
HAL Id: hal-01622151
https://hal.science/hal-01622151

Submitted on 24 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

2.5-D discrete-dual-porosity model for simulating
geoelectrical experiments in fractured rock

Victor Caballero Sanz, Delphine Roubinet, Serdar Demirel, James Irving

To cite this version:
Victor Caballero Sanz, Delphine Roubinet, Serdar Demirel, James Irving. 2.5-D discrete-dual-porosity
model for simulating geoelectrical experiments in fractured rock. Geophysical Journal International,
2017, 209 (2), pp.1099-1110. �10.1093/gji/ggx080�. �hal-01622151�

https://hal.science/hal-01622151
https://hal.archives-ouvertes.fr


Geophysical Journal International
Geophys. J. Int. (2017) 209, 1099–1110 doi: 10.1093/gji/ggx080
Advance Access publication 2017 February 24
GJI Marine geosciences and applied geophysics

2.5-D discrete-dual-porosity model for simulating geoelectrical
experiments in fractured rock

Victor Caballero Sanz,∗ Delphine Roubinet,∗† Serdar Demirel and James Irving
Applied and Environmental Geophysics Group, Institute of Earth Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland.
E-mail: delphine.roubinet@umontpellier.fr

Accepted 2017 February 23. Received 2017 February 20; in original form 2016 November 9

S U M M A R Y
Previous work has demonstrated that geoelectrical measurements, acquired either along the
Earth’s surface or in boreholes, can be sensitive to the presence of fractures. However, a lack
of numerical approaches that are well suited to modelling electric current flow in fractured
media prevents us from systematically exploring the links between geoelectrical measurements
and fractured rock properties. To address this issue, we present a highly computationally
efficient methodology for the numerical simulation of geoelectrical data in 2.5-D in complex
fractured domains. Our approach is based upon a discrete-dual-porosity formulation, whereby
the fractures and rock matrix are treated separately and coupled through the exchange of
electric current between them. We first validate our methodology against standard analytical
and finite-element solutions. Subsequent use of the approach to simulate geoelectrical data
for a variety of different fracture configurations demonstrates the sensitivity of these data to
important parameters such as the fracture density, depth, and orientation.

Key words: Electrical properties; Fracture and flow; Electrical resistivity tomography (ERT);
Fourier analysis; Numerical modelling; Numerical solutions.

1 I N T RO D U C T I O N

The study of fractured rocks is extremely important for many ap-
plications including aquifer assessment and remediation, geother-
mal and hydrothermal resource exploitation, hydrocarbon extrac-
tion, and the long-term storage of toxic waste (e.g. Dershowitz
& Miller 1995; Gautam & Mohanty 2004; Rotter et al. 2008;
Carneiro 2009). As a result, numerous studies have been devoted
to detecting these highly conductive structures, evaluating their ge-
ometrical and physical properties, and determining how they are
distributed and connected (e.g. Bonnet et al. 2001; Berkowitz 2002;
Neuman 2005). In particular, the use of geophysical methods, no-
tably seismic, ground-penetrating radar, electrical resistivity, in-
duced polarization, self-potential and electromagnetic methods,
has been extensively investigated (e.g. Wishart et al. 2008; Dorn
et al. 2011; Lofi et al. 2012; Robinson et al. 2013). Here, we
focus on the electrical resistivity method because (i) it has been
shown that field geoelectrical measurements are impacted by the
presence of fractures (e.g. Lane et al. 1995; Busby 2000; Boadu
et al. 2005); (ii) the possibility exists for important hydraulic in-
formation to be obtained from geoelectrical data because fractures
represent preferential pathways for both fluid and electric current
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flow (e.g. Brown 1989; Ritzi & Andolsek 1992; Kirkby et al. 2016;
Nguyen et al. 2016); and (iii) geoelectrical measurements can be
acquired in a straightforward manner along the Earth’s surface and
from boreholes over a wide range of spatial scales.

In order to understand in detail the impact of fractures on geoelec-
trical data with the overall goal of exploring how such data might
be eventually utilized to identify subsurface fractures and estimate
their properties, accurate numerical models for electric current flow
in fractured media are required. When the considered subsurface do-
main can be treated as a representative elementary volume (REV)
at the scale of the geoelectrical measurements, development of such
models is relatively straightforward because the fractured medium
can be defined in terms of an electrical conductivity tensor at each
subsurface location. In other words, in such cases, the fracture net-
work will be dense enough with respect to the measurement scale
to be effectively modelled as an anisotropic continuum (e.g. Her-
wanger et al. 2004a,b; Li & Spitzer 2005; Greenhalgh et al. 2009a,b;
Shen et al. 2009). In the common case where the REV assumption
is not appropriate, however, the fractures must be explicitly rep-
resented. This poses severe problems for standard numerical ap-
proaches such as finite-element or finite-volume methods because
they rapidly become computationally prohibitive as the number of
fractures increases. Indeed, only a small number of fractures can be
considered with such standard approaches because each fracture,
whose aperture is typically many orders of magnitude smaller than
the size of the domain being investigated, must be discretized (e.g.
Robinson et al. 2013).
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In this paper, we address the above challenge and present a
highly computationally efficient methodology for numerically sim-
ulating geoelectrical experiments in heterogeneous and complex
fractured domains. Our approach builds on the recently developed
2-D discrete-dual-porosity (DDP) model for electric current flow in
fractured media developed by Roubinet & Irving (2014), whereby
fractures are explicitly represented using a semi-analytical formu-
lation that takes into account the exchange of electric current flow
between the discrete-fracture-network (DFN) and surrounding ma-
trix. However, we importantly redevelop this formulation for the
2.5-D case, commonly considered in geoelectrical imaging, in order
to accurately simulate current flow between point electrodes. The
mathematical formulation of our new numerical method, including
the general problem formulation in 2.5-D and the corresponding
DDP modelling approach, is presented in Section 2. In Section 3,
we validate our approach for both unfractured and fractured porous
domains considering, in the latter case, both simple and complex
fracture networks. Finally, we use our model in Section 4 to sim-
ulate electrical resistivity tomography (ERT) experiments in frac-
tured porous domains composed of idealized and realistic fracture
networks.

2 M O D E L L I N G A P P ROA C H

2.1 General problem formulation

Consider a 3-D domain having electrical conductivity σ (x, y, z)
[S m−1] in which an electric current I [A] is injected at position
(x0, y0, z0). Under steady-state conditions, the current flow in this
domain is governed by the following charge-conservation equation
at the point scale:

−∇ · [σ (x, y, z) �∇φ(x, y, z)]= I δ(x − x0)δ(y − y0)δ(z − z0), (1)

where φ(x, y, z) [V] is the electric potential and δ(.) [m−1] is the
Dirac delta function. Assuming that (i) the electrical conductivity σ

is constant in the y-direction (i.e. σ (x, y, z) = σ (x, z) and ∂yσ = 0);
(ii) the considered problem is symmetric in the y-direction (i.e. φ(x,
y, z) = φ(x, −y, z)); and (iii) the current injection lies in the y = 0
plane (i.e. y0 = 0), eq. (1) can be expressed in the Fourier domain
as follows (e.g. Dey & Morrison 1979)

−∇ · [σ (x, z) �∇φ̄(x, ω, z)] + ω2σ (x, z)φ̄(x, ω, z)

= I

2
δ(x − x0)δ(z − z0), (2)

where φ̄(x, ω, z) is the Fourier-cosine transform of φ(x, y, z) and ω

is the wavenumber corresponding to the y-coordinate. The distribu-
tions of potential φ and φ̄ are related through (e.g. Bateman 1954):

φ̄(x, ω, z) =
∫ ∞

0
φ(x, y, z) cos(ωy)dy (3a)

φ(x, y, z) = 2

π

∫ ∞

0
φ̄(x, ω, z) cos(ωy)dω. (3b)

Eq. (2) corresponds to the 2.5-D formulation of eq. (1), whereby
the 3-D problem is decomposed into series of 2-D problems in the
Fourier domain. That is, under the assumptions stated above, the 3-D
electric potential φ(x, y, z) in eq. (1) can be determined by solving
eq. (2) in the Fourier domain for several values of ω, and then
inverting the resulting φ̄(x, ω, z) using the inverse Fourier-cosine
transform (3b). Appendix A describes how this inverse Fourier-
cosine transform is implemented and how the choice of wavenumber
values is optimized in our work. The DDP formulation used to

solve eq. (2) for heterogeneous and complex fractured domains is
described next.

2.2 DDP approach

To develop a DDP formulation of the electric current flow prob-
lem (2) in the Fourier domain, we build upon the 2-D formulation
presented by Roubinet & Irving (2014). In this formulation, the
fractures and matrix are treated separately and coupled through the
exchange of electric current between them. The fractures and matrix
are discretized into fracture segments and matrix blocks having con-
stant properties, respectively, and a linear system is created where
the unknowns are the electrical potentials at the fracture intersec-
tions and extremities, as well as in the matrix blocks. Below, we
derive the corresponding 2.5-D equations at the fracture-segment
(Section 2.2.1), fracture-network (Section 2.2.2) and matrix-block
(Section 2.2.3) scales. In doing this, it is assumed that fractures
extend infinitely perpendicular to the 2-D modelling plane being
considered. Note that our presentation contains only the key differ-
ences between this 2.5-D DDP formulation and the work of Roubi-
net & Irving (2014). For full information on the representation and
discretization methods used to model the geological structures as
well as on the solution of the linear system, please see their paper.

2.2.1 Electric potential along a fracture segment

For each 1-D fracture-segment k having constant aperture bk
f and

electrical conductivity σ k
f , consider the charge conservation eq. (2)

in the Fourier domain

− σ k
f ∂

2
xk

f
φ̄k

f + ω2σ k
f φ̄

k
f = −Q̄k

f m, (4)

where φ̄k
f = φ̄k

f (xk
f ) is the Fourier-cosine transform of the electric

potential averaged over the fracture aperture, xk
f denotes the spatial

variable along the fracture segment, and Q̄k
f m is the Fourier-cosine

transform of the source term related to the exchange of electric
current between the fracture segment and the surrounding matrix.
Considering that this fracture segment is located within matrix block
(Ik, Jk), where φ̄ Ik ,Jk

m is the Fourier-cosine transform of the electric
potential in this block, Q̄k

f m can be expressed as

Q̄k
f m = −α

Ik ,Jk
f m

(
φ̄ Ik ,Jk

m − φ̄k
f

)
. (5)

Here, α Ik ,Jk
f m represents the fracture-matrix exchange coefficient, de-

fined as α
Ik ,Jk
f m = σ Ik ,Jk

m /d Ik ,Jk
f m , where σ Ik ,Jk

m is the matrix electrical

conductivity of block (Ik, Jk) and d Ik ,Jk
f m is the average normal dis-

tance between the fractures in that block and each point in the block
(Roubinet & Irving 2014; Roubinet et al. 2016).

We consider Fourier-domain Dirichlet boundary conditions ϕ̄
ik
f

and ϕ̄
jk
f at the extremities of each fracture segment xk = 0 and

xk = Lk, respectively. Solving analytically eq. (4) with these condi-
tions leads to the following expression for φ̄k

f :

φ̄k
f (xk, ω) = βw(xk)ϕ̄ik

f + γw(xk)

γw(Lk)
ϕ̄

jk
f

+ �k
Ik ,Jk

�k
Ik ,Jk

+ ω2

[
1 − βw(xk) − γw(xk)

γw(Lk)

]
φ̄ Ik ,Jk

m (6)

with

�k
Ik ,Jk

≡ α
Ik ,Jk
f m

/ (
bk

f σ
k
f

)
(7a)
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βw(xk)=exp

(
xk

√
�k

Ik ,Jk
+ω2

)
− γw(xk)

γw(Lk)
exp

(
Lk

√
�k

Ik ,Jk
+ω2

)
(7b)

γw(xk) = exp

(
−xk

√
�k

Ik ,Jk
+ ω2

)
− exp

(
xk

√
�k

Ik ,Jk
+ ω2

)
. (7c)

2.2.2 Modified DFN approach for the fracture network

At the fracture-network scale, charge conservation at each fracture-
intersection node is enforced by integrating eq. (2) over the intersec-
tion. For simplification, we consider that every node i is shared by
Ni fracture segments having the same aperture bi

f and conductivity
σ i

f , and that the surface of this intersection can be approximated by
bi

f × bi
f . Applying Gauss’s Divergence theorem leads to

bi
f ω

2σ i
f φ̄

i
f |xk

f =0
− σ i

f

Ni∑
k=1

∂xk
f
φ̄k

f |xk
f =0

= 0. (8)

Using expression (6), eq. (8) can be rewritten as

bi
f ω

2σ i
f ϕ̄

ik
f − σ i

f

Ni∑
k=1

(
Aik ϕ̄

ik
f + A jk ϕ̄

jk
f + AIk ,Jk φ̄

Ik ,Jk
m

)
= 0, (9)

where the terms Aik , A jk and AIk ,Jk are defined as

Aik = ζw(xk)
√

�k
Ik ,Jk

+ ω2 (10a)

A jk = − λw(xk)

γw(Lk)

√
�k

Ik ,Jk
+ ω2 (10b)

AIk ,Jk = − �k
Ik ,Jk

�k
Ik ,Jk

+ ω2

(
Aik + A jk

)
(10c)

with

ζw(xk)=exp

(
xk

√
�k

Ik ,Jk
+ω2

)
+ λw(xk)

γw(Lk)
exp

(
Lk

√
�k

Ik ,Jk
+ω2

)
(11a)

λw(xk)=exp

(
xk

√
�k

Ik ,Jk
+ω2

)
+exp

(
−xk

√
�k

Ik ,Jk
+ω2

)
. (11b)

2.2.3 Modified finite-volume approach in the matrix

Finally, in the matrix, charge conservation is enforced in the Fourier
domain by integrating eq. (2) over each matrix block (I, J) of volume
VI, J. This leads to

−
∫

VI,J

∇ ·
(
σm �∇φ̄ I,J

m

)
dV +

∫
VI,J

ω2σm φ̄ I,J
m dV =

∫
VI,J

Q̄k
f mdV .

(12)

Using Gauss’ Divergence Theorem, the left-hand side of eq. (12),
which we denote as MI, J, can be discretized as

MI,J = CI,J φ̄
I,J
m + CW

I,J φ̄
I−1,J
m + C E

I,J φ̄
I+1,J
m

+ C S
I,J φ̄

I,J−1
m + C N

I,J φ̄
I,J+1
m , (13)

where

CW
I,J = − �z

�x
H(I−1,J ),(I,J ) (14a)

C E
I,J = − �z

�x
H(I+1,J ),(I,J ) (14b)

C S
I,J = −�x

�z
H(I,J−1),(I,J ) (14c)

C N
I,J = −�x

�z
H(I,J+1),(I,J ) (14d)

CI,J = ω2σ I,J
m �x�z − CW

I,J − C E
I,J − C S

I,J − C N
I,J (14e)

with H(K ,L),(I,J ) the harmonic mean of the electrical conduc-
tivity in matrix blocks (K, L) and (I, J), i.e. H(K ,L),(I,J ) =
2/

(
1/σ K ,L

m + 1/σ I,J
m

)
.

The right-hand side of eq. (12) can be expressed as

∫
VI,J

Q̄k
f mdV =

N f
I,J∑

k=1

∫ Lk

0
Q̄k

f mdV, (15)

where N f
I,J is the number of fractures contained in the matrix block

volume VI, J. Using expression (5) for the source term Q̄k
f m leads to

∫
VI,J

Q̄k
f mdV = −α

I,J
f m φ̄ I,J

m

N f
I,J∑

k=1

Lk + α
I,J
f m

N f
I,J∑

k=1

�̄k
f , (16)

where �̄k
f is the integrated value of φ̄k

f along fracture segment k, i.e.

�̄k
f = ∫ Lk

0 φ̄k
f dxk , and (Ik, Jk) = (I, J) for k = 1, . . . , N f

I,J . Integrat-
ing expression (6) for φ̄k

f , we obtain the following definition for �̄k
f :

�̄k
f = Dik ϕ̄

ik
f + D jk ϕ̄

jk
f + DI,J φ̄

I,J
m , (17)

where the coefficients Dik , D jk , and DI, J are defined as

Dik = ζw(Lk) − 1√
�k

Ik ,Jk
+ ω2

−
2 exp

(√
�k

Ik ,Jk
+ ω2 Lk

)
γw(Lk)

√
�k

Ik ,Jk
+ ω2

(18a)

D jk = 2 − λw(Lk)

γw(Lk)
√

�k
Ik ,Jk

+ ω2
(18b)

DI,J = �k
I,J

�k
I,J + ω2

(
Lk − D jk − Dik

)
. (18c)

Finally, the discretized expression of eq. (12) is given by⎡
⎢⎣CI,J + α

I,J
f m

N f
I,J∑

k=1

(Lk − DI,J )

⎤
⎥⎦ φ̄ I,J

m + CW
I,J φ̄

I−1,J
m + C E

I,J φ̄
I+1,J
m

+C S
I,J φ̄

1,J−1
m + C N

I,J φ̄
I,J+1
m − α

I,J
f m

N f
I,J∑

k=1

(
Dik ϕ̄

ik
f + D jk ϕ̄

jk
f

)
= 0.

(19)

3 VA L I DAT I O N

We now validate our 2.5-D modelling approach for unfractured
(Section 3.1) and fractured (Section 3.2) porous domains consid-
ering a variety of different boundary conditions. We begin with
simple configurations for which known analytical solutions exist
(Sections 3.1 and 3.2.1). We then validate our approach for more
complex configurations involving multiple fractures using a stan-
dard finite-element approach as a reference solution (Section 3.2.2).

3.1 Unfractured porous domains

Validating on unfractured porous domains enables us to ver-
ify the modified finite-volume formulation presented in Sec-
tion 2.2.3. Here we consider the homogeneous and two-layer
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Figure 1. Configurations used to validate our modelling approach for un-
fractured porous media: (a) homogeneous domain and (b) two-layer domain.

configurations presented in Figs 1(a) and (b), respectively. In these
square domains of side length L = 30 m, the electrical conductivi-
ties σ 1 and σ 2 are equal to 10−3 and 10−1 S m−1, respectively, and
the interface between the layers in Fig. 1(b) is located at a depth
of z∗ = 1.5 m. Zero electrical conductivity is assumed above each
domain. In order to simulate an electrical resistivity experiment,
surface point-source injections of electric current I and −I are con-
sidered 10 m apart at x = 10 m and x = 20 m, respectively, with
I = 1 A.

As reference solutions, we consider the 3-D analytical expres-
sions for the electric potential corresponding to Figs 1(a) and (b),
which we denote by φ

re f 1
3D and φ

re f 2
3D , respectively. These analytical

solutions assume that the considered domains extend infinitely into
the subsurface and are given by (e.g. Telford et al. 1990)

φ
re f 1
3D = I

2πσ1

(
1

r1
− 1

r2

)
(20a)

φ
re f 2
3D = I

2πσ1

{
1

r1

[
1 + 2

∞∑
m=1

km√
1 + (2mz∗/r1)2

]

− 1

r2

[
1 + 2

∞∑
m=1

km√
1 + (2mz∗/r2)2

]}
, (20b)

where r1 and r2 are the distances to the locations of the point-source
injections I and −I, respectively, and k = (σ 1 − σ 2)/(σ 1 + σ 2).
Considering that these injections are located at positions (x1, y1,
z1) and (x2, y2, z2), with y1 = y2 = 0 and z1 = z2 = 0, the Fourier-
cosine transform of (20) leads to the following 2.5-D equations (e.g.
Bateman 1954):

φ̄
re f 1
2.5D = I

2πσ1

[
K0(ω

√
k1) − K0(ω

√
k2)

]
(21a)

φ̄
re f 2
2.5D = I

2πσ1

{
K0(ω

√
k1)+2

∞∑
m=1

kmK0[ω
√

k1 + (2mz∗)2]

}

− I

2πσ1

{
K0(ω

√
k2)+2

∞∑
m=1

kmK0[ω
√

k2+(2mz∗)2]

}
,

(21b)

where K0(·) is the modified Bessel function of the second kind of
order 0, k1 = (x − x1)2 + z2, and k2 = (x − x2)2 + z2.

As has been done in previous studies (e.g. Pidlisecky &
Knight 2008), the domains in Fig. 1 were discretized into regular
cells when calculating both the analytical and numerical solutions,

Figure 2. Absolute value of the electric potential at the Earth’s surface, φs

(in V), corresponding to the (a) homogeneous and (b) two-layer configu-
rations presented in Figs 1(a) and (b), respectively. Results were computed
using our numerical approach, the 2.5-D analytical solutions (21), and the
3-D analytical solutions (20). In (b), we also show the results obtained us-
ing our numerical approach combined with a singularity removal technique
(SRT).

and the electric potential was determined at the centre of each cell.
This was done in order to (i) avoid the infinite values of the elec-
tric potential at the locations of the point-source injections; and
(ii) facilitate the comparison between the analytical and numerical
solutions since the electric potential distribution is evaluated at ex-
actly the same positions in both cases. We considered 101 cells in
each direction and we approximated the infinite sums in (20b) and
(21b) using 100 terms. The discrete inverse Fourier-cosine trans-
form (Appendix A) was used to invert the results obtained from the
Fourier-domain analytical solution (21) and from our DDP mod-
elling approach. For the homogeneous configuration (Fig. 1a), we
used our numerical approach exactly as presented in Section 2.2,
whereas for the two-layer configuration (Fig. 1b) the singularity re-
moval technique presented in Appendix B was employed in order
to improve the accuracy of the solution. This technique, as with all
singularity removal methods, can only be applied to heterogeneous
domains because it is based on the difference in potential between
the considered heterogeneous configuration and its equivalent ho-
mogeneous configuration. For our DDP formulation, we considered
an insulating boundary condition along the top of the studied do-
mains, and the mixed boundary conditions described in Appendix C
along the other borders. The final results are obtained by summing
the distributions of electric potential determined separately for the
point-source injections I and −I.

Fig. 2 shows the absolute value of the electric potential along
the Earth’s surface, φs, for the configurations presented in Fig. 1,
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Figure 3. Fourier-cosine transform of the electric potential (in V) for the case of a single horizontal fracture as a function of the lateral coordinate x. Results
were obtained using our DDP approach (both in the matrix and in the fracture) and using the analytical solution (22). The wavenumber ω was set to (a) 0.1,
(b) 1, (c) 10 and (d) 20.

computed using the 3-D analytical solutions (20), the 2.5-D an-
alytical solutions (21), and our numerical approach. For both the
homogeneous and two-layer configurations, we observe an excel-
lent overall agreement between the analytical solutions and our
numerical approach, which confirms the validation of the approach
for unfractured porous domains. The only exception is near the lo-
cation of the current electrodes at x1 = 10 m and x2 = 20 m, where
discrepancies between all solutions can be seen to exist because
of the well-known singularity problem present at these locations
(e.g. Pidlisecky & Knight 2008). By using the singularity removal
technique presented in Appendix B, the differences between the
2.5-D analytical solution and our numerical solution are reduced at
these locations for the two-layer case. Note that simulations were
also carried out using z∗ = 9 m and z∗ = 18 m for the two-layer
configuration in Fig. 1(b), and showed excellent agreement between
the 2.5-D analytical solution and our numerical approach with the
use of the removal singularity technique (results not shown).

3.2 Fractured porous domains

To validate our numerical modelling approach for fractured porous
domains, we consider first a simple configuration involving a single
horizontal fracture (Section 3.2.1). Then, we perform validations
on three more complex configurations involving multiple fractures
(Section 3.2.2). Standard analytical and finite-element solutions are
used as reference solutions in the former and latter cases, respec-
tively.

3.2.1 Single horizontal fracture

Consider a single horizontal fracture located at depth z∗ having
aperture bf and electrical conductivity σ f, and embedded in a ma-

trix of electrical conductivity σ m. We assume Dirichlet boundary
conditions for the electric potential on the left and right sides of the
domain equal to 1 V and 0 V, respectively, and insulating boundary
conditions on the top and bottom. These boundary conditions are
widely employed in hydraulic and electrical conductivity modelling
studies (e.g. Long et al. 1982; Roubinet et al. 2010; Roubinet &
Irving 2014), and lead to the following analytical expression for the
electric potential φ̄SC in the Fourier domain:

φ̄SC = sin (ωL)

ω (1 − e2ωL )

[
eωx − e−ω(x−2L)

]
, (22)

where L is the length of the domain in the x-direction and ω is the
wavenumber associated with the Fourier-cosine transform defined
in (3a). Note that eq. (22) has no dependence on the depth of the
fracture z∗ and on the depth coordinate z, nor does it depend on the
electrical conductivity values for the fracture or matrix. Indeed, for
the simple case of a horizontal fracture with the prescribed boundary
conditions, the resulting potential only depends upon the lateral
coordinate x. Also note that, for this configuration, the discrete
inverse Fourier-cosine transform described in Appendix A cannot
be used since the corresponding optimized coefficients are defined
for configurations with point-source injections. Thus we conduct
our validation in the Fourier domain considering eq. (22) as our
reference solution.

Fig. 3 shows the Fourier-cosine transform of the electric potential
φ̄SC computed with the reference analytical solution (22) and with
our DDP approach. For the latter, the potential obtained in both the
fracture and the matrix is shown. These results were determined for
a domain of length L = 1 m, which was discretized into 101 blocks
in each direction. The fracture aperture bf was set to 10−3 m and
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the electrical conductivities σ f and σ m were set to 10−1 and 10−3 S
m−1, respectively. We see good agreement in the figure between our
numerical approach and the analytical solution, as well as different
behaviours of φ̄SC depending on the considered value of ω. For small
values of ω, φ̄SC decreases linearly as x increases (Figs 3a and b),
and for large values of ω, φ̄SC either increases (Fig. 3c) or decreases
(Fig. 3d) until it reaches a constant value. Note that the same results
were obtained for different ratios of the electrical conductivities σ f

and σ m and for a larger number of horizontal fractures (results not
shown).

3.2.2 Multiple-fracture configurations

In order to investigate more complex configurations involving mul-
tiple fractures, we now consider the three 30 × 30 m fractured
domains presented in Fig. 4. The matrix and fracture electrical
conductivities for all examples were set to σ m = 10−5 S m−1

and σ f = 10−2 S m−1, respectively. Note that these configura-
tions are considered in the present section to validate our 2.5-D
modelling approach whereas in Section 4 they are used to sim-
ulate electrical resistivity measurements in fractured rocks. For
the validation, we assume the same type of point-source injections
and boundary conditions that were considered previously; that is,
1 A and −1 A surface current injections located at x = 10 m
and x = 20 m, respectively, an insulating condition along the
top boundary, and mixed boundary conditions along the sides and
bottom.

For each configuration in Fig. 4, we would like to validate by com-
paring the electric potential distribution obtained using our 2.5-D
modelling approach with that computed using the COMSOL Mul-
tiphysics 4.3 finite-element software package, the latter of which
serves as the reference solution. Unfortunately, we found that these
multiple-fracture examples led to prohibitive computational costs
with COMSOL when all of the fractures were considered and a
realistic fracture aperture of b = 10−3 m was used. Indeed, both
meshing and solving the corresponding finite-element system were
found to overwhelm available computational resources because of
the small scale of the fractures compared to the domain size. For this
reason, we simplified the considered domains in Fig. 4 for our vali-
dation as follows: (i) the fracture aperture was set to 10−2 m, instead
of 10−3 m, in order to facilitate the meshing inside each fracture;
(ii) the fractures located below 5 m depth were removed as these
fractures will have minimal impact on the surface measurements
for the studied experiment; (iii) the fractures that do not connect
the borders of the domain were removed; and (iv) for DFN2, all
of the vertical fractures were removed except for the two closest
to each point source. Note that these simplifications were made
only for our validation in order to reduce the numerical cost of the
COMSOL simulations while keeping the most important fractures
of the system.

Figs 5(a)–(c) show the simplified fractured domains as well as
the corresponding distribution of the electric potential perturbation
φ∗, related to the presence of the fractures, which is defined as

φ∗(x, z) = |φ(x, y0, z) − φm(x, y0, z)|, (23)

where φ(x, y0, z) is the electric potential of the fractured porous
domain, and φm(x, y0, z) is the electric potential corresponding to an
unfractured porous domain having constant electrical conductivity

Figure 4. Multiple-fracture configurations used to validate our numerical
approach.

σ m. The distribution of φ∗ was evaluated using our 2.5-D modelling
approach using 200 matrix blocks in each direction, which led to
roughly 4 × 104 meshing elements and a total computational time of
approximately 3 minutes for each fractured domain. In comparison,
the number of meshing elements required by COMSOL was more
than 106 in each case, and the total computational time was roughly
3 times greater for DFN1 and DFN2 and 65 times greater for DFN3.
Also plotted in Fig. 5(d) is the electric potential perturbation at the
surface φ∗

S = φ∗(x, 0) computed using our code and COMSOL.
Here we see an excellent agreement between the two codes, which
confirms the validation of our modelling approach for the multiple
fractures case.
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Figure 5. (a–c) Electric potential perturbation φ∗ (in V) obtained using our 2.5-D DDP approach after simplification of the fractured domains (a) DFN1, (b)
DFN2 and (c) DFN3 from Fig. 4. The white lines in (a–c) represent the fractures and the red symbols show the locations of the current electrodes. (d) Electric
potential perturbation at the surface, φ∗

s (in V), plotted as a function of x and obtained using our approach (symbols) and the COMSOL finite-element solution
(lines).

Figure 6. Considered Wenner electrode configurations where the electrode spacing s is set equal to (a) u (W1), (b) 2u (W2) and (c) 4u (W4). The small vertical
lines represent the domain discretization. The electrode translation was set to u = 0.9 m for all experiments, and the electrodes in blue and green correspond
to the first and second measurements, respectively.

4 R E S U LT S

We now compute using our 2.5-D modelling approach a variety of
four-electrode resistivity measurements on the fractured domains
shown in Fig. 4, in order to simulate the type of data that would
be acquired during a typical tomographic geoelectrical survey. To
this end, we consider the three Wenner electrode configurations pre-
sented in Fig. 6, each of which corresponds to a different electrode
spacing s, which are progressively moved along the Earth’s sur-
face by an amount equal to the unit spacing between the electrodes

u = 0.9 m. Current injections of 1 A and −1 A are performed at A
and B, respectively, and we consider the same boundary conditions
that were used for the validation (Section 3.2.2). Now, however, the
fracture aperture is prescribed a more realistic value of 10−3 m.
Using our 2.5-D DDP modelling approach with 100 matrix blocks
in each direction, we compute the absolute difference in potential
between M and N, denoted as VMN.

From the absolute difference in potential VMN, we calculate the
apparent electrical resistivity ρa = 2πsVMN (e.g. Telford et al. 1990).
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Figure 7. Normalized apparent resistivity ρ∗
a , plotted as a function of the

lateral position of the centre of the electrode array xMN, for the fractured
porous domains (a) DFN1, (b) DFN2, and (c) DFN3 from Fig. 4 and the
experiments W1, W2 and W4 presented in Fig. 6.

For a homogeneous porous domain having electrical conductivity
σ m, we found the apparent electrical resistivity ρm

a to well approxi-
mate 1/σ m with an error smaller than 4 per cent for each electrode
configuration. We consider this small level of error to be accept-
able because it is expected that some inaccuracies will arise from
the discretization as well as from the numerical Fourier inversion.
However, as this error depends on the considered electrode con-
figuration and as we aim to compare the results obtained for dif-
ferent configurations, we define the normalized apparent resistivity
ρ∗

a = ρa × ρm/ρm
a with ρm = 105 �m. Fig. 7 shows ρ∗

a calculated

Table 1. Values of the depth of influence of the frac-
tures d∗ (in m) for the domains in Fig. 4 and the
electrode configurations in Fig. 6. These values were
determined up to a precision of 0.1 m.

DFN1 DFN2 DFN3

W1 0 2.8 2.2
W2 2.8 4.3 2.9
W4 5.5 8.2 5.2

as a function of the lateral position of the centre of the electrode
array xMN, for the three fracture configurations shown in Fig. 4 and
the three Wenner spacings shown in Fig. 6.

For the fractured domains, we wish to determine which fractures
impact the normalized apparent resistivity ρ∗

a . To this end, we define
ρ∗

a (d) as the resistivity evaluated by taking into account only the
fractures located above depth d. With this definition, the results
presented in Fig. 7 correspond to ρ∗

a (L) with L equal to the total
depth of the domain (i.e. taking into account all of the fractures).
Considering ρ∗

a (L) as a reference value, we define the depth of
influence d∗ of the fractures as the smallest depth for which the
average relative error in resistivity is smaller than 1 per cent. The
latter value was chosen to provide close agreement between ρ∗

a (d)
and ρ∗

a (L), such that d∗ represents the depth above which fractures
significantly impact the behaviour of ρ∗

a . The values of d∗ calculated
for each fractured domain and electrode configuration in Figs 4 and 6
are presented in Table 1, and the corresponding equivalent fractured
domains (i.e. ignoring fractures below depth d∗) are shown in Fig. 8.
For comparison, note that the approximate depth of influence of a
homogeneous half space is defined as half of the electrode spacing
(e.g. Binley & Kemna 2005), which leads to a depth of investigation
equal to 0.45 m, 0.9 m, and 1.8 m in experiments W1, W2 and W4,
respectively.

For the parallel fracture case (DFN1), we see that ρ∗
a is con-

stant as a function of position xMN for all experiments (Fig. 7a). In
addition, we observe that this constant value is (i) equal to the ap-
parent resistivity for the corresponding unfractured porous domain,
ρm = 105 �m, in experiment W1; (ii) smaller than ρm in experi-
ments W2 and W4; and (iii) smaller for experiment W4 than for
experiment W2. As shown in Table 1, this behaviour results from
an increase in d∗ with an increase of the electrode spacing s. More
precisely, when s is equal to u (W1), the fractures do not impact the
value of ρ∗

a (Fig. 8a). Increasing s from u (W1) to 2u (W2) means
that the top fracture of the domain impacts ρ∗

a (Fig. 8d), and increas-
ing s from 2u (W2) to 4u (W4) means that the top two fractures
impact ρ∗

a (Fig. 8g).
For the case of horizontal and vertical fractures (DFN2), oscil-

lations of ρ∗
a are observed with experiments W1 and W4 (Fig. 7b).

These oscillations correspond to successions of configurations
where a different number of fractures is present between the current
electrodes. For W1, the largest and smallest values of ρ∗

a occur when
one and two fractures, respectively, are located between electrodes
A and B, and for W4, the largest and smallest values occur when four
and five fractures, respectively, are located between these electrodes.
Although successions of configurations with different numbers of
fractures between the current electrodes also occur in W2, oscilla-
tions of ρ∗

a are not observed. We believe that this behaviour is related
to different configurations of the vertical fractures at the depths of
influence. In W1 and W4, the lower extremities of these fractures
reach a horizontal fracture (Figs 8b and h), whereas in W2 these
extremities are embedded in the rock matrix (Fig. 8e). Note that, as
before and as could be expected, increasing s results in increasing
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Figure 8. Equivalent domains corresponding to the fracture configurations DFN1 (first column), DFN2 (second column) and DFN3 (third column) from Fig. 4,
and for the Wenner electrode configurations W1 (first row), W2 (second row) and W4 (third row) from Fig. 6.

d∗ (Table 1) and thus the number of fractures impacting the value
of ρ∗

a (Figs 8b, e and h).
Finally, for the random fracture case (DFN3) considering elec-

trode configuration W1 (Fig. 7c), we observe that (i) ρ∗
a is slightly

smaller than ρm when xMN is less than 12.3 m; (ii) ρ∗
a presents large

variations and reaches its smallest values when xMN is between
12.3 m and 21.3 m; and (iii) ρ∗

a is close to ρm when xMN is larger
than 21.3 m. Studying the fractures present above the depth of influ-
ence d∗ (Fig. 8c) shows that these observations result, respectively,
from (i) the presence of a small horizontal fracture in the top-left
corner of the domain; (ii) the presence of two subvertical fractures
at the top of the domain near the centre; and (iii) the absence of
fractures in the top-right corner of the domain. In comparison with
W1, conducting experiment W2 results in (i) a decrease of the maxi-
mum value of ρ∗

a in that it is now always smaller than ρm; (ii) smaller
values of ρ∗

a on the left-hand side, here for xMN ≤ 10.95 m, than
on the right-hand side of the domain, here for xMN ≥ 22.65 m; and
(iii) a wider extent of the area where the smallest values of ρ∗

a are
observed, here for xMN from 10.95 m to 22.65 m. Fig. 8(f) shows that
these observations can be explained, respectively, by (i) the presence
of a subhorizontal fracture extending across the entire domain; (ii)
the presence of another short subhorizontal fracture near the top-left
corner of the domain; and (iii) the larger extent, in comparison with
W1, of the subvertical fractures. Finally, the results obtained with
configuration W4 show (i) a decrease in the largest values of ρ∗

a in

comparison with W1 and W2; (ii) smaller values of ρ∗
a on the left

side, for xMN ≤ 9.15 m, than on the right side of the domain, for
xMN ≥ 23.55 m; and (iii) two regions with a strong decrease and
increase of ρ∗

a . These results are explained by the presence of an
additional subhorizontal fracture using configuration W4 (Fig. 8i),
in comparison with W2 (Fig. 8f), which implies that the largest
values of ρ∗

a are smaller in the former than in the latter configura-
tion. As this additional fracture does not reach the right-hand side
of the domain, it also implies that larger values of ρ∗

a are observed
on this side than on the left-hand side with configuration W4. In
addition, the two subvertical fractures have different characteristics
between the W2 (Fig. 8f) and W4 (Fig. 8i) configurations, as the
distance between the bottom extremities of these fractures is larger
in the latter case than in the former case. This implies that they are
separated enough using W4 to individually impact ρ∗

a and produce
two distinct decreases in ρ∗

a .

5 C O N C LU S I O N S

We have presented in this paper a 2.5-D DDP approach for numer-
ically modelling electric current flow in fractured media. To our
knowledge, this is the first attempt to develop a computationally ef-
ficient algorithm that (i) is well adapted to the numerical challenges
arising from the specificities of fractured rocks, and (ii) adequately
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represents the physics of point-source injections in heterogeneous
domains. We have validated our approach for both unfractured and
fractured porous domains using a variety of fracture networks. Com-
parison with a standard finite-element solution for cases involving
multiple fractures clearly demonstrates the numerical efficiency of
our approach.

The results presented in this work indicate that a small number
of millimetre-scale fractures can significantly impact the apparent
electrical resistivity evaluated from ERT surveys. For example, the
presence of only two horizontal fractures having aperture 10−3 m
and electrical conductivity three orders of magnitude larger than
the surrounding matrix results in a decrease in 10 per cent of the
apparent electrical resistivity. As expected, this impact depends on
the considered electrode configurations; increasing the electrode
spacing, for example, results in an increase in the number of frac-
tures impacting the measured resistivity. Our results also show that
the presence of horizontal fractures extending from the left to right
sides of the considered domains results in a decrease of the mea-
sured resistivity everywhere along the electrode line. Conversely,
the presence of vertical fractures results in localized decreases in
this resistivity. In the latter case, it is important to note that the ver-
tical fractures may not be situated where the decreases in resistivity
are observed, as (i) the changes in resistivity can result from varia-
tions in the number of fractures between the current electrodes; and
(ii) the vertical fractures need to be separated enough to individually
impact the apparent resistivity.

Our results open new perspectives in terms of the inversion of
geoelectrical data in order to characterize fractured rocks. In partic-
ular, we question to what extent such data may be used to progres-
sively reconstruct the properties of the underlying fracture network,
either deterministically or stochastically. In this regard, future work
will include statistical investigation of the results obtained for ran-
dom fracture networks with large ranges in their geometrical prop-
erties. Finally, we wish to extend the work presented in this paper
to ‘real’ 3-D fractured-rock configurations, where reliance upon a
2.5-D representation is not necessary. To this end, we are currently
developing a 3-D formulation of the DDP modelling approach with
special efforts to reduce the computational cost. This new modelling
tool will enable us to simulate azimuthal resistivity surveys in frac-
tured porous media in order to study (i) how these experiments help
to identify the presence of fractures and evaluate their properties;
and (ii) how the corresponding results might be integrated into an
inversion framework.
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A P P E N D I X A : D I S C R E T E I N V E R S E
F O U R I E R - C O S I N E T R A N S F O R M

Consider that the space domain is discretized into Ny elements
of constant length �y in the y-direction. The resulting discretized
values are defined as ym = (m − 1/2)�y with m = 1, . . . , Ny and
the electric potential φ at position ym is denoted as φm = φ(x, ym,
z). Using a discretized formulation of the inverse Fourier-cosine
transform (3b), the electric potential φm can be expressed as

φm = 2

π

Nw∑
n=1

φ̄n cos(ωn ym)�ω. (A1)

In expression (A1), the wavenumber ω is discretized into Nω values
of constant difference �ω which are defined as ωn = n�ω with
n = 1, . . . , Nω. We set the discretization steps �ω and �y to
π/T and T/Ny, respectively, with T = 100 in our study. Assuming
Nw = Ny and considering N such as N = Nw = Ny, expression (A1)
becomes

φm = 2

T

N∑
n=1

φ̄n cos

[
n(2m − 1)π

2N

]
, (A2)

and can be written as

φm =
N∑

n=1

φ̄n gn, (A3)

where the coefficients gn are the Fourier weights.
To obtain an accurate evaluation of φm from expression (A2),

a fine discretization might be required, which will result in a large
number of wavenumber Nω. As this number corresponds to the num-
ber of times that eq. (2) has to be solved, a large value of Nω results in
a high computational cost. To reduce this cost, Xu et al. (2000) op-
timized the selection of the wavenumber and Fourier-weight values.
Considering a point-source injection in homogeneous and hetero-
geneous half-space domains, they determine the following values
for the wavenumber ωn and Fourier weight gn:

ω1 = 0.0217102 ω2 = 0.2161121

ω3 = 1.0608400 ω4 = 5.0765870 (A4a)

g1 = 0.0463660 g2 = 0.2365931

g3 = 1.0382080 g4 = 5.3648010. (A4b)

These coefficients are used in our study for inverting the ana-
lytical and numerical results which are obtained in the Fourier
domain.

A P P E N D I X B : S I N G U L A R I T Y R E M OVA L
T E C H N I Q U E

Considering point-source injections results in the presence of sin-
gularities at the locations of these injections where a large error in
the electric potential can be observed. Although this error could be
reduced by using a finer spatial discretization close to the singulari-
ties, a correction of these singularities is usually preferred in order to
reduce the related numerical cost. Techniques to remove the source
singularity have been developed for finite-difference and finite-
element approaches (e.g. Lowry et al. 1989; Li & Spitzer 2002)
by expressing the electric potential φ̄ in the Fourier domain as

φ̄ = φ̄r + φ̄s (B1)

with φ̄r and φ̄s the regular and singular parts of the potential, respec-
tively. Defining the latter potential as the Fourier transform of the
electric potential in a semi-infinite half-space of constant electrical
conductivity σ 0, φ̄s is expressed as

φ̄s = I

2πσ0
K0(ω

√
(x − x0)2 + z2). (B2)

From its definition, φ̄s is solution for eq. (2) with σ (x, z) = σ 0,
and σ 0 is defined as either the average conductivity over the whole
domain (e.g. Lowry et al. 1989) or the conductivity at the point-
source location (e.g. Zhao & Yedlin 1996). As φ̄ is also solution for
eq. (2), φ̄r is solution for the following equation:

−∇ · [σ (x, z) �∇φ̄r (x, ω, z)] + ω2σ (x, z)φ̄r (x, ω, z)

= ∇ · [σ ∗(x, z) �∇φ̄s(x, ω, z)] − ω2σ ∗(x, z)φ̄s(x, ω, z) (B3)

with σ ∗(x, z) = σ (x, z) − σ 0.
Here, we wish to adapt the existing techniques to remove sin-

gularities in the modified finite-volume approach presented in Sec-
tion 2.2.3. Note that the considered method will also be applicable
to standard finite volume approaches. After integrating eq. (B3)
over each matrix block volume VI, J, we observe that the left- and
right-hand sides of this equation have a similar formulation to the
left hand-side of eq. (12), implying that the same discretization
technique can be used. This results in the following discretized
expression

CI,J φ̄
r
I,J + CW

I,J φ̄
r
I−1,J + C E

I,J φ̄
r
I+1,J + C S

I,J φ̄
r
I,J−1 + C N

I,J φ̄
r
I,J+1

= C∗
I,J φ̄

s
I,J + C∗,W

I,J φ̄s
I−1,J + C∗,E

I,J φ̄s
I+1,J

+ C∗,S
I,J φ̄s

I,J−1 + C∗,N
I,J φ̄s

I,J+1, (B4)

where the coefficients CI, J, CW
I,J , C E

I,J , C S
I,J , and C N

I,J are given

in (14) and the coefficients C∗
I,J and C∗,K

I,J are defined as C∗
I,J =

C0
I,J − CI,J and C∗,K

I,J = C0,K
I,J − C K

I,J (K = W, E, S, N) with C0
I,J and

C0,K
I,J the counterparts of the coefficients CI, J and C K

I,J considering
the constant electrical conductivity σ 0.
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A P P E N D I X C : M I X E D B O U N DA RY
C O N D I T I O N S

When simulating ERT experiments, mixed boundary conditions are
very often applied to the left, right and bottom borders of the con-
sidered domains (e.g. Dey & Morrison 1979; Li & Spitzer 2002;
Rücker et al. 2006). These conditions help to reproduce the natural
behaviour of the electric potential at positions far away from the
point-source injection. This implies that the size of the computa-
tional domain and the related computational cost can be reduced
in comparison with other boundary conditions that might affect the
observed results. Mixed boundary conditions in the Fourier domain
are defined as

α(x, z)φ̄ + β(x, z)
∂φ̄

∂�n = γ (x, z), (C1)

where �n is the outward normal on which the boundary conditions are
applied and position (x, z) is located on one of the domain borders.

As done in Dey & Morrison (1979), we set the coefficients β and γ

to 1 and 0, respectively, and we define α as

α = ω
K1(ωr )

K0(ωr )

( �n · �r
r

)
, (C2)

whereK1 is the modified Bessel function of the second kind of order
1, ω is the wavenumber associated with the space-variable y, and
r = √

(x − x0)2 + z2 is the distance from the considered position
(x, z) on the domain border to the source point located at position
(x0, z0) with z0 = 0.

To apply these boundary conditions in our DDP approach, we
consider a ghost-cell method which leads to

− ∂φ̄

∂�n = 2α

2 + α�
φ̄ (C3)

with � the cell size and φ̄ the cosine-Fourier transform of the electric
potential at the boundary condition location.


