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FROM COMPRESSIBLE TO INCOMPRESSIBLE INHOMOGENEOUS FLOWS IN THE CASE OF LARGE DATA

This paper is concerned with the mathematical derivation of the inhomogeneous incompressible Navier-Stokes equations (IN S) from the compressible Navier-Stokes equations (CN S) in the large volume viscosity limit. We first prove a result of large time existence of regular solutions for (CN S). Next, as a consequence, we establish that the solutions of (CN S) converge to those of (IN S) when the volume viscosity tends to infinity. Analysis is performed in the two dimensional torus T 2 , for general initial data. In particular, we are able to handle large variations of density.

Introduction

We are concerned with the following compressible Navier-Stokes system:

(1.1) ρ t + div (ρv) = 0 in (0, T ) × T 2 , ρv t + ρv • ∇v -µ∆v -ν∇div v + ∇P = 0 in (0, T ) × T 2 .

Above, the unknown nonnegative function ρ = ρ(t, x) and vector-field v = v(t, x) stand for the density and velocity of the fluid at (t, x). The two real numbers µ and ν denote the viscosity coefficients and are assumed to satisfy µ > 0 and ν + µ > 0.

We suppose that the pressure function P = P (ρ) is C 1 with P ′ > 0, and that P (ρ) = 0 for some positive constant reference density ρ. Throughout, we set e(ρ) := ρ ρ ρ P (t) t 2 dt.

Note that e(ρ) = e ′ (ρ) = 0 and that ρe ′′ (ρ) = P ′ (ρ). Hence e is a strictly convex function and, for any interval [ρ * , ρ * ], there exist two constants m * and m * so that (1.2) m * (ρ -ρ) 2 ≤ e(ρ) ≤ m * (ρ -ρ) 2 .

The system is supplemented with the initial conditions (1.3) v| t=0 = v 0 ∈ R 2 and ρ| t=0 = ρ 0 ∈ R + .

We aim at comparing the above compressible Navier-Stokes system with its incompressible but inhomogeneous version. The system in question reads (1.4)

η t + u • ∇η = 0 in (0, T ) × T 2 , ηu t + ηu • ∇u -µ∆u + ∇Π = 0 in (0, T ) × T 2 , div u = 0 in (0, T ) × T 2 .
At the formal level, one can expect the solutions to (1.1) to converge to those of (1.4) when ν goes to +∞. Indeed, the velocity equation of (1.1) may be rewritten

∇div v = 1 ν ρv t + ρv • ∇v -µ∆v + ∇P 1
and thus ∇div v should tend to 0 when ν → +∞. This means that div v should tend to be independent of the space variable and, as it is the divergence of some periodic vector field, one must eventually have div v → 0. As, on the other side, one has for all value of ν, ρv t + ρv • ∇v -µ∆v is a gradient, this means that if (ρ, v) tends to some couple (η, u) in a sufficiently strong meaning, then necessarily (η, u) should satisfy (1.4). Hence, the question of finding an appropriate framework for justifying that heuristics naturally arises. Let us first examine the weak solution framework as it requires the minimal assumptions on the data. As regards System (1.1) with pressure law like P (ρ) = a(ρ γ -ργ ) for some a > 0 and γ > 1, the state-of-the-art for the weak solution theory is as follows (see [START_REF] Lions | Mathematical Topics in Fluid Mechanics[END_REF][START_REF] Novotný | Introduction to the mathematical theory of compressible flow[END_REF] for more details):

Theorem 1.1. Assume that the initial data ρ 0 and v 0 satisfy √ ρ 0 v 0 ∈ L 2 (T 2 ) and ρ 0 ∈ L γ (T 2 ). Then there exists a global in time weak solution to (1.1) such that

(1.5) v ∈ L ∞ (R + ; L 2 (T 2 )) ∩ L 2 (R + ; Ḣ1 (T 2 )
) and e(ρ) ∈ L ∞ (R + ; L 1 (T 2 ))

and, for all T > 0,

(1.6)

T 2 1 2 ρ|v| 2 +e(ρ) (T, •) dx + T 0 (µ ∇v 2 2 + ν div v 2 2 ) dt ≤ T 2 1 2 ρ 0 |v 0 | 2 +e(ρ 0 ) dx.
For System (1.4), there is a similar weak solution theory that has been initiated by A. Kazhikhov in [START_REF] Kazhikhov | Solvability of the initial-boundary value problem for the equations of the motion of an inhomogeneous viscous incompressible fluid[END_REF], then continued by J. Simon in [START_REF] Simon | Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure[END_REF] and completed by P.-L. Lions in [START_REF] Lions | Mathematical topics in fluid mechanics[END_REF]. However, to the best of our knowledge, it is not known how to connect System (1.1) to (1.4) in that framework. Justifying the convergence in that setting may be extremely difficult owing to the fact that the key extra estimate for the density that allows to achieve the existence of weak solutions for (1.1) strongly depends on the viscosity coefficient ν , and collapses when ν goes to infinity.

This thus motivates us to consider the problem for more regular solutions. As regards System (1.1) in the multi-dimensional case, recall that the global existence issue of strong unique solutions has been answered just partially, and mostly in the small data case, see e.g. [START_REF] Danchin | Global existence in critical spaces for compressible Navier-Stokes equations[END_REF][START_REF] Kotschote | Dynamical stability of non-constant equilibria for the compressible Navier-Stokes equations in Eulerian coordinates[END_REF][START_REF] Matsumura | The initial value problem for equations of motion of compressible viscous and heat conductive gases[END_REF][START_REF] Mucha | The Cauchy problem for the compressible Navier-Stokes equations in the LpLp -framework[END_REF][START_REF] Mucha | On a Lp -estimate for the linearized compressible Navier-Stokes equations with the Dirichlet boundary conditions[END_REF][START_REF] Mucha | Global existence of solutions of the Dirichlet problem for the compressible Navier-Stokes equations[END_REF][START_REF] Valli | Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case[END_REF]. For general large data (even if very smooth), only local-in-time solutions are available (see e.g. [START_REF] Danchin | Local theory in critical spaces for compressible viscous and heat-conductive gases[END_REF][START_REF] Nash | Le problème de Cauchy pour les équations différentielles d'un fluide général[END_REF]).

The theory of strong solution for the inhomogeneous Navier-Stokes system (1.4) is more complete (see e.g. [START_REF] Danchin | A Lagrangian approach for the incompressible Navier-Stokes equations with variable density[END_REF][START_REF] Ladyzhenskaya | Unique solvability of an initial and boundary value problem for viscous incompressible inhomogeneous fluids[END_REF][START_REF] Huang | Global well-posedness of incompressible inhomogeneous fluid systems with bounded density or non-Lipschitz velocity[END_REF][START_REF] Li | Local existence and uniqueness of strong solutions to the Navier-Stokes equations with nonnegative density[END_REF]). In fact, the results are roughly the same as for the homogeneous (that is with constant density) incompressible Navier-Stokes system. In particular, we proved in [START_REF] Danchin | The incompressible Navier-Stokes equations in vacuum[END_REF] that, in the two-dimensional case, system (1.4) is uniquely and globally solvable in dimension two whenever the initial velocity is in H 1 and the initial density is nonnegative and bounded (initial data with vacuum may thus be considered).

It is tempting to study whether those better properties in dimension two for the (supposedly) limit system (1.4) may help us to improve our knowledge of System (1.1) in the case where the volume viscosity is very large. More precisely, we here want to address the following two questions:

• For regular data with no vacuum, then given any fixed T > 0, can we find ν 0 so that the solution remains smooth (hence unique) until time T for all ν ≥ ν 0 ? • Considering a family (ρ ν , v ν ) of solutions to (1.1) and letting ν → ∞, can we show strong convergence to some couple (η, u) satisfying (1.4) and, as the case may be, give an upper bound for the rate of convergence ? Those two issues have been considered recently in our paper [START_REF] Danchin | Compressible Navier-Stokes system : large solutions and incompressible limit[END_REF], in the particular case where the initial density is a perturbation of order ν -1 2 of some constant positive density (hence the limit system is just the classical incompressible Navier-Stokes equation). There, our results were based on Fourier analysis and involved so-called critical Besov norms. The cornerstone of the method was a refined analysis of the linearized system about the constant state (ρ, v) = (ρ, 0), thus precluding us from considering large density variations.

The present paper aims at shedding a new light on this issue, pointing out different results and techniques than in [START_REF] Danchin | Compressible Navier-Stokes system : large solutions and incompressible limit[END_REF]. In particular, we will go beyond the slightly inhomogeneous case, and will be able to consider large variations of density. As regards the techniques, we here meet another motivation for our paper, which is strictly mathematical: we want to advertize two tools, that can be of some use in the analysis of systems of fluid mechanics:

• The first one is a nonstandard estimate with (limited) loss of integrability for solutions of the transport equation by a non Lipschitz vector-field that has been first pointed out by B. Desjardins in [START_REF] Desjardins | Global existence results for the incompressible density-dependent Navier-Stokes equations in the whole space[END_REF] (see Section 3). Proving it requires some Moser-Trudinger inequality that holds true only in dimension two 1 . • The second tool is an estimate for a parabolic system with just bounded coefficients in the maximal regularity framework of L p spaces with p close to 2 (Section 4).

For notational simplicity, we assume from now on that the shear viscosity µ is equal to 1 (which may always been achieved after a suitable rescaling). Our answer to the first question then reads as follows:

Theorem 1.2. Fix some T > 0. Let ρ * and ρ * satisfy 0 < ρ * < ρ * , and assume that

(1.7) 2ρ * ≤ ρ 0 ≤ 1 2 ρ * .
There exists an exponent q > 2 depending only on ρ * and ρ * such that if ∇ρ 0 ∈ L q (T 2 ) then for any vector field v 0 in W 2-2/q q (T 2 ) satisfying

(1.8) ν 1/2 div v 0 L 2 ≤ 1,
there exists ν 0 = ν 0 (T, ρ * , ρ * , ∇ρ 0 q , v 0 W 2-2 q q , P, q) such that System (1.1) with ν ≥ ν 0 has a unique solution (ρ, v) on the time interval [0, T ], fulfilling

(1.9) v ∈ C([0, T ]; W 2-2/q q (T 2 )), v t , ∇ 2 v ∈ L q ([0, T ] × T 2 ), ρ ∈ C([0, T ]; W 1 q (T 2 )), (1.10) and ρ * ≤ ρ(t, x) ≤ ρ * for all (t, x) ∈ [0, T ] × T 2 .
Furthermore, there exists a constant C q depending only on q, a constant C P depending only on P, and a universal constant C such that for all t ∈ [0, T ], (1.11) 

v(t) H 1 + ν 1 2 div v(t) L 2 + ρ(t) -ρ L 2 + ∇v L 2 ([0,t];H 1 ) + v t L 2 (0,t×R 2 ) + ν 1 2 ∇div v L 2 (0,t×R 2 ) ≤ Ce C v 0 4 2 E 0 , (1.12) v(t) W 2-2 q q + v t , ∇ 2 v, ν∇div v Lq([0,t]×T 2 ) ≤ C q v 0 W 2-2 q q + C P t 1 q 1 + ∇ρ 0 Lq exp(t 1 q ′ I 0 (t))
1 Consequently, we do not know how to adapt our approach to the higher dimensional case. (1.13) and ∇ρ(t) Lq ≤ 1 + ∇ρ 0 Lq exp t

1 q ′ I 0 (t) , with E 0 := 1 + v 0 H 1 + ρ 0 -ρ L 2 and I 0 (t) := C q v 0 W 2-2 q q + C P t 1 q 1 + ∇ρ 0 Lq e CE 2 0 te C v 0 4 L 2

•

As the data we here consider are regular and bounded away from zero, the short-time existence and uniqueness issues are clear (one may e.g. adapt [START_REF] Danchin | On the solvability of the compressible Navier-Stokes system in bounded domains[END_REF] to the case of periodic boundary conditions). In order to achieve large time existence, we shall first take advantage of a rather standard higher order energy estimate (at the H 1 level for the velocity) that will provide us with a control of ∇v in L2 (0, T ; H 1 ) in terms of the data and of the norm of ∇ρ in L ∞ (0, T ; L 2 ). The difficulty now is to control that latter norm, given that, at this stage, one has no bound for ∇v in L 1 (0, T ; L ∞ ). It may be overcome by adapting to our framework some estimates with loss of integrability for the transport equation, that have been first pointed out by B. Desjardins in [START_REF] Desjardins | Global existence results for the incompressible density-dependent Navier-Stokes equations in the whole space[END_REF]. However, this is not quite the end of the story since those estimates involve the quantity T 0 div v L ∞ dt. Then, the key observation is that the linear maximal regularity theory for the linearization of the momentum equation of (1.1) (neglecting the pressure term and taking ρ ≡ 1) provides, for all 1 < q < ∞,

a control on ν ∇div v Lq(0,T ;Lq(T 2 )) (not just ∇div v Lq(0,T ;Lq(T 2 )) ) in terms of v 0 W 2-2 q q .
In our framework where ρ is not constant, it turns out to be possible to recover a similar estimate if q is close enough to 2, and thus to eventually have, by Sobolev embedding,

T 0 div v L ∞ dt = O(ν -1
). Then, putting all the arguments together and bootstrapping allows to get all the estimates of Theorem 1.2, for large enough ν.

Regarding the asymptotics ν → +∞, it is clear that if one starts with fixed initial data, then uniform estimates are available from Theorem 1.2, only if we assume that div v 0 ≡ 0. Under that assumption, Inequalities (1.11) and (1.12) already ensure that

div v = O(ν -1/2 ) in L ∞ (0, T ; L 2 ) and ∇div v = O(ν -1 ) in L q (0, T × T 2 ).
Then, combining with the uniform bounds provided by (1.12) and (1.13), it is not difficult to pass to the weak limit in System (1.1) and to find that the limit solution fulfills System (1.4).

In the theorem below, we state a result that involves strong norms of all quantities at the level of energy norm, and exhibit an explicit rate of convergence. Theorem 1.3. Fix some T > 0 and take initial data (ρ 0 , v 0 ) fulfilling the assumptions of Theorem 1.2 with, in addition, div v 0 ≡ 0. Denote by (ρ ν , v ν ) the corresponding solution of (1.1) with volume viscosity ν ≥ ν 0 . Finally, let (η, u) be the global solution of (1.4) supplemented with the same initial data (ρ 0 , v 0 ). Then we have

(1.14) sup t≤T ρ ν (t) -η(t) 2 L 2 + Pv ν (t) -u(t) 2 L 2 + ∇Qv ν (t) 2 L 2 + T 0 ∇(Pv ν -u) 2 L 2 + ∇Qv ν 2 H 1 dt ≤ C 0,T ν -1 ,
where P and Q are the Helmholtz projectors on divergence-free and potential vector fields, respectively 2 , and where C 0,T depends only on T and on the norms of the initial data.

At first glance, one may think our issue to be closely related to the question of low Mach number limit studied in e.g. [START_REF] Danchin | Zero Mach number limit for compressible flows with periodic boundary conditions[END_REF][START_REF] Feireisl | Inviscid incompressible limits of the full Navier-Stokes-Fourier system[END_REF]. However, there is an essential difference in the mechanism leading to convergence as may be easily seen from a rough analysis of the linearized system (1.1). Indeed, in the case ρ = µ = 1 and P ′ (1) = 1 (for notational simplicity), that linearization reads (in the unforced case):

η t + div u = 0, v t -∆v -ν∇div v + ∇η = 0.
Eliminating the velocity we obtain the damped wave equation

η tt -(1 + ν)∆η t -∆η = 0,
that can be solved explicitly at the level of the Fourier transform. We obtain two modes, one strongly parabolic, disappearing for ν → ∞, and the second one having the following form, in the high frequency regime:

η(t) ∼ η(0)e -t (1+ν) → η(0).
This means that at the same time, we have that η(t) tends strongly to 0 as t → +∞ even for very large ν, but that for all t > 0 (even very large), η(t) → η(0) when ν tends to +∞.

The behavior corresponding to the low Mach number limit is of a different nature, as it corresponds to the linearization

η t + 1 ε div u = 0, v t -∆v -ν∇div v + 1
ε ∇η = 0, which leads to the wave equation

η tt -(1 + ν)∆η t - 1 ε 2 ∆η = 0.
Asymptotically for ε → 0, the above damped wave equation behaves as a wave equation with propagation speed 1/ε. Hence, in the periodic setting, we have huge oscillations that preclude any strong convergence result. However, after filtering by the wave operator, convergence becomes strong, which entails weak convergence, back to the original unknowns (see [START_REF] Danchin | Zero Mach number limit for compressible flows with periodic boundary conditions[END_REF] for more details).

The main idea of Theorem 1.3 is just to compute the distance between the compressible and the incompressible solutions, by means of the standard energy norm (in sharp contrast with the approach in [START_REF] Danchin | Compressible Navier-Stokes system : large solutions and incompressible limit[END_REF] where critical Besov norms are used). In order to do so, it is convenient to decompose ρ -η into two parts:

ρ -η = (ρ -ρ) + ( ρ -η)
where the auxiliary density ρ is the transported of ρ 0 by the flow of the divergence-free vector-field Pv. As the bounds of Theorem 1.2 readily ensure that ρ -ρ q = O(ν -1 ), one may, somehow, perform the energy argument as if comparing ( ρ, v) and (η, u).

We end that introductory part presenting the main notations that are used throughout the paper. By ∇ we denote the gradient with respect to space variables, and by u t , the time derivative of function u. By • Lp(Q) (or sometimes just • p ), we mean the p-power Lebesgue norm corresponding to the set Q, and L p (Q) is the corresponding Lebesgue space. We denote by H s and W s p the Sobolev (Slobodeckij for s not integer) space on the torus T 2 , and put H s = W s 2 . The homogeneous versions of those spaces (that is the corresponding subspace of functions with null mean) are denoted by Ḣs and Ẇ s p , respectively.

Generic constants are denoted by C, A B means that A ≤ CB, and A ≈ B stands for

C -1 A ≤ B ≤ CA.

Energy estimates

The aim of this part is to provide bounds via energy type estimates. We assume that the density is bounded from above and below. Let us first recall the basic energy identity. Proposition 2.1. For any T > 0, sufficiently smooth solutions to (1.1) obey Inequality (1.6).

Proof. That fundamental estimate follows from testing the momentum equation by v and integrating by parts in the diffusion and pressure terms. Indeed: using the definition of e and the mass equation, we get

T 2 ∇P • v dx = T 2 P ′ (ρ) ρ ∇ρ • (ρv) dx = T 2 ∇(e ′ (ρ)) • (ρv) dx = - T 2 e ′ (ρ) div (ρv) dx = T 2 e ′ (ρ)ρ t dx = d dt T 2 e(ρ) dx.
Then integrating in time completes the proof.

Let us next derive a higher order energy estimate, pointing out the dependency with respect to the volume viscosity ν. Proposition 2.2. Assume that there exist positive constants ρ * < ρ * such that

(2.15) ρ * ≤ ρ(t, x) ≤ ρ * for all (t, x) ∈ [0, T ] × T 2 .
Then solutions to (1.1) with µ = 1 fulfill the following inequality:

(2.16) v(T ), ∇v(T ), ρ(T ) -ρ 2 2 + ν div v(T ) 2 2 + T 0 ( ∇ 2 v, ∇v, v t 2 2 + ν div v 2 H 1 ) dt ≤ C exp C v 0 4 2 v 0 , ∇v 0 , ρ 0 -ρ 2 2 + ν div v 0 2 2 + ν -1 T v 0 2 2 + ν -1 T 0 ∇ρ 2 2 dt ,
provided ν is larger than some ν 0 = ν 0 (ρ * , ρ * , P ).

Proof. We take the T 2 inner product of the momentum equation with v t , getting (2.17)

T 2 ρ|v t | 2 dx + 1 2 d dt T 2 |∇v| 2 + ν(div v) 2 dx + T 2 ∇P • v t dx = - T 2 (ρv • ∇v) • v t dx.
Integrating by parts and using the mass equation yields

T 2 ∇P • v t dx = - T 2 P div v t dx = - d dt T 2 P div v dx + T 2 P ′ (ρ)ρ t div v dx = - d dt T 2 P div v dx - T 2 P ′ (ρ) div (ρv) div v dx.
Hence putting together with (2.17),

(2.18) 1 2

d dt T 2 (|∇v| 2 + ν(div v) 2 -2P div v) dx + T 2 ρ|v t | 2 dx = T 2 P ′ (ρ)div (ρv)div v dx - T 2 (ρv • ∇v) • v t dx.
Now, setting K(ρ) = ρP ′ (ρ) -P (ρ), one can check that

T 2 P ′ (ρ)div (ρv)div v dx = T 2 (div v) v • ∇(P (ρ)) dx + T 2 ρ∇P ′ (ρ) (div v) 2 dx = - T 2 P (ρ) v • ∇div v dx + T 2 K(ρ)(div v) 2 dx.
Hence, if (2.15) is fulfilled then we have

(2.19) d dt T 2 |∇v| 2 + ν(div v) 2 -2P (ρ)div v dx + T 2 ρ|v t | 2 dx ≤ C T 2 |v • ∇div v| + (div v) 2 + |v • ∇v| 2 dx.
Next, testing the momentum equation by ∆v we get

T 2 |∆v| 2 + ν|∇div v| 2 dx - T 2 ρv t • ∆v dx - T 2 ∇P • ∆v dx ≤ T 2 |ρv • ∇v∆v| dx.
Note that

- T 2 ∇P • ∆v dx = - T 2 ∇P • ∇div v dx ≤ C T 2
|∇ρ||∇div v| dx.

Then, combining with the basic energy identity and with (2.19) and introducing

(2.20) E(v, ρ) := T 2 ρ|v| 2 + 2e(ρ) + |∇v| 2 + ν (div v) 2 -2P (ρ)div v dx, we find, (2.21) 
d dt E(v, ρ) + T 2 ρ|v t | 2 dx + 1 ρ * T 2 |∇v| 2 + |∇ 2 v| 2 + ν(div v) 2 + ν|∇div v| 2 dx ≤ T 2 |v t • ∆v| dx + C T 2 (div v) 2 + |v • ∇div v| + ρ|v • ∇v| 2 + 1 ρ * |∇ρ||∇div v| dx• Hence, denoting D(v) := ∇v 2 H 1 + √ ρ v t 2 L 2 + ν div v 2 H 1 , Inequality (2.21) implies that for large enough ν, d dt E(v, ρ) + 1 ρ * D(v) ≤ C T 2 |v| 2 |∇v| 2 + (|v| + |∇ρ|)|∇div v| dx.
Of course, from the Ladyzhenskaya inequality, we have

T 2 |v • ∇v| 2 dx ≤ C v 2 ∇v 2 2 ∆v 2 .
Therefore, we end up with

d dt E(v, ρ) + 1 ρ * D(v) ≤ C v 2 2 ∇v 2 2 ∇v 2 2 + ν -1 ( v 2 2 + ∇ρ 2 2 ) •
Let us notice that if ν ≥ ν 0 (ρ * , ρ * , P ) then we have, according to (1.2),

(2.22) E(v, ρ) ≈ v 2 H 1 + ρ -ρ 2 L 2 + ν div v 2 L 2 .
Hence Gronwall inequality yields

E(v(T ), ρ(T )) + 1 ρ * T 0 D(t) dt ≤ exp C T 0 v 2 2 ∇v 2 2 dt × E(v 0 , ρ 0 ) + C ν T 0 exp -C t 0 v 2 2 ∇v 2 2 dt v 2 2 + ∇ρ 2 2 dt •
Remembering that the basic energy inequality implies that

T 0 v 2 2 ∇v 2 2 dt ≤ C v 0 4 2 ,
one may conclude that

E(v(T ), ρ(T )) + 1 ρ * T 0 D(v) dt ≤ exp C v 0 4 2 E(v 0 , ρ 0 ) + C ν v 0 2 2 T + T 0 ∇ρ 2 2 dt ,
which obviously yields (2.16).

Estimates with loss of integrability for the transport equation

We are concerned with the proof of regularity estimates for the transport equation

(3.23) ρ t + v • ∇ρ + ρ div v = 0
in some endpoint case where the transport field v fails to be in L 1 (0, T ; Lip) by a little.

More exactly, we aim at extending Desjardins' results in [START_REF] Desjardins | Global existence results for the incompressible density-dependent Navier-Stokes equations in the whole space[END_REF] to non divergence-free transport fields. Our main result reads:

Proposition 3.1. Let 1 ≤ q ≤ ∞ and T > 0. Let ρ 0 ∈ W 1 q (T 2 ) and v ∈ L 2 (0, T ; H 2 (T 2 )) such that div v ∈ L 1 (0, T ; L ∞ (T 2 )) ∩ L 1 (0, T ; W 1 q (T 2 )).
Then the solution to (3.23) fulfills for all 1 ≤ p < q,

sup t<T ∇ρ(t) p ≤ K ∇ρ 0 q + ρ 0 ∞ sup t<T t 0 ∇div v dτ q × × exp CT T 0 ∇ 2 v 2 2 dt exp T 0 div v ∞ dt ,
where K is an absolute constant, and where the constant C depends only on p and q.

Proof. We proceed by means of the standard characteristics method: our assumptions guarantee that v admits a unique (generalized) flow (div v)(τ, X(τ, y)) dτ a 0 (y).

From the chain rule and Leibniz formula, we thus infer

∇ y a(t, y) = exp - t 0 (div v)(τ, X(τ, y)) dτ ∇ y a 0 (y) -a 0 (y) t 0 (∇div v)(τ, X(τ, y)) • ∇ y X(τ, y) dτ •
Our goal is to estimate all these quantities in the Eulerian coordinates. Note that by (3.24) and Gronwall lemma, we obtain point-wisely that, denoting

Y (t, •) := (X(t, •)) -1 , |∇ y X(t, y)| ≤ exp t 0 |∇ x v(τ, X(τ, y))| dτ and |∇ x Y (t, x)| ≤ exp t 0 |∇ y u(τ, Y (τ, x))| dτ • As ∇ x ρ(t, x) = ∇ y a(t, Y (t, x)) • ∇ x Y (t, x), we get (3.28) |∇ρ(t, x)| ≤ exp 3 t 0 |∇v(τ, X(τ, Y (t, x)))| dτ × |∇ρ 0 (Y (t, x))| + |ρ 0 (Y (t, x))| t 0 ∇div v(τ, X(τ, Y (t, x)) dτ •
Recall that the Jacobian of the change of coordinates (t, y) → (t, x) is given by

(3.29) J X (t, y) = exp t 0 div v(τ, X(τ, y)) dτ ≤ exp t 0 div v ∞ dτ •
Hence taking the L p (T 2 ) norm and using Hölder inequality with 1 p = 1 q + 1 m , we get

(3.30) ∇ρ(t) p ≤ exp 1 q t 0 div v ∞ dτ ∇ρ 0 q + ρ 0 ∞ t 0 ∇div v(τ, X(τ, •)) ds q exp 3 t 0 |∇v(τ, X(τ, •))| dτ m •
To bound the last term, we write that for all β > 0,

t 0 |∇v(τ, X(τ, •)| dτ ≤ β t 0 |∇v(τ, X(τ, •))| 2 ∇ 2 v(τ, •) 2 2 dτ + 1 4β t 0 ∇ 2 v(τ, •) 2 2 dτ.
Hence using the following Jensen inequality,

exp t 0 φ(s) ds ≤ 1 t t 0 e tφ(s) ds,
we discover that

T 2 exp 3m t 0 |∇v(τ, X(τ, •))| dτ dx ≤ exp m 4β t 0 ∇ 2 v(τ, •) 2 2 dτ 1 t t 0 T 2 exp 9mβt |∇v(τ, X(τ, •)| 2 ∇ 2 v(τ, •)) 2 2 dx dτ.
In the last integral we change coordinates and get

T 2 exp 3m t 0 |∇v(τ, X(τ, •))| dτ dx ≤ 1 t exp m 4β t 0 ∇ 2 v(τ, •) 2 2 dτ × t 0 T 2 exp 9mβt |∇v(τ, x))| 2 ∇ 2 v(τ, •) 2 2 dx ds exp t 0 div v ∞ dτ •
At this stage, to complete the proof, it suffices to apply the following Trudinger inequality (see e.g. [START_REF] Adams | Sobolev Spaces[END_REF]) to f = ∇v : there exist constants δ 0 and K such that for all f in H 1 (T 2 ), (3.31)

T 2 exp δ 0 |f (x) -f | 2 ∇f 2 2 dx ≤ K with f := 1 |T 2 | T 2 f dx.
Then, taking β so small that 9mβt = δ 0 , we end up with (3.32)

T 2 exp 3m t 0 |∇v(τ, X(τ, •))| dτ dx ≤ C exp 9mt 4δ 0 t 0 ∇ 2 v(s, •) 2 2 ds exp t 0 div v ∞ ds •
Combining with (3.30) completes the proof of the proposition.

Linear systems with variable coefficients

Here we are concerned with the proof of maximal regularity estimates for the linear system

(4.33) ρu t -∆u -ν∇div u = f in (0, T ) × T N , u| t=0 = u 0 in T N ,
assuming only that ρ = ρ(t, x) is bounded by above and from below (no time or space regularity whatsoever).

In contrast with the previous section, we do not need the space dimension to be 2. As we want to keep track of the dependency with respect to ν for ν → +∞, we shall assume throughout that ν ≥ 0 for simplicity. Theorem 4.1. Let T > 0 and assume that ν ≥ 0,

(4.34) 0 < ρ * ≤ ρ(t, x) ≤ ρ * for (t, x) ∈ [0, T ] × T N .
Then there exist positive constants 2 * , 2 * depending only on ρ * and ρ * , with 2 * < 2 < 2 * , such that for all r ∈ (2 * , 2 * ) we have Applying the divergence operator to the equation yields

ρ * (div ū) t -(1 + ν)∆div ū = 0.
Hence the basic maximal regularity theory for the heat equation in the torus gives 

(4.37) (1 + ν) ∇div ū Lp((0,T )×T N ) ≤ C div u 0 W 1-
, ∇ 2 ū Lp(T N ×(0,T )) ≤ K p ν ∇div ū Lp((0,T )×T N ) + u 0 W 2-2/p p (T N ) ≤ K p ν 1 + ν u 0 W 2-2/p p (T N ) .
Therefore, as ν ≥ 0, we end up with Thanks to (4.34) and (4.41), we have

(4.42) g Lp((0,T )×T N ) ≤ f Lp((0,T )×T N ) + K p (ρ * -ρ * ) u 0 W 2-2/p p (T N )
. Now, setting h := g + (ρ * -ρ)w t , System (4.41) reduces to the following one:

(4.43) ρ * w t -∆w -ν∇div w = h in (0, T ) × T N , w| t=0 = 0 in T N .
We claim that for all p ∈ (1, ∞) we have

(4.44) ρ * w t Lp((0,T )×T N ) ≤ C p h Lp((0,T )×T N ) with C p → 1 for p → 2.
Indeed, to see that C 2 = 1, we just test the first equation of (4.43) by w t , which yields

ρ * w t 2 L 2 (T N ) + 1 2 d dt ∇w 2 L 2 + ν div v 2 L 2 = T N h w t dx.
Then for any fixed p 0 ∈ (1, +∞) \ {2}, the standard maximal regularity estimate reads

ρ * w t Lp 0 ((0,T )×T N ) ≤ K p 0 h Lp 0 ((0,T )×T N ) ,
and Hölder inequality gives us for all θ ∈ [0, 1],

z Lr((0,T )×T N ) ≤ z 1-θ L 2 ((0,T )×T N ) z θ Lp 0 ((0,T )×T N ) with 1 r = 1 -θ 2 + θ p 0 •
Therefore C p ≤ C θ p 0 , whence lim sup C p ≤ 1 for p → 2 (as θ → 0). Now, remembering the definition of h, we write for all p ∈ (1, ∞),

ρ * w t Lp((0,T )×T N ) ≤ C p g Lp((0,T )×T N ) + (ρ * -ρ)w t Lp((0,T )×T N ) ≤ C p g Lp((0,T )×T N ) + C p 1 - ρ * ρ * ρ * w t Lp((0,T )×T N ) . Therefore, if 3 (4.45) 1 -C p 1 - ρ * ρ * ≥ 1 2 ρ * ρ * ,
then we end up with

(4.46) ρ * w t Lp((0,T )×T N ) ≤ 2ρ * C p ρ * g Lp((0,T )×T N ) .
Let us emphasize that (4.45) is fulfilled for p close enough to 2, due to C p → 1 for p → 2.

3 Clearly, we just need that 1 -Cp(1 -ρ * ρ * ) > 0. However taking that slightly stronger condition allows to get a more explicit inequality.

It is now easy to complete the proof. We take (4.43) in the form -∆w -ν∇div w = g -ρw t in (0, T ) × T N , w| t=0 = 0 in T N .

Then one concludes as before that

∇ 2 w, ν∇div w Lp((0,T )×T N ) ≤ K p g -ρw t Lp((0,T )×T N ) ≤ K p g Lp((0,T )×T N ) + C ρ * ,ρ * w t Lp((0,T )×T N ) •
Hence, putting together with (4.46) and assuming that p is close enough to 2, (4.47)

w t , ∇ 2 w, ν∇div w Lp((0,T )×T N ) ≤ C ρ * ,ρ * g Lp((0,T )×T N ) .
Then combining with (4.42) and (4.39) completes the proof.

Final bootstrap argument

In what follows, we fix some 0 < ρ * < ρ * and denote by 2 * and 2 * the corresponding Lebesgue exponents provided by Theorem 4.1. We assume that the initial data (ρ 0 , v 0 ) satisfies all the requirements of Theorem 1.2

Take some time T such that 1 ≤ T ≤ ν (stronger conditions will appear below), and assume that we have a solution (ρ, v) to (1.1) on [0, T ]×T 2 , fulfilling the regularity properties of Theorem 1.2 for some 2 < q < min(2 * , 4), and

(5.48) exp T 0 div v ∞ dt ≤ 2.
Then it is clear that ρ obeys (5.49)

ρ * ≤ ρ ≤ ρ * on [0, T ] × T 2 .
For all p ∈ [2, q], denote A p (T ) := ∇div v L 1 (0,T ;Lp(T 2 )) and assume that, for some small enough constant c 0 > 0, we have (5.50)

A q (T ) ≤ c 0 .

Obviously, if Kc 0 ≤ log 2 where K stands for the norm of the embedding Ẇ 1 q (T 2 ) ֒→ L ∞ (T 2 ), then (5.48) is fulfilled. We shall assume in addition that c 0 ρ * ≤ 1.

We are going to show that if (5.50) is fulfilled then, for sufficiently large ν, all the norms of the solution are under control. Then, bootstrapping, this will justify (5.50) a posteriori.

Step 1. High order energy estimate for v . Let E 2 0 := 1 + v 0 2

H 1 + ρ 0 -ρ 2 2 . By (2.16) we easily get, remembering that ν -1 T ≤ 1, (5.51) v 2 L∞(0,T ;H 1 ) + ν div v 2 L∞(0,T ;L 2 ) + ρ -ρ 2 L∞(0,T ;L 2 ) + T 0 ∇v 2 H 1 + v t 2 2 + ν ∇div v 2 2 dt ≤ Ce C v 0 4 2 E 2 0 + ν -1 T ∇ρ 2 L∞(0,T ;L 2 ) •
Step 2. Regularity estimates at L p level for the density. From Proposition 3.1, we find that there exists an absolute constant K such that for all r ∈ [2, q), there exists some constant C r > 0 so that sup

t∈[0,T ] ∇ρ(t) r ≤ K ∇ρ 0 q + ρ * A q (T ) exp C r T T 0 ∇ 2 v 2 2 dt •
Hence, bounding the last term according to (5.51), and using (5.50) and the definition of E 0 ,

(5.52) sup

t∈[0,T ] ∇ρ(t) r ≤ K ∇ρ 0 q + 1 exp(C r E 2 0 T e C v 0 4 2 ) exp C r ν -1 T 2 e C v 0 4 2 ∇ρ 2 L∞(0,T ;L 2 ) •
Taking r = 2, we deduce that if

C 2 ν -1 T 2 e C v 0 4
2 ∇ρ 2 L∞(0,T ;L 2 ) ≤ log 2, then we have (5.53) sup

t∈[0,T ] ∇ρ(t) 2 ≤ 2K ∇ρ 0 q + 1 exp(C 2 E 2 0 T e C v 0 4 2 •
Using an obvious connectivity argument, we conclude that (5.53) holds true whenever

(5.54) ν > 4K 2 C 2 log 2 ∇ρ 0 q + 1 2 exp(2C 2 E 2 0 T e C v 0 4 2 T 2 e C v 0 4 2 .
Reverting to (5.51), we readily get, taking a larger constant C if need be,

(5.55) v 2 L∞(0,T ;H 1 ) + ν div v 2 L∞(0,T ;L 2 ) + ρ -ρ 2 L∞(0,T ;L 2 ) + T 0 ∇v 2 H 1 + v t 2 L 2 + ν ∇div v 2 L 2 dt ≤ Ce C v 0 4 2 E 2 0 .
Of course, combining (5.53) with (5.52) ensures that for all r ∈ [2, q), we have (5.56) sup t∈[0,T ] ∇ρ(t) Lr ≤ K ∇ρ 0 q + 1 exp(C r E 2 0 T e C v 0 4 2 ).

Step 3. Maximal regularity at L p level for the velocity. We rewrite the velocity equation as follows:

ρ∂ t v -∆v -ν∇div v = -∇P -ρv • ∇v.
Then Theorem 4.1 ensures that for all p ∈ [2, q), (5.57)

V p (T ) ≤ C p v 0 W 2-2 p p + ∇P + ρv • ∇v Lp(0,T ×T 2 ) with V p (T ) := v L∞(0,T ;W 2-2 p p ) + v t , ∇ 2 v, ν∇div v Lp(0,T ×T 2 ) .

By Hölder inequality

v • ∇v Lp(0,T ×T 2 ) ≤ T 1 s v L∞(0,T ;Ls) ∇v L 4 (0,T ;L 4 ) with 1 s + 1 4 = 1 p •
Hence using embedding and Inequality (5.55),

v • ∇v Lp(0,T ×T 2 ) ≤ CT 1 p -1 4 E 2 0 e C v 0 4 2 ,
and reverting to (5.57) and using (5.56) thus yields for some constant C P depending only on the pressure law, (5.58)

V p (T ) ≤ C p v 0 W 2-2 p p + C P T 1 p ∇ρ 0 q + 1 e CE 2 0 T e C v 0 4 2 + T 1 p -1 4 E 2 0 e C v 0 4 2 •
Step 4. Regularity estimate at L q level for the density. The standard estimate for transport equation with Lispchitz velocity field yields sup t≤T ∇ρ(t) q ≤ ∇ρ 0 q + ρ * A q (T ) exp{ ∇v L 1 (0,T ;L∞) }• Hence, remembering (5.50) and using the embedding Ẇ 1 p (T 2 ) ֒→ L ∞ (T 2 ) to handle the last term, we get sup t≤T ∇ρ(t) q ≤ ∇ρ 0 q + 1 exp CT

1 p ′ V p (T ) •
Then one can bound V p (T ) according to (5.58) and eventually get, (5.59) sup t≤T ∇ρ(t) q ≤ ∇ρ 0 q + 1 exp T

1 p ′ I p 0 (T ) , with I p 0 (T ) := C p v 0 W 2-2 p p + C P T 1 p ∇ρ 0 q + 1 e CE 2 0 T e C v 0 4 2 •
Step 5. Maximal regularity at L q level for the velocity. Let us use again Theorem 4.1, but with Lebesgue exponent q. We have

(5.60) V q (T ) ≤ C q v 0 W 2-2 q q + ∇P Lq(0,T ×T 2 ) + ρv • ∇v Lq(0,T ×T 2 ) •
The last term may be bounded as in (5.58) (with q instead of p), and the pressure term may be handled thanks to (5.59). At the end we get

V q (T ) ≤ C q v 0 W 2-2 q q + C P T 1 q ∇ρ 0 Lq + 1 exp(T 1 q ′ I q 0 (T )) •
Step 6. Final bootstrap. In order to complete the proof, it suffices to check that if ν is large enough then we do have (5.50). This is just a consequence of the fact that

A q (T ) ≤ T 1 q ′ ∇div v Lq(0,T ×T 2 ) ≤ 1 ν T 1 q ′ V q (T ).
Hence it suffices to choose ν fulfilling (5.54) and

ν ≥ T 1 q ′ C q v 0 W 2-2 q q + C P T 1 q ∇ρ 0 Lq + 1 exp(T 1 p ′ I q 0 (T )) •

The incompressible limit issue

The aim of this section is to prove Theorem 1.3. In what follows the time T is fixed, and ν is larger than the threshold viscosity ν 0 given by Theorem 1.2. Throughout, we shall agree that C 0,T denotes a 'constant' depending only on T and on the norms of the initial data appearing in Theorem 1.2. Let us consider the corresponding solution (ρ, v). Then Inequality (1.11) already ensures that all the terms with Qv in (1.14) are bounded as required.

In order to bound the other terms of (1.14), it is convenient to restate System (1.1) in terms of the divergence-free part Pv and potential part Qv of the velocity field v, and of the discrepancy r := ρ -ρ between ρ and the following 'incompressible' density ρ defined as the unique solution of the following transport equation: (6.61)

ρ t + Pv • ∇ ρ = 0, ρ| t=0 = ρ 0 .
As r fulfills: (6.62) r t + Pv • ∇r = -div (ρQv), r| t=0 = 0, we have for all t ∈ [0, T ], (6.63) r(t) q ≤ t 0 ρ div Qv q + Qv • ∇ρ q dτ. Now, we have Qv • ∇ρ Lq(0,T ×T 2 ) ≤ Qv Lq (0,T ;L∞) ∇ρ L∞(0,T ;Lq) and, by virtue of Poincaré inequality,

ρ div Qv Lq(0,T ×T 2 ) ≤ Cρ * ∇div Qv Lq(0,T ×T 2 ) .
Therefore, taking advantage of Sobolev embedding and of Inequality (1.12), we end up with (6.64) sup 0≤t≤T r(t) q ≤ C 0,T ν -1 .

Next, we restate the equation (1.1) 2 as follows:

(6.65)

ρPv t + ρPv • ∇Pv -∆Pv + ∇Q + K = 0 with Q := P -(1 + ν)div v, K 1 := rPv t , K 2 := ρQv t , K 3 := rPv • ∇Pv and K 4 := ρ(Qv • ∇Pv + v • ∇Qv).
Subtracting (1.4) from (6.65), we get (6.66)

η(Pv -u) t + ηu • ∇(Pv -u) -∆(Pv -u) + ∇(Q -Π) + K + L = 0 with L := ( ρ -η)Pv t + ( ρ -η)Pv • ∇Pv + η(Pv -u) • ∇Pv.

Of course, initially, we have

Pv -u| t=0 = 0, ρ -η| t=0 = 0. Now, we test (6.66) by Pv -u getting, since div u = 0, (6.67) 1 2

d dt T 2 η|Pv -u| 2 dx + T 2 |∇(Pv -u)| 2 dx = T 2 K •(u-Pv) dx + T 2 L •(u-Pv) dx.
To analyze the terms of the left-hand side, we need some information coming from the continuity equations. The difference of ρ and η fulfills

( ρ -η) t + u • ∇( ρ -η) = -(Pv -u) • ∇ ρ.
Testing it by ( ρ -η) and defining q * by 1 q * + 1 q = 1 2 , we find that

sup t≤T ( ρ -η)(t) 2 ≤ T 0 Pv -u q * ∇ ρ q dt.
As ρ satisfies (6.61), we have for all t ∈ [0, T ],

∇ ρ(t) q ≤ ∇ ρ 0 q e t 0 ∇Pv ∞ dτ • Therefore, thanks to (1.13) and Sobolev embedding, (6.68) sup t≤T ( ρ -η)(t) 2 ≤ C 0,T T 0 Pv -u q * dt.

One can now estimate all the terms of the right-hand side of (6.67). Regarding the first term of L, we have .

Hence taking θ ∈ (0, 1) below according to Gagliardo-Nirenberg inequality, and remembering that q > 2 and that H 1 (T 2 ) ֒→ L m (T 2 ) for all m < ∞, we get As regards K 1 , we have, defining q by 2 q + 1 q = 1, (ρ(Pv -u)) t • Qv dx.

For the last term, we have, using that ρ t = -div (ρv) and integrating by parts, The first term is of order ν -1 after time integration on [0, T ], since it may be bounded by (ρ(Pv -u)) t • Qv dx ≤ ρ * Qv 2 Pv t 2 + u t 2 .

For the second term, one may write

T 2 (ρv) • ∇(Pv -u) • Qv dx ≤ 1 8 T 2 ∇(Pv -u) 2 2 dx + C(ρ * ) 2 v 2 ∞ Qv 2 2 ,
and for the last one, we have

T 2 (ρv) • (Pv -u) • ∇Qv dx ≤ ρ * v ∞ Pv -u 2 ∇Qv 2 .
In the same way, we get

T 0 T 2 (K 3 + K 4 ) • (Pv -u) dx dt ≤ T 0
Pv -u q * Qv q ∇Pv 2 + ∇Qv q v 2 dt, whence using (1.12) and Poincaré inequality to handle the terms with Qv,

T 0 T 2 (K 3 + K 4 ) • (Pv -u) dx dt ≤ 1 8 T 0 Pv -u 2 H 1 dt + ν -2 C 0,T .
Summing up, we return to (6.67) and integrate, to find But we see that

T 2 ρQv• (Pv -u) dx ≤ 1 2 ρ * Pv -u 2 2 + C Qv 2 2 ≤ 1 2 ρ * Pv -u 2 2 + C 0,T ν -1 .
So altogether, we get after using Gronwall lemma, Remembering (6.64) and that ρ -η = r + ( ρ -η) completes the proof of Theorem 1.3.
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 4 35) u t , ∇ 2 u, ν∇div u Lr((0,T )×T N ) ≤ C(r, ρ * , ρ * ) f Lr((0,T )×T N )) + u 0 W 2-2/r r (T N ) .Proof. First, we reduce the problem to the one with null initial data, solving (4.36) ρ * ūt -∆ū -ν∇div ū = 0 in (0, T ) × T N , ū| t=0 = u 0 in T N .
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 4 39) ūt , ∇ 2 ū, ν∇div ū Lp((0,T )×T N ) ≤ K p u 0 W 2-2/p p (T N ) .Next we look for u in the form (4.40) u = w + ū, where w fulfills (4.41) ρw t -∆w -ν∇div w = f + (ρ * -ρ)ū t =: g, w| t=0 = 0.
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 202 ρ -η)Pv t • (Pv -u) dx dt ≤ T Pv t q Pv -u q * dt ≤ C

2 ( 2 (T 2 ( 8 T 0 ∇ 2 η

 222802 ρ -η)Pv t • (Pv -u) dx dt ≤ C 0,T ρ -η)(Pv • ∇Pv) • (Pv -u) dx ≤ ρ -η 2 Pv • ∇Pv q Pv -u q * ,hence, arguing exactly as above,T 0 ρ -η)(Pv • ∇Pv) • (Pv -u) dx dt ≤ 1 (Pv -u) • ∇Pv • (Pv -u) dx dt ≤ ρ * T 0 ∇Pv ∞ Pv -u 2 2 dt.

T 0 T 2 0 rq 8 T 0 ∇ 0 Pv -u 2 2

 208002 rPv t • (Pv -u) dx dt ≤ T Pv q Pv -u q dt ≤ 1 (Pv -u) 2 2 dt + C 0,T T dt,and for K 2 , one can write thatT 2 ρQv t • (Pv -u) dx = d dt T 2 ρQv • (Pv -u) dx -T 2

T 2 ( 2 ρ 2 ρ 2 ρ 2 ( 2 (

 222222 ρ(Pv -u)) t • Qv dx = T (Pv -u) t • Qv dx + T t (Pv -u) • Qv dx = T (Pv -u) t • Qv dx + T ρv) • ∇(Pv -u) • Qv dx + T ρv) • (Pv -u) • ∇Qv dx.

T 2

 2 

2 ( 0 Pv -u 2 2

 202 ρQv)(t) • (Pv -u)(t) dx + C 0,T T dt + C 0,T ν -1 .

  -u) 2 2 dt ≤ C 0,T ν -1 .

that are defined by Qv := -∇(-∆) -1 div v and Pv := v -Qv.
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