
HAL Id: hal-01622110
https://hal.science/hal-01622110

Submitted on 24 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symbolically Analyzing Security Protocols using
Tamarin

David Basin, Cas Cremers, Jannik Dreier, Ralf Sasse

To cite this version:
David Basin, Cas Cremers, Jannik Dreier, Ralf Sasse. Symbolically Analyzing Security Protocols
using Tamarin. ACM SIGLOG News, 2017, �10.1145/3157831.3157835�. �hal-01622110�

https://hal.science/hal-01622110
https://hal.archives-ouvertes.fr

Symbolically Analyzing Security Protocols using TAMARIN

David Basin
Department of

Computer Science,
ETH Zurich,
Switzerland

Cas Cremers
Department of

Computer Science,
University of Oxford,

Oxford, UK

Jannik Dreier
Université de

Lorraine, INRIA,
CNRS, Nancy, France

Ralf Sasse
Department of

Computer Science,
ETH Zurich,
Switzerland

1. INTRODUCTION
During the last three decades, there has been considerable research devoted to the
symbolic analysis of security protocols and existing tools have had considerable success
both in detecting attacks on protocols and showing their absence. Nevertheless, there is
still a large discrepancy between the symbolic models that one specifies on paper and
the models that can be effectively analyzed by tools.

In this paper, we present the TAMARIN prover for the symbolic analysis of security
protocols. TAMARIN takes as input a security protocol model, specifying the actions
taken by the agents running the protocol in different roles (e.g., the protocol initiator,
the responder, and the trusted key server), a specification of the adversary, and a speci-
fication of the protocol’s desired properties. TAMARIN can then be used to automatically
construct a proof that the protocol fulfills its specified properties, even when arbitrarily
many instances of the protocol’s roles are interleaved in parallel, together with the
actions of the adversary.

In more detail, and as will be explained in subsequent sections, TAMARIN’s execution
model is that of a labeled transition system. The state space is made up of multi-sets
of facts, representing the adversary’s knowledge, messages on the network, and the
protocol participants’ state. The protocol and adversary capabilities are then specified
by multi-set rewriting rules. A sequence of transitions gives rise to a trace, which is
the sequence of the labels of the applied rules. Properties are specified in a guarded
fragment of first-order logic that allows quantification over messages and timepoints,
and formulas are interpreted over traces. Proofs are constructed using backward search
with support for reasoning modulo equational theories. As practical examples, these
features enable the tool to handle: protocols with non-monotonic mutable global state
and complex control flow such as loops; complex security properties such as the eCK
model [LaMacchia et al. 2007] for key exchange protocols; and equational theories such
as Diffie-Hellman, bilinear pairings, and convergent user-specified theories with the
finite variant property [Comon-Lundh and Delaune 2005].

TAMARIN provides two ways to construct proofs. It has an efficient, fully automated
mode that combines deduction and equational reasoning with heuristics to guide the
proof search. If the tool’s automated proof search terminates, it returns either a proof
of correctness (for an unbounded number of role instances and fresh values) or a
counterexample, representing an attack that violates the stated property. However,
since the correctness of security protocols is an undecidable problem, the tool may

ACM SIGLOG News 1 0000, Vol. 0, No. 0

not terminate on a given verification problem. Hence, users may need to resort to
TAMARIN’s interactive mode to explore the proof states, inspect attack graphs, and
seamlessly combine manually guided proofs with automated proof search.

TAMARIN is based on a number of key ideas. Algorithmically, it builds upon and gener-
alizes the backwards search used by the Scyther tool [Cremers 2008] to enable protocol
verification. Support for the theory for Diffie-Hellman exponentiation was developed
in [Schmidt et al. 2012]. In the theses of Meier [Meier 2013] and Schmidt [Schmidt 2012],
the approach was extended with trace induction and with support for bilinear pair-
ings and operators modulo associativity-commutativity (AC). Recent work [Basin et al.
2015a] has extended TAMARIN to handle equivalence properties. Tamarin now supports
user-defined convergent equational theories with the finite variant property [Dreier
et al. 2017a], while previously only the smaller set of subterm-convergent user defined
theories was supported.

TAMARIN Resources.. The main webpage of the TAMARIN Prover is hosted at [TAMARIN
team 2017] and provides links for downloading the tool, an extensive user manual, and
further reading. TAMARIN’s development is a collaborative effort, and we encourage
contributions to the tool, the manual, and the case studies. See the webpage for details
on how to contribute.

Outline.. The remainder of this paper is structured as follows. In Section 2 we provide
an overview of the TAMARIN system. In Section 3, we summarize some of the more
prominent applications of TAMARIN. We compare to related work in Section 4 and
conclude in Section 5 with a brief discussion of future perspectives.

2. SYSTEM OVERVIEW
We start with an example that illustrates TAMARIN’s use. Afterwards, we describe its
underlying foundations and implementation.

2.1. Example: Diffie-Hellman Key Exchange
Input.. TAMARIN takes as its command-line input the name of a theory file that

defines the equational theory modeling the protocol messages, the multi-set rewriting
system modeling the protocol, and a set of statements specifying the protocol’s desired
properties. To analyze the security of a variant of the Diffie-Hellman protocol, we use a
theory file that consists of the following parts.
Input: Equational Theory. To specify the set of protocol messages, we write:

builtins: diffie-hellman
functions: mac/2, shk/0 [private]

This enables support for Diffie-Hellman (DH) exponentiation and defines two additional
function symbols, while the DH built-in includes constant g already. The support for DH
exponentiation defines the operator ^ for exponentiation, which satisfies the equation
(g^x)^y=(g^y)^x, and additional operators and equations. We use the binary function
symbol mac to model a message authentication code (MAC), the constant g to model the
generator of a DH group, and the constant shk to model a shared secret key, which is
declared as private and therefore not directly deducible by the adversary. Support for
pairing and projection using < , >, fst, and snd is provided by default.
Input: Protocol. Our protocol definition consists of three (labeled) multi-set rewriting
rules. Each rule is a triple: sequences of facts as left-hand-sides, labels, and right-hand-
sides. Facts are of the form F (t1, . . . , tk) for a fact symbol F and terms ti. The protocol
rules use the fixed unary fact symbols Fr and In in their left-hand-side to obtain fresh
names (unique and unguessable constants) and messages received from the network.

2

To send a message to the network, they use the fixed unary fact symbol Out in their
right-hand-side. Note that both participants in this exchange can send their initial
message to their partner independently, unlike in the often used initiator-and-responder
setup.

Our first rule models the creation of a new protocol thread tid that chooses a fresh ex-
ponent x and sends out g^x concatenated with a MAC of this value and the participants’
identities:
rule Step1: [Fr(tid:fresh), Fr(x:fresh)] −[]→

[Out(<g^(x:fresh), mac(shk, <g^(x:fresh), A:pub, B:pub>)>)
, Step1(tid:fresh, A:pub, B:pub, x:fresh)]

In this rule, we use the sort annotations fresh and pub to ensure that the corresponding
variables can only be instantiated with fresh and public names. An instance of the
Step1 rule rewrites the state by consuming two Fr-facts to obtain the fresh names tid
and x and generating an Out-fact with the sent message and a Step1-fact denoting that
the given thread has completed the first step with the given parameters. The arguments
of the Step1-fact denote the thread identifier, the actor, the intended partner, and the
chosen exponent. As the rule has no label it has no direct effect on the trace. However,
it does change the state, thereby enabling further rules that consume the state facts in
its conclusion.

Our second rule models the second step of a protocol thread:
rule Step2: [Step1(tid, A, B, x:fresh), In(<Y, mac(shk, <Y, B, A>)>)]

−[Accept(tid, Y^(x:fresh))]→ []

Here, a Step1-fact, which must have been created in an earlier Step1-step, is consumed
in addition to an In-fact. The In-fact uses pattern matching to verify the MAC. The cor-
responding label Accept(tid, Y^(x:fresh)) denotes that the thread tid has accepted
the session key Y^(x:fresh).

Our third rule models revealing the shared secret key to the adversary:
rule RevealKey: [] −[Reveal()]→ [Out(shk)]

The constant shk is output on the network and the label Reveal() ensures that the
trace reflects whether and when a reveal has happened.

The set of protocol traces is defined via multi-set rewriting (modulo the equational
theory) with these rules and the built-in rules for fresh name creation, message recep-
tion by the adversary, message deduction, and message sending by the adversary, which
is observable via facts of the form K(m). More precisely, the trace corresponding to a
multi-set rewriting derivation is the sequence of the labels of the applied rules.
Input: Properties. We define the desired security properties of the protocol as trace
or equivalence properties. In the case of trace properties, the labels of the protocol rules
must contain sufficient information to state these properties. In TAMARIN, properties
are specified as so-called lemmas, which are then discharged or disproven by the tool.
lemma Accept_Secret:
∀ i j tid key. Accept(tid,key)@i & K(key)@j ⇒ ∃ n. Reveal()@n & n < i

The lemma quantifies over timepoints i, j, and n1 and messages tid and key. It uses
predicates of the form F@ i to denote that the trace contains the fact F at index i and
predicates of the form i < j to denote that the timepoint i is earlier than the timepoint j.
The lemma states that if a thread tid has accepted a key key at timepoint i and key
is also known to the adversary, then there must be a timepoint l prior to i where the
shared secret was revealed.

1In TAMARIN’s input language, timepoint variables are prefixed with #, which we leave implicit here.

3

Since 2015 [Basin et al. 2015a], TAMARIN can also handle equivalence properties.
Equivalence properties are used to represent privacy properties, including anonymity
and unlinkability, but can also be used for strong secrecy as well as real-or-random
secrecy. This allows analysis of protocols for voting or e-cash. Equivalence properties are
specified using a special diff-operator, similar to the ProVerif tool [Blanchet 2001]. The
diff-operator takes two parameters and can be used inside the terms in the protocol
specification. A protocol specification gives rise to a labeled transition system. Using
diff-terms creates two systems that are identical except in the values under such diff-
terms. TAMARIN will then try to prove that the two systems obtained by (1) replacing
the diff-terms by their first parameter, and (2) replacing the diff-terms by their second
parameter, are observationally equivalent.

Previously, TAMARIN only supported user-defined equational theories that are
subterm-convergent, meaning their right-hand side is a strict subterm of the left-
hand side. Since 2017 [Dreier et al. 2017a], TAMARIN supports a much larger set of
user-defined equational theories, which must only be convergent and have the finite
variant property. This larger set of supported equational theories enables modeling, e.g.,
blind signatures. The equational theory for blind signatures contains an equation of the
form unblind(sign(blind(m,b), sk), b) = sign(m,sk) which was not admissible
before as sign(m,sk) is not a subterm of the left-hand side of the equation. Using the
new version of TAMARIN, verification of both e-cash and voting protocols was completed.
Output. Running TAMARIN on this input file yields the following output.

analyzed example.spthy: Accept_Secret (all-traces) verified (9 steps)

The output states that TAMARIN successfully verified that all protocol traces satisfy the
formula in Accept_Secret.
Alternative Input. For the trace mode only, an alternative input language, similar
to the applied-pi calculus, is available. This input gets automatically translated to
TAMARIN’s multi-set rewriting input using a sound and complete translator [Kremer
and Künnemann 2014]. This simplifies use of TAMARIN for users experienced in applied-
pi calculus based tools, like ProVerif, and also enables easier reuse of already existing
protocol specifications that have been written for such tools.

2.2. Theoretical Foundations
A formal treatment of TAMARIN’s foundations is given in the theses of Schmidt [Schmidt
2012] and Meier [Meier 2013]. For an equational theory E, a multi-set rewriting system
R defining a protocol, and a guarded formula ϕ defining a trace property, TAMARIN can
either check the validity or the satisfiability of ϕ for the traces of R modulo E. As usual,
validity checking is reduced to checking the satisfiability of the negated formula.

For satisfiability checking, constraint solving is used to perform an exhaustive, sym-
bolic search for executions with satisfying traces. The states of the search space are
constraint systems. For example, a constraint can express that some multi-set rewriting
step occurs in an execution or that one step occurs before another step. We can also
directly use formulas as constraints to express that some behavior does not occur in
an execution. Applications of constraint reduction rules, such as simplifications or case
distinctions, correspond to the incremental construction of a satisfying trace. If no
further rules can be applied and no satisfying trace was found, then no satisfying trace
exists.

For symbolic reasoning, we exploit the finite variant property [Comon-Lundh and
Delaune 2005] to reduce reasoning modulo E with respect to R to reasoning modulo AC
with respect to the variants of R using folding variant narrowing [Escobar et al. 2012].
This enables TAMARIN to deal with a very large class of equational theories and since

4

Fig. 1. TAMARIN’s interactive mode

the last extension [Dreier et al. 2017a], user-specified equational theories only have to
be convergent and ensure the finite variant property.

TAMARIN’s equivalence mode is documented in [Basin et al. 2015b]. In a nutshell,
TAMARIN computes all possible executions of the protocol on both systems using its
constraint solving, and tries to find equivalent executions on the other side by mirroring.
If these mirrors exist for all executions, then equivalence holds. If at least one execution
does not have a mirror, then this represents a potential attack. As the equivalence mode
is sound but not complete, such an attack may be spurious.

2.3. Implementation and Interactive Mode
TAMARIN is written in the Haskell programming language. Its interactive mode is im-
plemented as a webserver, serving HTML pages with embedded JavaScript. TAMARIN’s
source code is publicly available from its webpage [TAMARIN team 2017]. Figure 1
shows TAMARIN’s interactive mode, which integrates automated analysis and interac-
tive proof guidance, and provides detailed information about the current constraints or
counterexample traces. Users can carry out automated analysis of parts of the search
space and perform partial unfoldings of the proof tree. Fully automated proof search is
available on the command-line without the need to use the interactive mode and GUI.

3. EXAMPLES OF APPLICATIONS
TAMARIN’s flexible modeling framework and expressive property language make it
suitable for analyzing a wide range of security problems. Table I shows selected results
when using TAMARIN in the automated mode. These results illustrate TAMARIN’s
scope and effectiveness at unbounded verification and falsification. We now describe
applications grouped by the features of TAMARIN they used and what was achieved.
Key Exchange Protocols. We used TAMARIN to analyze many authenticated key
exchange protocols with respect to their intended adversary models [Schmidt et al. 2012].
These protocols typically include Diffie-Hellman exponentiation and are designed to
satisfy complex security properties, such as the eCK model [LaMacchia et al. 2007].
Earlier works had only considered some of these protocols with respect to weaker
adversaries, which cannot reveal random numbers and both short-term and long-term
keys.
Loops and Mutable Global State. We also used TAMARIN to analyze protocols with
loops and non-monotonic mutable global state. Examples include the TESLA protocols,
the security device and contract signing examples from [Arapinis et al. 2011], the
keyserver protocol from [Mödersheim 2010], and the exclusive secrets and envelope

5

Table I. Selected results of the automated analysis of case studies included in the public TAMARIN repository. Here,
KI denotes key independence.

Protocol Security property Result Time [s] Details in

1. KAS1 KI with Key Compromise Impersonation proof 0.7 [Schmidt et al. 2012]
2. NAXOS eCK proof 4.4 [Schmidt et al. 2012]
3. STS-MAC KI, adversary can register arbitrary public keys attack 4.6 [Schmidt et al. 2012]
4. STS-MAC-fix1 KI, adversary can register arbitrary public keys proof 9.2 [Schmidt et al. 2012]
5. STS-MAC-fix2 KI, adversary can register arbitrary public keys proof 1.8 [Schmidt et al. 2012]
6. TS1-2004 KI attack 0.3 [Schmidt et al. 2012]
7. TS2-2004 KI with weak Perfect Forward Secrecy attack 0.5 [Schmidt et al. 2012]
8. TS3-2004 KI with weak Perfect Forward Secrecy non-termination - [Schmidt et al. 2012]
9. UM Perfect Forward Secrecy attack 1.5 [Schmidt et al. 2012]

10. TLS handshake secrecy, injective agreement proof 2.3 [Meier 2013]
11. TESLA 1 data authenticity proof 4.4 [Meier 2013]
12. TESLA 2 (lossless) data authenticity proof 16.4 [Meier 2013]
13. Keyserver keys are secret or revoked proof 0.1 [Meier 2013]
14. Security Device exclusivity (left or right) proof 0.4 [Meier 2013]
15. Contract signing protocol exclusivity (abort or resolve) proof 0.8 [Meier 2013]
16. Envelope (no reboot) denied access implies secrecy proof 32.7 [Meier 2013]
17. SIGJOUX (tripartite) Perfect Forward Secrecy proof 102.9 [Schmidt 2012]
18. SIGJOUX (tripartite) Perfect Forward Secrecy, ephemeral-key reveal attack 111.5 [Schmidt 2012]
19. RYY (ID-based) Perfect Forward Secrecy proof 10.3 [Schmidt 2012]
20. RYY (ID-based) Perfect Forward Secrecy, ephemeral-key reveal attack 10.5 [Schmidt 2012]
21. YubiKey (multiset) injective authentication proof 19.3 [Künnemann and Steel 2012]
22. YubiHSM (multiset) injective authentication proof 7.6 [Künnemann and Steel 2012]

protocol models for TPMs from [Delaune et al. 2011]. In each case, our results are more
general or the analysis is more efficient than previous results. Additionally, TAMARIN
was successfully used to analyze the YubiKey and YubiHSM protocols [Künnemann
and Steel 2012].
Protocols with Many Messages and Multiple Parties: ARPKI. We proposed a
new public key infrastructure, called the Attack Resilient Public Key Infrastructure
(ARPKI) [Basin et al. 2014; Basin et al. 2016]. ARPKI extended classic public key
infrastructures using multiple certificate authorities and log servers. ARPKI was
modeled and analyzed using TAMARIN, and only possible due to the support for mutable
state.
Group Protocols and Bilinear Pairings. Using TAMARIN’s support for bilinear
pairing (BP) different group protocols were analyzed [Schmidt et al. 2014]. The group
protocols STR and GDH based on Diffie-Hellman were verified, as was BP-based Group
Joux. Note that these group protocols do not limit the number of participants and were
proven for an arbitrary number of participants. Furthermore, the tripartite protocol
Signed Joux and TAK1 were both each falsified and verified (property/adversary-model-
dependent). Additional identity-based protocols RYY, Scott, and Chen-Kudla were
similarly proven, respectively falsified, showing exactly the weakest assumptions under
which the protocols still satisfy their desired security properties. Details on the prop-
erties verified and automated verification time measurements are available [Schmidt
et al. 2014, Table I].
Transport Layer Security (TLS). The largest case study so far in TAMARIN has
been the upcoming IETF TLS 1.3 standard, which is the main foundation for Internet
security and also widely used to establish secure channels in a variety of contexts. As
of writing, TLS 1.3 is nearing completion. TLS comprises a complex combination of
sub-protocols with intricate interactions that require loops and complex state. During
the development process, TAMARIN was used to analyze different draft versions. For
one of these proposals, TAMARIN found a critical attack [Cremers et al. 2016]. TAMARIN
was also used to verify the final revision of TLS 1.3 [Cremers et al. 2017b].
Non-Subterm Convergent Equational Theories. As TAMARIN supports any con-
vergent equational theory that has the finite variant property, it can also be used to an-
alyze protocols that use, for example, blind signatures or trapdoor commitments [Dreier
et al. 2017a]. We have used it to study Chaum’s digital cash protocol [Chaum 1982]

6

which uses blind signatures and whose modeling also required the use of global state.
We have verified anonymity, untraceability, as well as unforgeability, which states that
no coins can be maliciously created. We also analyzed the FOO e-voting protocol [Fu-
jioka et al. 1992], which relies on blind signatures. We have been able to check vote
privacy (modeled as an equivalence property) and furthermore eligibility (modeled as
a trace property). We additionally verified the Okamoto e-voting protocol [Okamoto
1996], which relies on trapdoor commitments to achieve receipt-freeness. In particular
we provided the first automated proof of receipt-freeness for this protocol.
Electronic Payment Protocols. Cortier et al. [Cortier et al. 2017] used TAMARIN to
verify a new EMV-compliant payment protocol, which is stateful as it uses tokens and
counters. They verified complex security properties including a property stating that
stolen payment tokens can only be used within a limited time window.
Liveness Properties and Fair Exchange Protocols. Thanks to the flexible way
that properties are specified in TAMARIN, it is possible to express and verify certain
liveness properties. For example in the case of fair exchange protocols, one can study
timeliness and fairness [Backes et al. 2017]. This also required specifying resilient chan-
nels, i.e., channels where messages are eventually delivered, which can be accomplished
using restrictions in TAMARIN. Restrictions are guarded first-order logic formulas; their
use restricts TAMARIN to only consider traces that satisfy the specified restrictions.
Industrial Control Protocols We also used TAMARIN to verify industrial control
protocols such as OPC-UA and variants of MODBUS [Dreier et al. 2017b]. We studied
flow integrity properties, including liveness properties (“messages will be delivered”)
and ordering requirements (“messages are received in the same order they were sent”).
Standardization While we have successfully used TAMARIN to provide increased
assurance for security protocol standards, e.g., TLS 1.3 [Cremers et al. 2016] and DNP3-
SAv5 [Cremers et al. 2017a], such analyses are not yet routinely performed as part
of the development process of standards. In [Basin et al. 2014] it is argued that the
quality of security protocol standards can be improved by integrating such analyses
into the standardization process. TAMARIN’s expressive framework is well suited for
such analyses.

4. RELATED WORK
There are many tools for the symbolic analysis of security protocols. We focus on
those that can provide verification with respect to an unbounded number of sessions
for complex properties. In general, the TAMARIN prover offers a novel combination
of features that enables it to verify protocols and properties that were previously
impossible to verify using other automated tools.

Like its predecessor the Scyther tool [Cremers 2008], TAMARIN performs backwards
reasoning. However in contrast to Scyther, it supports equational theories, modeling
complex control flow and mutable global state, an expressive property specification
language, and the ability to combine interactive and automated reasoning.

The Maude-NPA tool [Escobar et al. 2006] supports protocols specified as linear
role-scripts, properties specified as symbolic states, and equational theories with a finite
variant decomposition modulo AC, ACI, or C. It is unclear if our case studies that use
global state, loops, and temporal formulas can be specified in Maude-NPA. With respect
to their support of equational theories, Maude-NPA and TAMARIN are incomparable.
For example, Maude-NPA has been applied to XOR and TAMARIN has been applied to
bilinear pairing.

The ProVerif tool [Blanchet 2001] has been extended to partially handle DH with
inverses [Küsters and Truderung 2011], bilinear pairings [Pankova and Laud 2012],
and mutable global state [Arapinis et al. 2011]. From a user perspective, TAMARIN

7

provides a more expressive property specification language that, e. g., allows for the
direct specification of temporal properties. The effectiveness of ProVerif relies largely
on its focus on the adversary’s knowledge. It has more difficulty dealing with properties
that depend on the precise state of agent sessions and mutable global state. The
extension [Arapinis et al. 2011] for mutable global state is subject to several restrictions
and the protocol models require additional manual abstraction steps. Similarly, the DH
and bilinear pairing extensions work under some restrictions, e. g., exponents in the
specification must be ground.

TAMARIN’s observational equivalence notion has similarities with other notions of ob-
servational equivalence considered in the literature, including trace equivalence [Cheval
et al. 2013], bisimulation [Abadi and Fournet 2001], and notions based on contexts or
bi-processes [Abadi and Fournet 2001; Cheval et al. 2013; Blanchet et al. 2008].

Various other tools exist for verifying notions of observational equivalence but most
are limited to a bounded number of sessions (e.g., [Cheval 2014; Cheval et al. 2013;
Chadha et al. 2012]). ProVerif [Blanchet et al. 2008] verifies observational equivalence
in the applied π-calculus for an unbounded number of sessions using bi-processes, but it
cannot handle mutable state [Arapinis et al. 2014], for example, a protocol that switches
between the states a and b. Also, TAMARIN supports a larger set of equational theories.
For example, ProVerif can only deal with a weaker Diffie-Hellman equational theory
approximation [Küsters and Truderung 2009], which additionally does not support
observational equivalence at all.

Another multi-set rewriting-based approach that supports observational equivalence
is Maude-NPA [Santiago et al. 2014]. It creates the synchronous product of two very
similar protocols. Their approach suffers from termination problems [Santiago et al.
2014] and thus presents only attacks.

5. FUTURE PERSPECTIVES FOR TAMARIN
TAMARIN’s future development will include evolution along the following four axis:
Improving the tool’s interface, extending the framework, improving reasoning methods,
and improving heuristics.

Scaling the Tool’s Interface.. TAMARIN has an extensive interactive mode that has been
shown to be effective on many case studies. However, as the complexity of models grows,
it becomes harder for humans to inspect the resulting proof states. As TAMARIN’s
ability to deal with more complex models increases, it becomes increasingly important
to improve its interactive mode to enable users to efficiently explore the proof states and
applicable constraint rules. This may involve incorporating techniques from data visual-
ization, filtering techniques, and heuristics to emphasize the most relevant information.
This requires a substantial engineering effort (as opposed to fundamental research)
that is critical to making scalable tools that can be adopted by a wide community.

Extending the Framework.. As an ongoing avenue of research, there is still plenty of scope
to further support advanced equational theories. The need to support new equational
theories is driven by more detailed modeling of modern cryptographic primitives. As
support for equational theories grows, more primitives can be incorporated. Conversely,
as more cryptographic primitives are developed by cryptographers, the corresponding
symbolic modeling generates the need to support the associated equational theories.

TAMARIN currently supports a relatively coarse form of induction over protocol rule
instances. However, there is no support for more fine-grained induction over all rule
instances, in particular including the adversary’s knowledge deduction steps. This
means certain proof strategies currently cannot be mechanized, such as inductive
arguments about all possible terms that can be derived by an adversary. This leads to
the natural question of whether we can improve support for induction in TAMARIN.

8

TAMARIN currently does not use any form of abstraction or over-approximation of the
adversary’s behavior. While this makes counterexample generation easier, there is no
fundamental reason why the tool should not support abstraction if that would enable
it to analyze more problems. An open research question is to determine under which
conditions abstraction methods can improve TAMARIN’s analysis. As a starting point,
one could consider works such as [Nguyen and Sprenger 2015] that apply directly to
TAMARIN’s predecessor, Scyther. The reason why these methods do not trivially trans-
late to TAMARIN is that more domain-specific specification languages (such as Scyther’s)
have clearly defined notions of protocols, roles, and the adversary. In TAMARIN’s more
expressive specification language, there are only abstract rewriting rules, which allow
protocols to be modeled in many different ways. This modeling flexibility means that it is
harder to reconstruct what a protocol or role is, which makes it harder to automatically
determine when and how to apply domain-specific theorems.

It would be of general interest to further investigate classes of non-trace properties,
including further variants of observational equivalence. This is very relevant for the
security domain, as such properties also play a fundamental role in security definitions
based on formalisms in the spirit of Universal Composability (UC) [Canetti 2000].
Proofs in these formalisms tend to revolve around proving simulatability with respect to
so-called ideal functionalities, which in turn are processes. Even if we were to construct
symbolic counterparts of these definitions, they currently can not be proven by TAMARIN,
as their structural differences preclude proving TAMARIN’s notion of equivalence. There
are many exciting fundamental open questions in this area.

The TAMARIN framework supports the modeling of a wide range of problems, but
there are several interesting cases in which it currently does not yet automatically
provide either a proof or a counterexample (attack). While this fundamentally cannot
be avoided, and the interactive mode means the user is not stuck, we expect that there
is substantial room to improve the level of automation by introducing new constraint
solving rules (i.e., reasoning methods) and improving TAMARIN’s heuristics. We address
these in turn.

Improving Reasoning Methods.. One of the core ingredients of TAMARIN’s ability to
construct proofs or find attacks is its normal form conditions. These conditions help
restrict TAMARIN’s search space while retaining the correctness of the analysis results.
Intuitively, they help by only considering efficient proofs or attacks without redundant
steps. While we have proven that TAMARIN’s current normal form conditions retain
correctness, it may well be possible to construct additional normal form conditions that
would improve TAMARIN’s efficiency and even enable automatic proofs for protocols
in which TAMARIN currently requires manual intervention. However, if TAMARIN is
extended with further equational theories or constraint types, some of the current
normal form conditions might no longer be sound, and weaker ones might need to be
developed.

The main ingredient of TAMARIN’s analysis are the constraint solving rules. In-
tuitively, these encode specific proof methods, such as case distinctions, or drawing
conclusions from combinations of constraints. As the tool is applied to more domains,
different proof strategies might be needed, and we expect such case studies to drive the
development of new constraint solving rules.

Improving the Heuristics.. While the previously mentioned extensions would improve
TAMARIN’s ability to manually construct proofs, they do not guarantee improved au-
tomation. As more constraint solving rules are introduced, it may become harder to
provide heuristics that are effective and efficient in most cases: if multiple rules can be
applied in a certain proof state, which one should be used? In TAMARIN, this is dealt

9

with by the so-called heuristics: given a proof state and set of applicable constraint
solving rules, they aim to select the optimal rule to apply, in the sense that it would yield
the fastest termination, by either a proof or a counterexample. While the heuristic does
not affect the correctness of the result, it strongly influences TAMARIN’s termination
and efficiency. Improving the heuristic is a long-term goal and requires domain-specific
investigations and obtaining further experience in case studies.

The optimal rule to apply strongly depends on the proof state and type of protocol.
Thus, it may well be possible that different approaches are better suited to different
subdomains. To facilitate this, TAMARIN could employ a second type of heuristic, to
detect protocol classes, mechanisms, or property types.

Putting all these improvements together should lead to a dramatic increase in
TAMARIN’s scope and automation. This will accelerate its inclusion in the engineering
and standardization process for protocols, as seen already with IETF’s TLS 1.3 standard,
collaboration with the Japanese standardization body for ISO/IEC 9798, and current
work with mobile communications device vendors.

REFERENCES
Martı́n Abadi and Cédric Fournet. 2001. Mobile values, new names, and secure communication. In Proceedings

of the 28th Symposium on Principles of Programming Languages (POPL’01). ACM, New York, 104–115.
Myrto Arapinis, Joshua Phillips, Eike Ritter, and Mark Dermot Ryan. 2014. StatVerif: Verification of stateful

processes. Journal of Computer Security 22, 5 (2014), 743–821.
Myrto Arapinis, Eike Ritter, and Mark Dermot Ryan. 2011. StatVerif: Verification of Stateful Processes. In

Proc. CSF. IEEE.
Michael Backes, Jannik Dreier, Steve Kremer, and Robert Künnemann. 2017. A Novel Approach for

Reasoning about Liveness in Cryptographic Protocols and its Application to Fair Exchange. In 2nd IEEE
European Symposium on Security and Privacy (EuroS&P’17) (Proceedings of the 2nd IEEE European
Symposium on Security and Privacy). Springer, Paris, France. https://hal.inria.fr/hal-01396282

David Basin, Cas Cremers, Tiffany Hyun-Jin Kim, Adrian Perrig, Ralf Sasse, and Pawel Szalachowski.
2016. Design, Analysis, and Implementation of ARPKI: an Attack Resilient Public-Key Infras-
tructure. IEEE Transactions on Dependable and Secure Computing PP, Issue: 99 (August 2016).
http://dx.doi.org/10.1109/TDSC.2016.2601610.

David Basin, Cas Cremers, Kinuhiko Miyazaki, Sasa Radomirovic, and Dai Watanabe. 2014. Improv-
ing the Security of Cryptographic Protocol Standards. IEEE Security & Privacy (2014), 24–31.
DOI:http://dx.doi.org/10.1109/MSP.2013.162

David Basin, Jannik Dreier, and Ralf Sasse. 2015a. Automated Symbolic Proofs of Observational Equivalence.
In 22nd ACM SIGSAC Conference on Computer and Communications Security (ACM CCS 2015). ACM,
Denver, United States, 1144–1155. DOI:http://dx.doi.org/10.1145/2810103.2813662

David Basin, Jannik Dreier, and Ralf Sasse. 2015b. Automated Symbolic Proofs of Observational Equiva-
lence. Technical Report. https://hal.archives-ouvertes.fr/hal-01337409 https://hal.archives-ouvertes.fr/
hal-01337409/file/ccs2015-extended.pdf.

David A. Basin, Cas J. F. Cremers, Tiffany Hyun-Jin Kim, Adrian Perrig, Ralf Sasse, and Pawel Szalachowski.
2014. ARPKI: Attack Resilient Public-Key Infrastructure. In Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security, Scottsdale, AZ, USA, November 3-7, 2014, Gail-Joon
Ahn, Moti Yung, and Ninghui Li (Eds.). ACM, 382–393. DOI:http://dx.doi.org/10.1145/2660267.2660298

Bruno Blanchet. 2001. An efficient cryptographic protocol verifier based on Prolog rules. In Proc. CSFW.
IEEE.

Bruno Blanchet, Martı́n Abadi, and Cédric Fournet. 2008. Automated Verification of Selected Equivalences
for Security Protocols. Journal of Logic and Algebraic Programming 75, 1 (Feb.–March 2008), 3–51.

Ran Canetti. 2000. Universally Composable Security: A New Paradigm for Cryptographic Protocols. Cryptol-
ogy ePrint Archive, Report 2000/067. (2000). http://eprint.iacr.org/2000/067.

Rohit Chadha, Ştefan Ciobâcă, and Steve Kremer. 2012. Automated Verification of Equivalence Properties of
Cryptographic Protocols. In ESOP (LNCS), Helmut Seidl (Ed.), Vol. 7211. Springer, 108–127.

David Chaum. 1982. Blind Signatures for Untraceable Payments. In Advances in Cryptology: Proceedings of
CRYPTO ’82. Plenum Press, 199–203.

Vincent Cheval. 2014. APTE: An Algorithm for Proving Trace Equivalence. In TACAS (LNCS), Vol. 8413.
Springer, 587–592.

10

https://hal.inria.fr/hal-01396282
http://dx.doi.org/10.1109/MSP.2013.162
http://dx.doi.org/10.1145/2810103.2813662
https://hal.archives-ouvertes.fr/hal-01337409
https://hal.archives-ouvertes.fr/hal-01337409/file/ccs2015-extended.pdf
https://hal.archives-ouvertes.fr/hal-01337409/file/ccs2015-extended.pdf
http://dx.doi.org/10.1145/2660267.2660298
http://eprint.iacr.org/2000/067

Vincent Cheval, Véronique Cortier, and Stéphanie Delaune. 2013. Deciding equivalence-based properties
using constraint solving. Theor. Comput. Sci. 492 (2013), 1–39.

Hubert Comon-Lundh and Stephanie Delaune. 2005. The finite variant property: How to get rid of some
algebraic properties. Term Rewriting and Applications (2005), 294–307.

Véronique Cortier, Alicia Filipiak, Jan Florent, Said Gharout, and Jacques Traoré. 2017. Designing and
proving an EMV-compliant payment protocol for mobile devices. In 2nd IEEE European Symposium on
Security and Privacy (EuroSP’17). 467–480. DOI:http://dx.doi.org/10.1109/EuroSP.2017.19

Cas Cremers. 2008. The Scyther Tool: Verification, Falsification, and Analysis of Se-
curity Protocols. In Computer Aided Verification (LNCS), Vol. 5123. Springer.
DOI:http://dx.doi.org/10.1007/978-3-540-70545-1 38

Cas Cremers, Martin Dehnel-Wild, and Kevin Milner. 2017a. Secure Authentication in the Grid: A Formal
Analysis of DNP3: SAv5. In Computer Security - ESORICS 2017 - 22nd European Symposium on Research
in Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings (LNCS). Springer.

Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der Merwe. 2017b. A comprehen-
sive symbolic analysis of TLS 1.3. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, Dallas, USA.

Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. 2016. Automated Analysis and Verification
of TLS 1.3: 0-RTT, Resumption and Delayed Authentication. In IEEE Symposium on Security and Privacy.
IEEE Computer Society, 470–485.

Stéphanie Delaune, Steve Kremer, Mark Dermot Ryan, and Graham Steel. 2011. Formal Analysis of Protocols
Based on TPM State Registers. In Proc. CSF. IEEE, 66–80.

Jannik Dreier, Charles Duménil, Steve Kremer, and Ralf Sasse. 2017a. Beyond Subterm-Convergent Equa-
tional Theories in Automated Verification of Stateful Protocols. In 6th International Conference on
Principles of Security and Trust (POST). Uppsala, Sweden. https://hal.inria.fr/hal-01450916

Jannik Dreier, Maxime Puys, Marie-Laure Potet, Pascal Lafourcade, and Jean-Louis Roch. 2017b. Formally
Verifying Flow Integrity Properties in Industrial Systems. In SECRYPT 2017 - 14th International Con-
ference on Security and Cryptography. Madrid, Spain, 12. http://hal.univ-grenoble-alpes.fr/hal-01527913

Santiago Escobar, Catherine Meadows, and José Meseguer. 2006. A rewriting-based inference system for the
NRL Protocol Analyzer and its meta-logical properties. TCS 367 (2006), 162–202.

Santiago Escobar, Ralf Sasse, and José Meseguer. 2012. Folding variant narrowing and optimal variant termi-
nation. J. Log. Algebr. Program. 81, 7-8 (2012), 898–928. DOI:http://dx.doi.org/10.1016/j.jlap.2012.01.002

Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. 1992. A practical secret voting scheme for large
scale elections. In International Workshop on the Theory and Application of Cryptographic Techniques.
Springer.

Steve Kremer and Robert Künnemann. 2014. Automated Analysis of Security Protocols with Global State. In
2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014. 163–178.
DOI:http://dx.doi.org/10.1109/SP.2014.18

Robert Künnemann and Graham Steel. 2012. YubiSecure? Formal Security Analysis Results for the YubiKey
and YubiHSM. In Preliminary Proc. STM’12.

Ralf Küsters and Tomasz Truderung. 2009. Using ProVerif to Analyze Protocols with Diffie-Hellman Expo-
nentiation. In Computer Security Foundations Symposium (CSF). IEEE, 157–171.

Ralf Küsters and Tomasz Truderung. 2011. Reducing Protocol Analysis with XOR to the XOR-Free Case in
the Horn Theory Based Approach. J. Autom. Reasoning 46, 3-4 (2011), 325–352.

B.A. LaMacchia, K. Lauter, and A. Mityagin. 2007. Stronger Security of Authenticated Key Exchange. In
ProvSec (LNCS), Vol. 4784. Springer, 1–16.

Simon Meier. 2013. Advancing Automated Security Protocol Verification. Ph.D. Dissertation.
Sebastian Mödersheim. 2010. Abstraction by set-membership: verifying security protocols and web services

with databases. In Proc. CCS. ACM, 351–360.
Thanh Binh Nguyen and Christoph Sprenger. 2015. Abstractions for Security Protocol Verification. In POST

(Lecture Notes in Computer Science), Vol. 9036. Springer, 196–215.
Tatsuaki Okamoto. 1996. An electronic voting scheme. In IFIP World Conference on IT Tools. 21–30.
Alisa Pankova and Peeter Laud. 2012. Symbolic Analysis of Cryptographic Protocols Containing Bilinear

Pairings. In Proc. CSF. IEEE.
Sonia Santiago, Santiago Escobar, Catherine Meadows, and José Meseguer. 2014. A Formal Definition of

Protocol Indistinguishability and Its Verification Using Maude-NPA. In Security and Trust Management
(STM) 2014. Springer, 162–177. DOI:http://dx.doi.org/10.1007/978-3-319-11851-2 11

Benedikt Schmidt. 2012. Formal Analysis of Key Exchange Protocols and Physical Protocols. Ph.D. Disserta-
tion.

11

http://dx.doi.org/10.1109/EuroSP.2017.19
http://dx.doi.org/10.1007/978-3-540-70545-1_38
https://hal.inria.fr/hal-01450916
http://hal.univ-grenoble-alpes.fr/hal-01527913
http://dx.doi.org/10.1016/j.jlap.2012.01.002
http://dx.doi.org/10.1109/SP.2014.18
http://dx.doi.org/10.1007/978-3-319-11851-2_11

Benedikt Schmidt, Simon Meier, Cas Cremers, and David Basin. 2012. Automated Analysis of Diffie-Hellman
Protocols and Advanced Security Properties. In Proc. CSF. IEEE.

Benedikt Schmidt, Ralf Sasse, Cas Cremers, and David Basin. 2014. Automated Verification of Group Key
Agreement Protocols. In 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA,
May 18-21, 2014. 179–194. DOI:http://dx.doi.org/10.1109/SP.2014.19

The TAMARIN team. 2017. The TAMARIN prover: source code, documentation, and case studies. (August
2017). Available http://tamarin-prover.github.io/.

12

http://dx.doi.org/10.1109/SP.2014.19
http://tamarin-prover.github.io/

