Thomas Ehrhard
email: ehrhard@irif.fr

Michele Pagani
email: pagani@irif.fr

Christine Tasson
email: tasson@irif.fr.

Kern Clin

Cstab

Kleisli Kleisli

Measurable Cones and Stable, Measurable Functions A Model for Probabilistic Higher-Order Programming

Keywords: CCS Concepts:, Theory of computation → Lambda calculus, Program semantics, Probabilistic computation, Linear logic, Denotational Semantics, PCF

We define a notion of stable and measurable map between cones endowed with measurability tests and show that it forms a cpo-enriched cartesian closed category. This category gives a denotational model of an extension of PCF supporting the main primitives of probabilistic functional programming, like continuous and discrete probabilistic distributions, sampling, conditioning and full recursion. We prove the soundness and adequacy of this model with respect to a call-by-name operational semantics and give some examples of its denotations.

INTRODUCTION

Around the 80's, people started to apply formal methods to the analysis and design of probabilistic programming languages. In particular, [START_REF] Kozen | Semantics of Probabilistic Programs[END_REF] defined a denotational semantics for a firstorder while-language endowed with a random real number generator. In that setting, programs can be seen as stochastic kernels between measurable spaces: the possible configurations of the memory are described by measurable spaces, with the measurable sets expressing the observables, while kernels define the probabilistic transformation of the memory induced by program execution. For example, a while-program using n variables taking values in the set R of real numbers is a stochastic kernel K over the Lebesgue σ -algebra on R n (see Compendium of Measures and Kernels, Section 2) -i.e. K is a function taking a sequence ⃗ r ∈ R n and a measurable set U ⊆ R n and giving a real number K (⃗ r ,U) ∈ [0, 1], which is the probability of having the memory (i.e. the values of the n variables) within U after having executed the program with the memory initialized as ⃗ r .

Kozen's approach cannot be trivially extended to higher-order types, because there is no clear notion of measurable subset for a functional space, e.g. we do not know which measurable space can describe values of type, say, R → R (see [START_REF] Aumann | Borel structures for function spaces[END_REF]] for details).

Panangaden [1999] reframed the work by Kozen in a categorical setting, using the category Kern of stochastic kernels. This category has been presented as the Kleisli category of the so-called Giry's monad [START_REF] Giry | A categorical approach to probability theory[END_REF]] over the category Meas of measurable spaces and measurable functions. One can precisely state the issue for higher-order types in this framework -both Meas and Kern are cartesian categories but not closed.

The quest for a formal syntactic semantics of higher-order probabilistic programming had more success. We mention in particular [START_REF] Park | A Probabilistic Language Based on Sampling Functions[END_REF], proposing a probabilistic functional language λ ⃝ based on sampling functions. This language has a type R of sub-probabilistic distributions over the set of real numbers 1 , i.e. measures over the Lebesgue σ -algebra on R with total mass at most 1. Using the usual functional primitives (in particular recursion) together with the uniform distribution over [0, 1] and a sampling construct, the authors encode various methods for generating distributions (like the inverse transform method and rejection sampling) and computing properties about them (such as approximations for expectation values, variances, etc). The amazing feature of λ ⃝ is its rich expressiveness as witnessed by the number of examples and applications detailed in [START_REF] Park | A Probabilistic Language Based on Sampling Functions[END_REF], showing the relevance of the functional paradigm for probabilistic programming.

Until now, λ ⃝ lacked a denotation model, [START_REF] Park | A Probabilistic Language Based on Sampling Functions[END_REF] sketching only an operational semantics. In particular, the correctness proof of the encodings follows a syntactic reasoning which is not compositional. Our paper fills this gap, giving a denotational model to a variant of λ ⃝ . As a byproduct, we can check program correctness in a straight way by applying to program denotations the standard laws of calculus (Example 7.3,7.4), even for recursive programs (Example 7.9). This method is justified by the Adequacy Theorem 7.12 stating the correspondence between the operational and the denotational semantics.

If we restrict the language to countable data types (like booleans and natural numbers, excluding the real numbers), then the situation is much simpler. Indeed, any distribution over a countable set is discrete, i.e. it can be described as a linear combination of its possible outcomes and there is no need of a notion of measurable space. In previous papers [START_REF] Ehrhard | The Computational Meaning of Probabilistic Coherence Spaces[END_REF][START_REF] Ehrhard | Probabilistic Coherence Spaces are Fully Abstract for Probabilistic PCF[END_REF][START_REF] Ehrhard | Probabilistic call by push value[END_REF], we have shown that the category PCoh ! of probabilistic coherence spaces and entire functions gives fully abstract denotational models of functional languages extended with a random natural number generator. The main goal of this work is to generalize these models in order to account for continuous data types also.

The major difficulty for such a generalization is that a probabilistic coherence space is defined with respect to a kind of canonical basis (called web) that, at the level of ground types, corresponds to the possible samples of a distribution. For continuous data types, these webs should be replaced by measurable spaces, and then one is stuck on the already mentioned impossibility of associating a measurable space with a functional type -both Meas and Kern being not cartesian closed.

Our solution is to replace probabilistic coherence spaces with cones [START_REF] Andô | On fundamental properties of a Banach space with a cone[END_REF]], already used by [START_REF] Selinger | Toward a semantics for higher-order quantum computation[END_REF], allowing for an axiomatic presentation not referring to a web. A cone is similar to a normed vector space, but with non-negative real scalars (Definition 4.1). Any probabilistic coherence space can be seen as a cone (Example 4.4) as well as the set Meas(X) of all bounded measures over a measurable space X (Example 4.6). In particular, the cone Meas(R) associated with the Lebesgue σ -algebra on R will be our interpretation of the ground type R.

What about functional types, e.g. R → R? [START_REF] Selinger | Toward a semantics for higher-order quantum computation[END_REF] studied the notion of Scott continuous maps between cones, i.e. monotone non-decreasing bounded maps which commute with the lub of non-decreasing sequences 2 . The set of these functions also forms a cone with the algebraic 1 In [START_REF] Park | A Probabilistic Language Based on Sampling Functions[END_REF]] R is written ⃝real. One should consider sub-probabilistic distributions because program evaluation may diverge. 2 Actually, Selinger considers lubs of directed sets, but non-decreasing chains are enough for our purposes. Moreover, because we need to use the monotone convergence theorem for guaranteeing the measurability of these lubs in function Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 59. Publication date: January 2018.

Measurable Cones and Stable, Measurable Functions 59:3 operations defined pointwise. However, this cone construction does not yield a cartesian closed category, namely the currying of a Scott continuous map can fail to be monotone non-decreasing, hence Scott continuous (see discussion in Section 4.1.1). The first relevant contribution of our paper is then to introduce a notion of stable map, meaning Scott continuous and "absolutely monotonic" (Definition 4.14), which solves the problem about currying and gives a cartesian closed category.

We borrow the term of "stable function" from Berry's analysis of sequential computation [START_REF] Berry | Stable Models of Typed Lambda-calculi[END_REF]]. In fact, our definition is deeply related with a notion of "probabilistic" sequentiality, as we briefly mention in Section 4.1.1 showing that it rejects the "parallel or" (but not the "Gustave function").

The notion of stability is however not enough to interpret all primitives of probabilistic functional programming. One should be able to integrate at least first-order functions in order to sample programs denoting probabilistic distributions (e.g. see the denotation of the let construct in Figure 5). The problem is that there are stable functions which are not measurable, so not Lebesgue integrable (Section 5). We therefore equip the cones with a notion of measurability tests (Definition 5.1), inducing a notion of measurable paths (Definition 5.2) in a cone. In the case the cone is associated with a standard measurable space X , i.e. it is of the form Meas(X), then the measurability tests are the measurable sets of X . However, at higher-order types the definition is less immediate. The crucial point is that the measurable paths in Meas(X) are Lebesgue integrable, as expected (Section 6.3). We then call measurable a stable map preserving measurable paths and we prove that it gives a cartesian closed category, denoted Cstab m (Figure 4 and Theorem 6.7).

To illustrate the expressiveness of Cstab m we consider a variant of Scott and Plotkin's PCF [START_REF] Plotkin | LCF Considered as a Programming Language[END_REF]] with numerals for real numbers, a constant sample denoting the uniform distribution over [0, 1] and a let construct over the ground type. This language is as expressive as λ ⃝ of [START_REF] Park | A Probabilistic Language Based on Sampling Functions[END_REF] (namely, the let construct corresponds to the sampling of λ ⃝). The only notable difference lies in the call-by-name operational semantics (Figure 3) that we adopt, while [START_REF] Park | A Probabilistic Language Based on Sampling Functions[END_REF]] follows a call-by-value strategy. 3 Our choice is motivated by the fact that the call-by-name model is simpler to present than the call-by-value one. We plan to detail this latter in a forthcoming paper.

We also decided not to consider the so-called soft-constraints, which are implemented in e.g. [START_REF] Borgström | A lambda-calculus foundation for universal probabilistic programming[END_REF][START_REF] Staton | Commutative Semantics for Probabilistic Programming[END_REF][START_REF] Staton | Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints[END_REF]] with a construct called score. This can be added to our language by using a kind of exception monad in order to account for the possible failure of normalization, as detailed in [START_REF] Staton | Commutative Semantics for Probabilistic Programming[END_REF]] (see Remark 2). Also in this case we prefer to omit this feature for focussing on the true novelties of our approach -the notions of stability and measurability.

Let us underline that although the definition of Cstab m and the proof of its cartesian closeness are not trivial, the denotation of the programs (Figure 5) is completely standard, extending the usual interpretation of PCF programs as Scott continuous functions [START_REF] Plotkin | LCF Considered as a Programming Language[END_REF]]. We prove the soundness (Proposition 7.8) and the adequacy (Theorem 7.12) of Cstab m . A major byproduct of this result is then to make it possible to reason about higher-order programs as functions between cones, which is quite convenient when working with programs acting on measures.

To conclude, let us comment Figure 1, sketching the relations between the category Cstab m achieved here and the category PCoh ! of probabilistic coherence spaces and entire functions which has been the starting point of our approach. The two categories give models of the functional primitives (PCF-like languages), but PCoh ! is restricted to discrete data types, while Cstab m extends spaces, completeness wrt. arbitrary directed sets would be a too strong requirement (see Section 6.2): a crucial feature of measurable sets is that they are closed under countable (and not arbitrary) unions. 3 Let us underline that our let construct does not allow to encode the call-by-value strategy at higher-order types, since it is restricted to the ground type R. See Section 3 for more details. the model to continuous types. We guess this extension to be conservative, hence the arrow is hooked but just dashed. We are even convinced that Cstab m is the result of a Kleisli construction from a more fundamental model Clin m of (intuitionistic) linear logic, based on positive cones and measurable, Scott continuous and linear functions. We plan to study Clin m in an extended version of this paper as a category extending the category Kern of measurable spaces and stochastic kernels. This would close the loop and further confirm the analogy with PCoh ! , which is the Kleisli category associated with the exponential comonad of the model based on the category PCoh of Scott continuous and linear functions between probabilistic coherence spaces, this latter containing the category Markov of Markov chains as a full sub-category.

Contents. This paper needs a basic knowledge of measure theory: we briefly recall in Section 2 the main notions and notations used. Section 3 presents the programming language PPCF-the probabilistic variant of PCF we use for showing the expressiveness of our model. Figure 2 gives the grammar of terms and the typing rules, while Equation (5) and Figure 3 define the kernel Red describing the stochastic operational semantics. Our first main contribution is presented in Section 4: after having recalled Selinger's definition of cone (Definition 4.1) we study our notion of absolutely monotonic map (Definition 4.14), or equivalently pre-stable map (Definition 4.17 and Theorem 4.18) and we prove that it composes (Theorem 4.26). Stable maps are absolutely monotonic and Scott-continuous (Definition 4.27). Section 5 introduces our second main contribution, which is the notion of measurability test (Definition 5.1) and measurable map (Definition 5.5), giving the category Cstab m (Definition 5.5). Section 6 presents the cartesian closed structure of Cstab m , summarized in Figure 4. Finally, Section 7 details the model of PPCF given by Cstab m (Figure 5) and states soundness (Proposition 7.8) and adequacy (Theorem 7.12). Section 8 discusses the previous literature. Because of space limits, many proofs are omitted and postponed and in the technical appendix A.

Notations. We use #I for the cardinality of a set I . The set of non-negative real numbers is R + and its elements are denoted α, β General real numbers are denoted r ,s,t The set of non-zero natural numbers is N + . The greek letter λ will denote the Lebesgue measure over R, λ [0,1] being its restriction to the unit interval. Given a measurable space X and an x ∈ X , we use δ x for the Dirac measure over X : δ x (U) is equal to 1 if x ∈ U and to 0 otherwise. We also use χ U to denote the characteristic function of U which is defined as χ U (x) is equal to 1 if x ∈ U and to 0 otherwise. We use M n for the set of measurable functions R n → R + . We use F (_) to denote the map x → F (x).

COMPENDIUM OF MEASURES AND KERNELS

A σ -algebra Σ X on a set X is a family of subsets of X that is nonempty and closed under complements and countable unions, so that ∅, X ∈ Σ X . A measurable space is a pair (X , Σ X) of a set X equipped with a σ -algebra Σ X . A measurable set of (X , Σ X) is an element of Σ X . From now on, we will denote a measurable space (X , Σ X) simply by its underlying set X , whenever the σ -algebra is clear or irrelevant. We consider R and R + as measurable spaces equipped with the Lebesgue σ -algebra, generated by the open intervals. A bounded measure on a measurable space X is a map µ : Σ X → R + satisfying µ (i ∈I S i) = i ∈I µ (S i) for any countable family {S i } i ∈I of disjoint sets in Σ X . We call µ a probability (resp. subprobability) measure, whenever µ (X) = 1 (resp. µ (X) ≤ 1). When µ is a measure on R n , we often call it a distribution.

A measurable function f :

(X , Σ X) → (Y , Σ Y) is a function f : X → Y such that f -1 (U) ∈ Σ X for every U ∈ Σ Y . The pushforward measure f * µ from a measure µ on X along a measurable map f is defined as (f * µ)(U) = µ (f -1 (U)), for every U ∈ Σ Y .
These notions have been introduced in order to define the Lebesgue integral X f (x)µ (dx) of a generic measurable function f : X → R with respect to a measure µ over X . This paper uses only basic facts about the Lebesgue integral which we do not detail here.

Measures are special cases of kernels.

A bounded kernel K from X to Y is a function K : X × Σ Y → R + such that: (i) for every x ∈ X , K (x, _) is a bounded measure over Y ; (ii) for every U ∈ Σ Y , K (_,U) is a measurable map from X to R + . A stochastic kernel K is a kernel such that K (x, _
) is a sub-probability measure for every x ∈ X . Notice that a bounded measure (resp. sub-probability measure) µ over X can be seen as a particular bounded kernel (resp. stochastic kernel) from the singleton measurable space ({⋆}, {∅, {⋆}}) to X .

Categorical approach. We use two categories having measurable spaces as objects, denoted respectively Meas and Kern.

The category Meas has measurable functions as morphisms. This category is cartesian (but not cartesian closed), the cartesian product

(X , Σ X) × (Y , Σ Y) of (X , Σ X) and (Y , Σ Y) is (X × Y , Σ X ⊗ Σ Y),
where X × Y is the set-theoretic product and Σ X ⊗ Σ Y is the σ -algebra generated by the rectangles U × V , where U ∈ Σ X and V ∈ Σ Y . It is easy to check that the usual projections are measurable maps, as well as that the set-theoretic pairing ⟨f ,д⟩ of two functions f : Z → X , д : Z → Y is a measurable map from Z to X × Y , whenever f , д are measurable.

The category Kern has stochastic kernels as morphisms4 . Given a stochastic kernel H from X to Y and K from Y to Z , the kernel composition K • H is a stochastic kernel from X to Z defined as, for every x ∈ X and U ∈ Σ Z :

(K • H)(x,U) = Y K (y,U)H (x,dy).
(1) Notice that the above integral is well-defined because H (x, _) is a stochastic measure from condition (i) on kernels and K (_,U) is a measurable function from condition (ii). A simple application of Fubini's theorem gives the associativity of the kernel composition. The identity kernel is the function mapping (x,U) to 1 if x ∈ U and to 0 otherwise. Unlike Meas, we consider a tensor product ⊗ in Kern which is a symmetric monoidal product but not the cartesian product5 . The action of ⊗ over the objects X ,X ′ is defined as the cartesian product in Meas, so that we still denote it as X × X ′ . The tensor of a kernel K from X to Y and

K ′ from X ′ to Y ′ is the kernel K ⊗ K ′ given as follows, for (x,x ′) ∈ X × X ′ and U ∈ Σ Y , U ′ ∈ Σ Y ′ : K ⊗ K ′ ((x,x ′),U × U ′) = K (x,U)K ′ (x ′ ,U ′) (2)
Notice that Kern is not closed with respect to ⊗. Recall that a measure can be seen as a kernel from the singleton measurable space, so that Equation (2) defines also a tensor product µ ⊗ µ ′ between measures over resp. Y and Y ′ .

The category Kern has also countable coproducts. Given a countable family {(X i , Σ i)} i ∈I of measurable spaces, the coproduct i ∈I (X i , Σ i) has as underlining set the disjoint union ∪ i ∈I X i × {i} of the X i 's, and as the σ -algebra the one generated by ∪ i ∈I U i × {i} disjoint union of U i ∈ Σ i . The

59:6

Thomas Ehrhard, Michele Pagani, and Christine Tasson injections ι j from X j to i ∈I X i are defined as

∆,x : A ⊢ x : A ∆,x : A ⊢ M : B ∆ ⊢ λx A .M : A → B ∆ ⊢ M : A → B ∆ ⊢ N : A ∆ ⊢ (MN) : B ∆ ⊢ M : A → A ∆ ⊢ (YM) : A r ∈ R ∆ ⊢ r : R f meas. map R n → R ∆ ⊢ M i : R,∀i ≤ n ∆ ⊢ f (M 1 , . . . ,M n) :
ι i (x, ∪ j ∈I U j × {j}) = χ U i (x). Given a family K i from X i to Y , the copairing [K i] i ∈I from i ∈I X i to Y is defined by [K i] i ∈I ((x, j),U) = K j (x,U).
Actually, the categories Meas and Kern can be related in a very similar way as the relation between the categories Set (of sets and functions) and Rel (of sets and relations). In fact, Kern corresponds to the Kleisli category of the so-called Giry's monad over Meas [START_REF] Giry | A categorical approach to probability theory[END_REF]], exactly has the category Rel of relations is the Kleisli category of the powerset monad over Set (see [START_REF] Prakash Panangaden | The Category of Markov Kernels[END_REF]). Since this paper does not use this construction, we do not detail it.

THE PROBABILISTIC LANGUAGE PPCF

Types and Terms

We give in Figure 2 the grammar of our probabilistic extension of PCF, briefly PPCF, together with the typing rules. The types are generated by A,B ::= R | A → B, where the constant R is the ground type for the set of real numbers. We denote by Λ Γ⊢A the set of terms typeable within the sequent Γ ⊢ A. We write simply Λ if the typing sequent is not important or clear from the context.

The first line of Figure 2 contains the usual constructs of the simply typed λ-calculus extended to the fix-point combinator Y for any type A. The second line describes the primitives dealing with the ground type R. Our goal is to show the expressiveness of the category Cstab m introduced in the next section, therefore PPCF is an ideal language and does not deal with the issues about a realistic implementation of computations over real numbers. We refer the interested reader to e.g. [START_REF] Escardó | PCF extended with real numbers[END_REF][START_REF] Vuillemin | Exact Real Computer Arithmetic with Continued Fractions[END_REF]]. We will suppose that the meta-variable f ranges over a fixed countable set C of basic measurable functions over real numbers. Examples of these functions include addition +, comparison >, and equality =; they are often written in infix notation. When clear from the context, we sometimes write f for f . To be concise, we consider only the ground type R, the boolean operators (like > or =) then evaluate to 1 or 0, representing resp. true and false.

The third line of Figure 2 gives the "probabilistic core" of PPCF. The constant sample stands for the uniform distribution over [0, 1], i.e. the Lebesgue measure λ [0,1] restricted to the unit interval. The fact that PPCF has only this distribution as a primitive is not limiting, in fact many other probabilistic measures (like binomial, geometric, gaussian or exponential distribution) can be defined from λ [0,1] and the other constructs of the language, see e.g. [START_REF] Park | A Probabilistic Language Based on Sampling Functions[END_REF]] and Example 3.3. The let construction allows a call-by-value discipline over the ground type R: the execution of let(x,M, N) will sample a value (i.e. a real number r) from a probabilistic distribution M and will pass it to N by replacing every free occurrence of x in N with r . This primitive6 is essential for the expressiveness of PPCF and will be discussed both operationally and semantically in the next sections.

PPCF has a limited number of constructs, but it is known that many probabilistic primitives can be introduced as syntactic sugar from the ones in PPCF, as shown in the following examples. We will prove the correctness of these encodings using the denotational semantics (Section 7), this latter corresponding to the program operational behavior by the adequacy property (Theorem 7.12).

Example 3.1 (Extended branching). Let U be a measurable set of real numbers whose characteristic

function χ U is in C, let L ∈ Λ Γ⊢R and M, N ∈ Λ Γ⊢A for A = B 1 → . . . B n → R. Then the term Γ ⊢ if(L ∈ U ,M, N) : A, branching between M and N according to the outcome of L being in U , is a syntactic sugar for λx B 1 . . . λx B n .ifz(χ U (L), N x 1 . . . x n ,Mx 1 . . . x n). 7
Example 3.2 (Extended let). Similarly, the let constructor can be extended to any output type A = B 1 → . . . B n → R. Given M ∈ Λ Γ⊢R and N ∈ Λ Γ,x :R⊢A , we denote by let(x,M, N) the term λx B 1 . . . λx B n .let(x,M, N x 1 . . . x n) which is in Λ Γ⊢A . However we do not know in general how to extend the type of the bound variable x to higher types in this model. The issue is clear at the denotational level, where the let construction is expressed with an integral (see Figure 5). With each ground type, we associate a positive cone Meas(X) which is generated by a measurable space X . At higher types, the associated cones do not have to be generated by measurable spaces.

Notice that, because of this restriction on the type of the bound variable x, our let constructor does not allow to embed into our language the full call-by-value PCF.

Example 3.3 (Distributions). The Bernoulli distribution takes the value 1 with some probability p and the value 0 with probability 1 -p. It can be expressed as the term bernoulli of type R → R, taking the parameter p as argument and testing whether sample draws a value within the interval [0,p], i.e. λp.let(x, sample,x ≤p).

The exponential distribution at rate 1 is specified by its density e -x . It can be implemented as the term exp of type R by the inversion sampling method: let(x, sample,log(x)).

The standard normal distribution (gaussian with mean 0 and variance 1) is defined by its

density 1 √ 2π e -1 2 x 2
. We use the Box Muller method to encode the normal distribution normal = let(x, sample, let(y, sample, (-2 log(x))

1 2 cos(2πy))). We can encode the Gaussian distribution as a function of the expected value x and standard deviation σ by gauss = λxλσ let(y, normal, (σy)+x).

Example 3.4 (Conditioning). Let U be a measurable set of real numbers such that χ U ∈ C, we define a term observe(U) of type R → R, taking a term M and returning the renormalization of the distribution of M on the only samples that satisfy U : observe(U) = λm.Y(λy.let(x,m, if(x ∈ U ,x,y))). This corresponds to the usual way of implementing conditioning by rejection sampling: the evaluation of observe(U)M will sample a real r from M, if r ∈ U holds then the program returns r , otherwise it iterates the procedure. Notice that observe(U)M makes a crucial use of sampling. The program λm.Y(λy.if(m ∈ U ,m,y)) has a different behavior, because the two occurrences of m correspond in this case to two independent random variables (see Example 3.10 below).

Example 3.5 (Monte Carlo Simulation). An example using the possibility of performing independent copies of a random variable is the encoding of the n-th estimate of an expectation query. The expected value of a measurable function f with respect to distribution µ is defined as R f (x)µ (dx).

59:8

Thomas Ehrhard, Michele Pagani, and Christine Tasson

(λx .M)N → M {N /x } f (r 1 , . . . ,r n) → f (r 1 , . . . ,r n) ifz(r ,M, N) →      M if r = 0, N otherwise. let(x,r ,M) → M {r /x } YM → M (YM) sample → r for any r ∈ [0, 1]. (a) Reduction of a PPCF redex. E[] ::= [] | E[]M | ifz(E[],M, N) | let(x,E[], N) | f (r 1 , . . . ,r i-1 ,E[],M i+1 , . . . ,M n) E[M] → E[N], whenever M → N (b)
Grammar of the evaluation contexts and context closure of the reduction. The Monte Carlo method relies on the laws of large number: if x 1 , . . . , x n are independent and identically distributed random variables of equal probability distribution µ, then the n-th estimate

f (x 1)+•••+f (x n) n converges almost surely to R f (x)µ (dx).
For any integer n, we can then encode the n-th estimate combinator by expectation n = λ f .λm.(

n times f (m) + • • • + f (m) /n) of type (R → R) → R → R.
Notice that it is crucial here that the variable m has n occurrences representing n independent random variables, this being in contrast with Example 3.4 (see also Example 3.10).

Operational Semantics

The operational semantics of PPCF is a Markov process defined starting from the rewriting rules of Figure 3, extending the standard call-by-name reduction of PCF [START_REF] Plotkin | LCF Considered as a Programming Language[END_REF]]. The probabilistic primitive sample draws a possible value from [0, 1], like in [START_REF] Park | A Probabilistic Language Based on Sampling Functions[END_REF]. The fact that we are sampling from the uniform distribution and not from other distributions with equal support appears in the definition of the stochastic kernel Red (Equation (5)). In order to define this kernel, we equip Λ with a structure of measurable space (Equation (4)). This defines a σ -algebra Σ Λ of sets of terms equivalent to the one given in e.g. [START_REF] Borgström | A lambda-calculus foundation for universal probabilistic programming[END_REF][START_REF] Staton | Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints[END_REF] for slightly different languages. Similarly to [START_REF] Staton | Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints[END_REF]], our definition is explicitly given by a countable coproduct of copies of the Lebesgue σ -algebra over R n (for n ∈ N, see Equations (3)), while in [START_REF] Borgström | A lambda-calculus foundation for universal probabilistic programming[END_REF] the definition is based on a notion of distance between λ-terms. The two definitions give the same measurable space, but the one adopted here allows to take advantage of the categorical structure of Kern.

Remark 1. The operational semantics associates with a program M a probabilistic distribution D of values describing the possible outcomes of the evaluation of M. There are actually two different"styles" for giving D: one based on samplings and another one, adopted here, based on stochastic kernels. [START_REF] Borgström | A lambda-calculus foundation for universal probabilistic programming[END_REF] proved that the two semantics are equivalent, giving the same distribution D.

The "sampling semantics" associates with M a function mapping a trace of random samples to a weight, expressing the likelihood of getting that trace of samples from M. The final distribution D is then calculated by integrating this function over the space of the possible traces, equipped with a suitable measure. This approach is usually adopted when one wants to underline an implementation of the probabilistic primitives of the language via a sampling algorithm, e.g. [START_REF] Park | A Probabilistic Language Based on Sampling Functions[END_REF].

Measurable Cones and Stable, Measurable Functions

59:9

The "kernel-based semantics" instead describes program evaluation as a discrete-time Markov process over a measurable space of states given by the set of programs ((Λ, Σ Λ) in our case). The transition of the process is given by a stochastic kernel (here Red defined in Equation (5)) and then the probabilistic distribution D of values associated with a term is given by the supremum of the family of all finite iterations of the kernel (Red ∞ , Equation (6)). This latter approach is more suitable when comparing the operational semantics with a denotational model (in order to prove soundness and adequacy for example) and it is then the one adopted in this paper.

A redex is a term in one of the forms at left-hand side of the → defined in Figure 3a. A normal form is a term M which is no more reducible under →. Notice that the closed normal forms of ground type R are the real numerals. The definition of the evaluation context (Figure 3b) is the usual one defining the deterministic lazy call-by-name strategy: we do not reduce under an abstraction and there is always at most one redex to reduce, as stated by the following standard lemma. Lemma 3.6. For any term M, either M is a normal form or there exists a unique redex R and an

evaluation context E[] such that M = E[R].
It is standard to check that the property of subject reduction holds (if Γ ⊢ M : A and M → N , then Γ ⊢ N : A).

From now on, let us fix an enumeration without repetitions (z i) i ∈N of variables of type R. Notice that any term M ∈ Λ Γ⊢A with n different occurrences of real numerals, can be decomposed univocally into a term z 1 : R, . . . ,z n : R, Γ ⊢ S : A without real numerals and a substitution σ = {r 1 /z 1 , . . . ,r n /z n }, such that: (i) M = Sσ; (ii) each z i occurs exactly once in S; (iii) z i occurs before z i+1 reading the term from left to right. Because of this latter condition, we can omit the name of the substituted variables, writing simply S⃗ r with ⃗ r = (r 1 , . . . ,r n). We denote by Λ Γ⊢A n the set of terms in Λ z 1 :R,...,z n :R,Γ⊢A with no occurrence of numerals and respecting conditions (ii) and (iii) above. We let S,T vary over such real-numeral-free terms.

Given S ∈ Λ Γ⊢A n we then define the set

Λ Γ⊢A S = {M ∈ Λ Γ⊢A s.t. ∃⃗ r ∈ R n ,M = S⃗ r }. The bijection s : Λ Γ⊢A S → R n given by s (S⃗ r) = ⃗ r endows Λ Γ⊢A S with a σ -algebra isomorphic to Σ R n : U ∈ Σ Λ Γ⊢A S iff s (U) ∈ Σ R n . The fact that Λ Γ⊢A
n is countable and that Kern has countable coproducts (see Section 2), allows us to define the measurable space of PPCF terms of type Γ ⊢ A as the coproduct:

(Λ Γ⊢A , Σ Λ Γ⊢A) = n ∈N,S ∈Λ Γ⊢A n (Λ Γ⊢A S , Σ Λ Γ⊢A S) (3)
Spelling out the definition, a subset U ⊆ Λ Γ⊢A is measurable if and only if:

∀n,∀S ∈ Λ Γ⊢A n , ⃗ r s.t. S⃗ r ∈ U ∈ Σ R n (4)
Given a set U ⊆ R, we denote by U the set of numerals associated with the real numbers in U . Of course U is measurable iff U is measurable. The following lemma allows us to define Red and Red ∞ .

Lemma 3.7. Given Γ,x :

B ⊢ M : A the function Subst x,M mapping N ∈ Λ Γ⊢B to M {N /x } ∈ Λ Γ⊢A is measurable.
Given a term M ∈ Λ and a measurable set U ⊆ Λ we define Red(M,U) ∈ [0, 1] depending on the form of M, according to Lemma 3.6:

Red(M,U) =            δ E[N] (U) if M = E[R], R → N and R sample, λ{r ∈ [0, 1] s.t. E[r] ∈ U } if M = E[sample], δ M (U) if M normal form.
(5)

The last case sets the normal forms as accumulation points of Red, so that Red(M,U) gives the probability that we observe U after at most one reduction step applied to M. The definition in the case of E[sample] specifies that sample is drawing from the uniform distribution over

[0, 1]. Notice that, if U ⊆ R is measurable, then the set {r ∈ [0, 1] s.t. E[r] ∈ U } is measurable by Lemma 3.7.
The definition of Red extends to a continuous setting the operational semantics Markov chain of [START_REF] Danos | Probabilistic coherence spaces as a model of higher-order probabilistic computation[END_REF][START_REF] Ehrhard | Probabilistic Coherence Spaces are Fully Abstract for Probabilistic PCF[END_REF]].

Proposition 3.8. For any sequent Γ ⊢ A, the map Red is a stochastic kernel from Λ Γ⊢A to Λ Γ⊢A .

Proof (Sketch). The fact that Red(M, _) is a measure is an immediate consequence of the definition of Red and the fact that any evaluation context E[] defines a measurable map (Lemma 3.7).

Given a measurable set U ⊆ Λ Γ⊢A , we must prove that Red(_,U) is a measurable function from Λ Γ⊢A to [0, 1]. Since Λ Γ⊢A can be written as the coproduct in Equation (3), it is sufficient to prove that for any n and S ∈ Λ Γ⊢A n , Red S (_,U) :

Λ Γ⊢A S → [0, 1] is a measurable function.
One reasons by case study on the shape of S, using Lemma 3.6 and the definition of a redex. □

We can then iterate Red using the composition of stochastic kernels (Equation (1)):

Red n+1 (M,U) = (Red • Red n)(M,U) = Λ Red(t,U) Red n (M,dt),
this giving the probability that we observe U after at most n + 1 reduction steps from M. Because the normal forms are accumulation points, one can prove by induction on n that: Lemma 3.9. Let Γ ⊢ M : A and let U be a measurable set of normal forms in Λ Γ⊢A . The sequence (Red n (M,U)) n is monotone non-decreasing.

We can then define, for M ∈ Λ and U a measurable set of normal forms, the limit

Red ∞ (M,U) = sup n (Red n (M,U)) . (6)
In particular, if M is a closed term of ground type R, the only normal forms that M can reach are numerals, in this case Red ∞ (M, _) corresponds to the probabilistic distribution over R which is computed by M according to the operational semantics of PPCF (Remark 1).

Example 3.10. In order to make clear the difference between a call-by-value and a call-by-name reduction in a probabilistic setting, let us consider the following two terms:

M = (λx .(x = x))sample, N = let(x, sample,x = x).
Both are closed terms of type R, "applying" the uniform distribution to the diagonal function x → x = x. However, M implements a call-by-name application, whose reduction duplicates the probabilistic primitive before sampling the distribution, while the evaluation of N first samples a real number r and then duplicates it: M → sample = sample → r = s for any r and s, N → let(x,r ,x = x) → r = r for any r .

The distribution associated with M by Red ∞ is the Dirac δ

0 , because Red ∞ (M,U) = Red 3 (M,U) = λ({(r ,r) s.t. r ∈ [0, 1]}) × δ 1 (U) + λ({(r ,s) s.t. r s,r ,s ∈ [0, 1]}) × δ 0 (U) = δ 0 (U)
, the last equality is because the diagonal set {(r ,r) s.t. r ∈ [0, 1]} has Lebesgue measure zero. This expresses that M evaluates to 0 (i.e. "false") with probability 1, although there are an uncountable number of reduction paths reaching 1. On the contrary, the distribution associated with

N is δ 1 : Red ∞ (N ,U) = Red 3 (M,U) = λ([0, 1]) × δ 1 (U) = δ 1 (U)
, expressing that N always evaluates to 1 (i.e. true).

Remark 2 (Score). Some probabilistic programming languages have a primitive score (e.g. [START_REF] Borgström | A lambda-calculus foundation for universal probabilistic programming[END_REF][START_REF] Staton | Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints[END_REF]) or factor (e.g. [START_REF] Goodman | Probabilistic models of cognition[END_REF]), allowing to express a probabilistic distribution from a density function. A map f is the probabilistic density function of a distribution µ with respect to another measure, say the Lebesgue measure λ, whenever µ (U) = U f (x) λ(dx), for every measurable U . Intuitively, f (x) gives a "score" expressing the likelihood of sampling the value x from µ.

In our setting, the primitive score x would be a term like Γ ⊢ score x (M) : R, with Γ,x : R ⊢ M : R defining f . The reduction of score x (M) outputs any numeral r (a possible sample from the distribution µ), while the value f (r) is used to multiply Red, like:

Red(score x (M),U) = R χ U (r) f (r) λ(dr). (7
)
This primitive allows to implement a distribution in a more efficient way than rejection sampling, this latter based on a loop (Example 3.3). However, score x (M) suffers a major drawback: there is no static way of characterizing whether a term M is implementing a probabilistic density function or rather a generic measurable map. The integral in (7) can have a value greater than one or even to be infinite or undefined for general f , in particular Red would fail to be a stochastic kernel for all terms.

This problem can be overcome by modifying the output type of a program, see e.g. [START_REF] Staton | Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints[END_REF]. We decided however to avoid these issues, convinced that PPCF is already expressive enough to test the category Cstab m , which is the true object of study of this article.

CONES

We now study the central semantical concept of this paper: cones and stable functions between cones. Before entering into technicalities, let us provide some intuitions and motivations. A complete cone P is an R + -semimodule together with a norm ∥ ∥ P satisfying some natural axioms (Definition 4.1) and such that the unit ball BP defined by the norm is complete with respect to the cone order ≤ P (Definition 4.2). A type A of PPCF will be associated with a cone A and a closed program of type A will be denoted as an element in the unit ball B A . The order completeness of B A is crucial for defining the interpretation of the recursive programs (Section 7.1), as usual.

There are various notions of cone in the literature and we are following [START_REF] Selinger | Toward a semantics for higher-order quantum computation[END_REF], who uses cones similar to the ones already presented in e.g. [START_REF] Andô | On fundamental properties of a Banach space with a cone[END_REF]]. Let us stress two of its crucial features. (1) The cone order ≤ P is defined by the algebraic structure and not given independently from it -this is in accordance with what happens in the category of probabilistic coherence spaces [START_REF] Danos | Probabilistic coherence spaces as a model of higher-order probabilistic computation[END_REF]]. (2) The completeness of BP is defined with respect to the cone order, in the spirit of domain theory, rather than with respect to the norm, as it is usual in the theory of Banach spaces.

A program taking inputs of type A and giving outputs of type B will be denoted as a map from B A to B B . The goal of Section 4.1 is to find the right properties enjoyed by such functions in order to get a cartesian closed category, namely that the set of these functions generates a complete cone compatible with the cartesian structure (which will be the denotation of the type A → B). It turns out that the usual notion of Scott continuity (Definition 4.10) is too weak a condition for ensuring cartesian closeness (Section 4.1.1). A precise analysis of this point led us to the conclusion that these functions have also to be absolutely monotonic (Definition 4.14). This latter condition is usually expressed by saying that all derivatives are everywhere non-negative, however we define it here as the non-negativity of iterated differences. Such non-differential definitions of absolute monotonicity have already been considered various times in classical analysis, see for instance [START_REF] Mcmillan | Absolutely Monotone Functions[END_REF]].

We call stable functions the Scott continuous and absolutely monotonic functions (Definition 4.27), allowing for a cpo-enriched cartesian closed structure over the category of cones. The model of PPCF needs however a further notion, that of measurability, which will be discussed in Section 5. Definition 4.1. A cone P is an R + -semimodule given together with an R + -valued function ∥_∥ P such that the following conditions hold for all x,x ′ ,y,y ′ ∈ P and α ∈ R +

• x +y = x +y ′ ⇒ y = y ′ • ∥αx ∥ P = α ∥x ∥ P • ∥x ∥ P = 0 ⇒ x = 0 • ∥x + x ′ ∥ P ≤ ∥x ∥ P + ∥x ′ ∥ P • ∥x ∥ P ≤ ∥x + x ′ ∥ P . For α ∈ R + the set BP (α) = {x ∈ P | ∥x ∥ P ≤ α } is called the ball of P of radius α. The unit ball is BP = BP (1). A subset S of P is bounded if S ⊆ BP (α) for some α ∈ R + .
Observe that ∥0∥ P = 0 by the second condition (homogeneity of the norm) and that if x + x ′ = 0 then x ′ = x = 0 by the last condition (monotonicity of the norm).

Definition 4.2. Let x,x ′ ∈ P, one writes x ≤ P x ′ if there is a y ∈ P such that x ′ = x + y. This y is then unique, and we set x ′ -x = y. The relation ≤ P is easily seen to be an order relation on P and will be called the cone order relation of P.

A cone P is complete if any non-decreasing sequence (x n) n ∈N of elements of BP has a least upper bound sup n ∈N x n ∈ BP.

The usual laws of calculus using subtraction hold (under the restriction that all usages of subtraction must be well-defined). For instance, if x,y,z ∈ P satisfy z ≤ P y ≤ P x then we have xz = (xy) + (yz). Indeed, it suffices to observe that (xy) + (yz) + z = x.

There are many examples of cones.

Example 4.3. The prototypical example is R + with the usual algebraic operations and the norm given by ∥x ∥ R + = x. The cone ℓ ∞ is defined by taking as carrier set the set of all bounded elements of (R +) N , defining the algebraic laws pointwise, and equipping it with the norm ∥u ∥ = sup n ∈N u n . The cone ℓ 1 instead is given by taking as carrier set the set of all elements u of (R +) N such that ∞ n=0 u n < ∞, defining the algebraic laws pointwise, and equipping it with the norm ∥u ∥ = ∞ n=0 u n < ∞. Example 4.4. Let X = (|X|, PX) be a probablistic coherence space (see [START_REF] Danos | Probabilistic coherence spaces as a model of higher-order probabilistic computation[END_REF]). Remember that this means that |X| is a countable set (called web) and

PX ⊆ (R +) |X | satisfies PX = PX ⊥⊥ (where, given F ⊆ (R +) | X | , the set F ⊥ ⊆ (R +) |X | is F ⊥ = {u ′ ∈ (R +) |X | | ∀u ∈ F a ∈ | X | u a u ′ a ≤ 1}) 8 .
Then we define a cone X by setting X = {u ∈ (R +) |X | | ∃ε > 0 εu ∈ PX}, defining algebraic operations in the usual componentwise way and setting ∥u ∥

X = inf {α > 0 | 1 α u ∈ PX} = sup{ a ∈ | X | u a u ′ a | u ′ ∈ PX ⊥ }.
The cones in Example 4.3 are instances of this one.

Example 4.5. The set of all u ∈ (R +) N such that u n = 0 for all but a finite number of indices n, is a cone P 0 when setting ∥u ∥ P 0 = n ∈N u n .

Example 4.6. Let X be a measurable space. The set of all R + -valued measures9 on X is a cone Meas(X), algebraic operations being defined in the usual "pointwise" way (e.g. (µ + ν)(U) = µ (U) + ν (U)) and norm given by ∥µ ∥ Meas(X) = µ (X). This is the main motivating example for the present paper. Observe that such a cone is not of the shape X in general.

In all these examples, the cone order can be described in a pointwise way. For instance, when X is a probabilistic coherence space, one has u ≤ X v iff ∀a ∈ |X| u a ≤ v a . Similarly when X is a measurable space, one has µ ≤ Meas(X) ν iff ∀U ∈ Σ X µ (U) ≤ ν (U). This is due to the fact that when this condition holds, the function U → ν (U) -µ (U) is easily seen to be an R + -valued measure.

All the examples above, but Example 4.5, are examples of complete cones.

Lemma 4.7. P is complete iff any bounded non-decreasing sequence (x n) n ∈N has a least upper bound sup n ∈N x n which satisfies ∥ sup n ∈N x n ∥ P = sup n ∈N ∥x n ∥ P . Definition 4.8. Let P and Q be cones. A bounded map from P to Q is a function f : BP → Q such that f (BP) ⊆ BQ (α) for some α ∈ R + ; the greatest lower bound of these α's is called the norm of f and is denoted as ∥ f ∥.

Lemma 4.9. Let f be a bounded map from

P to Q, then ∥ f ∥ = sup x ∈BP ∥ f (x)∥ Q and f (BP) ⊆ BQ (∥ f ∥).
Definition 4.10. A function f : P → Q is linear if it commutes with sums and scalar multiplication. A Scott-continuous function from a complete cone P to a complete cone Q is a bounded map10 from P to Q which is non-decreasing and commutes with the lubs of non-decreasing sequences.

Lemma 4.11. Let P be a complete cone. Addition is Scott-continuous P × P → P and scalar multiplication is Scott-continuous R + × P → P.

Proofs are easy, see [START_REF] Selinger | Toward a semantics for higher-order quantum computation[END_REF]]. The cartesian product of cones is defined in the obvious way (see Figure 4a). Definition 4.12. Let P be a cone and let u ∈ BP. We define a new cone P u (the local cone of P at u) as follows. We set

P u = {x ∈ P | ∃ε > 0 εx + u ∈ BP } and ∥x ∥ P u = inf {1/ε | ε > 0 and εx + u ∈ BP } = (sup{ε | ε > 0 and εx + u ∈ BP }) -1 .
Given a sequence ⃗ u = (u 1 , . . . ,u n) of elements of a cone P s.t. u = n i=1 u i ∈ BP, we set P ⃗ u = P u .

Lemma 4.13. For any cone P and any u ∈ BP, P u is a cone. Moreover BP u = {x ∈ P | x + u ∈ BP } and, for any x ∈ P u , one has ∥x ∥ P ≤ ∥x ∥ P u . If P is complete then P u is complete.

Pre-stable, aka. Absolutely Monotonic, Functions

We want now to introduce a notion of morphisms between cones such that the resulting category will be cartesian closed. Given two cones P and Q, a morphism from P to Q will be a Scott-continuous function from BP to Q (because we need our morphisms to have least fix-points in order to interpret general recursion) such that f (BP) ⊆ BQ.

4.1.1 Failure of the straightforward attempt. Is this Scott-continuity condition sufficient for guaranteeing cartesian closeness? We argue that this not the case. Assume the opposite. Then it is easy to check that the cartesian product in our category is defined in the obvious way (algebraic operations defined pointwise, and supremum norm).

Given two cones P and Q, we will need to define a new cone R = (P ⇒ Q) such that BR will coincide with the set of morphisms from P to Q that is, under our assumption, of all Scottcontinuous functions BP → BQ. In this cone R (whose elements are all the Scott-continuous functions f : BP → Q), the algebraic operations are defined pointwise11 and so the addition of R induces the following order relation on Scott-continuous functions:

f ≤ д if ∀x ∈ BP f (x) ≤ д(x) and, moreover, the function x → д(x) -f (x) is Scott-continuous.
Consider now the function wpor : [0, 1] × [0, 1] → [0, 1] defined by wpor(s,t) = s + tst = (1 -s)t + s = (1 -t)s + t and considered for instance in [START_REF] Escardó | On the non-sequential nature of the interval-domain model of real-number computation[END_REF]. It is clearly a Scott-continuous function, so it is a morphism R + × R + → R + in our category of cones and Scottcontinuous functions. Let wpor ′ : [0, 1] → B(R + ⇒ R +) be the curryfied version of wpor defined by wpor ′ (s) = wpor s where wpor s is the Scott-continuous function [0, 1] → [0, 1] defined by wpor s (t) = wpor(s,t). Then, by cartesian closeness, wpor ′ should be Scott-continuous and hence non-decreasing. But wpor 0 (t) = t and wpor 1 (t) = 1 and the function t → wpor 1 (t)-wpor 0 (t) = 1-t is not non-decreasing. So we do not have wpor ′ (0) ≤ wpor ′ (1) in the cone R + ⇒ R + and our category is not cartesian closed.

Our methodological principle is to stick to the cone order, natural wrt. the algebraic structure, and adapt the notion of morphism so as to obtain a cartesian closed category.

It turns out that this is perfectly possible and leads to an interesting new notion of morphisms between cones, deeply related with stability [START_REF] Berry | Stable Models of Typed Lambda-calculi[END_REF]] and the category PCoh ! of probabilistic coherence spaces already mentioned in the Introduction, as we will show in a further paper. This connection with stability is already suggested by the wpor example: this function is a "probabilistic version" of the well known parallel-or function [START_REF] Plotkin | LCF Considered as a Programming Language[END_REF]]: we have wpor(1, 0) = wpor(0, 1) = 1 and wpor(0, 0) = 0. Stability has been introduced for rejecting such functions.

4.1.2 Absolutely monotonic functions. Pushing further the above analysis of the constraints imposed by cartesian closeness on the monotonicity of morphisms, one arrives naturally to the following definition. Given a function f : BP → Q which is non-decreasing, we use the notation

∆f (x; u) = f (x + u) -f (x)
for all x ∈ BP and u ∈ P such that x + u ∈ BP. It is clear that ∆f (x; u) ∈ BQ.

Definition 4.14. An n-non-decreasing function from P to Q is a function f : BP → Q such that

• n = 0 and f is non-decreasing • or n > 0, f is non-decreasing and, for all u ∈ BP, the function ∆f (_; u) is n-1-non-decreasing from P u to Q.

One says that f is absolutely monotonic if it is n-non-decreasing for all n ∈ N.

Example 4.15.

Take P = Q = R + . A function f : BP = [0, 1] → Q = R + is 0-non-decreasing if it is non-decreasing. It is 1-non-decreasing if, moreover, for all u ∈ [0, 1], the function ∆f (_; u) : [0, 1 - u] → R + defined by ∆f (x; u) = f (x +u) -f (x) is non-decreasing. It is 2-non-decreasing if moreover, for all u 1 ,u 2 ∈ [0, 1] such that u 1 +u 2 ∈ [0, 1], the function ∆f (_; u 1 ,u 2) : [0, 1-u 1 -u 2] → R + defined by ∆f (x; u 1 ,u 2) = ∆f (x + u 2 ; u 1) -∆f (x; u 1) = f (x + u 2 + u 1) -f (x + u 2) -(f (x + u 1) -f (x)) = f (x + u 1 + u 2) -f (x + u 1) -f (x + u 2) + f (x) is non-decreasing, etc.
Typical examples of such n-non-decreasing functions for all n are the polynomial functions with non-negative coefficients.

Example 4.16. To illustrate this definition further, consider the wpor function introduced in Section 4.1.1. It is clearly 0-non-decreasing. For s,t,u,v ∈ R + such that s + u,t + v ∈ [0, 1] we have ∆wpor ((s,t)

; (u,v)) = (s + u) + (t + v) -(s + u)(t + v) -(s + t -st) = u + v -sv -tu + st = (1-t)u + (1-s)v +st.
This function is not non-decreasing in s and t, so wpor is not 1-non-decreasing.

4.1.3 Pre-stable functions. In most cases, Definition 4.14 is hard to manipulate because it is inductive and uses explicitly subtraction, an operation which is only partially defined. We thus give an equivalent notion as follows.

Let n ∈ N, we use P + (n) (resp. P -(n)) for the set of all subsets I of {1, . . . ,n} such that n -#I is even (resp odd). Given a map f : BP → Q, ⃗ u ∈ P n such that n i=1 u i ∈ BP and x ∈ BP ⃗ u , we define

∆ ε f (x; ⃗ u) = I ∈ P ε (n) f (x + i ∈I u i) ∈ Q for ε ∈ {+, -}. For instance ∆ -f (x; u 1 ,u 2 ,u 3) = f (x +u 1 +u 2) + f (x +u 2 +u 3) + f (x +u 1 +u 3) + f (x) and ∆ + f (x; u 1 ,u 2 ,u 3) = f (x + u 1 + u 2 + u 3) + f (x + u 1) + f (x + u 2) + f (x + u 3).
Observe that when n = 0, we have ∆ + f (x;) = f (x) and ∆ -f (x;) = 0.

Definition 4.17. An n-pre-stable function from P to Q is a function f : BP → Q such that, for all k ∈ {1, . . . ,n + 1}, all ⃗ u ∈ P k such that n i=1 u i ∈ BP, and all x ∈ BP ⃗ u , one has

∆ -f (x; ⃗ u) ≤ ∆ + f (x; ⃗ u). One says that f is pre-stable if it is n-pre-stable for all n.
Observe f is 0-pre-stable iff for all x ∈ BP and all u ∈ P such that x + u ∈ BP, one has

f (x) ≤ f (x + u), that is, f is non-decreasing.
By generalizing the computation in Example 4.15, one can prove by induction the following.

Theorem 4.18. For all n ∈ N, a function f : BP → Q is n-non-decreasing iff it is n-pre-stable. Therefore, f is absolutely monotonic iff it is pre-stable.

Lemma 4.19. Let f be an absolutely monotonic function from

P to Q (so that f : BP → Q). Let n ∈ N, ⃗ u ∈ BP n with n i=1 u i ∈ BPand x ∈ BP ⃗ u . Let f 0 , . . . , f n be the functions defined by f 0 (x) = f (x) and f i+1 (x) = ∆f i (x; u i+1). Then f n (x) = ∆ + f (x; ⃗ u) -∆ -f (x; ⃗ u) .
We set ∆f (x; ⃗ u) = f n (x). The operation ∆ is linear in the function: ∆(p j=1 α j д j)(x; ⃗ u) = p j=1 α j ∆д j (x; ⃗ u) for д 1 , . . . ,д p absolutely monotonic from P to Q.

As an immediate consequence we have that ∆f (x; u 1 , . . . ,u n) is symmetric in u 1 , . . . ,u n , that is: ∆f (x; u 1 , . . . ,u n) = ∆f (x; u σ (1) , . . . ,u σ (n)) for all permutation σ on {1, . . . ,n}.

Composing Pre-stable Functions

It is not completely obvious that pre-stable functions are closed under composition (Theorem 4.26). The situation is a bit similar in categories of smooth functions where composability derives from the chain rule. Theorem 4.26 is an immediate consequence of Lemma 4.25, the proof of this latter needing the following auxiliary lemmas. Lemma 4.20. Let f : BP → Q be a pre-stable function from P to Q. For all ⃗ u ∈ BP n , the functions

∆ -f (_; ⃗ u), ∆ + f (_; ⃗ u) and ∆f (_; ⃗ u) are pre-stable from P ⃗ u to Q. Lemma 4.21. Let f : BP → Q be a pre-stable function from P to Q. Let n ∈ N, x,u,v ∈ BP and ⃗ u ∈ BP n , and assume that x + u + v + n i=1 u i ∈ BP. Then ∆f (x + u; ⃗ u) = ∆f (x; ⃗ u) + ∆f (x; u,⃗ u), ∆f (x; u + v,⃗ u) = ∆f (x; u,⃗ u) + ∆f (x + u; v,⃗ u) .
Lemma 4.22. Let f : BP → Q be a function which is pre-stable from P to Q. Let n ∈ N, x,u ∈ BP and ⃗ u, ⃗ v ∈ BP n , and assume that x

+ u + n i=1 (u i + v i) ∈ BP. Then ∆f (x + u; ⃗ u + ⃗ v) = ∆f (x; ⃗ u) + ∆f (x; u,⃗ u + ⃗ v) + ∆f (x + u 1 ; v 1 ,u 2 + v 2 , . . . ,u n + v n) + ∆f (x + u 2 ; u 1 ,v 2 ,u 3 + v 3 , . . . ,u n + v n) + • • • + ∆f (x + u n ; u 1 , . . . ,u n-1 ,v n) .
Proof. Simple computation using Lemma 4.21. □

Let P be a cone and let p ∈ N. Let S p (P) = (P p+1 , ∥_∥ S p (P)) where ∥(x,u 1 , . . . ,u p)∥ S p (P) = ∥x + p i=1 u i ∥ P . Then, with algebraic laws defined componentwise, it is easy to check that S p (P) is a cone which is complete if P is. Lemma 4.23. Let f : BP → Q be a pre-stable function from P to Q. Then the map д : BS p (P) → Q defined by д(x,⃗ u) = ∆f (x; ⃗ u) is non-decreasing, for all p ∈ N + .

Lemma 4.24. Let f ,д : BP → Q be two pre-stable functions from P to Q. The function f + д (sum defined pointwise) is pre-stable.

Lemma 4.25. Let p ∈ N, f ,h 1 , . . . ,h p : BP → Q be pre-stable functions from P to Q and д : BQ → R be pre-stable functions from

Q to R such that ∀x ∈ BP f (x) + p i=1 h i (x) ∈ BQ. Then the function k : BP → R defined by k (x) = ∆д(f (x); h 1 (x), . . . ,h p (x)) is pre-stable from P to R.
Proof. Observe that our hypotheses imply that, for all x ∈ BP, one has f (x) ∈ BQ h 1 (x),...,h n (x) With the notations and conventions of the statement, we prove by induction on n that, for all n ∈ N, for all p ∈ N, for all f ,h 1 , . . . ,h p ,д which are pre-stable and satisfy ∀x ∈ BP f (x) + p i=1 h i (x) ∈ BQ, the function k is n-pre-stable.

For n = 0, the property results from Lemma 4.23. We assume the property for n and prove it for n + 1. Let u ∈ BP we have to prove that the function ∆k (_; u) is n-pre-stable from P u to R. Let x ∈ BP u , we have

∆k (x; u) = ∆д(f (x + u); h 1 (x + u), . . . ,h p (x + u)) -∆д(f (x); h 1 (x), . . . ,h p (x)) = ∆д(f (x) + ∆f (x; u); h 1 (x) + ∆h 1 (x; u), . . . ,h p (x) + ∆h 1 (x; u))
-∆д(f (x); h 1 (x), . . . ,h p (x)) = ∆д(f (x); ∆f (x; u),h 1 (x) + ∆h 1 (x; u), . . . ,h p (x) + ∆h p (x; u)) + ∆д(f (x) + h 1 (x); ∆h 1 (x; u),h 2 (x) + ∆h 2 (x; u), . . . ,h p (x) + ∆h p (x; u))

+ ∆д(f (x) + h 2 (x); h 1 (x), ∆h 2 (x; u),h 3 (x) + ∆h 3 (x; u), . . . ,h p (x) + ∆h p (x; u)) + • • • + ∆д(f (x) + h p (x); h 1 (x), . . . ,h p-1 (x), ∆h p (x; u))
by Lemma 4.22. We can apply the inductive hypothesis to each of the terms of this sum. Let us consider for instance the first of these expressions. We know that the functions h

′ 1 , . . . ,h ′ p+1 defined by h ′ 1 (x) = ∆f (x; u), h ′ 2 (x) = h 1 (x) + ∆h 1 (x; u) = h 1 (x + u),. . . , h ′ p+1 (x) = h p (x) + ∆h p (x; u) = h p (x
+u) are pre-stable from P u to Q: this results from Lemmas 4.24 and 4.20. Moreover we have ∀x ∈ BP f (x)

+ p+1 i=1 h ′ i (x) = f (x +u) + p i=1 h i (x +u) ∈ BQ.
Therefore the inductive hypothesis applies and we know that the function x → ∆д(f (x); ∆f (x; u),h 1 (x) + ∆h 1 (x; u), . . . ,h p (x) + ∆h p (x; u)) is n-pre-stable. The same reasoning applies to all terms and, by Lemma 4.24, we know that the function ∆k (_; u) is n-pre-stable from P u to Q. □ Theorem 4.26. Let f be a pre-stable function from P to Q and д be a pre-stable function from

Q to R. If f (BP) ⊆ BQ then д • f is a pre-stable function from P to R.
Proof. This is the case p = 0 of Lemma 4.25. □ Definition 4.27. A stable function from P to Q is a pre-stable (or, equivalently, an absolutely monotonic) function from P to Q which is Scott continuous. We use Cstab for the category of complete cones and stable functions. More explicitly, Cstab(P,Q) is the set of all functions f : BP → Q which are pre-stable from P to Q, Scott-continuous and satisfy f (BP) ⊆ BQ.

MEASURABILITY

The cone Meas(R) of R + -valued measures on R (Example 4.6) is the natural candidate to model the ground type R. In particular, a real numeral will be interpreted as the Dirac measure δ r . Consider now a closed term let(x,M, N) of type R, so that ⊢ M : R and x : R ⊢ N : R. The term M will be associated with a measure µ in B(Meas(R)), while N will be a stable function f from the whole B(Meas(R)) to B(Meas(R)). However, according to the operational semantics (Figure 3), N is supposed to get a real number r for x, and not a generic measure. This means that one has to compose f with a map δ : R → B(Meas(R +)) defined by δ (r) = δ r , so that f • δ : R → B(Meas(R)). Now, the natural way to pass µ to f • δ is then by the integral R (f • δ)(r)µ (dr). However, this would be meaningful only in case f • δ is measurable, and this is not the true of all stable functions f . 12 We have then to slightly refine our model, endowing our cones with a structure allowing to formulate a convenient measurability property for our morphisms. This is the goal of this section.

Measurability Tests

If P is a cone, we use P ′ for the topological dual of P, which is the set of all functions l : P → R + which are linear (that is, commute with linear combinations) and Scott-continuous. Such a function, when restricted to BP, clearly defines a stable function from P to R + . Definition 5.1. We consider cones P equipped with a collection (M n (P)) n ∈N where M n (P) ⊆ (P ′) R n satisfies the following properties.

• 0 ∈ M n (P) • if l ∈ M n (P) and h : R p → R n is measurable then l • h ∈ M p (P)
• and for any l ∈ M n (P) any x ∈ P, the function

R n → R + which maps ⃗ r to l (⃗ r)(x) is in M n , i.e. is a measurable map R n → R + .
A cone P equipped with a family (M n (P)) n ∈N satisfying the above conditions will be called a measurable cone. The elements of the sets M n (P) will be called the measurablility tests of P.

Measurability tests have parameters in R n and are not simply Scott-continuous linear forms for making it possible to prove that the evaluation function of the cartesian closed structure is well behaved. This will be explained in Remark 3. Definition 5.2. Let P be a cone and let n ∈ N. A measurable path of arity n in P is a function γ : R n → P such that

• γ (R n) is bounded in P • and, for all k ∈ N and all l ∈ M k (P), the function l * γ : R k +n → R + defined by (l * γ)(⃗ r ,⃗ s) = l (⃗ r)(γ (⃗ s)) is in M k +n , i.e. is a measurable map R k +n → R + .
We use Path n (P) for the set of measurable paths of P and Path n 1 (P) for the set of measurable paths which take their values in BP.

Lemma 5.3. For any x ∈ P and n ∈ N, the function γ : R n → P defined by γ (⃗ r) = x belongs to Path n (P). If γ ∈ Path n (P) and h : R p → R n is measurable then γ • h ∈ Path p (P).

12 Indeed, by Lebesgue decomposition theorem we can write Meas(R) = M 0 ⊕ M 1 , a co-product of cones (it is easily checked that the category of complete cones of linear and Scott-continuous functions has co-products), where the elements of M 0 are the discrete measures, that is, the countable linear combinations of Dirac measures ∞ i =1 α n δ rn with ∀n α n ∈ R + and n α n < ∞, and M 1 is the cone of measures µ such that µ ({r }) = 0 for all r ∈ R. Let U ⊆ R be a non-measurable set and let f : M → R + be the linear (and hence pre-stable) and Scott-continuous function defined on this co-product, by: f (µ) = 0 if µ ∈ M 1 and f (δ r) = χ U (r). Then f • δ = χ U is not measurable. We thank Jean-Louis Krivine for this example.

i ∈I

P i = {(x i) i ∈I s.t. ∀i ∈ I ,x i ∈ P i }, ∥(x i) i ∈I ∥ i ∈I P i = sup i ∈I ∥x i ∥ P i M n (i ∈I P i) = { i ∈I l i | ∀i ∈ I l i ∈ M n (P i)}, with i ∈I l i (⃗ r)(x i) n ∈I = i ∈I l i (⃗ r)(x i)
(a) finite cartesian product (I finite set). We can simply write P 1 × P 2 for the binary product. Example 5.4. Let X be a measurable space. We equip the cone Meas(X) with the following notion of measurability tests. For each n ∈ N, we set M n (Meas(X)

P ⇒ m Q = { f : BP → Q | ∃ε > 0,ε f ∈ Cstab m (P,Q)}, ∥ f ∥ P ⇒ m Q = sup x ∈BP ∥ f (x)∥ Q M n (P ⇒ m Q) = {γ ▷ m | γ ∈ Path n (P),m ∈ M n (Q)}, with γ ▷ m(⃗ r)(f) = m(⃗ r)(f (γ (⃗ r))) (b) object of morphisms
) = {ε U | U ∈ Σ X } where ε U (⃗ r)(µ) = µ (U).
Observe that indeed ε U is linear and Scott-continuous, see Example 4.6 and the observation that, in the complete cone Meas(X), lubs are computed pointwise: given a non-decreasing and bounded sequence µ n of elements of Meas(X), one has

(sup n ∈N µ n)(U) = sup n ∈N µ n (U). Therefore an element of Path n 1 (Meas(X)
) is a stochastic kernel from R n to X . This example justifies our terminology of "measurable cone" because, in Meas(X), the measurable tests coincide with the measurable sets of X .

Definition 5.5. Let P and Q be measurable complete cones. A stable function from P to Q (remember that then f is actually a function BP → Q) is measurable if, for all n ∈ N and all γ ∈ Path n 1 (P), one has f • γ ∈ Path n (Q). We use Cstab m for the subcategory of Cstab whose morphisms are measurable.

This definition makes sense because if f : BP → BQ and д : BQ → BR are stable and measurable, then д • f has the same properties.

THE CARTESIAN CLOSED STRUCTURE OF CSTAB M

Cartesian Product

The cartesian product P = i ∈I (P i) of a finite13 family of cones (P i) i ∈I is given in Figure 4a, where addition and scalar multiplication are defined componentwise. It is clear that we have defined in that way a complete cone and that BP = i ∈I BP i . Given a non-decreasing sequence

(x (p)) p ∈N in BP, then x = sup p ∈N x (p) is characterized by x i = sup p ∈N x (p) i (this lub being taken in BP i).
The projections pr i : BP → BP i are easily seen to be linear and Scott-continuous and hence stable P → P i . Let f i ∈ Cstab m (Q,P i) for each i ∈ I . We define a function f : BQ → BP by f (y) = (f i (y)) i ∈I . It is straightforward to check that this function is stable: pre-stability follows from ∆f (y; v) = (∆f i (y; v)) i ∈I . Lemma 6.1. Let f : P × BQ → R be a function such that

• for each y ∈ BQ, the function f (1) y : P → R defined by f (1) y (x) = f (x,y) is linear (resp. linear and Scott-continuous)

• and for each x ∈ P, the function f (2) x : BQ → R defined by f (2) x (y) = f (x,y) is pre-stable (resp. pre-stable and Scott-continuous). Then the restriction f : BP × BQ → R is pre-stable (resp. pre-stable and Scott-continuous, that is, stable) from P × Q to R.

In the second line of Figure 4a we endow the cone i ∈I P i with a notion of measurability tests M n (i ∈I P i) for any n ∈ N. It is obvious that this notion satisfies the conditions of Definition 5.1. The fact that (i ∈I l i)(⃗ r) is Scott-continuous results from the Scott-continuity of addition (Lemma 4.11). Moreover, for x ∈ i ∈I P i , the map ⃗ r → i ∈I l i (⃗ r)(x i) is measurable as a sum of measurable functions. Given h : R p → R n measurable, we have

(i ∈I l i) • h = i ∈I (l i • h
) and hence the measurability tests of i ∈I P i are closed under precomposition with measurable maps. Lemma 6.2. For any n ∈ N we have Path n (i

∈I P i) = {⟨γ i ⟩ i ∈I | ∀i ∈ I γ i ∈ Path n (P i)}.
Theorem 6.3. The category Cstab m is cartesian with projections (pr i) i ∈I and tupling defined as in the category of sets and functions. The terminal object is the cone {0} with measurability tests equal to 0.

It suffices to prove that the usual projections are measurable and that the tupling of measurable stable functions is measurable, this is straightforward.

Function Space

Let P and Q be two measurable complete cones. We define P ⇒ m Q in Figure 4b as the set of all measurable stable functions from P to Q, that is, the set of all functions f : BP → Q such that there exists ε > 0 such that ε f ∈ Cstab m (P,Q). It is clear that P ⇒ m Q is closed under pointwise addition of functions and pointwise scalar multiplication: this results from the fact that measurability tests are (parameterized) linear functions and that measurable functions R n → R + have the same closure properties. We still have to check that, with the norm ∥_∥ P ⇒ m Q , P ⇒ m Q is a complete cone (Lemma 6.5).

For this purpose, the next lemma which provides a characterization of the order relation in the function space similar to Berry's stable order [START_REF] Berry | Stable Models of Typed Lambda-calculi[END_REF]] will be essential.

Lemma 6.4. Let f ,д ∈ P ⇒ m Q. We have f ≤ д in P ⇒ m Q iff the following condition holds ∀n ∈ N,∀⃗ u ∈ P n n i=1 u i ∈ BP,∀x ∈ BP ⃗ u , ∆ + f (x; ⃗ u) + ∆ -д(x; ⃗ u) ≤ ∆ + д(x; ⃗ u) + ∆ -f (x; ⃗ u) .
Lemma 6.5. The cone P ⇒ m Q is complete and the lubs in B(P ⇒ m Q) are computed pointwise.

The second line of Figure 4b defines a family (M n (P ⇒ m Q)) n ∈N of sets of measurability tests. Also in this case the conditions of Definition 5.1 are respected. The fact that indeed (γ ▷ m)(⃗ r) ∈ (P ⇒ m Q) ′ clearly follows from the definition of the cone P ⇒ m Q and from the fact that lubs in that cone are computed pointwise. Since Path n 1 (P) is non-empty (it contains at least the 0valued constant path ζ) and 0

∈ M n (Q), we have 0 = ζ ▷ 0 ∈ M n (P ⇒ m Q). Let γ ∈ Path n 1 (P), m ∈ M n (Q) and let h : R p → R n be measurable. We have (γ ▷ m) • h = (γ • h) ▷ (m • h) and we know that γ • h ∈ Path p 1 (P) (by Lemma 5.3) and m • h ∈ M n (Q) (by assumption about Q) so (γ ▷ m) • h ∈ M p (P ⇒ m Q). Last, with the same notations, let f ∈ P ⇒ m Q. Then the map ⃗ r → (γ ▷ m)(⃗ r)(f)
is measurable by definition of stable measurable functions. So we have equipped P ⇒ m Q with a collection of measurability tests.

Given

(f ,x) ∈ B((P ⇒ m Q) × P) = B(P ⇒ m Q) × BP we set Ev(f ,x) = f (x) ∈ BQ.
It is clear that this function is non-decreasing and Scott-continuous (because lubs of non-decreasing sequences of functions are computed pointwise). Lemma 6.6. The evaluation map Ev is stable and measurable, i.e. Ev ∈ Cstab m ((P ⇒ m Q) × P,Q).

Proof (Sketch). Stability results from Lemma 6.1, observing that Ev is linear and Scott-continuous in its first argument. The proof that Ev is measurable follows from a simple computation. □ Remark 3. The proof of Lemma 6.6 strongly uses the fact that our measurability tests have parameters in R n , see Definition 5.1. If the measurability tests were just Scott-continuous linear forms (without real parameters), we would define14 the measurability tests of P ⇒ m Q as the x ▷m ∈ (P ⇒ m Q) ′ where x ∈ BP and m ∈ M(Q), defined by (x ▷ m)(f) = m(f (x)). So, in the proof above we would only know that, for all m ∈ M(Q) and x ∈ BP, the function

R n → R + which maps ⃗ r to m(φ (⃗ r)(x)) is measurable. But we would have to prove that, for all m ∈ M(Q), the function f = m • Ev • ⟨φ,γ ⟩ : R n → R + is measurable. We have f (⃗ r) = m(φ (⃗ r)(γ (⃗ r))
) and the measurability of this function does not result from what we know about φ.

Theorem 6.7. The category Cstab m is cartesian closed. The pair

(P ⇒ m Q, Ev) is the object of morphisms from P to Q in Cstab m . Proof. Let f ∈ Cstab m (R × P,Q). Let z ∈ BR, consider the function f z : BP → BQ de- fined by f z (x) = f (z,x
). This function is clearly non-decreasing and Scott-continuous. Let us prove that it is pre-stable. Let ⃗ u ∈ BP n be such that n i=1 u i ∈ BP and let x ∈ BP ⃗ u . We have:

∆ ε f z (x; ⃗ u) = I ∈ P ε (n) f z (x + i ∈I u i) = I ∈ P ε (n) f (z,x + i ∈I u i) = I ∈ P ε (n) f ((z,x) + i ∈I (0,u i)) = ∆ ε f ((z,x); (0,u 1), . . . , (0,u n)). So we have ∆ -f z (x; ⃗ u) ≤ ∆ + f z (x; ⃗ u) by the assumption that f is pre-stable. We prove now that f z is measurable. Let n ∈ N and γ ∈ Path n 1 (P), we must prove that f z • γ ∈ Path n (Q). So let k ∈ N and let m ∈ M k (Q), we must prove that m * (f z • γ) ∈ M k +n . Let ⃗ r ∈ R k and ⃗ s ∈ R n , we have m * (f z • γ)(⃗ r ,⃗ s) = m(⃗ r)(f (z,γ (⃗ s))) = m * (f • ⟨ζ ,γ ⟩)(⃗ r ,⃗ s), where ζ ∈ Path n 1 (R) is the measurable path defined by ζ (⃗ s) = z (using Lemma 5.3). We know that f • ⟨ζ ,γ ⟩ ∈ Path n (Q) because f is measurable and ⟨ζ ,γ ⟩ ∈ Path n (P × Q) by Lemma 6.2, hence m * (f • ⟨ζ ,γ ⟩) ∈ M k +n . So f z ∈ B(P ⇒ m Q).
Let д : BR → B(P ⇒ m Q) be the function defined by д(z) = f z . We prove that д is pre-stable. Let ⃗ w ∈ BR p be such that j ∈J w j ∈ BR and let z ∈ BR ⃗ w . We have to prove that

h -= ∆ -д(z; ⃗ w) ≤ ∆ + д(z; ⃗ w) = h +
in B(P ⇒ m Q); we apply Lemma 6.4. So let ⃗ u ∈ BP n and x ∈ BP ⃗ u , we must prove that

∆ + h -(x; ⃗ u) + ∆ -h + (x; ⃗ u) ≤ ∆ + h + (x; ⃗ u) + ∆ -h -(x; ⃗ u) (8) For ε,ε ′ ∈ {+, -}, we have ∆ ε h ε ′ (x; ⃗ u) = I ∈ P ε (n) h ε ′ (x + i ∈I u i) = I ∈ P ε (n) (∆ ε ′ д(z; ⃗ w))(x + i ∈I u i) = I ∈ P ε (n) J ∈ P ε ′ (p) д(z + j ∈J w j)(x + i ∈I u i) = I ∈ P ε (n) J ∈ P ε ′ (p) f (z + j ∈J w j ,x + i ∈I u i) = I ∈ P ε (n) J ∈ P ε ′ (p) f ((z,x) + q ∈J ∪(p+I) t q)
, where ⃗ t ∈ B(R × P) p+n is defined by

t q =      (w q , 0) if q ≤ p (0,u q-p) if p + 1 ≤ q ≤ p + n and p + I = {p + i | i ∈ I }. Now observe that the map (J ,I) → J ∪ (p + I) defines a bijection • between (P + (p) × P -(n)) ∪ (P -(p) × P + (n)) and P -(p + n) • and between (P + (p) × P + (n)) ∪ (P -(p) × P -(n)) and P + (p + n).
The fact that the definitions of Figure 5 lead to morphisms in the category Cstab m results easily from the cartesian closeness of this category and from the algebraic and order theoretic properties of its objects. The only construction which deserves further comments is the let construction. We use the notations of Figure 5, the typing context is Γ = (x 1 : C 1 , . . . ,x n :

C n). Let Q = Γ = C 1 × • • • × C n . By inductive hypothesis we have M ∈ Cstab m (Q, Meas(R)) and N ′ ∈ Cstab m (Meas(R),Q ⇒ Meas(R)) where N ′ = λx C 1 1 . . . λx C n n N (up to trivial isos result- ing from the cartesian closeness of Cstab m). Then N ′ • δ ∈ Path 1 1 (Q ⇒ Meas(R)) because δ ∈ Path 1 1 (Meas(R)) (see Section 6.3). Hence we define (N ′ • δ) † ∈ Cstab m (Meas(R),Q ⇒ Meas(R)) by setting (N ′ • δ) † (µ)(⃗ д)(U) = N ′ (δ r)(⃗ д)(U)µ (dr) = N (⃗ д,δ r)(U)µ (dr) for µ ∈ Meas(R), ⃗ д ∈ Q = Γ and U ∈ Σ R
, by Theorem 6.10 (remember that Γ,x : R ⊢ N : R). By cartesian closeness, we define

f in Cstab m (Q, Meas(R)) by f (⃗ д)(U) = (N ′ • δ) † (M (⃗ д))(⃗ д)(U) = N (⃗ д,δ r)(U) M (⃗ д)(dr).
Hence, let(x,M, N) belongs to Cstab m (Q, Meas(R)) as required. Observe moreover that, for r ∈ R, we have let(x,r , N) ⃗ д = N (⃗ д,δ r).

Example 7.1. Numerals are associated with Dirac measures and a functional constant f yields the pushforward measure of the product of the measures denoting the arguments of f . For example, we have:

+(3, 2) ⊢R = U → δ 3 ⊗ δ 2 ({(r 1 ,r 2) s.t. r 1 + r 2 ∈ U }) = δ 5 .
The construct ifz sums up the denotation of the two branches according to the probability that the first term evaluates to 0 or not. Given a measurable set U ⊆ R, a closed term L of ground type and two closed terms M, N of a type A, we have that, recalling the notation of

Example 3.1, if(L ∈ U ,M, N) ⊢A = (χ U (L) ⊢R (R \ {0})) M ⊢A + (χ U (L) ⊢R ({0})) N ⊢A = (L ⊢R (U)) M + (L ⊢R (R \ U)) N .
Example 7.2. The two terms implementing the diagonal in Example 3.10 have different semantics: for any measurable U of R, for any r ,s ∈ U , r = s has value 0 or 1. Besides, the diagonal {(r ,s) s.t. r = s ∈ {1}} in [0, 1] 2 has measure 0, and its complementary {(r ,s) s.t. r = s ∈ {0}} has measure 1. Thus,

(λx .(x = x))sample ⊢R (U) = (λ [0,1] ⊗ λ [0,1]){(r ,s) s.t. r = s ∈ U } = δ 0 (U).
On the contrary, let(x, sample,x = x) ⊢R (U) = δ 1 (U). Indeed, let(x, sample,

x = x) ⊢R (U) is R (δ r ⊗ δ r){(x,y) s.t. x = y ∈ U }λ [0,1] (dr) = R δ 1 (U)λ [0,1] (dr) = δ 1 (U).
Example 7.3. Let us compute the semantics of the encodings of the distributions in Example 3.3. Let p ∈ [0, 1], then bernoulli p ⊢R = pδ 1 + (1 -p)δ 0 is given by, for U measurable: bernoulli

p ⊢R (U) = R δ r ⊗ δ p ({(x,y) s.t. x ≤ y ∈ U })λ [0,1] (dr), this latter being equal to λ [0,1] ([0,p])δ 1 (U) + λ [0,1] ((p, 1])δ 0 (U).
The exponential distribution exp computes the probability that an exponential random variable belongs to U : exp

⊢R (U) = let(x, sample, -log(x)) ⊢R (U) = R δ r ({x s.t. -log x ∈ U })λ [0,1] (dr) = R χ U (-log r)λ [0,1] (dr)
, which is equal to R + χ U (s)e -s λ(ds) by substitution r = e -s . We compute the semantics of normal and check that we get a normal distribution:

normal ⊢R (U) = let(x, sample, let(y, sample, (-2 log(x))

1 2 cos(2πy))) ⊢R (U) = R 2 χ U (-2 log u cos(2πv))λ [0,1] (du)λ [0,1] (dv).
By polar substitution with x = -2 log u cos(2πv), y = -2 log u cos(2πv), we then have:

normal ⊢R (U) = 1 2π R 2 χ U (x)e - (x 2 +y 2) 2 λ(dx)λ(dy) = 1 √ 2π U e -x 2 2 λ(dx),
which is what we wanted.

Similarly, gauss r σ

⊢R (U) = 1 √ 2π R χ U (σ y + r)e - y 2 2 λ(dy) = 1 σ √ 2π U e -(z-r σ) 2 λ(dz).
Example 7.4. Recall Example 3.5, let f ∈ C and M be a term of type R. We want to check that expectation n f M corresponds to the n-th estimate of the expectation of f with respect to the measure M ⊢R , meaning that expectation n f M ⊢R has the same measure as

f (x 1)+•••+f (x n) n
where x i 's are iid random variables of measure M ⊢R . For all U ⊆ R measurable,

expectation n f M ⊢R (U) = M ⊢R ⊗ • • • ⊗ M ⊢R n ({(x 1 , • • • ,x n) s.t. f (x 1)+•••+f (x n) n ∈ U })
which is what we wanted.

The following two lemmas are standard and proven by structural induction.

Soundness

The soundness property states that the interpretation is invariant under reduction. In a nondeterministic case, this means that the semantics of a term is the sum of the semantics of all its possible one-step reducts, see e.g. [START_REF] Laird | Weighted relational models of typed lambda-calculi[END_REF]]. In our setting, the reduction is a stochastic kernel, so this sum becomes an integral, i.e. for all M ∈ Λ Γ⊢A ,

M Γ⊢A = Λ Γ⊢A t Γ⊢A Red(M,dt) (9)
The following lemma actually proves that the above integral is a meaningful notation for the function mapping ⃗ д ∈ Γ , and, supposing ,dt), this latter being well-defined because t Γ⊢A ⃗ дb 1 . . . b k (U) is measurable (Lemma 7.7) and Red(M, _) is a measure (Proposition 3.8).

A = B 1 → • • • → B k → R, b 1 ∈ B 1 ,. . . , b k ∈ B k and U ∈ Σ R , to Λ Γ⊢A t Γ⊢A ⃗ дb 1 . . . b k (U)Red(M
Lemma 7.7.

Let Γ ⊢ M : A, with A = B 1 → . . . B k → R. For all i ≤ k, let b i ∈ B i and ⃗ д ∈ Γ , then the map M → M Γ⊢A ⃗ дb 1 . . . b k is a stochastic kernel from Λ Γ⊢A to R.
Proof (Sketch). By (3), it is enough to prove that, for any S ∈ Λ Γ⊢A n , the restriction

_ S ⃗ д ⃗ b of _ ⃗ д ⃗ b to Λ Γ⊢A
S is a kernel. This is done by using the crucial fact that the map

h = S • (δ n × ⃗ д) is a measurable path in Path n 1 (A). This implies that ⃗ r → h(⃗ r) ⃗ b is in Path n 1 (Meas(R))
, so it is a stochastic kernel from R n to R (Example 5.4). We are done, since R n and Λ Γ⊢A S are isomorphic. □ Proposition 7.8 (Soundness).

Let A = B 1 → . . . B k → R, for all i ≤ k, b i ∈ B i , and let ⃗ д ∈ Γ , then (_ Γ⊢A ⃗ дb 1 . . . b k) • Red = _ Γ⊢A ⃗ дb 1 . . . b k , i.
e. Equation (9) holds for any M ∈ Λ Γ⊢A .

Proof (Sketch). If M is a normal form, then the statement is trivial. Otherwise, let M = E[R] with R a redex (Lemma 3.6). If R sample, let R → N . By the substitution property (Lemma 7.5)) it is sufficient to prove R = N to conclude. This is done by cases, depending on the type of R.

The last case is M = E[sample]. This is obtained by using the linearity of the evaluation context E[] (Lemma 7.6) and the substitution property (Lemma 7.5). □

The notions of d-cones [START_REF] Tix | Semantic Domains for Combining Probability and Non-Determinism[END_REF] and Kegelspitzen [START_REF] Keimel | Mixed powerdomains for probability and nondeterminism[END_REF] are promising for getting a family of models different from ours. [START_REF] Rennela | Convexity and Order in Probabilistic Call-by-Name FPC[END_REF] has recently used this approach for studying a probabilistic extension of FPC. A Kegelspitzen is a convex set of a positive cone equipped with an order compatible with the algebraic structure of the cone. Notice that this notion differs from ours because the order of a Kegelspitzen might be independent from the one induced by its algebraic structure. It is likely that the two approaches live in two different but related frameworks as the continuous and the stable semantics of standard PCF.

The denotational semantics approach to probabilistic programming has been recently relaunched by the increasing importance of continuous distributions and sampling primitives. Indeed, this raises the question of the measurability of a morphism as the interpretation of the sampling primitives requires integration. This question has not been investigated yet in the domain theoretic approach and forces to introduce a new line of works which puts the focus on measurability.

The challenge is to define a cartesian closed category in which base types such as reals would be interpreted as measurable spaces. As mentioned in the Introduction, the category Meas of measurable spaces and functions is cartesian but not closed. To overcome this problem, [START_REF] Staton | Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints[END_REF] embed Meas in a functor category which is cartesian closed although not well-pointed. Then, to get a more concrete and a well-pointed category, they introduce the category of quasi-borel spaces [START_REF] Heunen | A Convenient Category for Higher-Order Probability Theory[END_REF] which are sets endowed with a set of random variables. Notice that both categories miss the order completeness, and thus the possibility of interpreting higher-order recursion. This is a big difference with our model Cstab m which is order complete.

Let us also cite the ongoing efforts presented last year at the workshop PPS by [START_REF] Huang | An application of computable distributions to the semantics of probabilistic programs: part 2[END_REF], aiming to give a model based on computable distributions, and by [START_REF] Faissole | Synthetic topology in Homotopy Type Theory for probabilistic programming[END_REF], working on a Coq formalization of a semantics built on top of the constructions detailed in [START_REF] Staton | Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints[END_REF].

In this paper, we have presented Cstab m , a new model of higher-order probabilistic computations with full recursion, as a cartesian closed category enriched over posets which are complete for non-decreasing sequences. The objects of Cstab m are cones equipped with a notion of measurability tests and morphisms are functions which are measurable in the sense that they behave well wrt. this notion of measurability tests. These functions are also Scott-continuous, but this is not sufficient for guaranteeing cartesian closeness: they must satisfy an hereditary monotonicity condition that we call stability because, when adapted to coherence spaces, it coincides with Berry-Girard stability. The introduction of this notion of "probabilistic stability" is a relevant byproduct of our approach.

A typical example of such a cone is the set of R + -valued measures on the real line that we use to interpret the type of real numbers, the unique ground type of PPCF, a probabilistic version of PCF. This language also features a sample primitive allowing to sample a real number according to a prescribed probability measure on the reals (intuitively, a closed PPCF term of ground type represents a sub-probability measure on the real line). We have presented the semantics of PPCF in Cstab m and proven adequacy for a call-by-name operational semantics.

There are many research directions suggested by these new constructions, namely to study the category Clin m of linear and measurable Scott continuous maps mentioned in the Introduction and prove the conjectures sketched in Figure 1. Also, full-abstraction will be addressed, following [START_REF] Ehrhard | Probabilistic Coherence Spaces are Fully Abstract for Probabilistic PCF[END_REF].

that ∥x ∥ P u = 0 ⇒ x = 0. Let x,x ′ ∈ P u , we prove that ∥x + x ′ ∥ P u ≤ ∥x ∥ P u + ∥x ′ ∥ P u . Let α > 0. By definition of ∥x ∥ P u we can find ε > 0 such that ∥εx + u ∥ P ≤ 1 and ∥x ∥ P u ≥ 1 ε -α. Similarly we can find ε ′ > 0 such that ∥ε ′ x ′ + u ∥ P ≤ 1 and ∥x ∥ P u ≥ 1 ε ′ -α. We have

∥x + x ′ + (1 ε + 1 ε ′)u ∥ P ≤ 1 ε + 1 ε ′ and hence ∥x + x ′ ∥ P u ≤ 1 ε + 1 ε ′ ≤ ∥x ∥ P u + ∥x ′ ∥ P u + 2α.
Since this holds for all α > 0, we have ∥x + x ′ ∥ P u ≤ ∥x ∥ P u + ∥x ′ ∥ P u . It is straightfoward that ∥x ∥ P u ≤ ∥x + x ′ ∥ P u (because ∥εx + u ∥ P ≤ ∥ε (x + x ′) + u ∥ P). A similar reasoning allows to prove that ∥αx ∥ P u = α ∥x ∥ P u for all x ∈ P u and α ∈ R + (one has actually to distinguish two cases: α = 0 and α > 0; the first case has already been dealt with). Now we prove that BP u = {x ∈ P | x + u ∈ BP }. Let x ∈ BP u . There exists a non-decreasing sequence (ε n) n ∈N such that ε n > 0 and ε n x + u ∈ BP for all n, and moreover sup n ∈N ε n = 1. Then by closeness of P we have x + u ∈ BP. The converse inclusion is obvious.

Let x ∈ P u , and let α > ∥x ∥ P u . We have ∥ 1 α x + u ∥ P ≤ 1 and hence ∥ 1 α x ∥ P ≤ 1, that is ∥x ∥ P ≤ α, so that ∥x ∥ P ≤ ∥x ∥ P u .

Last assume that P is complete, let (x n) n ∈N be a non-decreasing sequence in BP u and let x be its lub (in P, which exists since ∥x n ∥ P ≤ ∥x n ∥ P u ≤ 1 for each n). We have that x n + u ∈ BP for all n and hence x + u ∈ BP by continuity of + and closeness of P. It is clear that x is also the lub of the

x n 's in P u . □ Theorem 4.18. A function f : BP → Q is n-non-decreasing iff it is n-pre-stable.
Proof. Let us first prove the left to right implication, by induction on n.

For n = 0, both notions coincide with the fact of being non-decreasing. Let now n be > 0. Let f : BP → Q be n-non-decreasing from P to Q and let us prove that f is n-pre-stable. Due to our inductive hypothesis, we just have to prove that, for all ⃗ u ∈ P n such that n i=1 u i ∈ BP and all x ∈ BP ⃗ u , we have ∆

-f (x; ⃗ u) ≤ ∆ + f (x; ⃗ u). Let u = u n and let ⃗ v = (u 1 , . . . ,u n-1).
We know that f is non-decreasing and that the function ∆f (_; u) is n -1-non-decreasing from P u to Q. Therefore, by inductive hypothesis, we know that this function is n -1-pre-stable. This means in particular that

∆ -(∆f (_; u))(x; ⃗ v) ≤ ∆ + (∆f (_; u))(x; ⃗ v)
that is

I ∈ P -(n-1) f (x + u + i ∈I v i) -f (x + i ∈I v i) ≤ I ∈ P + (n-1) f (x + u + i ∈I v i) -f (x + i ∈I v i)
and hence

I ∈ P -(n-1) f (x + u + i ∈I v i) + I ∈ P + (n-1) f (x + i ∈I v i) ≤ I ∈ P + (n-1) f (x + u + i ∈I v i) + I ∈ P -(n-1) f (x + i ∈I v i)
Observe that the left hand expression is equal to

J ∈ P -(n) n ∈J f (x + j ∈J u j) + J ∈ P -(n) n J f (x + j ∈J u j) = ∆ -f (x; ⃗ u)
and similarly the right hand expression is equal to ∆ + f (x; ⃗ u), so we have ∆ -f (x; ⃗ u) ≤ ∆ + f (x; ⃗ u) as contended.

We prove now the right to left implication, by induction on n. For n = 0, this is obvious. So assume that f is n-pre-stable and let us prove that it is n-non-decreasing. First, f is non-decreasing because it is 0-pre-stable. Let u ∈ BP and let us prove that the function ∆f (_; u) is n -1-non-decreasing. To this end, by inductive hypothesis, it suffices to prove that this function is n -1-pre-stable. Let x ∈ BP and ⃗ u ∈ BP n-1 be such that x + u + n-1 i=1 u i ∈ BP, we must prove that

∆ -(∆f (_; u))(x; ⃗ u) ≤ ∆ + (∆f (_; u))(x; ⃗ u)
which by the same calculation as above amounts to showing that ∆ -f (x; ⃗ u,u) ≤ ∆ + f (x; ⃗ u,u), and we know that this latter holds by our assumption that f is n-pre-stable. □ Lemma 4.19. Let f be an absolutely monotonic function from P to Q (so that f : BP

→ Q). Let n ∈ N, ⃗ u ∈ BP n with n i=1 u i ∈ BPand x ∈ BP ⃗ u . Let f 0 , . . . , f n be the functions defined by f 0 (x) = f (x) and f i+1 (x) = ∆f i (x; u i+1). Then f n (x) = ∆ + f (x; ⃗ u) -∆ -f (x; ⃗ u) .
We set ∆f (x; ⃗ u) = f n (x). The operation ∆ is linear in the function: ∆(

p j=1 α j д j)(x; ⃗ u) = p j=1 α j ∆д j (x; ⃗ u)
for д 1 , . . . ,д p absolutely monotonic from P to Q.

For proving this lemma we need the following auxiliary result:

Lemma A.1. Let f : BP → Q, x,u ∈ BP and ⃗ u ∈ BP n be such that u + n i=1 u i ∈ BP, x ∈ BP ⃗ u,u . We have

∆ + f (x; ⃗ u,u) = ∆ + f (x + u; ⃗ u) + ∆ -f (x; ⃗ u) ∆ -f (x; ⃗ u,u) = ∆ -f (x + u; ⃗ u) + ∆ + f (x; ⃗ u) . Proof. Let ⃗ v = (⃗ u,u) ∈ BP n+1 . For ε ∈ {+, -}, we have ∆ ε f (x; ⃗ u,u) = I ∈ P ε (n+1) f (x + i ∈I v i) = I ∈ P ε (n+1) n+1∈I f (x + i ∈I v i) + I ∈ P ε (n+1) n+1 I f (x + i ∈I v i) = J ∈ P ε (n) f (x + u + j ∈J u j) + J ∈ P -ε (n) f (x + j ∈J u j) = ∆ ε f (x + u; ⃗ u) + ∆ -ε f (x; ⃗ u) .
where -ε is the sign opposite to ε. □ Proof of Lemma 4.19. The proof is by induction on n ∈ N. For n = 0 the equation holds trivially. Assume that the property holds for n and let us prove it for n + 1. Let ⃗ v = (u 1 , . . . ,u n) and u = u n+1 .

we have

f n+1 (x) = f n (x + u) -f n (x) = ∆ + f (x + u; ⃗ v) -∆ -f (x + u; ⃗ v) -(∆ + f (x; ⃗ v) -∆ -f (x; ⃗ v))
by inductive hypothesis

= ∆ + f (x; ⃗ v,u) -∆ -f (x; ⃗ v) -∆ -f (x; ⃗ v,u) + ∆ + f (x; ⃗ v) -∆ + f (x; ⃗ v) + ∆ -f (x; ⃗ v) by Lemma A.1 = ∆ + f (x; ⃗ v,u) -∆ -f (x; ⃗ v,u)
as contended. The linearity statment is an easy consequence. □ Lemma 4.20. Let f : BP → Q be a pre-stable function from P to Q. For all ⃗ u ∈ BP n , the functions ∆ -f (_; ⃗ u), ∆ + f (_; ⃗ u) and ∆f (_; ⃗ u) are pre-stable from P ⃗ u to Q.

Proof. For ∆f (_; ⃗ u), this is an immediate consequence of Theorem 4.18 and of the definition of an n-non-decreasing function. For ∆ ε f (_; ⃗ u), it results from the fact that pre-stable functions are closed under addition and from the fact that, for all u ∈ BP, the function x → f (x + u) is pre-stable from P u to Q. □ Proof. The equations clearly hold for n = 0: f (x + u) = f (x) + ∆f (x; u) and ∆f (x; u + v) = ∆f (x; u) + ∆f (x + u; v). The general case follows by applying these two latter equations to the function д ε = ∆ ε f (_; ⃗ u) for ε ∈ {+, -} as we show now (the function д ε is pre-stable by Lemma 4.20). For the first equation we have д ε (x + u) = д ε (x) + ∆д ε (x; u) and remember that ∆f (_; ⃗ u) = д + -д -. Therefore we have Proof. We have д(x,⃗ u) = ∆f (x; u 1 , . . . ,u p). It suffices to prove that this function is nondecreasing wrt. all parameters separately. Wrt. x, it results from Lemma 4.20. Wrt. u i , it results from the fact that д(x,⃗ u) = ∆f (x + u i ; ⃗ v) -∆f (x; ⃗ v)

where ⃗ v = (u 1 , . . . ,u i-1 ,u i+1 , . . . ,u p) and from the fact that ∆f (y; ⃗ v) is non-decreasing wrt. y, which results from Lemma 4.20. □

A.3 Proofs of Section 5

Lemma 5.3. For any x ∈ P and n ∈ N, the function γ : R n → P defined by γ (⃗ r) = x belongs to Path n (P). If γ ∈ Path n (P) and h : R p → R n is measurable then γ • h ∈ Path p (P).

Proof. The fact that all constant functions are measurable paths results from the last condition on measurability tests. For closure under precomposition with measurable functions, observe that l * (γ • h) = (l * γ) • (Id ×h) is measurable because l * γ is. □

A.4 Proofs of Section 6 Lemma 6.1. Let f : P × BQ → R be a function such that

• for each y ∈ BQ, the function f (1) y : P → R defined by f (1) y (x) = f (x,y) is linear (resp. linear and Scott-continuous) • and for each x ∈ P, the function f (2) x : BQ → R defined by f (2) x (y) = f (x,y) is pre-stable (resp. pre-stable and Scott-continuous). Then the restriction f : BP × BQ → R is pre-stable (resp. pre-stable and Scott-continuous, that is, stable) from P × Q to R.

Proof. Let n ∈ N, ⃗ u ∈ BP n , ⃗ v ∈ BQ n . We define ⃗ w = ((u 1 ,v 1), . . . , (u n ,v n)) ∈ B(P × Q) n . Let (x,y) ∈ B(P × Q) ⃗ w = BP ⃗ u × BQ ⃗ v . We must prove that ∆ -f ((x,y); ⃗ w) ≤ ∆ + f ((x,y); ⃗ w) .

For ε ∈ {+, -}, we have ∆ ε f ((x,y); ⃗ w) =

I ∈ P ε (n) f (x + i ∈I u i ,y + i ∈I v i) = I ∈ P ε (n) f (x,y + i ∈I v i) + n i=1 I ∈ P ε (n) i ∈I f (u i ,y + j ∈I v j
) by linearity on the left

= I ∈ P ε (n) f (x,y + i ∈I v i) + n i=1 J ∈ P ε (n-1) f (u i ,y + v i + j ∈J v (i) j)
where ⃗ v (i) ∈ BQ n-1 is defined by v (i

) j =      v j if j < i v j+1 if j ≥ i .
So we have proven that

∆ ε f ((x,y); ⃗ w) = ∆ ε f (2) x (y; ⃗ v) + n i=1 ∆ ε f (2) u i (y + v i ; ⃗ v (i))
γ ∈ Path n 1 (P). We must prove that Ev • ⟨φ,γ ⟩ ∈ Path n (Q). So let q ∈ N and m ∈ M q (Q). Given (⃗ r ,⃗ s) ∈ R q+n , we have m * (Ev • ⟨φ,γ ⟩)(⃗ r ,⃗ s) = m(⃗ r)(φ (⃗ s)(γ (⃗ s)))

= ((γ • π 1 ▷ m • π 2) * φ)((⃗ s,⃗ r),⃗ s)
where π 1 : R n+q → R n and π 2 : R n+q → R q are the projections, which are measurable functions. We know that γ • π 1 ∈ Path n+q (P) and m • π 2 ∈ M n+q (P ⇒ m Q) hence γ • π 1 ▷m • π 2 ∈ M n+q (P ⇒ m Q) and therefore (γ • π 1 ▷ m • π 2) * φ ∈ M n+q+n because we know that φ ∈ Path n (P ⇒ m Q). It follows that m * (Ev • ⟨φ,γ ⟩) ∈ M q+n because the function R q+n → R n+q+n defined by (⃗ r ,⃗ s) → ((⃗ s,⃗ r),⃗ s)) is measurable. □ Lemma 6.8. Let X be a measurable space and let f : X → R + be a measurable and bounded function. Then the function F : Meas(X) → R + defined by

F (µ) = f (x)µ (dx)
is linear and Scott-continuous.

Proof. The proof is straightforward when f is simple. Then one chooses a non-decreasing sequence of simple measurable functions f n : X → R + which converges simply to f , that is f (x) = sup n ∈N f n (x). We have

F (µ) = sup n ∈N f n (x)µ (dx)
from which the statement follows. □ Lemma 6.9. Let Q be a cone and X be a measurable space. A function f : BQ → Meas(X) is stable iff for all U ∈ Σ X , the function f U : BQ → R + defined by f U (y) = f (y)(U) is stable.

Proof. The condition is necessary because, for each U ∈ Σ X , the function e U : µ → µ (U) is linear and Scott-continuous (and hence stable) from Meas(X) to R + . Conversely let us assume that f U is stable for each U ∈ Σ X . We prove that f is pre-stable. Let ⃗ v ∈ BQ n be such that n i=1 v i ∈ BQ and let y ∈ BQ ⃗ v . We must prove that ∆ -f (y; ⃗ v) ≤ ∆ + f (y; ⃗ v) in Meas(X), that is, we must prove that e U (∆ -f (y; ⃗ v)) ≤ e U (∆ + f (y; ⃗ v)) in R + , for each U ∈ Σ X . This results from our assumption and from the fact that e U (∆ ε f (y; ⃗ v)) = ∆ ε f U (y; ⃗ v). Scott-continuity of f is proven similarly. □

Fig. 1 .

 1 Fig. 1. Relationship between probabilistic coherence categories and Cstab m . Dashed arrows are conjectures.

Fig. 2 .

 2 Fig.2. The grammar of terms of PPCF and their typing rules. The variable x belongs to a fixed countable set of variables V. The metavariable f ranges over a fixed countable set C of functional identifiers, while the metavariable r may range on the whole R.

Fig. 3 .

 3 Fig. 3. One-step operational semantics of PPCF.

Fig. 4 .

 4 Fig. 4. The CCC structure of Cstab m . The projections, pairing and the evaluation are defined as standard.

 Lemma 7.5 (Substitution property). Given y : B, Γ ⊢ M : A and Γ ⊢ N : B we have, for every⃗ д ∈ Γ , that M y:B,Γ⊢A (N Γ⊢B ⃗ д)⃗ д = M {N /y} Γ⊢A ⃗ д.Lemma 7.6 (Linearity evaluation context). Let y : B, Γ ⊢ E[y] : A for E[] an evaluation context and y a fresh variable. Then E[y] y:B,Γ⊢A ∈ Cstab m (B × Γ , A) is a linear function in its first argument B .

Lemma 4. 21 .

 21 Let f : BP → Q be a pre-stable function from P to Q. Let n ∈ N, x,u,v ∈ BP and ⃗ u ∈ BP n , and assume that x + u + v + n i=1 u i ∈ BP. Then ∆f (x + u; ⃗ u) = ∆f (x; ⃗ u) + ∆f (x; u,⃗ u)∆f (x; u + v,⃗ u) = ∆f (x; u,⃗ u) + ∆f (x + u; v,⃗ u) .

 ∆f (x; ⃗ u) + ∆f (x; u,⃗ u) = (д + -д -)(x) + ∆(д + -д -)(x; u) = д + (x) -д -(x) + ∆д + (x; u) -∆д -(x; u) = д + (x + u) -д -(x + u) = ∆f (x + u; ⃗ u)using Lemma 4.19. For the second equation we have similarly∆f (x; u,⃗ u) + ∆f (x + u; v,⃗ u) = ∆(д + -д -)(x; u) + ∆(д + -д -)(x + u; v) = ∆д + (x; u) + ∆д + (x + u; v) -∆д -(x; u) -∆д -(x + u; v) = ∆д + (x; u + v) -∆д -(x; u + v) = ∆(д + -д -)(x; u + v) = ∆f (x; u + v,⃗ u)□Lemma 4.23. Let f : BP → Q be a pre-stable function from P to Q. Then the map д : BS p (P) → Q defined by д(x,⃗ u) = ∆f (x; ⃗ u) is non-decreasing, for all p ∈ N + .

 Lemma 7.7. Let Γ ⊢ M : A, with A = B 1 → . . . B k → R. For all i ≤ k, let b i ∈ B i and ⃗ д ∈ Γ , then the map M → M Γ⊢A ⃗ дb 1 . . . b k is a stochastic kernel from Λ Γ⊢A to R. Proof. Let us write M ⃗ д ⃗ b for M Γ⊢A ⃗ дb 1 . . . b k .Since Λ Γ⊢A is the coproduct (3), it is enough toprove that, for any n and anyS ∈ Λ Γ⊢A n , the restriction _ S ⃗ д ⃗ b of _ ⃗ д ⃗ b to Λ Γ⊢A S is a kernel. For every M ∈ Λ Γ⊢A S , M S ⃗ д ⃗ b = S⃗ r S ⃗ д ⃗ b, for a suitable ⃗ r ∈ R n .By the substitution property (Lemma 7.5), we have: S⃗ r S ⃗ д ⃗ b = S z 1 :R,...,z n :R,Γ⊢A (δ r 1 , . . . ,δ r n , ⃗ д)b 1 . . . b k . This latter being equalto h(⃗ r) ⃗ b, for h = S • (δ n × ⃗ д) a map from R n to A . Notice that h ∈ Path n 1 (A), since δ n × ⃗ д ∈ Path n1 (Meas(R) n × Γ) by Lemma 5.3 and the fact that δ ∈ Path 1 1 (Meas(R)). This implies that the map ⃗ r → h(⃗ r) ⃗ b is in Path n 1 (Meas(R)), so it is a stochastic kernel from R n to R (Example 5.4). We have then the statement because R n and Λ Γ⊢A S are isomorphic as measurable spaces.

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 59. Publication date: January 2018.

One can well define the category of bounded kernels also, but this is not used in this paper.

Indeed, Kern has cartesian products, but we will not use them. Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 59. Publication date: January 2018.

Notice that this primitive corresponds to the sample construction in[START_REF] Park | A Probabilistic Language Based on Sampling Functions[END_REF]].

The swap between M and N is due to fact that ifz is the test to zero.Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 59. Publication date: January 2018.

There are actually two additional conditions which are not essential here.

So we consider only "bounded" measures, which satisfy that the measure of the total space is finite, which is not the case of the Lebesgue measure on the whole R.Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 59. Publication date: January 2018.

Remember that then f : BP → Q , according with Definition 4.8.

Because the evaluation function should be linear in its functional argument, in accordance with the call-by-name evaluation strategy of our target programming language, see Lemma 7.6.Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 59. Publication date: January 2018.

We could easily define countable products, this will be done in an extended version of this paper.Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 59. Publication date: January 2018.

This is certainly the most natural definition in this simplified setting. Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 59. Publication date: January 2018.

ACKNOWLEDGMENTS

We would like to thank Ugo Dal Lago and Jean-Louis Krivine for useful discussions. This material is based upon work supported by the ANR grant Elica (No. ANR-14-CE25-0005).

It follows that we have

and hence (8) holds because f is pre-stable. It also follows that д is pre-stable, and Scott-continuity is proven straightforwardly. Now we prove that д is measurable. Let η ∈ Path n 1 (R), we must prove that д • η ∈ Path n (P ⇒ m Q). So let k ∈ N, γ ∈ Path k 1 (P) and m ∈ M k (Q), we must prove that (γ ▷ m) * (д • η) ∈ M k +n . Let ⃗ r ∈ R k and ⃗ s ∈ R n , we have ((γ ▷ m) * (д • η))(⃗ r ,⃗ s) = (γ ▷m)(⃗ r)(д(η(⃗ s))) = m(⃗ r)(д(η(⃗ s)(γ (⃗ r))). By defintion of д, this is equal to m(⃗ r

We know that η × γ ∈ Path n+k (P) because η and γ are measurable paths (and hence η • π 1 and γ • π 2 are measurable paths, for π 1 and π 2 the projections R n+k → R n and R n+k → R k , and we have

So we have proven that д ∈ Cstab m (R,P ⇒ m Q), which ends the proof of the Theorem. □

Integrating measurable paths

The map δ : R → Meas(R) such that δ (r) = δ r belongs to Path 1 1 (Meas(R)) because, given n ∈ N, U ∈ Σ R , ⃗ r ∈ R n and r ∈ R we have ε U (⃗ r)(δ (r)) = χ U (r) (where χ U is the characteristic function of U). Recall from Example 5.4 that the elements of M n (Meas(R)) are precisely these functions ε U .

Therefore, given f ∈ Cstab m (Meas(R),P), the function f • δ is a measurable path from R to P.

We have now to check that such paths are sufficiently regular for being "integrated". More precisely, given γ ∈ Path 1 (P), we would like to define a linear bounded map γ † : Meas(R) → P by integrating in P (using its algebraic structure and completeness):

but we do not know yet how to do that in general. We will focus instead on the (not so) particular case where P = (Q ⇒ m Meas(X)) for a cone Q and a measurable space X , which will be sufficient for our purpose in this paper (every cone which is the denotation of a PPCF type is isomorphic to a cone of the form Q ⇒ m Meas(R) for some Q). Lemma 6.8. Let X be a measurable space and let f : X → R + be a measurable and bounded function. Then the function F : Meas(X) → R + defined by F (µ) = f (x)µ (dx) is linear and Scott-continuous. Lemma 6.9. Let Q be a cone and X be a measurable space. A function f : BQ → Meas(X) is stable iff for all U ∈ Σ X , the function f U : BQ → R + defined by f U (y) = f (y)(U) is stable. Theorem 6.10. Let Q be a cone and X be a measurable space. For any γ ∈ Path 1 1 (Q ⇒ m Meas(X)), there is a measurable stable (actually linear) function γ

), that we prefer to consider as a map γ 0 : R × BQ × Σ X → [0, 1] with γ (r)(y)(U) = γ 0 (r ,y,U). By Lemma 6.9, the fact that γ is a measurable path means that the following properties hold.

• For any r ∈ R and y ∈ BQ, the map U → γ 0 (r ,y,U) from Σ X to [0, 1] is a sub-probability measure;

that is, is measurable);

59:22

Thomas Ehrhard, Michele Pagani, and Christine Tasson • for any r ∈ R and U ∈ Σ X , the map y → γ 0 (r ,y,U) from BQ to R + is stable.

Therefore (by applying the second condition to n = 0 and η mapping the empty sequence to y) we can define a function φ :

Let µ ∈ BMeas(R) and y ∈ BQ. The function Σ X → [0, 1] which maps U to φ (µ,y,U) is σadditive by linearity and continuity of integration and defines therefore an element of BMeas(X). We denote by φ ′ the function Meas(R) × BQ → Meas(X) defined by φ ′ (µ,y)(U) = φ (µ,y,U) ∈ R + . This function is linear and Scott-continuous in its first argument by Lemma 6.8.

Let µ ∈ BMeas(R) and U ∈ Σ X . We prove that the map f :

, where f r (y) = γ 0 (r ,y,U), by linearity of integration.

Since the function f r is pre-stable, we have

Given a non-decreasing sequence (y n) n ∈N in BQ, we must prove that f (sup n y n) = sup n f (y n). The sequence of measurable functions д n : r → f r (y n) from R to [0, 1] is non-decreasing (for the pointwise order) and satisfies sup n ∈N д n (r) = f r (sup n y n) by the last condition on γ 0 , and therefore, by the monotone convergence theorem, we have f

So φ ′ is stable in its second argument (using the fact that the order relation on measures in the cone Meas(X) coincides with the "pointwise order": µ ≤ ν iff ∀U ∈ Σ X µ (U) ≤ ν (U)), and linear and Scott-continuous in its first argument. Therefore, considered as a function BMeas(X) × BQ → Meas(R), φ ′ is stable by Lemma 6.1. Now we must prove that this function is measurable in the sense of Definition 5.5. 4). The denotation of a judgement Γ ⊢ M : A is a morphism M Γ⊢A ∈ Cstab m (Γ , A), given in Figure 5 by structural induction on M. We omit the type exponent when clear from the context. Notice that if Γ ⊢ M : R, then for ⃗ д ∈ Γ , M ⃗ д is a measure on R.

Example 7.9. Suppose M a closed term of type R and consider ⊢ observe(U)M : R introduced in Example 3.4 as an encoding of the conditioning. We compute its semantics by using soundness. Since observe

Since observe(U)M does not depend on r , the latter integral can be rewritten to:

R χ R\U (r) M (dr). Whenever M represents a probability distribution, so that M (U) = 1 -M (R \ U) and if moreover M (U) 0, this equation gives the conditional probability:

) n 0 = 0, the denotation of the fixpoint is observe(U)M = 0. By adequacy, the program then loops with probability 1 when

, assuming that M is a probability distribution and V a measurable set, one gets with a similar reasoning that, in case M U 0,

Adequacy

Let M be a closed term of ground type of PPCF. Both the operational and the denotational semantics associate with M a distribution over R -the adequacy property states that these two distributions are actually the same (Theorem 7.12). The proof is standard: the soundness property gives as a corollary that the "operational" distribution is bounded by the "denotational" one. The converse is obtained by using a suitable logical relation (Definition 7.10, Lemma 7.11).

Definition 7.10. By induction on a type A, we define a relation ≺ A ⊆ A × Λ ⊢A as follows:

Theorem 7.12 (adeqacy). Let ⊢ M : R, then for every measurable set U ⊆ R, we have:

where U is the set of numerals corresponding to the real numbers in U .

RELATED WORK AND CONCLUSION

The first denotational models for higher-order probabilistic programming were based on probabilistic power domains [START_REF] Jones | A Probabilistic Powerdomain of Evaluations[END_REF][START_REF] Saheb-Djahromi | CPO'S of Measures for Nondeterminism[END_REF]. This setting follows a monadic approach, considering a program as a function from inputs to the probabilistic power domain of its outputs. The major issue here is to find a cartesian closed category which is also closed under the probabilistic power domain monad [START_REF] Jung | The troublesome probabilistic powerdomain[END_REF]]. Some advances have been obtained by [START_REF] Barker | A monad for randomized algorithms[END_REF], using a monad based on random variables inspired by [START_REF] Goubault | Continuous Random Variables[END_REF]. Besides, [START_REF] Mislove | Domains and Random Variables[END_REF] has introduced a domain theory of random variables. Another approach is based on game semantics, designing models of probabilistic languages with references [START_REF] Danos | Probabilistic game semantics[END_REF] or concurrent features [START_REF] Winskel | Probabilistic and Quantum Event Structures[END_REF]].

A APPENDIX

A.1 Proofs of Section 3

Proof. Since Λ Γ⊢A can be written as the coproduct (3), it is sufficient to prove that for any n and

Let k be the number of occurrences of x in M and let us enumerate these occurrences as x 1 , . . . ,x k . Then there are i 1 , . . . ,i k , such that 0

with S {T /x 1 , . . . ,T /x k } a real-freeterm. The decomposition of ⃗ r into the k + 1 sections above, depends on the positions of the various occurrences of x in S. Using (4), it is sufficient to remark that

Proposition 3.8. For any sequent Γ ⊢ A, the map Red is a stochastic kernel from Λ Γ⊢A to Λ Γ⊢A .

Proof. Let M be a term. The fact that Red(M, _) is a measure from Λ Γ⊢A to [0, 1] is an immediate consequence of the definition of Red and the fact that any evaluation

(Lemma 3.7). Given a measurable set U ⊆ Λ Γ⊢A , we must prove that Red(_,U) is a measurable function from Λ Γ⊢A to [0, 1]. Since Λ Γ⊢A can be written as the coproduct in Equation (3), it is sufficient to prove that for any n and S ∈ Λ Γ⊢A n , Red S (_,U) : Λ Γ⊢A S → [0, 1] is a measurable function. We reason by case study on the shape of S. Notice that by using Lemma 3.6 and the definition of a redex we have that: either (i) for all ⃗ r , S⃗ r is a normal form, or (ii) S = E[T] such that for all ⃗ r , T⃗ r is a redex. In case (i), Red S (_,U) = χ U and we are done. Otherwise, we first tackle the case where T = sample. Notice that

Now, we focus on the tricky case where T sample. Notice that it is sufficient to prove that Red

also measurable as the complementary of a measurable set in Λ Γ⊢A S and finally, Red S (_,U) -1 (]0, 1[) = ∅ is also measurable. We reason again by case study on the shape of the redex

∈ U , and r ∈]0, 1]} which is measurable thanks to (4). □

A.2 Proofs of Section 4

Lemma 4.13. For any cone P and any u ∈ BP, P u is a cone. Moreover BP u = {x ∈ P | x +u ∈ BP } and, for any x ∈ P u , one has ∥x ∥ P ≤ ∥x ∥ P u . If P is complete then P u is complete.

Proof. Observe first that 0 ∈ P u because u ∈ BP. Let us check that P u is closed under addition. Let x,x ′ ∈ P u and let ε,ε ′ be such that u + εx,u + ε ′ x ′ ∈ BP. Without loss of generality we can assume that ε ≤ ε ′ and hence we have u + εx,u + εx ′ ∈ BP and therefore u + ε 2 (x + x ′) ∈ BP because BP is convex. It follows that x + x ′ ∈ P u . Let x ∈ P u , we have 0x = 0 ∈ P u . Let now α > 0. Let ε > 0 be such that εx + u ∈ BP. We have therefore ε α (αx) + u ∈ BP and hence αx ∈ P u . We prove now that ∥_∥ P u is a norm. The fact that ∥0∥ P u = 0 is clear. Let x ∈ P u \ {0}. Let α > ∥x ∥ -1 P , we have αx BP and hence αx + u BP and therefore ∥x ∥ P u ≥ 1 α . We have proven

59:34

Thomas Ehrhard, Michele Pagani, and Christine Tasson and we obtain the required inequation because f (2)

x as well as each of the function f (2) u 1 ,. . . , f (2) u n is pre-stable.

For the "continuity" part of the statement, let (w n) n ∈N be an non-decreasing sequence in BP ×BQ, with w n = (u n ,v n) where (u n) n ∈N and (v n) n ∈N are non-decreasing sequences in BP and BQ respectively. Then f (sup i ∈N u i , sup i ∈N v i) = sup i,j ∈N f (u i ,v j) by separate Scott-continuity of f . By montonicity of f we get f

Proof. Indeed, f ≤ д means that there is h ∈ P ⇒ m Q such that д = f + h, but then we must have f (x) ≤ д(x) for all x (which is just the condition above for n = 0) and h is given pointwise by h(x) = д(x) -f (x). The condition above coincides with pre-stability of h. One concludes the proof by observing that when h so defined is non-decreasing, it is automatically Scottcontinuous and measurable. The second property readily follows from the linearity of measurability tests (linear maps commute with subtraction) and from the closure properties of measurable functions so let us check the first one. Let (x n) n ∈N be a non-decreasing sequence in BP and let x be its lub. Because h is non-decreasing, it is sufficient to prove that h(x

By Scott-continuity of д and by the fact that f is non-decreasing, it suffices to prove that, for each k

□ Lemma 6.5. The cone P ⇒ m Q is complete and the lubs in B(P ⇒ m Q) are computed pointwise.

Proof. Let (f n) n ∈N be a non-decreasing sequence in B(P ⇒ m Q). For any x ∈ BP the sequence (f n (x)) n ∈N is non-decreasing in BQ and we set f (x) = sup n ∈N f n (x). Since each f n is non-decreasing and Scott-continuous, f has the same properties. To prove that f is pre-stable, observe that ∆ ε f (x; ⃗ u) = sup n ∈N ∆ ε f n (x; ⃗ u) by Scott-continuity of + in Q. So far we have proven that f is Scott-continuous and pre-stable. Let us check that f is measurable: let γ ∈ Path n 1 (P), we must prove that f

and conclude that h is measurable by the monotone convergence theorem. So we have proven that f ∈ B(P ⇒ m Q).

Let n ∈ N and let us prove that f n ≤ f . By Lemma 6.4 it suffices to prove (with the usual assumptions) that

which results from the Scott-continuity of +, from the fact that ∆ ε f (x; ⃗ u) = sup k ≥n ∆ ε f k (x; ⃗ u) and from the fact that the sequence (f k) k ≥n is non-decreasing. Last let д ∈ B(P ⇒ m Q) be such that f n ≤ д for all n, we must prove that f ≤ д. Again we apply straightforwardly Lemma 6.4 and the Scott-continuity of +. □ Lemma 6.6. The evaluation function Ev is stable and measurable, that is

Proof. Stability results from Lemma 6.1, observing that Ev is linear and Scott-continuous in its first argument. We must prove now that Ev is measurable. Let n ∈ N, φ ∈ Path n 1 (P ⇒ m Q) and

59:36

Thomas Ehrhard, Michele Pagani, and Christine Tasson Proposition 7.8. 9) holds for any M ∈ Λ Γ⊢A .

Proof. If M is a normal form, then the statement is trivial, as Red(M, _) = δ M which is the identity in Kern. Otherwise, let

and

By the substitution property (Lemma 7.5)) it is sufficient to prove R = N to conclude. This is done by cases, depending on the type of the redex.

The cases R is a β or Y redex follow the standard reasoning proving the soundness of a cpo-enriched cartesian closed category.

In case R = ifz(0,L, N) then, by applying the definition in Figure 5,

The case for a numeral different from 0 is analogous.

In case R = let(x,r ,L) and so N = L{r /x }, we have:

. This latter is equal to N Γ⊢R ⃗ д by the substitution property. The last case is the sampling redex:

The proof of this lemma uses some two auxiliary lemmata. Lemma A.2. Given a k-ary functional identifier f ∈ C and M 1 , . . . ,M k such that ⊢ M i : R for each i ≤ k, then we have:

Proof. We prove that for all f of arity k, for all M 1 ,. . . ,M k closed terms of type R, for all U ∈ Σ R , for all n 1 , . . . ,n k ∈ N, there exists m ∈ N such that:

The statement follows by the definition of Red ∞ as a lub. The proof is by induction on

) and we are done. Otherwise there must be one M i which is reducible (notice that the term f (M 1 , . . . ,M k) is closed by hypothesis, so no M i can be a variable). So let us prove (⋆) supposing that i is minimal such that M i is reducible. If n i = 0, then Red n i (M i , _) = δ M i and since f -1 (U) ⊆ R k , we have that the left-hand side expression of (⋆) vanishes and the equality trivially holds for any m. Otherwise, writing µ n j ,M j for the measure Red n j (M j , _), we have:

where the inequality between the third and fourth lines is an application of the induction hypothesis. □ Lemma A.3. Let L, M ′ and M ′′ be closed terms of type R, then:

Proof. Similar to the proof of Lemma A.2. We prove that for every L, M ′ , M ′′ closed terms of type R, for every U ∈ Σ R , for every n 1 ,n 2 ,n 3 ∈ N, there is m ∈ N such that:

The proof is by induction on n 1 . If L = 0, then the left-hand side expression in (⋆) is equal to Red n 2 (M ′ ,U) = Red n 2 +1 (ifz(L,M ′ ,M ′′),U) and we are done. The case L is a numeral different from 0 is symmetric.

Let us then suppose L reducible. If n 1 = 0 then the inequality trivially holds because the left-hand side expression in (⋆) is zero. If n 1 > 0, then Red n 1 (L, _) = Λ ⊢R Red n 1 -1 (t, _)Red(L,dt), hence the left-hand side expression in (⋆) is equal to: .4. Given ⊢ M ′ : R and x : R ⊢ M ′′ : R, we have:

where recall that R is the set of all numerals, which is a sub-measurable space of Λ ⊢R isomorphic to R.

Proof. First of all, notice that the integral is meaningful because Red ∞ (M ′′ {t/x }, _) is the stochastic kernel resulting from the composition of Red ∞ and Subst x,M ′′ , this latter being a measurable function by Lemma 3.7. Then the proof follows the reasoning of the proof of Lemma A.2.

We prove that for every ⊢ M ′ : R and x : R ⊢ M ′′ : R, for every U ∈ Σ R , n 1 ,n 2 ∈ N, there exists m ∈ N such that:

59:38

Thomas Ehrhard, Michele Pagani, and Christine Tasson

The proof is by induction on n 1 . If M ′ is a numeral r , then the left-hand side expression in (⋆) is equal to Red n 2 (M ′ {r /x },U) = Red n 2 +1 (let(x,M ′ ,M ′′),U) and we are done. So let us suppose that M ′ is reducible. Under this hypothesis, if n 1 = 0, the left-hand side expression of (⋆) is zero and so the inequality holds. Otherwise:

Lemma A.6. For any ⊢ M : A, we have: (i) 0 ≺ A M, and (ii) for any increasing family

and the hypothesis that f n ⃗ uU ≤ Red ∞ (M,U) for every n. □

Proof of Lemma 7.11. By structural induction on M. Variables are immediate from the hypothesis. The case of a constant of type R is trivial because r U = δ r (U) = Red ∞ (r ,U), as well as sample U = λ [0,1] U = Red ∞ (sample,U). Let M = f (M 1 , . . . ,M k), by induction hypothesis we have that, for every i ≤ k, M i ⃗ u ≺ R M i { ⃗ N /⃗ x }. We then have, for every measurable U ⊆ R:

Red ∞ (M ⃗ {N /x },U), where the latter inequality follows from Lemma A.2 .

In case M = ifz(L,M ′ ,M ′′), we have to prove that ifz(L,M ′ ,M ′′) ⃗ u ≺ R ifz(L,M ′ ,M ′′), with the overline denoting the result of applying the substitution { ⃗ N /⃗ x } to the corresponding term. Take a measurable U , by using the induction hypothesis on L,M ′ ,M ′′ , we have:

Red ∞ (M,U), where the latter inequality follows from Lemma A.3.

In case M = let(x,M ′ ,M ′′), then, take a measurable U : Theorem 7.12. Let ⊢ M : R, then for every measurable set U ⊆ R, we have:

where U is the set of numerals corresponding to the real numbers in U .

Proof. By iterating the soundness property (Proposition 7.8), we have that (_ ⊢R • Red n)M = M ⊢R for every n. Hence, taking a measurable U ⊆ R: