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Abstract
We generalise disagreement percolation to Gibbs point processes of balls

with varying radii. This allows to establish the uniqueness of the Gibbs mea-
sure and exponential decay of correlations in the high temperature regime by
comparison with a sub-critical Boolean model. Applications to the continuum
random cluster model and the Quermass-interaction model are presented. At
the core of our proof lies an explicit dependent thinning from a Poisson point
process to a dominated Gibbs point process.
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1 Introduction

The class of Gibbs models is a rich class of point processes, where a model is defined
through its microscopic properties. The modern formalism is due to Dobrushin [11],
Lanford and Ruelle [23, 27], who gave their names to the DLR equations defining
the Gibbs states through their conditional probabilities. A classical question is the
question of uniqueness of Gibbs states having the same conditional probabilities.
One expects uniqueness at low activities and non uniqueness, usually referred to as
phase transition, at large activities. This was proven for example for the well-known
Widom-Rowlinson model [4].

The aim of this paper is to show uniqueness of the Gibbs state for a large class
of Gibbs interactions. The method used is a continuum extension of the classical
disagreement percolation technique introduced by van den Berg and Maes [32].
This technique has been recently used to prove uniqueness in the case of the hard-
sphere model [18]. The present paper generalises this construction to the case of
Gibbs point processes of balls. Two natural restrictions are a stochastic domination
of the Gibbs point process by a Poisson point process and a locality assumption
about the interaction respecting the geometric structure imposed by the balls. The
interactions are not assumed to contain only pair-interactions.

The idea behind disagreement percolation is to construct a coupling, named
disagreement coupling, between three point processes on a bounded domain. Two
marginals are the studied Gibbs point process with different boundary conditions.
The third marginal is a dominating Poisson point process. The key property of this
coupling is a control of the disagreement points of the two Gibbs instances by the
dominating Poisson point process. Therefore, the Poisson point process seen as a
Boolean percolation model controls the influence of the boundary conditions. In the
sub-critical percolation regime, this influence is small. Hence, we derive the unique-
ness of the Gibbs phase for activities lower than the critical percolation threshold
of the dominating Poisson point process. In some cases, we show an exponential
decay of correlation, proved as a direct consequence of the exponential decay of
connectivity in the sub-critical Boolean model and the existence of a disagreement
cluster. Our results apply to several Gibbs model such as the continuum random
cluster model or a simplified Quermass-interaction model, as well as every Gibbs
model with finite range interaction.

The construction of the disagreement coupling is done by recursion in Section 5
and relies strongly on the measurability of a coupling between the Gibbs point
process and a dominating Poisson point process. The classic constructions of dom-
inating couplings [26, 14] are implicit and do not yield measurability directly. In
Section 4 we derive a new coupling, namely a dependent thinning from the dominat-
ing Poisson point process, with explicitly given thinning probabilities. The thinning
probabilities are expressed in terms of the derivative of the free energy of the Gibbs
point process.

This paper is organised as follows. Section 2 introduces the set-up of the pa-
per. Section 3 presents the results: uniqueness of the Gibbs state, existence of the
disagreement coupling and exponential decay of correlation. Section 3.2 discusses
applications to different Gibbs models, showing that they satisfy the assumptions of
our theorems. A discussion of possible extension, generalisations, and connections
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to related methods is in Section 3.3. We give an explicit expression for the thinning
probabilities in Section 4 and construct the disagreement coupling in Section 5. The
remaining sections contain proofs of the other statements.

2 Preliminaries

This section introduces the notation and models needed to state the results in
Section 3.

2.1 Space

Consider the state space S := Rd × R+. Let S be the Borel sets of S. Let Sbp be
those Borel sets of S whose projection onto Rd is a bounded Borel set. Let Ω be the
set of locally finite points configurations on S, meaning that for each configuration
ω ∈ Ω and each bounded subset Λ of Rd, |ω ∩ (Λ× R+)| < ∞. For ∆ ∈ S, denote
by Ω∆ the set of configurations contained in ∆. For a configuration ω, write ω∆ for
ω ∩ ∆. Let F be the σ–algebra on Ω generated by the counting variables, which
is compatible with the Fell topology. For ∆ ∈ S, consider the sub σ–algebra F∆

generated by the events

{ω ∈ Ω | ω∆ ∈ E}, E ∈ F .

Let Bb be the bounded Borel sets of Rd. In the case of ∆ = Λ × R+ with Λ ∈ Bb,
we abbreviate ωΛ×R+ , ΩΛ×R+ and FΛ×R+ as ωΛ, ΩΛ and FΛ respectively.

We write X := (x, r) ∈ S. The closed ball of radius r around x is B(x, r)
or B(X). We write B(ω) := ∪X∈ωB(X). We abbreviate ω ∪ {X} to ω ∪ X. A
configuration ω ∈ Ω has an associated Gilbert graph G(ω) with vertex set ω and
an edge between X,Y ∈ ω whenever B(X) ∩ B(Y ) 6= ∅. We say that X,Y ∈ S

are connected by ω, written X
in ω←−→Y , whenever there is a path in G(ω ∪ {X,Y })

between X and Y . For a Borel set Λ ⊆ Rd and a configuration ω′, we write

Λ
in ω←−→ω′, if there exists x ∈ Λ and Y ∈ ω′, such that (x, 0)

in ω←−→Y . This extends
to the other three combinations of a Borel set and a configuration.

2.2 Point processes

This work only considers simple point process (short: PP). It treats a PP as a locally
finite random subset of points of S instead of as a random measure. Hence, the law
of a PP P is a probability measure on Ω with the canonical variable ξ. Unless there
is ambiguity, we refer to a PP by its law and vice-versa.

Let Ld be the Lebesgue measure on Rd. Because of the fact that the intensity
of the unmarked support PP of our marked PPs are absolutely continuous with
respect to Ld, we can treat our marked PPs on Rd with marks in R+ as simple PPs
on S.

The most classical PP is the Poisson point process. In this paper we consider
only the special case of the Poisson PP with intensity measure αLd⊗Q, where α is
a positive real number called (spatial) intensity and Q is a probability measure on

R+. The law of this PP is denoted by Ppoi
α,Q, and the projection on ∆ ∈ S is denoted

by Ppoi
∆,α,Q. An extensive study of the Poisson PP can be found in [8].

The percolation properties of Ppoi
α,Q play an important role in this work. A config-

uration ω ∈ Ω percolates if its Gilbert graph G(ω) contains at least one unbounded
(or infinite) connected component. For a radius measure Q, let αc(d,Q) ∈ [0,∞] be

the threshold intensity separating the sub-critical (Ppoi
α,Q–almost–never percolating)

and super-critical (Ppoi
α,Q–almost–surely percolating) phases. One of these phases
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may not exist, if and only if αc(d,Q) ∈ {0,∞}. This is always the case in dimension
one [25, Thm 3.1]. The average volume of a ball under Q is a dimension-dependent
multiple of

ρ(Q) :=

∫
R+

rdQ( dr) . (2.1)

Theorem 2.1 ([25, 16]). For d ≥ 2, if Q satisfies ρ(Q) < ∞, then there exists a
percolation threshold αc(d,Q)∈ ]0,∞[. Moreover, for each α < αc(d,Q) and Λ ∈ Bb,

Ppoi
α,Q

(
Λ

in ξ←−→B(0, n)
c
)
−−−−→
n→∞

0 . (2.2)

Furthermore, if the radii are bounded, i.e., Q([0, r0]) = 1 for some finite r0, then
the previous quantity decays exponentially fast. There exist κ,K positive such that,
for all Borel sets Λ1,Λ2 of Rd,

Ppoi
α,Q

(
Λ1

in ξ←−→Λ2

)
≤ K exp(−κθ(Λ1,Λ2)) , (2.3)

where θ(Λ1,Λ2) is the Euclidean distance between the sets Λ1 and Λ2.

In the case of unbounded radii, the exponential decay of connection in the Pois-
son Boolean model is not proved. In a recent paper [1], a polynomial decay is
proved for the Poisson Boolean model in R2 with unbounded radii satisfying some
integrability assumption.

2.3 Gibbs point processes

In this section, we present a general class of Gibbs point processes. For every
∆ ∈ Sbp, there is a measurable Hamiltonian H∆ : Ω∆×Ω∆c →]−∞,∞]. The Hamil-
tonians are additive in the sense that, for all disjoint ∆1,∆2 ∈ Sbp and ω1 ∈ Ω∆1 ,
ω2 ∈ Ω∆2

and γ ∈ Ω(∆1∪∆2)c ,

H∆1∪∆2
(ω1 ∪ ω2 | γ) = H∆1

(ω1 | γ ∪ ω2) +H∆2
(ω2 | γ) . (2.4)

Furthermore we assume H∆(∅ | γ) = 0, which implies together with (2.4), that if
∆̃ ⊆ ∆ ∈ Sbp, ω ∈ Ω∆̃ and γ ∈ Ω∆c

H∆(ω | γ) = H∆̃(ω | γ) . (2.5)

The partition function of the Gibbs PP on ∆ with boundary condition γ is

Z(∆, γ) :=

∫
Ω∆

e−H∆(ω|γ)Ppoi
∆,λ,Q( dω) . (2.6)

The specification of the Gibbs PP on ∆ with boundary condition γ is the PP law

Pgb∆,γ( dω) :=
e−H∆(ω|γ)

Z(∆, γ)
Ppoi

∆,λ,Q( dω) . (2.7)

A PP P is a Gibbs state of the specification (2.7), if it fulfils the DLR equations.
These demand that, for every ∆ ∈ Sbp and P (ξ∆c = .)–a.s.,

P (ξ∆ = dω | ξ∆c = γ) = Pgb∆,γ( dω) . (2.8)

Write Ggb for the Gibbs states of (2.7). We assume that Ggb is non-empty.

4



2.4 Stochastic domination

Let ∆ ∈ Bb. On Ωn∆, the standard product σ–algebra is F⊗n∆ . The canonical
variables on Ωn∆ are ξ := (ξ1, . . . , ξn). A coupling P of n PP laws P1, . . . ,Pn on ∆
is a probability measure on (Ωn∆,F

⊗n
∆ ) such that, for all 1 ≤ i ≤ n and E ∈ F∆,

P (ξi ∈ E) = Pi(ξ ∈ E).
An event E ∈ F is called increasing, if ω ∈ E implies that ω ∪ X ∈ E, for

every X ∈ S. If P1 and P2 are two probability measures, then we say that P2

stochastically dominates P1 (short: dominates), if P1(E) ≤ P2(E) for all increasing
events E. By Strassen’s theorem [24], this is equivalent to the existence of a coupling
P of P1 and P2 such that P (ξ1 ⊆ ξ2) = 1.

The Papangelou intensity is the conditional intensity of adding a point at X
to ω ∈ Ω [8, Section 15.5]. A classic sufficient condition for stochastic domination
of a Gibbs PP by a Poisson PP is the uniform boundedness of the Papangelou
intensity [26, 14]. That is,

φgbω (X) := λ exp(−H{X}(X | ω)) ≤ α . (Dom)

This is trivially equivalent to the existence of an uniform lower bound for the local
energy H{X}(X | ω).

3 Results and discussion

3.1 Disagreement percolation

The idea behind disagreement percolation is to couple two instances of a Gibbs PP
on the same ∆ ∈ Sbp with arbitrary boundary conditions, such that the set of points
differing between the two instances (the disagreement cluster) is dominated by a
Poisson PP.

Definition 3.1. A disagreement coupling family at level (α,Q) is a family of cou-
plings (Pdac

∆,γ1,γ2) indexed by ∆ ∈ Sbp and γ1, γ2 ∈ Ω∆c , such that they are measur-

able in the boundary conditions and fulfil

∀1 ≤ i ≤ 2 : Pdac
∆,γ1,γ2(ξi = dω) = Pgb∆,γi( dω) , (3.1a)

Pdac
∆,γ1,γ2(ξ3 = dω) = Ppoi

∆,α,Q
( dω) , (3.1b)

Pdac
∆,γ1,γ2(ξ1 ∪ ξ2 ⊆ ξ3) = 1 , (3.1c)

Pdac
∆,γ1,γ2(∀X ∈ ξ14ξ2 : X

in ξ3

←−−→ γ1 ∪ γ2) = 1 . (3.1d)

Therefore, control of the disagreement cluster by the percolation cluster of a
Boolean model is possible. Hence, a sub-critical Boolean model implies the unique-
ness of the Gibbs state.

Theorem 3.2. If there exists a disagreement coupling family at level (α,Q) such
that Q satisfies the integrability assumption ρ(Q) <∞ and is sub-critical with α <
αc(d,Q), then there is a unique Gibbs state in Ggb.

The proof of Theorem 3.2 is in Section 6. Theorem 3.2 transfers the question
of uniqueness to question of existence of a suitable disagreement coupling family.
The key property of a disagreement coupling family to ensure uniqueness is (3.1d),
which places the disagreement points of the two Gibbs instances into a percolation
cluster of the Boolean model. To ensure this property, we need that the Hamiltonian
H∆(ω | γ) depends only on those points in γ which are connected to ω in G(ω ∪ γ).
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With (2.4), this is equivalent to the following. If ω ∈ Ω∆ and γ ∈ Ω∆c are such
that ω and γ are not connected in G(ω ∪ γ), then

H∆(ω | γ) = H∆(ω | ∅) . (Loc)

Theorem 3.3. If Ppoi
∆,α,Q dominates Pgb∆,γ for all choices of ∆ ∈ Sbp and γ ∈ Ω∆c ,

and condition (Loc) is fulfilled, then there exists a disagreement coupling family at
level (α,Q).

The proof of Theorem 3.3 is in Section 5. The easy way is to demand a priori
stochastic domination of a single Gibbs PP.

In the case of bounded radii, the connection probabilities decay exponentially in
a sub-critical Poisson Boolean model. This translates into an exponential decay in
influence of the boundary condition of the Gibbs PP and the reduced pair correlation
function of the Gibbs state.

Theorem 3.4. Assume that Pdac is a disagreement coupling family for Pgb at
level (α,Q) such that Q has bounded support and such that α < αc(Q). Let κ be
the constant from (2.3) for Ppoi

α,Q
. There exists a unique Gibbs state P in Ggb and

K ′ > 0, such that:
For all Λ, Λ̄ ∈ Bb with Λ ⊆ Λ̄, γ ∈ ΩΛ̄c and E ∈ FΛ,

|Pgb
Λ̄,γ

(E)− P (E)| ≤ K ′ exp(−κθ(Λ, Λ̄c)) . (3.2a)

For all Λ1,Λ2 ∈ Bb, E ∈ FΛ1
and F ∈ FΛ2

,

|P (E ∩ F )− P (E)P (F )| ≤ K ′ exp(−κθ(Λ1,Λ2)) . (3.2b)

The proof of Theorem 3.4 is in Section 7.

3.2 Applications

3.2.1 Gibbs models with finite range interaction

Consider Gibbs models on Rd with finite range interaction R > 0. Examples of such
models are the hard-sphere model and the area interaction model with deterministic
radii, the Strauss model [30], and so on. A general result of Preston [26] establishes
the existence of a Gibbs state. By taking Q = δR, this kind of models fits the
setting of the present article and the condition (Loc) is automatically fulfilled. If
the model satisfies condition (Dom), then, by applying Theorem 3.2, Theorem 3.3
and Theorem 3.4, we obtain the uniqueness of the Gibbs state and the exponential
decay of correlation at low activity. In the case of the hard-sphere model, this result
was already proved in [18].

3.2.2 Continuum random cluster model

The continuum random cluster model, also known as continuum FK-percolation
model, is a Gibbs model of random balls whose interaction depends on the number of
connected components of the Gilbert graph. This model was introduced in the 1980s
as a continuum analogue of the well-known continuum random cluster model [17].
Recently, existence and percolation properties of this model were investigated in
[10, 19]. Formally, for X ∈ S and ω ∈ Ω, we have

Hcrcm

{X} (X | ω) := − log(q) (1− k(X,ω)) ,
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where q > 0 is the connectivity parameter of the model and k(X,ω) denotes the
number of connected components of G(ω) connected to X in G(ω ∪X). The depen-
dence of Hcrcm

{X} (X | ω) on ω via k(X,ω) implies that the model satisfies (Loc). It

also satisfies (Dom), because

Hcrcm

{X} (X | ω) ≥ − log q .

By Theorem 3.3, if Q satisfies ρ(Q) <∞, then there exists a disagreement coupling
family at level (λq,Q). So by Theorem 3.2, if λ < αc(d,Q)/q, there is a unique
Gibbs state.

3.2.3 Widom-Rowlinson model

The Widom-Rowlinson model is a well-known model of statistical mechanics in-
troduced in 1970 [35] to model the interaction between two gases. It is also the
first continuum model for which a phase transition was proved, by Ruelle [28] using
Peierl’s argument. A modern proof of this phase transition was done by Chayes,
Chayes and Kotecký [4] using percolation properties of the continuum random clus-
ter model. This idea was extended to the case of unbounded radii in [19].

This model does not follow strictly the setting of the article, because each ball is
assigned a colour mark i belonging to some finite set of cardinality q. The Hamilto-
nian is a hard-core constraint on the colouring. Configurations without overlapping
balls of different colours are forbidden. In other words, each connected component
of the Gilbert graph must be mono-coloured.

If one conditions on the colour mark of a point, then this model satisfies as-
sumptions (Loc) and (Dom) with Papangelou intensity bounded by one. Hence, we
can apply disagreement percolation to the color-blind projection of this model. If
the radius measure satisfies ρ(Q) < ∞, then there exists a disagreement coupling
family at level (λ,Q). Therefore, there is a unique Widom-Rowlinson Gibbs state
for activities λ < αc(d,Q).

3.2.4 Quermass-interaction model

The Quermass-interaction model is a Gibbs model of random balls in R2 whose
interaction depends on the perimeter, area and Euler characteristic of the random
structure. It was introduced in [20]. The existence of the infinite volume Gibbs
model was proved in [9] and the existence of a supercritical percolation phase was
proved in [6].

Fix θ1, θ2, θ3 ∈ R. Let Area(X,ω), Per(X,ω) and Euler(X,ω) be the variation
of the area, the perimeter and the Euler characteristic respectively, when the ball
B(X) is added to B(ω). The local energy of the Quermass-interaction model is

Hquer

{X}(X | ω) := θ1Area(X,ω) + θ2Per(X,ω) + θ3Euler(X,ω) .

The contribution of the Euler characteristic is difficult to control. In particular
when θ3 6= 0, the domination condition (Dom) is not satisfied, even with determin-
istic radii.

From here on, we only consider the case of θ3 = 0 and the radius having
support on some positive finite interval, meaning that Q([r0, r1]) = 1 for some
0 < r0 ≤ r1 <∞ . In this setting, the interaction is local and satisfies (Loc). Using
standard bounds from [6, Lemma 4.12], we have upper and lower bounds for the
Papangelou intensity and (Dom) is satisfied. Therefore, by applying Theorem 3.3
and Theorem 3.4, one gets the uniqueness of the Quermass-interaction Gibbs phase
and the exponential decay of correlations for small enough the activity z, depending
on the parameters αc(2, Q), θ1, θ2, r0 and r1.
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3.3 Discussion

The domination condition (Dom) is very restrictive. One way to weaken this con-
dition is to demand the following bound on the local energy.

H{(x,r)}((x, r) | ω) ≥ g(r) , (Weak-Dom)

where g is a nice enough measurable function. In that case the dominating Pois-
son PP has a radius measure with unnormalized density e−g(r) with respect to Q.
However the construction of the dependant thinning done in Section 4 does not
carry out without new difficult conditions. But if one gets the existence of a cou-
pling with measurability with respect to the boundary condition, the construction
of the disagreement coupling family done in Section 5 would carry out the same and
Theorem 3.3 would still be valid.

For difficult radius measures, the analysis of the dominating Boolean model
might be complicated. If a radius measureQ′ dominatesQ, then the gluing lemma [34,
Chapter 1] couples the disagreement coupling with a dominating coupling between

Ppoi

∆,α,Q
and Ppoi

∆,α,Q′ . This allows to use the condition α < αc(d,Q
′) in Theorem 3.2.

If the geometric objects are more general, but can be dominated by a radius
law, such that the objects are a.s. contained in larger balls, then one can rewrite
the Gibbs interaction with the help of indicators in terms of spheres and apply the
theorems in Section 3.1. An example is the segment process in [2].

If the geometric objects are described by more real parameters and the objects
are monotone growing in the parameters, a straightforward extension of the deriva-
tion approach could work, too. For more general mark spaces, such as compact
sets containing zero, and general laws on them, one approach could be to split the
derivation in Section 4.2 into a purely spatial component and work with the joint
mark distributions conditional on the locations.

The coupling in the proof of Theorem 3.3, in Definition 3.1 in Section 5, reduces
to the coupling family for the hard-sphere model used in [18]. For other finite-
range Gibbs models, it improves upon the conjectured general product construction
discussed in [18] by a factor of two.

Other classic conditions for uniqueness of the low-activity Gibbs measure are
cluster expansion and Dobrushin uniqueness. An explicit comparison with cluster
expansion has been done for the hard-sphere model in [18]. It shows that dis-
agreement percolation is better in dimensions one to three and asymptotically and
suggests that this holds more generally. The exponential decay of correlations in
Theorem 3.4 could be used to derive complete analyticity [12], too. Dobrushin
uniqueness [11], generalised to finite-range interaction Gibbs PPs in [21, Thm 2.2],
derives uniqueness from the summability of the variation distance between two
Gibbs instances with the same boundary condition, except on a finite set of points.
In the setting of our paper, the Dobrushin condition can be checked using the dis-
agreement coupling and the exponential bounds from Theorem 3.4.

4 A dependent thinning

The main result of this section is an explicit construction of a coupling between a
dominating Poisson PP and Gibbs PP Pgb∆,γ in Proposition 4.1 in Section 4.2. It
is realised as a dependent thinning and is measurable in the boundary condition
γ. The thinning probability of a single point is related to the derivative of the free
energy, as it sweeps through ∆. This sweep and the derivative build on a measurable
and bijective linearisation of S, are the focus of Section 4.1.
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4.1 Measurable ordering

First, map a non-negative real number to its shortest binary digit expansion, filled
up with zeros to a bi-infinite sequence of 0s and 1s. In the case of x being a multiple
of 2n, for some n ∈ Z, this avoids the representation of x with only 1s below index
n. For example, with ā denoting an infinite sequence of the digit a ∈ {0, 1} and the
decimal point “.” to the left of the power 0 coefficient, 2 maps to 0̄10.0̄ instead of
0̄1.1̄. With

D := {ι ∈ {0, 1}Z | ∀n ∈ Z : ∃m ≤ n ∈ Z : ιm = 0 ∧ ∃m ∈ Z : ∀n ≥ m : ιn = 0}

the mapping is

b : R+ → D x :=
∑
n∈Z

ιn2n 7→ (ιn)n∈Z . (4.1)

The map b is bijective and measurable in both directions.
Second, we use b to linearise Rm+ . Consider the map

B : Rm+ → R+ x 7→ b−1(n 7→ b(xnmodm)bn/mc) . (4.2)

The map B juxtaposes the digits of the same power of 2 of the coordinates of x
and maps the result back to R+. The map B is bijective and measurable in both
directions. It equips Rm+ with a measurable total order 4 defined by

x4y⇔B(x) ≤ B(y) . (4.3)

For n ∈ Z and ~a ∈ Nm, the dyadic hyperblock
∏m
i=1[ ai2n ,

ai+1
2n [⊆ Rm+ and the dyadic

interval [B(~a), B(~a) + 1
2nm [⊆ R+ are in bijection.

Without loss of generality, translation on Rd allows us to only consider ∆ ∈ Sbp
with support in Rd+ in the remainder of Section 4. Apply the ordering and bijection

from above to Rd+1
+ . Although Q may contain atoms, Ld⊗Q and Q? := (Ld⊗Q) ◦

B−1 are diffuse. Because B is a measurable bijection, we may not always write
it and switch between Rd+1

+ and its linearisation in a notational lightweight and
implicit fashion. This also holds for the measures above.

For Q?-a.e X ∈ ∆, there exists ε > 0 and X+
ε ∈ ∆ with X4X+

ε such that
Q?([X,X+

ε ]) = ε. For a function f : ∆→ R, we define the derivative at X as

∂f

∂X
(X) := lim

ε→0

f(X+
ε )− f(X)

ε
, (4.4)

whenever this limit exists.

4.2 The thinning approach

For ∆ ∈ Sbp with support in Rd+ and γ ∈ Ω∆c , the partition function as traditionally
given in statistical mechanics is

Z(∆, γ) :=

∞∑
n=0

λn

n!

∫
∆n

eH∆(
⋃n
i=1 Xi|γ)

n∏
i=1

Ld⊗Q( dXi) . (4.5)

The relation between Z(∆, γ) and Z(∆, γ) is an exponential factor for the void
space of the Poisson PP

Z(∆, γ) = Z(∆, γ)eλL
d⊗Q(∆) . (4.6)

The use of Z allows for more succinct expressions. In particular, Z(∆, γ) ≥ 1
always.

Given ∆ ∈ Sbp and γ ∈ Ω∆c , we want to thin Ppoi
∆,α,Q to Pgb∆,γ . We order ∆ by

4 and restrict intervals ]X,Y ] (and all variants thereof) to ∆.
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Proposition 4.1. A thinning from Ppoi
∆,α,Q to Pgb∆,γ is given by

Pthin
∆,γ,α,Q( d(ω1, ω2)) := pj∆,γ(ω′ | ω)Ppoi

∆,α,Q( dω) , (4.7)

with the joint thinning probability being

pj∆,γ(ω′ | ω) := [ω′ ⊆ ω]

 ∏
Y ∈ω′

ps∆,γ(Y | ω′]−∞,Y [)


×

 ∏
Z∈ω\ω′

(
1− ps∆,γ(Z | ω′]−∞,Z[)

) , (4.8)

and the dependent single point thinning probability being

ps∆,γ(X | ω′) := − 1

α

∂

∂X
logZ([X,∞[, ω′ ∪ γ) (4.9)

=
λ

α
e−H{X}(X,γ∪ω

′)Z(]X,∞[, γ ∪ ω′ ∪X)

Z([X,∞[, γ ∪ ω′)
. (4.10)

The derivative in (4.9) is as in (4.4). The thinning probabilities and the thinning
itself are measurable in the boundary condition.

Proof. Consider the points of a realisation ω of Ppoi
∆,α,Q sequentially. The decision

of whether to keep or thin a point X depends only on decisions already taken in
]−∞, X[. In particular, the only information we admit is the location of the already
kept points ω′ ⊆ ω∩]−∞, X[. We name the thinning probability ps

∆,γ(X | ω′).
We consider what happens if, starting at some X ∈ ∆, we delete all points in

ω[X,∞], i.e., all not yet considered points in ω. On the one side, this is the void
probability of a thinned Poisson PP with intensity αps

∆,γ(. | ω′).

Ppoi
[X,∞[,αps

∆,γ (.|ω′),Q(ξ = ∅) = exp

(
−α

∫
[X,∞[

ps
∆,γ(Y | ω′)Q?( dY )

)
. (4.11a)

On the other side, the resulting empty realisation should follow the Pgb∆,γ law. The
DLR equations (2.8) imply that

Pgb∆,γ(ξ[X,∞[ = ∅ | ξ]−∞,X[ = ω′)

= Pgb[X,∞[,ω′∪γ(ξ = ∅) =
1

Z([X,∞[, ω′ ∪ γ)
. (4.11b)

Equating the left hand sides of (4.11a) and (4.11b) leads to∫
[X,∞[

αps
∆,γ(Y | ω′)Q?( dY ) = logZ([X,∞[, ω′ ∪ γ) . (4.12)

Taking the derivative along the ordered space (∆,4) yields (4.9). On the lhs
of (4.12) we apply a one-sided version of the Lebesgue differentiation theorem [3,
Thm 5.6.2] to extract the integrand as the Q?-a.s derivative. There is an additional
minus in (4.9), because differentiation of the above integral proceeds in decreas-
ing direction in 4, reverse to the usual direction. Section 4.3 shows that (4.12)
determines the law of the thinning. Section 4.4 proves (4.10).
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4.3 Conditional void probabilities

Let P be a PP law on (Ω∆,F∆). Assume that P is absolutely continuous with

respect to Ppoi
∆,1,Q. The interval void function V is, for A,B ∈ ∆ ∪ {±∞} with

A4B,
V(A,B) := P (ξ]A,B] = ∅) . (4.13)

Because of the nice properties of 4 from Section 4.1, it determines all void prob-
abilities of P . The void probabilities determine the law P [8, Thm 9.2.XIII]. For
A,B ∈ ∆ ∪ {±∞} with A4B and ω ∈ Ω]−∞,A], let the conditional void interval
probability be

V(A,B | ω) := P (ξ]A,B] = ∅ | ξ]−∞,A] = ω) .

Because

V(A,B) =

∫
Ω]−∞,A]

V(A,B | ω)P (ξ]−∞,A] = dω) ,

the conditional void interval probabilities determine the law P . The one-sided
conditional void interval probability is V(A | ω) := V(A,∞ | ω). Because of the
identity

V(A,B | ω)V(B | ω) = V(A | ω) ,

it is possible to define the conditional void interval probabilities by the one-sided
versions via

V(A,B | ω) :=

{
V(A|ω)
V(B|ω) if V(B | ω) > 0

0 else.

Thus, the one-sided conditional void interval probabilities determine the law P.
Because Q? is diffuse, the negligible change of the left interval border from closed
to open from V(X | ω) to P (ξ]X,∞[ = ∅ | ξ]−∞,X] = ω) does not matter.

4.4 Derivative

This section shows that the thinning probability (4.9) is a fraction of partition
functions (4.10). In short,

− ∂

∂X
logZ([X,∞[, ω′ ∪ γ) = λe−H{X}(X,γ∪ω

′)Z(]X,∞[, γ ∪ ω′ ∪X)

Z([X,∞[, γ ∪ ω′)
. (4.14)

With z(X) := Z([X,∞[, γ ∪ ω′), this amounts to

∂

∂X
log z(X) =

z′(X)

z(X)
.

Thus, to show (4.14), it remains to verify that

z′(X) = −λe−H{X}(X,γ∪ω
′)Z(]X,∞[, γ ∪ ω′ ∪X) .

We use the notation from (4.4). Let γ′ := γ ∪ ω′, ∆′ := [X,∞[, ∆′ε := [X+
ε ,∞[ and

∆ε := [X,X+
ε [. With b := Q?(∆′), we have b − ε = Q?(∆′ε) and ε = Q?(∆ε). We
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have

z′(X)

= lim
ε→0

1

ε

(
z(X+

ε )− z(X)
)

= lim
ε→0

1

ε

(∫
Ω∆′ε

e−H∆′ε
(ω|γ′)Ppoi

∆′ε,λ,Q
( dω) exp(λQ?(∆′ε))

−
∫

Ω∆′

e−H∆′ (ω|γ
′)Ppoi

∆′,λ,Q( dω) exp(λQ?(∆′))

)

= lim
ε→0

1

ε

(∫
Ω∆′ε

e−H∆′ε
(ω|γ′)Ppoi

∆′ε,λ,Q
( dω)eλ(b−ε) −

∫
Ω∆′

e−H∆′ (ω|γ
′)Ppoi

∆′,λ,Q( dω)eλb

)

= lim
ε→0

1

ε

∫
Ω∆ε

∫
Ω∆′ε

eλb
(
e−H∆′ε

(ω|γ′)−λε − e−H∆′ (ω∪γ
′′|γ′)

)
Ppoi

∆′ε,λ,Q
( dω)Ppoi

∆ε,λ,Q
( dγ′′)

(?)

= −λz(X)︸ ︷︷ ︸
if |γ′′|=0

+λz(X)− λe−H{X}(X|γ
′)Z(]X,∞[, γ′ ∪X)︸ ︷︷ ︸

if |γ′′|=1

+ 0︸︷︷︸
if |γ′′|≥2

= − λe−H{X}(X|γ
′)Z(]X,∞[, γ′ ∪X) .

Case γ′′ = ∅ in (?):

(?)
(2.5)
= lim

ε→0

1

ε
e−λε

∫
Ω∆′ε

eλbe−H∆′ε
(ω|γ′)(e−λε − 1)Ppoi

∆′ε,λ,Q
( dω)

= lim
ε→0

e−λε − 1

ε
lim
ε→0

eλ(b−ε)
∫

Ω∆′ε

e−H∆′ε
(ω|γ′)Ppoi

∆′ε,λ,Q
( dω)

= − λ lim
ε→0
Z(∆′ε, γ

′)

= − λZ(∆′, γ′) using the continuity of Z in the domain

= − λz(X) .

Case γ′′ =: {Y } in (?):

lim
ε→0

1

ε

∫
∆ε

∫
Ω∆′ε

eλb
(
e−H∆′ε

(ω|γ′)−λε − e−H∆′ (ω∪Y |γ
′)
)
Ppoi

∆′ε,λ,Q
( dω)λe−λεQ?( dY )

= λ lim
ε→0

1

ε
e−λε

∫
∆ε

eλ(b−ε)
∫

Ω∆′ε

e−H∆′ε
(ω|γ′)Ppoi

∆′ε,λ,Q
( dω)Q?( dY )

− λ lim
ε→0

1

ε

∫
∆ε

e−H{Y }(Y |γ
′)eλ(b−ε)

∫
Ω∆′ε

e−H∆′ε
(ω|γ′∪Y )Ppoi

∆′ε,λ,Q
( dω)Q?( dY )

= λ lim
ε→0

1

ε
e−λεεZ(∆′ε, γ

′)− λ lim
ε→0

1

ε

∫
Ω∆ε

e−H{Y }(Y |γ
′)Z(∆′ε, γ

′ ∪ Y )Q?( dY )

= λZ(∆′, γ′)− λe−H{X}(X,γ∪ω
′)Z(∆′, γ′ ∪X) .

Case |γ′′| ≥ 2 in (?): Straightforward computation gives∫
Ω∆′ε

(α
λ

)|ω|
Ppoi

∆′ε,λ,Q
( dω) = eλ(b−ε)(αλ−1) ≤ ebα+λε .
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Thus,

|(?)| ≤ eλb lim
ε→0

1

ε

∫
Ω∆ε

[|γ′′| ≥ 2]

×
∫

Ω∆′ε

∣∣∣e−H∆′ε
(ω|γ′)−λε − e−H∆′ (ω∪γ

′′|γ′)
∣∣∣︸ ︷︷ ︸

≤(αλ )
|γ′′|+|ω|

+(αλ )
|ω|

Ppoi
∆′ε,λ,Q

( dω)Ppoi
∆ε,λ,Q

( dγ′′)

≤ eλb lim
ε→0

1

ε
ebα+λε

(∫
Ω∆ε

[|γ′′| ≥ 2]

(
1 +

(α
λ

)|γ′′|)
Ppoi

∆ε,λ,Q
( dγ′′)

)
= 0 .

5 Proof of Theorem 3.3

We construct a disagreement coupling family with slightly stronger properties than
needed. See Proposition 5.1 for the full statement. Let ∆ ∈ Sbp and γ1, γ2 ∈ Ω∆c .
We may thin a Poisson PP to two conditionally independent copies of the Gibbs
PP.

Pthin2
∆,γ1,γ2( dω) := pj

∆,γ1(ω1 | ω3)pj
∆,γ2(ω2 | ω3)Ppoi

∆,α,Q( dω3) . (5.1)

The influence zone is

Γ := {X ∈ ∆ | ∃Y ∈ γ1 ∪ γ2 : B(X) ∩B(Y ) 6= ∅} . (5.2)

Define the joint Janossy intensity of the law Pda-zone
∆,γ1,γ2 on (Ω3

Γ,F
⊗3
Γ ) by

Pda-zone
∆,γ1,γ2( dω) := Pthin2

∆,γ1,γ2( dωΓ) . (5.3a)

Define the joint Janossy intensity of law Pda-rec
∆,γ1,γ2 on (Ω3

∆,F
⊗3
∆ ) recursively by

Pda-rec
∆,γ1,γ2( dω) := [Γ = ∅][ω1 = ω2]Pthin

∆,∅ ( d(ω1, ω3))

+ [Γ 6= ∅]Pda-zone
∆,γ1,γ2( dωΓ)Pda-rec

∆\Γ,γ1∪ω1
Γ,γ

2∪ω2
Γ
( dω∆\Γ) . (5.3b)

Proposition 5.1. The coupling Pda-rec
∆,γ1,γ2 has the following properties:

∀1 ≤ i ≤ 2, ω ∈ ΩB : Pda-rec
∆,γ1,γ2(ξi = dω) = Pgb∆,γi( dω) , (5.4a)

Pda-rec
∆,γ1,γ2(ξ3 = dω) = Ppoi

∆,α,Q( dω) , (5.4b)

Pda-rec
∆,γ1,γ2(ξ1 ∪ ξ2 ⊆ ξ3) = 1 , (5.4c)

Pda-rec
∆,γ1,γ2(∀X ∈ ξ14ξ2 : X

in ξ3

←−−→ γ1 ∪ γ2) . (5.4d)

Further, it is jointly measurable in the boundary conditions (γ1, γ2).

Proof. The first step is to check the termination of the recursion in (5.3b). The
recursion is made with respect to the influence zone Γ, which is decreasing and
whose volume is bounded by Ld⊗Q(∆). The recursion stops when no Gibbs point
(of ξ1 and ξ2) is placed in Γ. This happens in particular when there is no Poisson
point (of ξ3) in the influence zone Γ. At each step of the recursion, this happens

independently with probability bounded from below by e−αL
d⊗Q(∆). Therefore, the

recursion stops after an almost-surely finite number of steps.
The next step is to show the measurability in the boundary conditions. Propo-

sition 4.1 asserts that pj
∆,γ1(ω1 | ω3) and pj

∆,γ2(ω2 | ω3) are measurable in γ1 and
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γ2 respectively. Hence, the coupling Pda-rec
∆,γ1,γ2 is jointly measurable in the bound-

ary conditions (γ1, γ2). The measurability is needed for the well-definedness of the
recursive definition (5.3b) and the proof of (5.4)

Finally, we show equations (5.4). Equation (5.4a) is a straightforward conse-
quence of the DLR equations (2.8) and the assumption (Loc). Equations (5.4b)
and (5.4c) are also a straightforward consequence of the construction. Concern-
ing (5.4d), the only points of the Poisson configuration ξ3 which are not connected
(in G(ξ3)) to the boundary conditions γ1 ∪ γ2 are the ones sampled at the end
of the recursion, when Γ = ∅. These points thin to both Gibbs PPs ξ1 and ξ2

identically, as outlined in the Γ = ∅ case of (5.3b). By construction (5.3a), from
those points the ones belonging to the first Gibbs configuration ξ1 also belong to
the second Gibbs configuration ξ2. Therefore, the only points where the two Gibbs
configurations may differ are the one sample when the influence zone is not empty.
By (5.3a), those points are connected to the boundary conditions γ1 ∪ γ2.

6 Proof of Theorem 3.2

Let P1,P2 ∈ Ggb. We are going to prove that P1 = P2. Let Λ ∈ Bb and E ∈ FΛ.
For n ∈ N, consider the closed ball Λn := B(0, n) in Rd. Let P1⊗2

n := P1
Λcn
⊗P2

Λcn
.

For n large enough, Λ ⊆ Λn. The DLR equation (2.8) for Λn implies that

|P1(E)− P2(E)| ≤
∫

Ω2
Λcn

|PgbΛn,γ1(E)− PgbΛn,γ2(E)|P1⊗2
n ( dγ) . (6.1)

The disagreement coupling allows to majorize

|PgbΛn,γ1(E)− PgbΛn,γ2(E)| (3.1a)
= |Pdac

Λn,γ1,γ2(ξ1 ∈ E)− Pdac
Λn,γ1,γ2(ξ2 ∈ E)|

(3.1d)

≤ Pdac
Λn,γ1,γ2(ξ3

Λ
in ξ3

←−−→ γ1 ∪ γ2)

≤ Pdac
Λn,γ1,γ2(Λ

in ξ3

←−−→ γ1 ∪ γ2) .

(6.2)

Combining (6.1) and (6.2) yields

|P1(E)− P2(E)| ≤
∫

Ω2
Λcn

Pdac
Λn,γ1,γ2(Λ

in ξ3

←−−→ γ1 ∪ γ2)P1⊗2
n ( dγ)

(3.1c)
=

∫
Ω2

Λcn

Ppoi

Λn,α,Q
(Λ

in ξ←−→ γ1 ∪ γ2)P1⊗2
n ( dγ) .

(6.3)

As we are in the sub-critical regime of the Boolean model, we expect the integrated
probability to converge to 0 as n grows to infinity. Unfortunately, this convergence
depends on the outside configurations γ1, γ2 and we need uniform convergence.

Let ε > 0. Since the integrated event is increasing in γ1 and γ2, the stochastic

domination PgbΛn,γ
≺ Ppoi

Λn,α,Q
implies that

|P1(E)− P2(E)| ≤
∫

Ω2
Λcn

Ppoi

Λn,α,Q
(Λ

in ξ←−→ γ1 ∪ γ2))Ppoi

Λcn,α,Q
⊗Ppoi

Λcn,α,Q
( dγ) .

The following lemma gives a control, with high probability, of the radii in a
Boolean model.

Lemma 6.1. For a positive integer k, let

Υk :=

{
ω ∈ Ω

∣∣∣∣∀(x, r) ∈ ω, r ≤ ||x||2
+ k

}
.
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If Q satisfies the integrability assumption ρ(Q) < ∞, then for k large enough we
have

Ppoi
α,Q(Υk) ≥ 1− ε. (6.4)

The proof of Lemma 6.1 can be adapted from [9, Lemma 3.2]. If X ∈ γ1 ∪ γ2 ∈
Υk, then B(X) ∩B(0, n/2− k − 1) = ∅. Therefore, for large enough k, we have

|P1(E)− P2(E)| ≤ ε+ Ppoi

Λn,α,Q
(Λ

in ξ←−→B(0, n/2− k − 1)) .

Using (2.2) from Theorem 2.1, for large enough n, we have

|P1(E)− P2(E)| ≤ 2ε .

Letting ε tend to 0 shows that P1 = P2.

7 Proof of Theorem 3.4

The existence of a unique P ∈ Ggb follows from Theorem 3.2.
First, we prove (3.2a). Recall that we assume that Q has bounded support, i.e.,

Q([0, r0]) = 1 for some r0 ∈ R+.

|Pgb
Λ̄,γ

(E)− P (E)| (2.8)
= |Pgb

Λ̄,γ
(E)−

∫
ΩΛ̄c

Pgb
Λ̄,γ′

(E)P (ξΛ̄c = dγ′)|

≤
∫

ΩΛ̄c

|Pgb
Λ̄,γ

(E)− Pgb
Λ̄,γ′

(E)|P (ξΛ̄c = dγ′) .

(7.1)

Combining (7.1) with (6.2), we get

|Pgb
Λ̄,γ

(E)− P (E)| ≤
∫

ΩΛ̄c

Ppoi

Λ̄,α,Q
(Λ

in ξ←−→ γ ∪ γ′)P (ξΛ̄c = dγ′)

≤ Ppoi

Λ̄,α,Q
(Λ

in ξ←−→ (Λ̄ +B(0, r0))c) .

Therefore, using (2.3) from Theorem 2.1, we obtain

|Pgb
Λ̄,γ

(E)− P (E)| ≤ K exp(−κ[θ(Λ, Λ̄c)− r0]) .

Setting K ′ := Ker0 , we obtain (3.2a).
Second, we show (3.2b). Let Λ be a bounded set containing Λ1 ∪ Λ2 such that

θ(Λ1 ∪ Λ2,Λ
c) ≥ θ(Λ1,Λ2) and let Λ̄ := Λ\Λ2. Thus, we have θ(Λ1, Λ̄

c) ≥ θ(Λ1,Λ2)
and

|P (E ∩ F )− P (E)P (F )| (2.8)
=

∣∣∣∣∣
∫

ΩΛ̄c

[γ ∈ F ](Pgb
Λ̄,γ

(E)− P (E))PΛ̄c( dγ)

∣∣∣∣∣
≤
∫

ΩΛ̄c

|Pgb
Λ̄,γ

(E)− P (E)|PΛ̄c( dγ)

≤ K ′ exp(−κ′θ(Λ1,Λ2)) .
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