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Tools for Robustness in Dynamic Dial-a-Ride
Problem

Samuel Deleplanque1 and Alain Quilliot1

LIMOS CNRS Laboratory, LABEX IMOBS3, Clermont-Ferrand 63000, France

Abstract. The Dial-a-Ride Problem (DARP) models an operation re-
search problem related to the on demand transport. This paper intro-
duces one of the fundamental features of this type of transport: the ro-
bustness. This paper solves the Dial-a-Ride Problem by integrating a
measure of insertion capacity called Insertability. The technique used is
a greedy insertion algorithm based on time constraint propagation (time
windows, maximum ride time and maximum route time). In the present
work, we integrate a new way to measure the impact of each insertion
on the other not inserted demands. We propose its calculation, study its
behavior, discuss the transition to dynamic context and present a way
to make the system more robust.

1 Introduction

Today, the Dial-a-Ride Problems are used in transportation services for elderly
or disabled people. Also, the recent evolution in the transport field such as
connected cars, autonomous transportation, and the emergence of the shared
service might need to use this type of problem at much larger scales. But this
type of transport is expensive and the management of the vehicles requires as
much efficiency as possible, however the number of requests included in the
vehicles planning can vary depending on the resolution used.

In [15], we solve the DARP by using constraint propagation in a greedy
insertion heuristic. This technique obtains good results, especially in a reactive
context, and is easily adaptable to a dynamic context. But, each demand is
inserted one after another and the process does not take into account the impact
of each insertion on the other not inserted demands, and so, in a dynamic context,
the future demands. In this work, we present a measure of an insertion capacity
named Insertability.

We introduce its calculation by integrating indirectly the impact of an inser-
tion on the time constraints (time windows, maximum route time and maximum
ride time) of the other demands.

This measure may be used in different steps of the resolution: selection of
the demand to insert, selection of the insertion parameters, taking the decision
to exclude a demand, and in the process making the service time. These four
uses may be related to static as well as dynamic contexts. The main goal is to
insert the current demand in a way to create routes which will be able to insert
the future demands.



This paper is organized in the following manner: after a literature review, the
next section will propose a model of the classic DARP. Then, we will review how
to handle the temporal constraints with a heuristic solution based on insertion
techniques using propagation constraints. We will continue by explaining the
way to measure the Insertability, a calculation based on the evolution of the time
windows after an insertion. Then, we will give some other uses of this measure
including the setting of the service times which minimize the time windows (cf.
Figure 1). In the last part of the paper, the computational results will show the
efficiency of our Insertability ’s measure and we will report the evolution of the
number of demands inserted in a resolution of some instances’ sets.

Fig. 1. Times windows contraction

2 Literature review

The first works of the transportation optimization problem are related to the
Traveling Salesman Problem ([9]). Since that time, other transportation prob-
lems have emerged as the vehicle routing and scheduling problems, and also the
Pick-up and Delivery Problem (PDP). Based on the PDP, the DARP which has
been studied since the 1970’s. The Dial-a-Ride problem is related to the on de-
mand transportation which is more often manage in a dynamic context, unlike
the PDP.

There are a number of integer linear programmings [6], but the problem
complexity is too high for using it in a real context. Indeed, it is an NP-Hard
because it also generalizes the Traveling Salesman Problem with Time Windows
(TSPTW). The optimal solution can be find only for small instances [8]. There-
fore, and more specially for the dynamic context, the problem must be handled
through heuristic techniques.

For the static DARP, [4] is an important study on the subject. In this work,
they use the Tabu search metaheuristic to solve the problem. Starting from an
initial solution, the resolution process moves from a solution to another in a
neighborhood. The operator which executes these moves will take a demand
already assigned to vehicle k and insert it in another vehicle k′. The Tabu list
saves each application of the operator in order to avoid cycling. The insertion



parameters of the demand (for the origin and the destination) are chosen in order
to minimize the total distance. They don’t take in account all the constraints
of the DARP during the process. They reach a feasible solution by integrating
penalties in the performance criteria.

Other techniques are efficient for the static DARP. Dynamic programming
(e.g. [10] and [3]) or variable neighborhood searches (VNS) (e.g. [11] and [12])
gived good solutions.

A basic feature of DARP is that it usually derives from a dynamic context.
Therefore, algorithms for static DARP should be designed in order to take into
account the fact that they will have to be adapted to dynamic and reactive
contexts, which means synchronization mechanisms, interactions between the
users and the vehicles, and uncertainty about for-coming demands ([7]).

[13], and [14] later, developed the most used technique in dynamic context or
in a real exploitation is heuristics based on insertion techniques. These techniques
give good solutions even if the people’s requests have to be taken into account
in a very short period of time.

[1] adapt the Tabu search of [4] to the dynamic DARP and a parallel en-
vironment. Indeed, each replication is independent in order to be executed on
different CPU cores ([1]). In fact, the operator moving from a solution to another
uses simple insertion technique. Other recent works are made on the dynamic
Dial-a-Ride problem, and in particular about the problems of reactivity. For in-
stance, in [2], they develop an algorithm able to take in account requests in real
time. The requests are given directly to the driver, thus the decision is made
immediately. Therefore, they describe the resolution process launched each time
a new request appears in the system.

3 Mathematical model

We first introduce the standard mathematical model for a single criterion DARP.
The objective here is the minimization of the total distance. The DARP is defined
by a transit network G = (V,E), which contains at least two nodes Depot (depar-
ture and arrival), and whose arcs e ∈ E are endowed with riding times equal to
the Euclidean distance between two nodes of V , i and j, DIST (i, j) ≥ 0. A fleet
VH of K vehicles k with a capacity CAP and a Demand set D = (Di, i ∈ I). Any
demand (or request) Di is defined as a 6-uple Di = (oi, di, Di, F (oi), F (di), Qi),
where:

– oi ∈ V is the origin node of the demand Di and the set of all the oi is DE .
di ∈ V is the destination node of the demand Di and all the di are gathered
in AR;

– F (oi) and F (di) are respectively the time windows for oi and oi of the
demand Di. F .MIN and F .MAX are the two bounds of a window;

– ∆i ≥ 0 is an upper bound on the ride time of the demand i;

– Qi is the Di’s load such that qoi = Qi = −qdi .



We denote by tkx the time at which the vehicle k begins service in x, x ∈ V .
Also, δj , j ∈ V , is the non-negative service time necessary at the node j and ∆k

is the maximum route time for the vehicle k.
Then, we consider in G = (V,E) all the nodes corresponding to the oi ∈ V

and di ∈ V such that V = DE ∪AR ∪ {0, 2 |D|+ 1} with {0, 2 |D|+ 1} the two
depot nodes respectively for the departure and the arrival, oi ∈ {1.. |D|}, and
di ∈ {(|D|+ 1)..(2 |D|)}. Moreover we denote by V ′ the set V without the depot
nodes (i.e. V ′ = DE ∪AR) and by ζkj the total load of the vehicle k leaving the
node j, j ∈ V .

Dealing with such an instance means planning the handling demands of D,
by the fleet VH , while taking into account the constraints which derive from the
technical characteristics of the network G, of the vehicle fleet VH , and of the 6-
uples Di = (oi, di, Di, F (oi), F (di), Qi), and while optimizing some performance
criterion which is usually minimizing the total distance or a mix of an economical
cost (point of view of the fleet manager) and of QoS criteria (point of view of
the users).

Let xkij a boolean equals to 1 if the vehicle k travels from the node i to
the node j. Then, based on [5], the mathematical formulation is the following
mixed-integer program :

Min
∑
k∈K

∑
i∈V

∑
j∈V

DIST (i, j)xkij (1)

subject to

∑
k∈K

∑
j∈V ′

xkij = 1,∀i ∈ V ′ (2)

∑
j∈V ′

xkij −
∑
j∈V ′

xk|D|+i,j = 0,∀i ∈ DE , k ∈ K (3)

∑
j∈DE

xk0j = 1,∀k ∈ K (4)

∑
j∈V ′

xkji −
∑
j∈V ′

xkij = 0,∀i ∈ V ′, k ∈ K (5)

∑
i∈AR

xki,2|D|+1 = 1,∀k ∈ K (6)

tkj ≥ (tki + δi + DIST (i, j))xkij ,∀i ∈ V, j ∈ V, k ∈ K (7)

ζkj ≥ (ζki + qj)xij ,∀i ∈ V, j ∈ V, k ∈ K (8)

DIST (i, |(D)|+ i) ≤ tk|(D)|+i − (tki + δi) ≤ ∆i, i ∈ DE (9)

F .MIN i ≤ tki ≤ F .MAX i,∀i ∈ V, k ∈ K (10)

tk2|D|+1 − t
k
0 ≤ ∆k,∀k ∈ K (11)



ζki ≤ CAPk (12)

xkij ∈ {0; 1}, t ∈ R+ (13)

The program above is a three index formulation (report to [5] for more expla-
nations about the objective function (1) and the constraints (2)-(13)), it exists
in literature several other mathematical formulations for the DARP, even some
with two index formulation [6]. But, the complexity of all these linear programs
doesn’t allow finding an exact solution with a solver, the operation is too time
consuming.

All along this work, we are going to deal with homogeneous fleets and with
nominal demands, and we shall limit ourselves to static points of view but our
insertion process allows flexibility for using it in a dynamic context. Still, we
shall pay special attention to cases when temporal constraints are tight.

4 A greedy insertion algorithm

This section explains the techniques used to solve a static DARP instance. In
our framework, the routes are saved in lists Γk surrounding by two depot nodes
(one for the departure on the other for the arrival) with k a vehicle of the fleet
V H (cf. Figure 1). For any sequence (or list) Γk we set:

– for any z in Γk, Succ(Γk, z) = Successor of z in Γk and Pred(Γk, z) =
Predecessor of z in Γk ;

– for any z, z′ in Γk, z �k z
′ if z is located before z′ in Γk and z �=

k z′ if
z �k z

′ or z = z′.

We also defined the Twin function such that, for any node oi (respectively
di) which appears in Γk, the node Twin(oi) = di (and Twin(di) = oi). The twin
of a depot node is the other depot node in the same list.

In [15], we present an insertion greedy algorithm based on constraint prop-
agation in order to contract time windows according to the time constraints of
the DARP.

An insertion which does not imply constraint violation is said valid if Γ =
∪k∈KΓk, the resultant collection of routes, if load-valid and time-valid. A route
is load-valid if the capacity is not exceed, so, the load-validity is obtained if
ChT k(x) ≤ CAP with ChT k(x) =

∑
y�=

k x
qy, x and y nodes in the route k. The

time-validity is obtained if there is no violation of the time constraints modeling
by, for each demand i, i ∈ D, ∆i the maximum ride time, ∆k, k ∈ K the
maximum route time and the constraints modeled by each time window F (oi) =
[F .min(oi),F .max (oi)] and F (di) = [F .min(di),F .max (di)]. The service time δj
of each node j ∈ V and origin of an arc e ∈ E is added in the DIST matrix, but
without considering the departure depot nodes. Checking the load-validity on
Γ = ∪k∈KΓk is easy, and we show the efficiency of the constraint propagation in
order to prove to time-validity after each planned insertion once the load-validity
is proved. According to a current time window set FP = {FP(x) = [ FP.min(x),



FP.max(x)], x ∈ Γk, k = 1..K} the time-validity may be performed through
propagation of the five following inference rules Ri, i = 1..5 in a given route Γk:

for each (x,y) pair of nodes such that y = Succ(Γk, x):

– R1 :

FP .min(x) + DIST (x, y) > FP .min(y)

|=
(FP .min(y)← FP .min(x) + DIST (x, y)); (FNodeModif ← y)

– R2 :

FP .max (y)−DIST (x, y) < FP .max (x)

|=
(FP .max (x)← FP .max (y)−DIST (x, y)); (FNodeModif ← x)

if (y = Twin(x)) and (x�Γ y):

– R3 :

FP .min(x) < FP .min(y)−∆i

|=
(FP .min(x)← FP .min(y)−∆i); (FNodeModif ← x)

– R4 :

FP .max (y) > FP .max (x) +∆i

|=
(FP .max (y)← FP .max (x) +∆i); (FNodeModif ← y)

and for each x, x ∈ Γk, k = 1..K:

– R5 : FP .min(x) > FP .max (x) |= REJET ← true.

These 5 rules are propagated in a loop while there no time windows exists
FP modified at the last iteration, i.e. once FNodeModif is empty. In the R3
and R4 rules, the ’∆i’ is replaced by ’∆k’ if the pair of nodes (x,y) are depots.
The tour Γk, k = 1..K, is time-valid according to the input time window set FP
if and only if the REJET Boolean value is equal to false as initialized at the
beginning of the process. In such a case, any valid -time value set t related to Γk
and FP is such that: for any x in Γk, t(x) is the service time in FP(x).

The greedy insertion algorithm includes this propagation constraint tech-
nique in order to evaluate each possible insertion. Each iteration of the algorithm
selects one demand according to the number of vehicle able to integrate it. Once
a demand is selected, the process chooses the best insertion’s parameters that
are the vehicle and the location of the origin and destination nodes. These pa-
rameters are chosen according to the smaller evolution of the routes costs (like
the total distance in the mathematical model). The selection of the demand and



the parameters are made in a non-deterministic way (among a small set of the
best variables). Then, we are allowed to include our process in a Monte Carlo
scheme. The Figure 2 summarizes the general algorithm with P the number of
replications resolving a DARP instance.

Fig. 2. The Monte-Carlo Process

5 Insertability optimization

In the above algorithm, each iteration selects a demand, and then, it finds the
way to insert while minimizing the total cost. This greedy algorithm does not
take in account the impact of this actual insertion on the future demands inte-
gration, but only the effect on the demands already inserted. In this section, we
introduce a Insertability calculation by integrating this impact of an insertion re-
lated to the time constraints (time windows, maximum ride time and maximum
route time).

During the insertion process, the state of the system is given by:

– a set of demands D−D1 already integrated in the routes, and D1 is the set
of demands not inserted,

– a collection Γ = ∪k∈KΓk of routes including a list of nodes related to the
Depot, origin and destination nodes,



– a exhaustive list of insertion’s parameters sets. Each set gathers 5 elements
: k the vehicle, i the demand, (x, y) the pair of insertion nodes (locating
respectively oi between x and the successor of x, and di between y and the
successor of y), and v the evolution of the collection Γ = ∪k∈KΓk ’s cost.

5.1 The Insertability measure

Given that the difficulty of the instances’ problem is linked to the time con-
straints, we introduce an Insertability calculation related to the times windows
contractions. During an insertion’s assessment, these reductions appear once
the inference rules are propagated. Here, we try to find a good triple (k, x, y),
the vehicle and the location of the origin/destination nodes, in order to give
enough ”time space” to the future demands (which have to be integrated in
Γ = ∪k∈KΓk).

We set INSER(i, Γ ) the Insertability measure of the demand I. The quantity
Ukn(z) denotes the vehicle k time windows’ amplitude of the node n once it has
been inserted to the right of node z. INSER is calculated as follows:

– INSER(i, Γ ) =
∑
k∈K INSER1 (i, Γk) ;

– INSER1 (i, γ) = Max (x,y)INSER2 (i, γ, x, y), γ a tour of Γ ;
– INSER2 (i, γ, x, y) = Uγoi(x).Uγdi(y).

INSER2 is the product of the time windows amplitude resulting to the inser-
tion of the demand i in the scheduling of the tour γ. The origin oi is inserted to
the right of x and the destination di to the right of y. The product was chosen
in order to penalize the Insertability if the time windows of the origin or the
destination is tight and also to have INSER2 equals to zero if one of the two
nodes can not be inserted.

INSER1 gives us the maximum of INSER2 over the possible insertion po-
sitions x and y in the route γ. When INSER1 is equal to 0, the new route γ
resulting to the new insertion is not time-valid.

Finally, INSER makes the sum of all the INSER2 for each vehicle of the fleet
V H. If INSER equals to zero, the demand can not be inserted in all cases.

We set Inserted(Γ, i0, k, x, y) the updated collection of tours Γ with the in-
sertion of the selected demand i0 at the locations x and y in the vehicle k.

The INSER(i, Γ ) measure allows us to write the Optimization Insertability
Problem which consists to find the best insertion parameters in order to keep
the vehicles’ scheduling more flexible (in a sense to let enough possibilities of
insertions for the future demands):

Optimization Insertability Problem.
Find the optimal parameters (k,x,y) inserting i0 and maximizing the value
Mini∈D1−i0INSER(i, Inserted(Γ, i0, k, x, y)).



For instance, the value Mini∈D1−i0INSER(i, Inserted(Γ, i0, k, x, y)) may be
used if all the demands have to be inserted. Another optimization may be process
as the maximization of the sum

∑
i∈D1−i0 INSER(i, Inserted(Γ, i0, k, x, y)). The

choice is made according to the homogeneity of the demands and if the problem
requires to insert all the set D.

This problem only optimizes the variation of the Insertability values and does
not include other performance (or costs) criteria like the minimization of the ride
times, waiting times or distances. The Insertability criterion can be integrated
in a mix of economical cost (point of view of the fleet manager) and of QoS
criteria (point of view of the users). Then, the process maximizes the function
Perf = µ.

∑
i∈D1−i0 INSER(i, Inserted(Γ, i0,k, x, y)) − v(Inserted(Γ, i0,k, x, y))

with µ a criterion coefficient and v the cost value function mixing the costs
related to the both points of view.

5.2 Other uses of the Insertability measure

So far, we select the demand i0 according to the number of vehicles available
(taking in account all the time and load constraints). The Insertability measure
INSER( i0, Γ ) may be also used in order to select the next request i1 to insert.
This application could be used in a context where all the demands of D have
to be integrated. The selection is based on the smallest Insertability measure.
Once a demand is selected, the problem may solve the Optimization Inserta-
bility Problem. Here, the two steps may be written in a non-deterministic way.
The demand may be selected randomly through a set of N1 elements with the
smallest INSER value. The same scheme may be applied on a set of a inser-
tion parameters of N2 elements with a best (k, x, y) elements maximizing the
quantity Mini∈D1−i0INSER(i, Inserted(Γ, i0, k, x, y)).

Also, INSER(i0, Γ ) may be useful for a larger set D. If the instance does
not have any solution integrating all the set D, it is preferable to identify re-
quests to exclude as soon as possible. The exclusion of a demand i0 may be
set up if its insertion results in Γ not enough flexible to include the other ele-
ments of D1 . In other words, the demands excluded will be those that will have
the most impact of future insertions. The difference

∑
i∈D1−i0(INSER(i, Γ ) −

INSER(i, Inserted(Γ, i0, k, x, y))) of the inequality (14) takes in account the In-
serabilty measure of D1 − i0 before and after the insertion of i0 in the routes of
Γ . If this difference is larger than the threshold ξ, the demand is excluded. In
the experimentation’ section, we will discuss the fact this threshold should be
dynamic and decreases over the execution.

∑
i∈D1−i0

(INSER(i, Γ )− INSER(i, Inserted(Γ, i0, k, x, y))) > ξ (14)



5.3 The Insertability optimization suited to the greedy insertion
algorithm

The calculation of INSER(i, Γ ), i ∈ D, begins to be time consuming starting
from a medium size of D, while the INSER2 value is based on the time windows
amplitude obtained after the propagation of the time constraints. Therefore, this
is important to spot each step of the process where the Insertability measure does
not have to be updated. When i0 is selected, INSER2 (i, Γk, x, y), INSER1 (i, Γk)
and INSER(i, Γ ) are known for all demand in D1 − i0 and all k = 1..K. Once
i0 is about to be inserted, the process computed the value H(i), i ∈ D1 − i0 (cf.
formulation (15)). Then, the algorithm tries the insertion of each i from D1 − i0
in Inserted(Γ, i0, k, x, y) and deduce the value K(i) given in formula (16) for all
i ∈ D1 − i0 and ultimately the quantity Val(k, x, y) = Mini∈D1−i0(K(i)+H(i)).

H(i) = INSER(i, Γ )− INSER1 (i, Γk) (15)

K(i) = INSER(i, Inserted(Γ, i0, k, x, y))

= H(i) + INSER1 (i, Inserted(Γ, i0,k, x, y)k) (16)

Other calculations may be avoided. First, we set the variable W1 such that
W1 = Mini∈D1−i0INSER (i, Γ ). If the quantity INSER(i, Γ ) − INSER1 (i, Γk)
is larger than W1, there is no need to test the impact of the insertion of i0 on i.

Finally, we are able to use INSER(i, Γ ) once we integrate the future demands
presented in the next section. In a dynamic context, the Insertability measure
helps the routes to be enough flexible for the next insertion process. Moreover,
the service time have to be set with the same purpose and INSER(i, Γ ) is able
to help to do it.

6 Future demands in the Dynamic DARP

The problem may have to be handled in a dynamic way and the greedy insertion
algorithm is easily adaptable to this context. Once the Insertability measure is
included in the performance criteria, the system may increase its robustness and
we need to exploit knowledge about future demands for that. In our case, this
knowledge is related to the type of on demand transportation service. In this
paper, we will use a simple extrapolation of this probable demand based on the
demand already broadcasted.

We will not take into account the way the system supervises its various com-
munication components with the users. In reality, there are eventual divergences
between the data which were used during the planning phases and the situation
of the system.

We set D-V the virtual demands, D-R the real demands, and D-Rejet the
set of the ones excluded from the insertion algorithm. The D-V formulation is



given in (17). pi gives us the number of times the future demand Df will appear
for each period of each discrete planning horizon.

D-V =
∑
i∈Df

Di.pi (17)

Then, we are able to update the formula (18) giving the performance function
Perf.

Perf = α.
∑
i∈Df

piINSER(i, Inserted(Γ, i0,k, x, y))

+µ.
∑

i∈D1−i0

INSER(i, Inserted(Γ, i0, k, x, y))− v(Inserted(Γ, i0, k, x, y)) (18)

As in the previous sections, the process may exclude some demands taking
in account the future requests. We updated the inequality (14) by the (19). α is
a coefficient based on the importance of the future demands.

α.
∑
i∈Df

pi.(INSER(i, Γ )− INSER(i, Inserted(Γ, i0,k, x, y)))

+
∑

i∈D1−i0

(INSER(i, Γ )− INSER(i, Inserted(Γ, i0, k, x, y))) > ξ (19)

7 Discussion about the service times and the dynamic
context

Most works on vehicle scheduling problems including time window studies how
to integrate a set of demands in the vehicle planning. Making a service time
anticipating the future is especially rare.

Once routes are built and integrated a first set D, the users expect the date
when the vehicle selected will pick them up. In the lists forming the K routes,
each node has a time window. After the service time is set, each time window
becomes tight with zero amplitude or equals a very small delay. How the service
times are made is very important for the next insertion’s process.
For instance, we consider a fleet of 2 vehicles with two schedules made by a first
resolution of the DARP minimizing the total distance. The date of each service
time has already given to the users. Once these dates are created, the system
has to reduce the time windows to 0 like in the Figure 3. While the vehicles
are not already left from the depots, the system needs to integrate one more
demand in a second resolution process. Then, each new demand such as (o6,d6)
will not be able to be inserted. Indeed, for the origin node we have: t(DepotD2)+
DIST (DepotD2, o5) = t(o5) which make the insertion of o6 impossible.

One more time, the INSER(i, Γ ) values may be used in order to set the service
time without to have the problem above. The service time may be calculated



once the process have inserted the virtual demands D-V and the real demands
D-R.

Fig. 3. New insertions after the first set of service times

The previous section shows the way to anticipate the future demands D-V .
These demands are related to a dynamic context. Note again that our greedy
algorithm is easily adaptable to this context. More specifically, the technique
does not change unlike the state of each route. The first node is not a depot
node anymore but a dynamic node related to the vehicle’s location. The entire
constraint propagation process is applied on these new routes. A simulation will
be necessary to evaluate the anticipation of the future demands including in the
dynamic context.

8 Computational Experiments

In this section, we study the behavior of our Insertability measure used in the
resolution of Dial-a-Ride instances. The algorithms were implemented in C++
and compiled with GCC 4.2. In [15], we solve the [4]’s instances by our greedy
insertion algorithm based on constraint propagation. We obtained good results
in the majority of instances, but, only 1% of the replications gave us a feasible
solution on the tenth instance (R10a). The CPU time was smallest or equal to the
best times in the literature; we do not work on this feature for this experiment.

8.1 First experimentation: the optimization of the selection of the
demand to insert

INSER used in the selection of a demand We note by RDARP the rate of
100 replications which give us a feasible solution obtained by using the solution
of [15]. Here, the selection of the demand is based on the lowest number of cars



which are able to accept it. RDARP
Rob is the rate obtained with the same process

except that each demand is selected at each iteration by the lowest Insertability
value INSER.

The Insertability measure is already efficient once it’s used in the selection
of the demands to insert. The rate obtained for the pr08, pr09, pr10 and pr19
are clearly more interesting as shown in table 1 (e.g. for the instance pr08, the
rate increases by 56% to 91% of success).

Inst. RDARP RDARP
Rob

pr01 99 100
pr02 100 100
pr03 97 100
pr04 100 100
pr05 100 100
pr06 100 100
pr07 90 96
pr08 56 91
pr09 18 21
pr10 1 7
pr11 100 100
pr12 100 100
pr13 99 100
pr14 100 100
pr15 100 100
pr16 100 100
pr17 98 100
pr18 99 100
pr19 64 99
pr20 43 56

Av. 83,2 88.5

Table 1. RDARP Vs RDARPRob

INSER behaviour Each time a replication cannot integrate all the request, the
INSER value of the demands not inserted has to be null. In Figure 4, while the
resolution process applied to the R10a instance, we note the evolution of more
than 4500 INSER’s demands not inserted. The technique used is the second
approach selecting the demand by the smallest Insertability. The values noted
are from a failed replication.

One can observe big gaps between the different INSER until the 4000 first
values. After that, for the remaining requests, the Insertability values decrease
strongly because the routes begin to be not flexible. Between the 2500th and the
3500th , for some demands, the values are very low at the beginning just before
increasing strongly. This is explained by the fact the process inserts the demand
with the lowest INSER but their insertion do not make a big impact on the other



Fig. 4. INSER values on the not inserted demands

demands not inserted. This impact is related to the Optimization Insertability
Problem studied below.

8.2 Second experimentation: the optimization of the insertion
parameters

In a second experimentation, we compare the [15]’s approach and another algo-
rithm based on the optimization of the parameters (x,y,k). The selection of the re-
quest to insert is the same for both solutions. For the second one, once a demand
i0 is selected, we maximize the sum

∑
i∈D1−i0 INSER(i, Inserted(Γ, i0, k, x, y))

in order the find the best parameter (x,y,k) which will integrate i0 in the route
k. We do not optimize Mini∈D1−i0INSER(i, Inserted(Γ, i0, k, x, y)) because we
create instances especially with a set D too large for inserting all the requests.
Therefore, the demand with the smallest value INSER for a given parameters
(x,y,k) could never be integrated into the routes.

The two algorithms were applied to five sets of 5 randomly generated in-
stances. All the instances have their time constraints related to the interval
[0;400] and all the load was unit. We set by eF (o) and eF (d) the amplitude of the
time windows at the origin and the destination given by the users, respectively.
The other parameters are given in table 2.

K eF (o) eF (d) ∆ CAP

10 35 10 ∞ 10
Table 2. Parameters’ instances

We generate 5 different sets of 5 instances with a variation of the number
of demands |D|. We set by TInsert and by TInsertRob

the demand inserted’s rate



the first resolution and the second technique, respectively. Finally, GapInsert is
the gap in percentage between each rate. Its calculation is given by GapInsert =
100.(TInsertRob

−TInsert)/TInsert . We launched 100 replications of each technique
on the 5 sets. The results are provided by the table 3.

|D| 50 75 100 150 200

TInsert 100 93.2 78.9 64.2 52.6

TInsertRob 100 96.8 85.3 66.4 54.1

GapInsert 0 3.86 8.11 3.43 2.81
Table 3. Gap between the INSERT rates

In future work, we could integrate the usual performance criterion (like the
total distances) in the Perf value in order to choose each best insertion parame-
ters. Here, we are just taken into account the INSER values in order to integrate
the most requests possible. The results show us that the larger of |D| defines if
the system needs to optimize the Insertability measure. For |D| = 50, all the
requests are able to be inserted easily, so, the INSER values does not have any
interest. When the set is composed of 100 demands, we obtained a GapInsert of
8,11% meaning there are more than 8% more requests inserted by the second
approach.

For this set of instance, we also tried to integrate a new feature in our algo-
rithm: we’ve added the ability to exclude a request if the impact of one insertion
involving a significant drop of the general Insertability’s demands from D1 − i0.
Before that, we study the threshold which limits the variation of Insertability.

i0 is excluded if
∑
i∈D1−i0(INSER(i, Γ )− INSER(i, Inserted (Γ, i0, k, x, y)))

> ξ is true with ξ a threshold. The calculation of the threshold is not easy.
In the figure 8.2, we report Variation which is the difference INSERav −
INSERap with INSERav and INSERap the values

∑
i∈D1−i0 INSER(i, Γ ) and∑

i∈D1−i0 INSER(i, Inserted(Γ, i0, k, x, y)), respectively. This figure shows us that
the threshold ξ have to be calculated dynamically according to the average of
INSER.

We used this type of dynamic threshold for the third set of instances with
100 demands. We exclude an request if the current ξ is exceeded, and only this
feature is added in the second approach. We obtained a gain of 1,3% in average
(from 85,3% to 86,6%) meaning approximately one more demand is able to be
inserted.



Fig. 5. Variation of the Insertability values between each insertion

9 Conclusion

The Dial-a-Ride Problem is one of the transport problems with the highest
number of hard constraints like time windows. The insertion techniques are able
to obtain a good solution in a reasonable time. Their adaptability to a dynamic
context is easy but a lack of robustness could appear once the goal is to integrate
requests as much as possible.

We have introduced a way to measure the impact of each insertion on the
other demands not inserted. This Insertability measure could be used in order
to exclude a demand, to select a demand to insert and also to calculate the
best insertion parameters. This value, named INSER, leads to a large amount of
work opportunities. We have introduced a simple way to make the model of the
future demands, and how to adapt our greedy insertion algorithm based on the
constraint propagation to the dynamic context. In future work, we will develop a
simulation which is necessary to show the efficiency of the demands anticipation.
The final goal will be to adapt these techniques to a real case.
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