generally
goes from a peak- or line- model with phase 0 or π and
centered in the middle of the object, towards a set of edge-
maxima on its contours. The Fig. 5 shows different maxima
jumps for three objects of different sizes. The amplitude
responses show that a same object can be viewed either as
an edge or as a large peak, according to the scale of interest.
The smaller disk is detected as a contour from scales 1 to 3,
and as a peak at all coarser scales. The medium disk shows the
jump between the scales 4 and 5, and the bigger disk shows it
between 5 and 6 (6th scale is not plotted). This illustrates the
significance of using the monogenic framework in a multiscale
fashion. We believe that the maxima representation can be
efficiently used by connecting those being related to a same

Image A3 A4 A5

Fig. 5. Maxima jumps through scales.

object at different scales. We expect to reveal a high cross-
scale correlation for the features, as already seen in the section
III-A, excepted for the amplitude which evolution will be
dependent on the regularity. This correlation could be used for
enhancing the sparsity, and designing specific color denoising
algorithms for example.

As for classical wavelet maxima, the evolution properties
of extrema are not guaranteed when the kernel used for
generating the scale-space is not a Gaussian or its derivatives.
However, the particular scaling function and wavelet we are
using is a good approximation to a Gaussian and its first-
order derivative. It is reasonable to assume that the scale-space
generated with such a wavelet possesses the causality property.
Indeed, we have not observed any violations of causality for
a large class of signals with which we have experimented.
Our wavelet maxima can be viewed as samplings of wavelet
maxima traces in the scale-space: some wavelet maxima at
different dyadic scales arise from the same edge in the signal;
they belong to the same wavelet maxima trace ; the waveforms
of the signal have some hierarchy that is shown by the arches
in the wavelet maxima traces.

Our objective is to retrieve the structural information that
is contained in the monogenic wavelet maxima traces from
their dyadic samplings. By using the structural information
from the feature set, we extend the Mallat-Zhong method to
a representation that will be more suitable for applications of
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color image processing and analysis.
The connection of the maxima from two consecutive scales

is established if they are spatially close to each other, for which
a scale-dependent maximum distance has to be chosen. In most
cases, two maxima from a same object have the same location,
up to one pixel. We experimentally noticed that a maxima
jump occurs from scale i to i + 1 for a disk which radius is
between 2i−1 and 2i. This means that the distance between the
coarser maximum and its potential i-th scale children maxima
may reach 2i pixels in the worst case. Note that the decision to
connect two maxima could also be influenced by the similarity
between the other features, which is an open topic discussed
in the last experimental section.

Before studying the color image reconstruction from the
monogenic maxima, we have to handle a numerical issue
related to the first scale.

E. The special case of first scale
The monogenic first scale is particular because the dis-

cretization of the Riesz transform is ill-defined around the
Nyquist frequency (The response jω/‖ω‖ conflicts with spec-
trum periodicity). It produces spatial artifacts - see A1 in Fig. 6
- that may lead to false maxima. The artifacts are even stronger

Image A1 ‖s1‖ A2

Fig. 6. Monogenic amplitude at 1st scale.

with the “Simoncelli” and “hU1D
” wavelets from [25], [26]

(Although this is overcome in [26] by a high-pass residual).
At subsequent scales, the near-zero Fourier response in the
Nyquist area regularizes the discontinuity, making the issue
negligible (see how A2 is smooth).

In the present work, we propose not to use the Riesz
transform at first scale. This can be handled theoretically by
considering that Ru1s1 vanishes at all sampling points - or
equivalently ϕ1 ∈ {0, π}. The amplitude thus boils down to:

A1(x)← ‖s1(x)‖ (31)

From the contour detection viewpoint, the sole use of the
isotropic part s1 (Behaving like a Laplacian) is known to
restrict the analysis to lines and peaks, while producing a
double response on both sides of edges. However at this scale,
the critical sampling makes this theoretical double response
an apparent two-sample thick single response - see ‖s1‖
on Fig. 6. It turns out that ‖s1‖ is an efficient artifact-free
approximation of the expected monogenic amplitude.

Now the other features must be extracted. Based on the
strong dependencies observed in the section III-A, between
two neighbour scales, we propose to extrapolate the first
scale features from the second scale ones. The contribution
of the first scale coefficients is then reduced to locations and
amplitudes of the maxima, while the phase and all other fea-
tures are inherited from the second scale. This simplification

restricts the first scale data to contour harmonics, and tends to
discard the possible high-frequency textural content. This can
be viewed as regularization, in a denoising context.

Because most high-frequency edge harmonics are centered
between two samples, subpixel accuracy is required. Thus we
propose to interpolate A1 at all half-coordinates with bicubic
splines, so as to reveal explicit edge peaks, and capture their
subpixel positions. This is classical with the Mallat-Zhong
approach, but in our case the phase value has then to be
refined. Note that the spatial density of the detected maxima
is still controlled by the cleaning process explained above, so
that the interpolation does not increase the actual amount of
maxima.

IV. RECONSTRUCTION FROM FEATURES

After having studied the contour model, we try in this
section to verify the color Marr conjecture. The goal is to
retrieve the visual content of color images from its contours
(and a low frequency component). This result is aimed at
confirming that our monogenic features carry significant and
complete information, thus validating the proposed analysis.
We first explain the synthesis part of the monogenic wavelet
transform, and then propose a method to retrieve all the
wavelet coefficients from the sole list of monogenic maxima.

A. Monogenic wavelet synthesis

Here is reviewed the color monogenic filterbank synthesis
proposed in [27] as the “pure-directional method”. This part
of the algorithm naturally comes after the interpolation step
presented below.

The 3-channel 2d monogenic filterbank provides at each
scale 9-valued coefficients which Cartesian coordinates are
s1i , s

1
i,1, s

1
i,2, s

2
i , s

2
i,1, s

2
i,2, s

3
i , s

3
i,1, s

3
i,2. We have converted them

into the feature vector (A,ϕ, θ, λ, α1, α2, α3) in section II-E.
To feed the synthesis part of the filterbank, we need to convert
these features back into the Cartesian terms. The isotropic part
s1i , s

2
i , s

3
i is trivially retrieved from the real part of eq. (22),

which uses all the features except θ, while the directional Riesz
transform comes from the imaginary part as Ruisi. The x-
and y- components of the Riesz transform are finally obtained
by using θ as:[

s1i,1 s2i,1 s3i,1
]T

+ j
[
s1i,2 s2i,2 s3i,2

]T ← (Ruisi)e
jθ

(32)
This assignment turns Rus back to the original Riesz coeffi-
cients with the condition that θ coincides with the pointwise
Riesz direction i.e. ui = (Rsci)/‖Rsci‖ on every channel c
separately. This is not the case for two reasons. First, we
have chosen the more robust structure tensor based local
orientation measure ui = vi, which is slightly different from
the Riesz direction (Sec. II-C) (Even if the choice of a small
smoothing kernel limits this difference). Second, we have
chosen to estimate a unique local direction θ for the whole
color contour, which implies a loss of information in cases
where the color channels show different directions (Sec. II-E).
Once the Cartesian terms are obtained, the classical monogenic
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synthesis, depicted in the Fig. 1 for the greyscale case, is based
on the inverse Riesz transform

R−1[ si,1 , . . . , si,D ]T = −tr ([ Rsi,1 , . . . , Rsi,D ])
(33)

verifying R−1R = 1, and the summation of all the outputs
(see [27] for a detailed study of the monogenic reconstruction).
The great property of this “pure-directional” reconstruction
method is that the precise shape of every synthesis wavelet
is parameterized by its associated monogenic “coefficient”
that is in fact a full “feature set” (A,ϕ, θ, λ, α1, α2, α3). This
allows to retrieve isotropic peaks as well as directional edges,
while handling their geometric and colorimetric parameters
in a unified wavelet theory. As a counterpart, the filterbank
inversion is not exact theoretically. However, we have exper-
imentally noticed no visible artifact with usual color images
[27]. Note that it only holds when wavelet coefficients are
all kept unchanged, which is not the case in a maxima based
representation. The last step of the algorithm is then to retrieve
the missing coefficients by interpolating around the maxima.

B. A feature-domain approach

The existing papers on wavelet maxima based reconstruc-
tion [5], [22], [25], [31] always rely on constrained opti-
mization implying the iteration of the filterbank. In addition,
the interpolation is classically performed on all the Cartesian
coordinates separately. For example, the Mallat-Zhong method
[22] or the Marr-like pyramid [31], interpolate the x- and y-
components of the multiscale gradient/Riesz coefficients.

We have already distinguished our work by proposing a
sparse selection of the maxima, while the existing literature
just keeps all maxima samples. Let us here again take an
original approach for the reconstruction. Because we have
driven our study by the interpretation of the monogenic fea-
tures, we will perform the interpolation in the feature domain.
The coefficients will be retrieved in the neighbourhoods of
the maxima by taking into account the local color and shape
information conveyed by the features, as well as the knowledge
about them - local constancy of angles, smoothness of ampli-
tude, linearity of the phase. . . From the scientific viewpoint, we
believe that the understanding of their nature can be improved
by such a study. Moreover, this knowledge can be used in an
applicative context to regularize or simplify the data contained
in the extracted maxima i.e. enhance the sparsity. Finally, we
expect this direct interpolation to be accurate enough so that
no iterative smoothing will be required, which would provide
a computational advantage over existing works. Promising
experiments will be presented in the last part of the paper.

The feature-domain interpolation around maxima first re-
quires a 2d segmentation step.

C. Segmentation around maxima

While the original Mallat-Zhong method trivially interpo-
lates between two maxima on all rows and columns, the more
recent works just do not interpolate, and let the iteration
of the filterbank “fill in the blanks” progressively. Here the
row-column method is not adapted to the isotropy of the

Original A4 Segmented areas Reconstructed A4

Fig. 7. Segmentation example at 4-th scale.

tool. Instead, interpolating “between” maxima in 2d requires
an adapted 2d segmentation process defining the areas of
influence around each maximum1.

In other words, all spatial positions k need to be labelled
with the index of the locally most influential maximum. The
first idea is to retain the closest one in terms of Euclidean
distance. However, high amplitude maxima must intuitively
take up larger areas. It is then better to weight the distance
of a maximum by its amplitude value, so that the sizes of the
areas are proportional to maxima’s height.

The Fig. 7 shows an example of segmentation with weighted
distances. We can see that the segmentation allows to draw an
amplitude envelope that resembles the original (The interpo-
lation method is explained below). The junctions between the
segmented areas may produce discontinuities, but they will be
smoothed when finally calling the synthesis filterbank.

D. Interpolation

Once the area of influence around every maximum has been
defined, these neighbourhoods have to be filled with inter-
polated values of each monogenic feature (A0, ϕ0, θ0, . . . ).
While this interpolation is trivial for most of them - assumed
locally constant - the amplitude and the phase require a deeper
study - begun in section III-A. The apparent behavior of
the analysis on typical lines and edges leads us to propose
experimental local models for the amplitude and the phase.

1) Interpolating the amplitude: We saw that the amplitude
is bell-shaped and directional over both lines and edges. As a
first step, we propose the following bell-shaped radial model:

g(r) =

(
2

3
e
−r2

2σ2 +
1

3
e
−r2

4(2σ2)

)
(34)

The width σ is fixed for every scale, and the anisotropy will
be controlled by coordinate changes. This model has a higher
tail than a simple Gaussian, and experimentally fits better the
amplitude’s behavior (See Fig. 8, upper part) for both lines
and edges. Now this model must be given a 2d shape.

First the coherence is used to discriminate between isotropic
cases (c0<1) and directional ones (c0≈1). The former show
near 0 or π phase, and we use isotropic coordinate r = ‖x‖
to set A(x)=A0g(‖x‖) with σ=0.42×2i−1. The latter are
handled by exploiting the anisotropy to lengthen the amplitude
kernel along the contour. Moreover, the local frequency ν0
informs about contour’s thickness. We can modulate its width
with respect to an expected frequency due to the scale. So as to

1This could be related to the concept of cone of influence [21]
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Line Edge

Ai

ϕi

3π
2

− 3π
2

π
2

model
linear model

measured

Fig. 8. Modeling of amplitude and phase for ideal lines and edges.

independently dilate the interpolation along and away from the
contour, we consider the orthogonal and parallel coordinates:

x⊥ = [cos θ0 sin θ0]x (35)
x‖ = [− sin θ0 cos θ0]x (36)

The modulation of the contour width is controlled by the
following dilation rule depending on the ratio between the
measured and expected local frequencies:

x⊥ ← x⊥
ν0
νref

νref =

{
0.95π/2i−1 for lines
0.69π/2i−1 for edges (37)

Now the envelope can be lengthened in the direction parallel
to the contour so as to properly join between maxima chaining
along an amplitude ridge. The proposed lengthening rule is:

x‖ ←
{
|x‖| − l if |x‖| > l
0 otherwise l = c16×0.35×2i−1 (38)

The envelope is then maintained at its maximum value in the
interval [−l; l], and decays outside. We set l as half the clean-
ing radius (Section III-B1), weighted by the coherence. This
value allows proper junction between maxima. The coherence
weighting term c16 reduces the lengthening for less directional
cases. Interpolated amplitude can finally be computed as:

A(x) = A0 g
(
‖(x‖, x⊥)‖

)
(39)

with σ = 0.6 × 2i−1. The example on the Fig. 7 shows well
retrieved amplitude ridges, even between maxima, and faithful
thickness thanks to the use of ν.

2) Interpolating the phase: The most obvious interpolation
method for the phase data is based on the linear model:

ϕ(x) = ϕ0 + ν0x⊥ (40)

However, as seen in section III-A, the observed behavior of
the phase actually fits the linear model in the closer neighbour-
hood, but shows an exponential-like behavior further away, and
tends to some ±π/2 constant. The asymptote ϕ0+K = ±π/2
(modulo 2π) experimentally verifies:

K =

{
sgn(ν0)

(
π
2 (2bq/2c+ 3)− ϕ0

)
if x⊥ ≥ 0

sgn(ν0)
(
π
2 (2dq/2e − 3)− ϕ0

)
if x⊥ < 0

(41)
with q = round(ϕ0/(π/2)). We thus propose the following
exponential phase model, defined to have a slope at the origin

close to ν and to reach the asymptote K on both sides:

ϕ(x) = ϕ0 +K

(
1− e|x⊥| log2

(
1− |ν0|K

))
(42)

The lower part of the Fig. 8 shows how both phase models
fit the measured phase values. The exponential model will be
used in the subsequent experiments.

3) Interpolating the other features: All other features are
considered constant over the whole neighbourhood of the
maximum. This includes orientation θ, and ellipse parameters
(λ, α1, α2, α3). We have observed no experimental issue due
to this very simple aspect of the method. This is a main
advantage of representing an image by its monogenic maxima:
most features are very consistent.

4) Using the synthesis filterbank: When all the monogenic
coefficient have been interpolated, the last step is to call
the synthesis filterbank. The redundancy factor of the set of
color monogenic wavelet coefficients is 9 times the number
of scales, which is quite important. The advantage of this
redundancy is that the synthesis filterbank intrinsically per-
forms some regularization, by projecting our artificial set of
coefficients onto the set of feasible wavelet transforms. This
property is used in the literature to iteratively approach the
best fit between the known maxima and the possible wavelet
transforms. In the present work, it is used only once, because
we focused on a direct high quality interpolation.

V. EXPERIMENTAL VALIDATION OF THE REPRESENTATION

After having defined the feature extraction and a full re-
construction method, this last section aims at evaluating the
quality of the proposed keypoint-based representation, in order
to confirm the “color Marr conjecture”, and to characterize the
information carried by the features. We focus on partial recon-
structions, which quality is expected to gradually increase with
the number of maxima. Comparison is made with channel-wise
(“marginal”) use of the classical Mallat-Zhong method, and an
illustrative preliminary denoising experiment is shown.

A. Examples of reconstruction

For this type of work the subjective quality assessment is
most important. Nevertheless, some insight can be gained from
the use of objective algorithmic quality measures. While many
methods are known for greyscale images (PSNR, SSIM. . . ) we
found only one usable source code for color quality assess-
ment: The DSSIM measure [17]. This tool is an advanced
multiscale color extension of the classical SSIM based on the
L*a*b color space. It equals 0 when the image is identical to
the reference, and increases as the quality degrades.

Partial reconstructions from our monogenic maxima are
shown on Fig. 9-(b,c,d). The main observation is that a visually
very good reconstruction is obtained with about 12000 maxima
(Fig. 9-(b)), while the original image contains about 200000
color pixels. Note that the low-frequency band is very coarse,
ensuring that the contour information is actually carried by the
maxima. Color and shape of all contours are properly retrieved.
The dim shadow-like artifacts around the hat and shoulders
are due to coarse scale interpolation bias, that do not really
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Original Reconstruction with the proposed method (5 scales) Reconstruction with the Mallat-Zhong method (4 scales)

12 085 maxima 3 482 maxima 2042 maxima 33 347 maxima 22 389 maxima 16 575 maxima
(132 935 numbers) (38 302 numbers) (22 462 numbers) (133 388 numbers) (89 556 numbers) (66 300 numbers)

dssim: 0.0164 dssim: 0.0185 dssim: 0.0220 dssim: 0.0161 dssim: 0.0281 dssim: 0.0452

(a) (b) (c) (d) (e) (f) (g)
Fig. 9. Reconstructions based on 5-scale monogenic maxima and 4-scale channel-wise Mallat-Zhong method. Lower rows: zoomed areas.

Original 30 227 maxima Original 18191 maxima
“nature” dssim 0.0433 “sailing” dssim 0.0218

Fig. 10. Reconstructions with the proposed method on 5 scales.

compromise the overall quality. At this stage we can say that
it is possible to reconstruct a color image based on a point-
wise description of its contours. The Fig. 10 shows some other
examples of reconstruction, validating the hypothesis of the
paper. Now let us verify the consistency of the representation.

Sorting the maxima by descending amplitude and keeping
the highest ones recovers simplified reconstructions, see Fig. 9-
(c,d). See how the details progressively vanish while main
elements remain, with no particular artifact.

Note that in spite of our interest for compactness, this
work is not intended to perform any compression algorithm.
Such methods require non-redundant transforms, optimized
quantization, entropy coding etc. which is out of the scope
of this paper.

B. Partial reconstruction: Comparison with existing method

A related work can be found in [5], proposing a monogenic
extension of the image reconstruction from edges. However,
the approach is very different from the present paper. Like in
[22], [25], [31], it is based on constrained optimization and
limited to greyscale images. The reconstruction acts on the
Cartesian coordinates, while we have focused on the physical
interpretation of the features in terms of local descriptors. We

believe that our approach is necessary for a color extension
that surpasses the marginal method (Channel-wise analysis).

Yet, in order to provide some intuition about the relation
with existing methods, we choose to compare with the state-
of-the-art reference Mallat-Zhong maxima representation [22].
This greyscale tool can be used for color images in two ways.
Either the image is restricted to its luminance, then no color
can be retrieved, and some isoluminant contours may disap-
pear; or the tool is applied channel-wise (marginally). The
latter method produces 3 sets of gradient-like maxima, one by
color channel. Their amplitude is defined as the gradient norm,
so that we can sort them as we did above. Note that keeping
n maxima implies 4n coefficients with the Mallat-Zhong
method (two gradient values plus two spatial coordinates), and
11n with our method (9 features plus two coordinates). We
must compare regarding the equivalent number of coefficients
instead of the actual number of maxima. The number of scales
is considered so that the low-frequency component contains an
equivalent amount of information in both methods. We use 5
monogenic scales and only 4 Mallat-Zhong scales, which in
both cases implies a very coarse residual, like out of a strong
Gaussian smoothing. The reconstructions with the Mallat-
Zhong method are displayed on the Fig. 9-(e,f,g). By using
the same amount of data as for reconstruction (b), we obtain
a globally comparable quality (e). But comparing the zoomed
areas on (b) and (e), the Mallat-Zhong method raises the
famous false color issue (see the green and red pixels around
the eye, (e) zoomed area) while our method is totally stable
regarding color. The shadow-like artifacts also look stronger.
The advantage of the proposed approach becomes obvious
when decreasing the number of maxima. Comparing (c) vs.
(f) and (d) vs. (g), the marginal Mallat-Zhong method shows
more and more false colors as well as horizontal and vertical
strong artifacts due to its separable design, whereas our method
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Fig. 11. Trade-off between reconstruction quality (y-axis) and maxima data
size (x-axis). The LEGO image from Fig 9 (a) is used. The circled points
indicate the examples shown on Fig. 9.

remains stable. Furthermore, the Mallat-Zhong method turns
out to require much more maxima than the proposed method,
which is more compact thanks to a better encoding of the color
information and the cleaning procedure (Sec. III-B1).

Let us now make a more objective comparison by using the
DSSIM quality measure. The Fig. 11 shows the progression
of the quality according to the amount of maxima (number
of coefficients). Both 4-scale and 5-scale settings are shown
to avoid ambiguities about the contribution of the LF band.
These curves clearly show the superiority of our method in
terms of sparsity i.e. better content can be retrieved with far
less coefficients. The reference Mallat-Zhong method is yet
able to reach, with a very large number of maxima, a better
overall quality; while the proposed approach quickly tends to
a limited quality that will not be improved by adding more
and more data (even when disabling the cleaning procedure).

Our color monogenic maxima representation reveals itself a
sparse way to describe color images based on a set of keypoint-
like feature sets. The sparsity could further be improved by
exploiting the redundancy within the maxima themselves,
especially their expected significant cross-scale correlation.

C. Color Monogenic maxima and Rotation

Let us here illustrate the robustness of features against dis-
crete rotation, by using the monogenic maxima representation
to rotate a discrete color image. The visual content is described
by local descriptors (maxima) with explicit x− y coordinates
and θ orientation, so the simple modification of these values
should rotate the whole image. More precisely, rotating the
image by an angle α around a central point (xc, yc) implies
to modify its monogenic maxima as:

θ ← θ + α (43)[
x
y

]
←

[
xc
yc

]
+

[
cosα − sinα
sinα cosα

] [
x− xc
y − yc

]
(44)

The values are not required to be integral thanks to the subpixel
accuracy of our maxima representation. Note that if θ + α
is pushed outside [−π/2;π/2], ϕ and α3 must be shifted
accordingly (see Appendix). In parallel, the low-frequency
component can be trivially rotated with classical cubic spline
interpolation. The Fig. 12 shows an example with α = π/8,
with a 5-scale monogenic decomposition. The image on the

Fig. 12. Image rotation by coordinate change of the maxima on 5 scales.
Upper row: Original and reconstructed. Lower row: zoomed regions.

left shows the reconstruction from original maxima, while this
on the right shows the reconstruction after having modified
(x, y) and θ in every maximum. This maxima-based rotation is
visually coherent. Note that the reconstruction artifacts present
in the regular reconstruction (dark shades around the hat. . . )
are equally reproduced in the rotated version, which shows the
stability of the representation. Here the rotation covariance
of the monogenic analysis is a crucial ingredient, and this
experiment confirms the stability of our representation with
respect to rotation changes.

D. Color denoising

To conclude the paper, let us open a lead towards using
monogenic maxima for image denoising. Not competing with
the already existing powerful state of the art methods [4], this
section aims at illustrating how our representation allows for
selecting important information as well as regularizing it. By a
lack of space, we only point out a few details of the algorithm.

Wavelet based denoising generally simply discards small
wavelet coefficients, considered noisy. With the wavelet max-
ima representations and the study of cross-scale dependencies,
denoising methods were pushed further by suggesting to keep
small coefficients being yet related to important contours.
In this work, we propose to go one step further by not
only discarding the noisy maxima, but also regularizing the
remaining ones. This regularization can be driven by the strong
assumptions we have about the color monogenic features.

The first step is to discard low amplitude maxima from
the L-th scale. This basic thresholding is considered sufficient
because the coarsest scale is known to be the least noisy one.
Then we span all the maxima from coarser scale L − 1 to
finest scale 1, and for each one the algorithm is twofold.

First, we decide if the maximum is noisy and has to be
discarded. We keep it if it has a parent maximum in the coarser
scale, and if their two color axes (α1, α2) are similar.

Second, when the maximum has been kept, its features are
regularized with respect to its parent. If it is positioned on the
same point as its parent, phase and orientation are replaced by
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Noisy image Proposed method Channel-wise method

Zoom on the belt Zoom on the collar

Proposed Proposed

Channelwise Channelwise

Fig. 13. Monogenic maxima-based denoising compared to channel-wise Mallat-Zhong based method. Right hand side: zoomed areas.

their coarser values. If the parent is relatively shifted (“jump”),
the phase is rounded to the closest multiple of π/2 so as to
enhance the corresponding line or edge. In both cases, the 4
ellipse parameters are updated with the values from the parent.

An example is given on the Fig. 13. The image is corrupted
by an additive white Gaussian noise with σ = 0.15, and the
denoising algorithm is run on 4 scales. It can be seen that the
noisy regions have been highly smoothed while preserving the
contours, with efficient color retrieval. There is no false color
in spite of a highly non-linear method. This is due to the
construction of a true multi-channel extension, instead of the
separate channel-wise use of a greyscale tool.

For comparison, we propose a similar experiment based
on the channel-wise use of the Mallat-Zhong representation.
Since the color features are unavailable, cross-scale linking is
based on comparing the orientation feature, and regularization
is done on the gradient norm. The Fig. 13 (Third image and
right-hand side lower row) shows the expected annoying false
colors at many locations. See the orange-green artifacts around
the eyes and the collar (zoomed areas). Noisy colors are also
present around most contours, contrary to the proposed version
which clearly benefits from the regularization of the color
axis (α1, α2). The marginal method fails again to handle the
color information, while the proposed method provides more
adapted complementary shape and color features, as well as
more advanced maxima connnections.

VI. CONCLUSION

In this article, we expanded the wavelet maxima represen-
tation developed by Mallat and Zhong [22]. The key concept
is the color monogenic wavelet maxima representation, which
includes innovative algorithms for the maxima selection and
the interpolation of features. We showed that multiscale color
contours can be detected and characterized from the maxima
of our color monogenic wavelet transform.

The reconstruction algorithm that is proposed directly in the
feature domain recovers a close approximation of the original
image. We conducted a number of reconstruction experiments
by using this new technique with color images. The new
reconstruction method based on monogenic features appears
excellent in preserving contours and color information. We

have illustrated that the properties of a color image can be
modified by processing its color monogenic features, which
confirms the here proposed “color Marr conjecture”: It is
possible to reconstruct a color image based on its contour
information, thanks to the monogenic maxima features.

Future work includes studying the cross-scale evolution of
features, which could bring substantial improvements in terms
of sparsity and for any applicative work. We are also working
on color image indexing/retrieval application.

APPENDIX
UNWRAPPING OF ANGLES

The elliptical monogenic representation contains several
circular features, implying the handling of angle wrapping,
which is explained here for the case of 3-valued 2d signals.

A. Orientation

The first wrapping effect comes from the spatial orientation
θ. Its “double-angle” computation from the structure tensor
makes no difference between opposite directions u and −u,
and wraps θ in [−π/2;π/2]. Unstable “π-shifts” may occur
in areas where θ ≈ ±π/2. When comparisons have to be
made in such a neighbourhood, the “opposite” θ samples
must be π-shifted back towards the central reference sample,
which unwraps them to [−π;π]. This artificial shift turns the
whole analysis in the opposite direction, so that the eq. (22)
becomes its conjugate value (since R−u = −Ru). The ellipse
parameters must then be updated according to:

(s+ jRus)← (s+ jR−us) ⇔
θ ← θ + π
ϕ← −ϕ
α3 ← α3 + π

(45)

This corresponds to inverting the phase, and tilting the ellipse
by 180◦ around its major axis (so that e⊥ ← −e⊥).
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B. Ellipse angles

Once the orientation is unwrapped and the corresponding
ellipse parameters updated accordingly, we have:

( ϕ α1 α2 α3 )
≡ ( ϕ α1 + π −α2 + π α3 + π )
≡ ( ϕ+ π α1 + π −α2 −α3 )
≡ ( ϕ+ π α1 α2 + π π − α3 )

(46)

for which s+ jRus remains identical with respect to eq. (22).
In [27], the color axis is arbitrarily chosen to lie in the half
space where α1 and α2 are in [−π/2;π/2]. When computing
the features from the Cartesian coefficients, the above equiv-
alences are used to update ϕ and α3.

For the computation of the local frequency ν, we need the
phase ϕ to be properly unwrapped, while the other angles -
assumed locally constant - are “free of π-shifts”. We propose
the following procedure:
• Get the reference angle values from the central samples;
• If θref ≈ ±π/2, detect π-shifts in the neighbourhood and

update (θ, ϕ, α3);
• Do the same for α1 and α2 by choosing the proper line

from eq. (46), and update ϕ and α3.
Note that α3 ∈ [−π;π] is not wrapped. The last step is to wrap
back the neighbouring phase samples ϕ in [ϕref −π;ϕref +π]
by classical 2π-shifts, so that they lie around the central value.
The phase samples are now comparable one another and can
be differentiated for local frequency computation.
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[17] K. Lesiński. Source code for color multiscale SSIM image quality
measure. https://kornel.ski/dssim, 2017.

[18] M. Lillholm, M. Nielsen, and L.D. Griffin. Feature-based image analysis.
Int’l J. of Comp. Vis., 52(73), 2003.

[19] J. M. Lilly. Modulated oscillations in three dimensions. IEEE Trans.
Signal Process., 59(12):5930–5943, 2011.

[20] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
Int’l J. of Comp. Vis., 60(2):91–110, 2004.

[21] S. Mallat. A Wavelet Tour of Signal Processing, Third Edition: The
Sparse Way. Academic Press, 3 edition, Dec. 2008.

[22] S. Mallat and S. Zhong. Characterization of signals from multiscale
edges. IEEE Trans. Pattern Anal. Mach. Intell., 14(7):710–732, 1992.

[23] D. Marr. Vision. W. H. Freeman and Company, New York, 1982.
[24] M. N. Nabighian. Toward a three-dimensional automatic interpretation

of potential field data via generalized Hilbert transforms: Fundamental
relations. Geophysics, 49(6):780–786, 1984.

[25] P. Pad, V. Uhlmann, and M. Unser. Maximally localized radial profiles
for tight steerable wavelet frames (preprint). IEEE Trans. Image
Process., 2016.

[26] J. Portilla and E. P. Simoncelli. A parametric texture model based on
joint statistics of complex wavelet coefficients. Int’l J. of Comp. Vis.,
40(49), 2000.
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