Disagreement percolation for Gibbs ball models - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year :

Disagreement percolation for Gibbs ball models

Christoph Hofer-Temmel
  • Function : Author
Pierre Houdebert
  • Function : Author
  • PersonId : 1021580


We generalise disagreement percolation to Gibbs point processes of balls with varying radii. This allows to establish the uniqueness of the Gibbs measure and exponential decay of correlations in the high temperature regime by comparison with a sub-critical Boolean model. Applications to the continuum random cluster model and the Quermass-interaction model are presented. At the core of our proof lies an explicit dependent thinning from a Poisson point process to a dominated Gibbs point process.
Fichier principal
Vignette du fichier
main_arxiv.pdf (373.34 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01622119 , version 1 (24-10-2017)
hal-01622119 , version 2 (27-08-2019)



Christoph Hofer-Temmel, Pierre Houdebert. Disagreement percolation for Gibbs ball models. 2019. ⟨hal-01622119v2⟩
147 View
110 Download



Gmail Facebook Twitter LinkedIn More