
HAL Id: hal-01621936
https://hal.science/hal-01621936v1

Submitted on 25 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic, Abstracted and Portable Topology-Aware
Thread Placement

Jens Gustedt, Emmanuel Jeannot, Farouk Mansouri

To cite this version:
Jens Gustedt, Emmanuel Jeannot, Farouk Mansouri. Automatic, Abstracted and Portable Topology-
Aware Thread Placement. IEEE Cluster, Sep 2017, Hawaï, United States. pp.389 - 399,
�10.1109/CLUSTER.2017.71�. �hal-01621936�

https://hal.science/hal-01621936v1
https://hal.archives-ouvertes.fr


Automatic, Abstracted and Portable Topology-Aware Thread Placement

Jens Gustedt†‡ Emmanuel Jeannot∗ Farouk Mansouri∗

† INRIA Nancy Grand Est, France
‡ ICube – Université de Strasbourg, France

∗ INRIA Bordeaux, France

Abstract—Efficiently programming shared-memory ma-
chines is a difficult challenge because mapping application
threads onto the memory hierarchy has a strong impact on
the performance. However, optimizing such thread placement
is difficult: architectures become increasingly complex and
application behavior changes with implementations and input
parameters, e.g problem size and number of threads. In this
work, we propose a fully automatic, abstracted and portable
affinity module. It produces and implements an optimized
affinity strategy that combines knowledge about application
characteristics and the platform topology. Implemented in the
back-end of our runtime system (ORWL), our approach was
used to enhance the performance and the scalability of several
unmodified ORWL-coded applications: matrix multiplication,
a 2D stencil (Livermore Kernel 23), and a video tracking real
world application. On two SMP machines with quite different
hardware characteristics, our tests show spectacular perfor-
mance improvements for these unmodified application codes
due to a dramatic decrease of cache misses and pipeline stalls. A
comparison to reference implementations using OpenMP con-
firms this performance gain of almost one order of magnitude.

Keywords-Thread placement, Task based runtimes, Hard-
ware affinity, Parallel programming.

I. INTRODUCTION

The trend for an increasing number of cores in computing
architectures leads to a significant increase in the internal
complexity of machines. In particular, the cache architecture
is now usually structured hierarchically between cores (e.g
into sockets and processors) and a centralized memory
topology for symmetric multiprocessor (SMP) system is
replaced with distributed memory architectures such as AMD
Hyper Transport and INTEL QPI architectures. Thus, in a
HPC context we are nowadays more and more confronted
with Non Uniform Memory Access (NUMA) hardware.

Achieving high-performance in thread-based frameworks
requires to place threads and data very carefully according
to their affinities: sharing data and synchronizing threads
benefits from shared caches, while intensive memory access
benefits from localized memory allocations and accesses that
are exclusive. Since this optimization is key, thread-based
frameworks try to propose different levels of affinity abstrac-
tion. However, obtaining good hardware affinity usually re-
quires an in-depth knowledge of the underlying architecture
as well as the application behavior. Obtaining the affinity

between threads is a difficult task that often requires the
programmer to manually map threads onto resources. The
goal of this paper is to show that, with the right abstraction,
it is easy, for the runtime system to compute an efficient
thread mapping. Hence the contribution of this paper is
to propose an automatic (no need for the programmer to
specify anything: the code is unchanged), abstracted (no
need for the programmer to understand what is affinity
and topology) and portable (no need for the programmer
to specify any configuration based on the target machine:
performance is portable across different architectures) affin-
ity module for thread-based runtimes. Transparent to the
user, our module computes and enables an optimized binding
strategy that takes the hardware topology and the application
characteristics into account. Absolutely no modification of
the application and no tuning on the hardware is required.
As a proof of concept, the module is implemented as an
affinity add-on of static thread-based runtime system named
the Ordered Read Write Location (ORWL)

This paper is organized as follows. In Section II, we
present related work about affinity for thread mapping. After
that, Section III describes the context and the background
of our work including tools and frameworks we use. In
Section IV, we introduce the affinity module that connects
knowledge about application and platform structure and
explain its implementation. Implementations of two bench-
marks and a real-world application based on our ORWL
framework are presented in Section V. Section VI presents
measurements of these benchmarks that prove how our
affinity module helps to improve the benchmark performance
by a substantial factor up to 9x without changing a line
of code in the benchmark code itself or reconfiguring the
execution. These validations are complemented with a com-
parison to reference implementations based on OpenMP for
parallelization and affinity optimization. Finally, Section VII
summarizes our achievements and discusses them.

II. RELATED WORK

Thread based programming models like OpenMP propose
high level interfaces to optimize thread affinity. OpenMP
uses environment variables to enable binding strategies. For
example, by setting KMP_AFFINITY with Intel’s imple-
mentation of OpenMP it is possible to adapt a program



execution to the targeted topology and to choose the cores
on which threads are executed. The recent versions of the
GCC runtime system (GOMP) implements similar function-
ality through the variable GOMP_CPU_AFFINITY. These
vendor-specific approaches for affinity modules are now
ported into the last OpenMP standard 4.5. It specifies the
interfaces OMP_PLACES and OMP_PROCBIND. All these
interfaces are at a high level and relatively easy to use by
inexperienced programmers. However, they are not aware
of the actual application behavior when they decide where
to bind each thread. Moreover, the proposed strategies are
highly generic. Hence, as we will show in our experiment
section, a strategy may be efficient for one machine and
inefficient for another. Also, it is difficult to anticipate,
without testing, which strategy will behave best.

In [1], the authors propose an extension based on a
location directive to provide affinity of OpenMP threads and
data. A more recent work [2] proposes a novel OpenMP
directive to bind OpenMP tasks to threads, NUMA nodes
or close to some data. However, in these solutions the
programmer still needs to manually insert specific directives
to match the graph of tasks and the architecture topology. In
addition, they still have to investigate the application behav-
ior to find the correct binding strategy. Neither the OpenMP
standard nor existing thread-based runtimes currently allow
mechanisms to automatically produce and set an adapted
affinity strategy of threads. An other issue is that, each time
the application code changes, the directive has to be adapted
or modified to ensure performance gain and to preserve the
sequential semantic. OmpSs [3] is a variant of OpenMP that
targets heterogeneous architectures. However, as it is based
on the OpenMP model it inherits the problems of general
OpenMP solutions as we have highlighted above.

To provide thread affinity and data locality in thread based
runtimes other work focuses on scheduling. [4] introduces
locality for the OpenMP task-scheduling by extracting de-
pendency information at compile time. [5], [6] use task and
buffer placement to improve the data locality of the sched-
uler of a data flow graph tool named OpenStream. These
approaches are well oriented for dynamic runtimes that
distribute fine grained tasks over worker threads. However,
they are not adapted for applications with a limited number
of tasks and a coarse granularity. Here, dynamic scheduling
could be not efficient because of granularity and generates
unnecessary overhead. Also, many applications such our
video tracking implementation (see below) require static
scheduling. Here, each task must be bound on a specific
core, such that the execution is ordered and the provision of
video frames is regularly sequenced.

Task based runtime systems such as StarPU [7], or
PARSEC [8] are also related to this research. In StarPU,
several scheduling policies are available1. As StarPU targets

1See http://starpu.gforge.inria.fr/doc/html/Scheduling.html

heterogeneous system, the proposed strategies are dynamic
and based on the current state of the runtime system. The
default StarPU scheduler, called eager, does not take task
affinity into consideration. The locality-aware work stealing
algorithm (lws) dynamically schedules tasks on the worker
which releases it, trying to enforce some kind of locality
management. However, it does not use data dependencies
and data sharing. PARSEC features affinity management
by enforcing strict owner-compute rules. Results are very
competitive but this requires the user to map of the data
(e.g. distribution of a matrix) explicitly onto the resources
and also to describe tasks dependencies. An approach to
compute the data mapping automatically has been proposed
by a one of the co-authors of this paper [9]. However such
approaches are bound to the parameterized task graph model
and are only suited for codes with static control if there are
affine access and loop bounds. Therefore many applications
do not fit into this model.

Hence, to the best of our knowledge, there are no other
solutions that automatically provide binding mechanisms in
a static thread-based runtime, that are independent of the
target machine, that are portable and that do not require
modifications of the application code.

III. BACKGROUND AND CONTEXT

The ORWL model and library: The ORWL ”Ordered
Read-Write Lock” programming model [10] is a program-
ming concept for the management of shared resources in a
parallel environment: data, storage spaces, levels of cache
or the I/O devices. These resources are abstracted in the
ORWL model by the notion of locations which are used
for sharing control of such resources between tasks. The
model presents the concurrent access to a resource/location
by using a FIFO that holds requests (requested, allocated,
released) issued by the tasks. These tasks are implemented
by threads. The FIFO controls the access order and locks
and maps the resource for some threads either exclusively
(for a writer) or shared (for a set of readers). The reference
implementation of ORWL offers several abstractions in the
form of a C-based library such that parallel applications can
easily be expressed. The following primitives are available:
• orwl task is a primitive the programmer should use to

decompose their application. Such tasks only interact
via their access to locations.

• orwl location is the primitive to represent a shared
resource between the tasks. It could be data (identical
contents at varying memory addresses), memory (a
specific address), a computational unit (CPU or accel-
erator) or an I/O device.

• orwl handle implements a primitive to link the loca-
tions to the appropriate tasks with read or write access.

• ORWL SECTION defines a critical section that man-
ages the access of threads to the location (resource).
Once entered in such a section, the task that requested

http://starpu.gforge.inria.fr/doc/html/Scheduling.html


read or write access obtains the data concurrently or
exclusively.

Listing 1. ORWL: pipeline of tasks

/* define the name of the location’s buffer*/
ORWL LOCATIONS PER TASK(main_loc);
o r w l i n i t();
/* Scale our own location(s) to the appropriate size. */
o r w l s c a l e(sizeof(double));
/* Create handles for the locations that we are
interested in. We will create a chain of dependencies
from task 0 to task 1 etc. */
orwl handle here = ORWL HANDLE INITIALIZER;
orwl handle there = ORWL HANDLE INITIALIZER;
/* Have our own location writable. */
o r w l w r i t e i n s e r t(&here,

ORWL LOCATION(orwl mytid, main_loc),
orwl mytid);

/* link the "there" handle where appropriate */
if (orwl mytid)

o r w l r e a d i n s e r t(&there,
ORWL LOCATION(orwl mytid - 1, main_loc),
orwl mytid);

/* Now synchronize and coordinate requests of all tasks. */
orwl schedule();
/* All tasks create a critical section that guarantees
exclusive access to their location. */
ORWL SECTION(&here) {

/* Map the buffer in our virtual address space. */
double * wval = orwl write map(&here);
*wval = init_val(orwl mytid);
/* All ids > 0 read from their predecessor. */
if (orwl mytid > 0) {

/* Block until the data is available. */
ORWL SECTION(&there) {

double const* rval = orwl read map(&there);
/* Do some dummy computation. */

*wval = (*rval + *wval) * 0.5;
}

}
}

Listing 1 shows an example of an ORWL program with
a pipeline of tasks. There are two locations per tasks:
“there” where it reads from the previous tasks and “here”
where it writes locally.

In addition, the library proposes some specific primitives
to easily implement iterative tasks that alternate access to a
shared resource that is represented by a (orwl location).
In this case, they can use an adapted iterative handle
orwl handle2. To synchronize the iterations of the different
tasks the programmer disposes of ORWL SECTION2.
Before its termination, such a section introduces a new
query in the FIFO that requests the resource for the next
iteration. Thereby, each task may run a series of iterations
that are autonomously synchronized by their access to the
resource. This iterative access guarantees the consistency of
data, deadlock-freeness and fairness for the decentralized
event-based execution. Thanks to these primitives users may
express a high level of parallelism within applications while
avoiding the manual use of a low-level C interface to manage
lock synchronization and communication between threads.

The HWLOC library for locality management: The
hardware locality tool ”HWLOC” [11] exposes a portable
(across OS and architecture) an abstracted view of the
hardware topology to the developer and the runtime system.

HWLOC provides a library that extracts the topology of a
NUMA machine and allows for exploring it. For instance, it
is possible to know the cache hierarchy, the different cache
sizes, the number of cores with their numbering. It also
provides a way to bind threads to (a set of) cores as well as
to query and change the binding.

TreeMatch: TreeMatch [12] is a library for performing
process placement based on the topology of the machine
and the communication pattern of the application. TreeMatch
provides a mapping of the processes to the processors/cores
in order to minimize the communication cost of the appli-
cation. According to the problem size, it chooses between
different placement algorithms such that a low running time
is maintained.

IV. ABSTRACTED AFFINITY ADD-ON FOR ORWL
THREAD-BASED RUNTIMES

A. Concept

As described above, ORWL is a resource-centric manager.
It enables to construct a set of application tasks and con-
currently executes them according to their FIFO access to
the resources. To ensure consistency throughout an event-
based execution, the ORWL runtime additionally deploys
control threads and a lock mechanism that manage lock
synchronization and data transfer. These control threads
freeze and thaw processing threads of concurrent tasks
according to the availability of resources. Thereby, the model
of execution is highly decentralized.

The relationship between application tasks and OS threads
can be modeled in different ways:
• One thread per task: Each task is executed with by one

OS thread and can access several locations.
• Several threads/operations per task: Here several sub-

tasks named operations cooperate to execute a task.
Each operation is executed by an OS thread and will
typically be responsible for one location of the task.
Thus, here a task is executed by as many threads as
there are locations.

Our aim is to propose a placement strategy that optimizes
data locality. To do so, we exploit application information as
it is gathered from ORWL primitives, namely the topology
of the task-location graph and the sizes of the locations.
We automatically compute the task/thread affinity using
information about shared locations and their FIFO when
the runtime system instantiates and composes them. The
ORWL programming model exposes all the required pieces
of information: the tasks, the amount of data they share or
exchange (i.e the location) and their connectivity (i.e. the
location they share). Therefore, there is no need to modify
the code or to add any directive to gather that information.
Indeed, in Listing 1, when the orwl schedule function is
called, all these characteristics are known to the ORWL
runtime system. Thereby, when this function is called, we



are able to construct a matrix (see Fig. 1) that expresses the
communication volume between tasks and then to compute
the mapping.

At the other end we use HWLOC to obtain the topology of
the underlying platform in an automated and portable way.
With these two types of information we apply an allocation
strategy that aims to reduce the communication between
the NUMA nodes. Simultaneously, it optimizes the cache
sharing within each of these NUMA nodes.

To compute the allocation we use Algorithm 1 that is
based on the TreeMatch Algorithm [12]. We have adapted
it in two ways for our needs. First, we have enhanced
it to account for over-subscription when there are fewer
computing resources than tasks. For compute-bound appli-
cation, it is generally better not to exceed the available
resources by dimensioning the application to the number
of physical cores (this what we have systematically done in
all our experiments here). Alternatively, some applications
may have a minimum requirement for the number of tasks
(and thus threads) that exceeds the number of resources.

A second adaptation takes control threads of ORWL into
account. This algorithm depends on the available computing
resources, in particular on the presence of hyperthreaded
cores.

Algorithm 1: The Mapping Algorithm
Input: T// The topology tree
Input: m // The communication matrix
Input: D // The depth of the tree

1 m← extend to manage control threads(m)
2 T ← manage oversubscription(T ,m)
3 groups[1..D − 1]=∅ // How nodes are grouped on each level
4 foreach depth← D − 1..1 do // We start from the leaves
5 p← order of m
6 groups[depth]←GroupProcesses(T ,m,depth) // Group

processes by communication affinity
7 m←�AggregateComMatrix(m,groups[depth]) // Aggregate

communication of the group of processes

88 MapGroups(T ,groups) // Process the groups to build the
mapping

Algorithm 1 is run at launch time, once the topology
tree is given by HWLOC and the communication matrix
is computed by the ORWL runtime system. It provides a
mapping of the computing entities (the threads) to the cores.
These threads are then bound to the cores using HWLOC.
It proceeds as follows. First, depending on the topology tree
and the presence of hyperthreading we optionally extend
the communication matrix to account for control threads. If
hyperthreading is available, on each physical core we reserve
one hyperthread sibling for control and one for computation.
Otherwise, if there are more cores than tasks, we extend
the communication matrix such that control threads will be
mapped onto spare cores. If none of this suffices, control
threads will not be mapped explicitly and we let the system
schedule them. Second, we check if oversubscribing is
needed. We compare the number of leaves of the tree with

5 10 15 20 25 30

5
10

15
20

25
30

Task ID

Ta
sk

 ID

0
1

2
3

4
5

6

Figure 1. Communication matrix of the video tracking application (see
Sec. V-C) – logarithmic gray scale

the order of the communication matrix. Optionally, we add
a new level to this tree such that we have enough virtual
resources to compute the allocation.

Then, computing entities of the communication matrix
(being computation threads and optionally control threads)
are grouped according to their affinity and the topology of
the machine starting from the leaves of the topology tree.
At the upper levels these groups are merged recursively.
The function GroupProcesses makes k groups of size
a, where a is the arty of the considered level and such that
a ∗ k = p. Here, p is the order the communication matrix
and hence the number of processes or groups.

The internal algorithm engine of GroupProcesses is
optimized such that, depending on the problem size, we
go from an optimal but exponential algorithm to a greedy
one that is linear2. Before going from depth l to l − 1
we need to aggregate the communication matrix in order
to compute the affinity between the groups. This is done
by the function AggregateComMatrix. Once we have
built this hierarchy of groups, we match it to the topology
tree such that each thread is assigned to a leaf (function
MapGroups). If oversubscribing is required, ORWL tasks
are mapped to the physical cores by going up one level
in the tree. If hyperthreading is available, we map only
one compute intensive task per physical core, and leave
hyperthreaded sibling cores to control threads.

Fig. 1 illustrates the communication matrix of the video
tracking application used in Sec. V-C. Thread ID, correspond
to the different tasks of the application as coded using
ORWL and given by the ORWL runtime. Once Algorithm 1
is applied, we obtain the mapping of the tasks given in
Fig. 2. The machine is similar to the one used in Table I.
Each task has a green box with the ID corresponding to
the one used in Fig. 1 and its name. We see that most of
the pipeline Tasks 0 to 9 are placed on the same socket

2Hence, the runtime overhead is kept negligible for current SMP ma-
chines.



whereas Tasks 1 and 7 are mapped to another node as
they communicate with other tasks (resp. gmm split and
ccl split). Finally, cores 22 and 23 are automatically
reserved for control threads.

B. Implementation

Our affinity module is implemented as an add-on to the
ORWL framework. To enable the affinity optimization with
the fully automatic and transparent mode, the ORWL user
only has to set the environment variable ORWL_AFFINITY
to 1. This variable is checked at runtime (initialization time
of ORWL) and the appropriate affinity for threads is com-
puted and set behind the scenes as described above. More-
over, for experimented developers preferring the advanced
mode we added some affinity functions to ORWL’s API. This
API is useful in two different settings: 1) debugging and
testing, 2) to handle dynamic situations where the number
of tasks and the affinity between tasks change at run time,
that is if the communication matrix is changing dynamically.
• orwl dependency get: compute task dependencies of

the application and the resulting communication matrix
for the underlying threads.

• orwl affinity compute: compute the optimized thread
mapping from the current communication matrix and
the hardware topology.

• orwl affinity set : set the biding of each thread ac-
cording to the computed mapping.

None of the functions of that API take parameters or return
values, they only change the internal state of the ORWL
runtime.

When using this API in addition to the automatic com-
putation at startup, the thread mapping is still automatic:
once the connection between tasks and location has changed
in the program, the new affinity is computed by explicitly
calling orwl dependency get, then, Algorithm 1 is called
with orwl affinity compute and the new computed thread
mapping is committed with orwl affinity set .

V. BENCHMARKS AND APPLICATION

In this section we present applications implemented to
validate our affinity module within the ORWL runtime. In
order to test the performance of our approach in different
contexts, we use, on the one hand two benchmarks with
different characteristics: matrix multiplication as an example
of compute bound problem and the Livermore Kernel 23
which is rather memory bound. On the other hand, we use
the HD video tracking application as a real-world validation.

A. Livermore Kernel 23

The Livermore Kernel 23 is a classic benchmark taken
from LinPack [13] to simulate a 2-D implicit hydrodynamics
fragment. The core computation of the benchmark is given
in Listing 2 where each element of the matrix called za is
computed using four neighbors elements (N, S, E and W) and

five coefficient matrices (zb, zr, zu, zv, zz). In addition,
a global loop repeats this computation for a certain number
of iterations or until convergence.

This algorithm is memory bound and is difficult to vector-
ize because of the loop structure. Usually it is parallelized
by pipelining the computation over blocks of the initial two-
dimensional data matrix (starting from the upper left block
down to the lower right one).

Listing 2. The Livermore Kernel 23 loops
for (l=1; l<=loop; l++)
for (j=1; j<m; j++)
for (k=1; k<n; k++){

qa = za[j+1][k]*zr[j][k] + za[j-1][k]*zb[j][k]
+ za[j][k+1]*zu[j][k] + za[j][k-1]*zv[j][k]
+ zz[j][k];

za[j][k] += 0.175*(qa - za[j][k]);
}

The blocks on the same diagonal can be computed in
parallel. The wave of computation therefore traverses the
matrix NW to SE.

In ORWL, the idea for this 2D stencil is to have a task for
each matrix block of matrix za, and a location between each
pair of communicating tasks (i.e. each communicating block
of za in the code). The detailed ORWL implementation is
described in [14].

B. Matrix multiplication

Dense matrix operations are important elements in scien-
tific and engineering computing. Matrix multiplication has
been largely studied for high performance computation. In
our case study, we focus on computing C = A ∗ B with
a row aligned matrix. For our implementation we use the
well-known block cyclic algorithm. It consists of dividing
the matrices A and B into blocks which are processed in
parallel during a number of phases. During these phases,
the matrix blocks circulate between tasks.

Internally, to compute the multiplication of the blocks
we use the DGEMM from BLAS library interface. Using
different BLAS implementations is easily possible and has
been tested. For all the reported tests, we use Intel’s MKL
implementation of BLAS, as it provided the best results.

The MKL library also features a multithreaded version
of DGEMM using OpenMP. We compare our approach with
this MKL version by varying the number of threads and the
binding strategies.

The ORWL implementation: In our ORWL implemen-
tation each block of rows of the result matrix C corresponds
to a task/thread using the orwl task primitive. A task
processes the elements of a block of rows of the matrix
C and circulates the input columns of the matrix B to the
neighboring tasks by using ORWL’s “locations”. Each task
is connected to its own location (current block of columns
of B) and to the location of the precedents tasks (next block
of columns of B) by using the orwl handle primitive. The
result blocks of the matrix C are then computed with a
complete circulation of the input columns of matrix B.



Blade 0

Socket 0

0 1 2 3 4 5 6 7

Socket 1

8 9 10 11 12 13 14 15

Blade 1

Socket 2

16 17 18 19 20 21 22 23

Socket 3

24 25 26 27 28 29 30 31

0:
producer

2:
erode

8:
tracking

9:
consum

er

3:
dilate

4:
dilate

5:
dilate

6:
dilate

1:
gm

m

29:
ccl

split

11:
gm

m
split

22:
gm

m
split

7:
ccl

26:
ccl

split

27:
ccl

split

28:
ccl

split

10:
gm

m
split

17:
gm

m
split

12:
gm

m
split

18:
gm

m
split

21:
gm

m
split

24:
gm

m
split

13:
gm

m
split

23:
gm

m
split

20:
gm

m
split

25:
gm

m
split

14:
gm

m
split

19:
gm

m
split

15:
gm

m
split

16:
gm

m
split

Figure 2. Task allocation on 4 socket NUMA machine of the video tracking application (see Sec. V-C). Note that, for space reason, we do not describe
the cache hierarchy, while this hierarchy is also given by HWLOC and is actually used by our algorithm for the mapping.

Figure 3. Illustration of the ORWL implementation of the DFG video tracking application. Yellow nodes represent task, purple regions represent read/write
ORWL SECTION. Each task is connected to locations (orange squares) using handles. In the experiments, Dilate is repeated 3 times. GMM and CCL
are split into 16 and 4 sub-tasks (see Fig. 2 for the mapping on a 32 cores systems).

C. HD Video Tracking

The video tracking application follows moving objects
as they are seen by several cameras. Recently this type
of application has become important for video surveillance
of public spaces or for traffic control. To track moving
objects in a video, several algorithmic approaches have
been explored [15]. In our study, we are interested to
process high definition video with a tracking algorithm that
detects the motion with a foreground-background extraction
technique [16].

The data-flow graph ORWL implementation: The ap-
plication is iterative with repetitive processing applied on
each frame. This is usually modeled as a synchronous data-
flow graph (DFG) [17] as shown in Fig. 3. The nodes of the
graph represent the functions of the algorithm. The edges
represent the exchange of data between functions through
FIFO channels. This model expresses pipeline parallelism
where each function can be executed as soon as its input
data are available.

As shown in Section III, the ORWL model allows pro-
grammers to easily decompose iterative applications as de-
pendent tasks. We implement the DFG model in ORWL
by representing each node of the graph by an iterative
orwl task processing the input data at each iteration. To
manage dependencies between tasks in the ORWL model we
use the orwl location and orwl handle2 primitives. Each

task has its own “location” connected by a write handle
for the output data. With read handles, it connects to the
location/data of preceding tasks that it needs to perform its
computation. Then, during processing a critical section is
used to reserve the own location exclusively and to recover
the input data from the ”locations” of the preceding tasks.

In addition, we add some DFG-specific features. An
orwl fifo primitive is used to store a new version of output
data intermediately such that the lock for other readers/writ-
ers can quickly be released. An orwl split primitive helps
to split the data of a location into several pieces that can
be processed in parallel by other tasks or operations. Here,
the latter is used to split the tasks GMM and CCL because
these two are the most expensive and form bottlenecks for
the pipeline, see Fig. 3.

The ORWL tasks are executed in parallel by different
threads. Our implementation allows to process multiple
input images concurrently: we exploit task parallelism by
a pipeline and data parallelism with split-merge.

VI. EXPERIMENTS AND RESULTS

A. Testbeds and architectures

We use two SMP machines from the PlaFRIM platform.
Their characteristics are described in Table I. The SMP12E5
platform is a newer generation than SMP20E7. It features
hyperthreading and enables performance counters.



●

●

●

●

● ●10

20

50

100
150

1 8 16 32 64 96
Nb Cores

T
im

e 
(s

)

● ORWL (affinity) OpenMP (affinity) ORWL OpenMP

(a) SMP12E5

●

●

●

●

●
●

10

20

50

100

150

1 8 16 32 64 128
Nb Cores

T
im

e 
(s

)

● ORWL (affinity) OpenMP (affinity) ORWL OpenMP

(b) SMP20E7

Figure 4. The processing times of Livermore Kernel 23 (log scale)

Table I
THE MULTI-CORE ARCHITECTURES USED FOR THE EXPERIMENTS

Name SMP12E5 SMP20E7
OS Red Hat 4.8.3-9 SUSE Server 11
Kernel 3.10.0 2.6.32.46
Cores per socket 8 8
NUMA nodes 12 20
Socket per NUMA 1 1
NUMA groups 12 20
Socket E5-4620 E7-8837
Clock rate 2600MHz 2660MHz
Hyper-Threading Yes No
L1 cache 32K 32K
L2 cache 256K 32K
L3 cache 20480K 24576K
Memory Interconnect NUMAlink6 (6.5GB/s) NUMAlink5 (15GB/s)
GCC 5.1 5.1
ICC/MKL 14.0/11.1 14.0/11.1

B. Experiments

In this section we will assess the performance difference
from enabling our affinity module in the benchmarks we
present in Section V. Our goal is not to compare different
programming models but to compare different approaches
of managing affinity and binding thread to cores. Therefore,
on the one hand, we compare the performances of the
ORWL implementations based on affinity optimization to
the native ORWL implementations. On the other hand, we
also compare the results achieved with our module against
the best one that is achieved for the same application
coded in OpenMP and using different optimizations. We
experimented several OpenMP placement strategies but, due
to lack of space, we only report those with the best perfor-
mance. We use OpenMP as a reference because it is the most
widely used thread-based programming model that proposes
an abstracted thread placement module. We intend to prove
that it is possible to simultaneously get better abstraction
and performance compared to OpenMP. In addition to the
performance results, we present measurements of hardware
and software counters collected with the benchmarks to
explain the differences.

1) Livermore Kernel 23: Fig. 4 shows the execution times
of 100 iterations of Livermore Kernel 23 implementations
that process a 16384x16384 matrix of double precision
elements on scalable hardware configurations. Each block

of the matrix is processed by several operations: 1 for
computing central block and 3 for updating borders with
neighbourhood blocks. Each operation is executed with one
thread so we use 4 threads for each block except for the run
with 1 block. The OpenMP implementation is equivalent
to the ORWL implementation described in Section V. It
is based on introducing #pragma parallel for direc-
tives with static scheduling of chunks over the threads. Both
implementations use the same number of thread for each run
and we map each thread on one core.

The non-optimized ORWL and OpenMP implementa-
tions scale until 16 cores. After that they perform badly
and stabilize at about 65 seconds for SMP12E5 and
about 40 seconds for SMP20E7. We experimented many
different optimization settings for OpenMP. Here, the
”OpenMP (affinity)” line corresponds to the best per-
formance that was achieved with OMP_PLACES=cores
and OMP_PROC_BIND=close/spread (both implemen-
tations giving the same results): they slightly enhance
the performances up to 1.3x on SMP20E7 and about
2.5x on SMP12E5. Setting close or spread for
OMP_PROC_BIND means that the threads are bound to
cores either as close as possible to the master thread or
scattered across the available cores. In none of these cases,
the topology or the thread affinity are used to compute the
mapping. In contrast to that, our solution takes the topology
of the machine, the availability (or not) of hyperthreads, and
the affinity between tasks3 into account. In this case, our
affinity modules scales even more than the OpenMP affinity
setting and reaches about 3x on SMP20E7 (without hyper-
threading) and about 8x on SMP12E5 (with hyperthreading).

We also studied the hardware and software counters of
the machine for a 64 cores run, see Table II. There is a
strong correlation between cache misses and cycle stalls:
each cache miss leads to a loss of about 10 to 14 cycles. Our
affinity management reduces these counters by a substantial
factor. Compared to OpenMP Affinity we have −78% cache
misses and −72% stalled cycles. On the other hand the
ORWL approach generates much more context switches, but
their total number is still 5 orders of magnitude lower than

3tasks that share a location are mapped close to each other



Table II
ACCUMULATED HARDWARE/SOFTWARE COUNTERS FOR LIVERMORE

KERNEL 23 ON SMP12E5 (64 CORES)

ORWL ORWL (Affinity) OpenMP OpenMP (Affinity)
Billions of L3 misses 81 14.2 81 64

Billions of stalled cycles front-end 840 200 840 720
context switches 99 778 89 151 745 210
CPU migrations 15 960 0 203 0

for the other counters.
We explain the bad performances of the native implemen-

tation, when they use more than one socket, by the schedul-
ing policy performed by the respective systems. In fact,
threads are dynamically placed onto cores of the machine
with different policies: the system of the SMP12E5 (with
Linux 3.10) tries to reduce the number of used NUMA nodes
by even using the hyperthreads, while the scheduler of the
SMP20E7 (Linux 2.6.32) spreads threads evenly over the 20
NUMA nodes of the machine. This explains the performance
gain of our module as we are better in managing locality and
memory accesses by taking into account task affinity.

On the other hand, because ORWL generates a lot of
control threads to manage access to the locations, the number
of thread migrations and of context switches is much higher
for ORWL than for the others. However, this seems not to
impact the performance. On modern Linux systems a context
switch has a cost of about 100 ns. Hence, around 100 000
context switches that are spread over 64 cores correspond to
an overhead of fewer than 2 ms. This is negligible compared
to the overall runtime.

We also see that CPU migration is reduced to 0 when
enabling the affinity strategies (both for OpenMP or ORWL)
as we have a strict binding of the threads to the cores.
The lack of performance difference between the non-affinity
versions, while ORWL exhibits much more migrations, can
be explained by the fact that these migrations mainly concern
control and management threads and not the compute threads
implementing the tasks.

2) Matrix multiplication: Fig. 5 presents performance
comparisons of several implementations multiplying two
16384x16384 matrices of double precision elements.

For a reduced number of cores inside a socket, all na-
tive implementations (without affinity) scale. The 3 MKL
implementations (one without affinity and 2 with scatter or
compact affinity) are slightly better than the two ORWL
implementations. With 8 cores, they reach about 95 Gflop/s
on SMP12E5 and about 65 Gflop/s on SMP20E7. However,
with more than 8 cores, so more than one socket, the
performance deteriorates for all implementations and stops
scaling before using all cores of both architectures. Indeed,
the MKL implementation does not take the topology of
the machine into consideration when mapping threads. For
instance, on the hyperthreaded machine (SMP12E5), the
compact strategy tends to use the cores that are closest
to the master thread. Hence, it maps two compute threads

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

20

50

100

200

500

1000

10

20

50

100

200

500

S
M

P
12E

5 (hyperthreaded)
S

M
P

20E
7 (non hyperthread.)

1 2 4 8 16 32 64 96 160
Nb Cores

G
F

LO
P

S

● ● ●ORWL ORWL (Affinity) MKL MKL(scatter) MKL (compact) 

Figure 5. FLOP/s performances of the Matrix multiplication implemen-
tations, x and y axis are in a logarithmic scale.

Table III
ACCUMULATED HARDWARE/SOFTWARE COUNTERS OF MATRIX

MULTIPLICATION ON SMP12E5 (64 CORES)

Billions of L3 misses Billions of stalled cycles CPU mig. Context sw.
ORWL 102 8110 28963 153 265

ORWL
(Affinity) 13.8 980 0 125 368

MKL 140 8850 486 2 863
MKL
(Affinity scatter) 99 8140 0 2 750

MKL
(Affinity compact) 89 8520 0 3 001

on two hyperthread siblings. Since we are executing a
computation-bound kernel these solutions are worse than
the scatter strategy. By enabling our affinity module (that
takes characteristics of the target machine and the thread
affinity into account to compute an optimal placement based
on grouping threads executing neighbour tasks), the perfor-
mance of all ORWL implementations is enhanced without
changing any line of code. It reaches a maximum of 1 Tflop/s
on SMP12E5 and 0.5 Tflop/s on SMP20E7 using all cores of
the machines. In contrast to that, the MKL implementations
based on affinity optimization4 stagnate and do not improve
the performances.

Again, we have gathered hardware and software counters
for the 64 cores run on the SMP12E5 machine, see Table III.
We see that the ORWL implementation considerably reduces
the number of L3 cache misses and pipeline stalls compared
to the affinity-based MKL implementation. In contrast to
that, the number of CPU migrations and context switches
are considerably higher for ORWL than for the others.

These results can be consistently explained as above: our
management of locality leads to much improved execution
times, due to reduced cache misses and stalls. Again much
higher numbers for thread migration and context switches
do not influence execution times much. On the other hand,

4KMP_AFFINITY=granularity=core,compact and
KMP_AFFINITY=granularity=core,scatter



HD Full HD 4K

1
2

5
10
20

50
100
200

1
2

5
10
20

50
100
200

S
M

P
12E

5
S

M
P

20E
7

F
ra

m
e 

pe
r 

se
co

nd
s

OpenMP OpenMP (Affinity) ORWL ORWL (Affinity) Sequential 

Figure 6. FPS (logarithmic scale) of HD video tracking

the MKL implementation once it is using more than one
socket, is not able to manage data efficiently.

Another interesting observation is that the compact strat-
egy outperforms the scatter strategy for 16 cores, that is
when using two sockets. Hence, we conclude that the com-
pact strategy enforces a better locality by keeping threads
closely together. For more than 16 cores (and more than
2 sockets) both strategies have similar performance. This
shows that the compact strategy is not sufficient to overcome
the lack of awareness for affinity. However, on 8 cores,
we see that the scatter strategy is slightly better on the
SMP12E5 while the compact strategy is slightly better on the
SMP20E7 machine meaning that tuning performance with
these parameters does not lead to portable improvements.

3) Video tracking: Fig. 6 shows the produced frames
per second (FPS) of several implementations of the video
tracking application on SMP12E5 and SMP20E7 archi-
tectures. The implementations we use are based on 30
tasks/threads to process 3 video resolutions: HD (720x1280
pixels), Full HD (1920x1080 pixels), and 4K (3840x2160
pixels). As video tracking is a streaming application, the
aim is to accelerate the FPS in a hardware restricted en-
vironment. Thus, we use only 4 sockets (30 cores) of the
architectures. The OpenMP implementation uses fork-join
in each stage of the image processing pipeline by introduc-
ing #pragma parallel for with static scheduling of
chunks.

We see that the ORWL affinity implementation based on
our module enhances the performance of the native imple-
mentations. In fact, it accelerates by about 4.5x on SMP12E5
and about 2.5x on SMP20E5 without any code re-factoring
or modification. However, we tried many OpenMP imple-
mentation and the affinity version based on OMP_PLACES.
Only the best solution is shown here and it does not produce
a comparable performance enhancement. It accelerates the
FPS by about 2x on SMP12E5 and 1.5x on SMP20E7.

Table IV
ACCUMULATED HARDWARE/SOFTWARE COUNTERS OF VIDEO

TRACKING ON SMP12E5 (30 CORES, HD VIDEO)

ORWL ORWL (Affinity) OpenMP OpenMP (Affinity)
Billions L3 misses 158 49 151 120

Billions of stalled cycles front-end 160 83 840 660
context switches 413821 329263 99778 22241
CPU migrations 61390 0 15960 0

Again, the ORWL affinity mapping (see Fig. 2) by taking
the whole ecosystem into consideration is able to produce
much better and portable performance than approach that do
not take these characteristics into consideration. To assess
the difference of the performance for our affinity optimiza-
tion, we present some hardware and software counters in
Table IV. Here again, we see that the affinity optimization
produced by our strategy allows for significantly decrease
the cache misses of the ORWL implementation and the CPU
stall time. In contrast to that, the OpenMP affinity interfaces
do not significantly decrease these counters.

These performance results are again consistent with or
interpretation that our affinity module improves locality
of data access substantially. We also see that for ORWL,
the improvement is even greater on the SMP12E5 (with
hyper-threading) than on the SMP20E7 (without) while the
opposite holds for the OpenMP version. This validates our
strategy to map all the threads of a task to the same physical
core, such that they can share caches. The potential of the
architecture is then best exploited by assigning one of the
two hyperthreaded cores of the same physical core to the
computation thread and the other to the control threads.

VII. CONCLUSION AND DISCUSSION

In this paper, we presented an affinity module for thread-
base computations in a resource-centric runtime system. Our
module improves the software to hardware mapping based
on automatically extracting and matching communication
behavior and hardware topology. Thanks to this module,
users get full abstraction of the affinity of codes and the
performance portability to the architecture. Application writ-
ers do not need to worry about the architecture complexity
by investigating its topology and characteristics or to profile
their application to extract the computation and communi-
cation behaviors.

In Sections VI, we experimented our approach on 3
applications: a Livermore Kernel 23 benchmark, block cyclic
matrix multiplication and a real world HD video tracking
application. We used 2 multi-core architectures with dif-
ferent characteristics. In all these cases, we show that our
placement approach enhances the performances of the native
ORWL implementation and allows for getting the maximum
potential out of machines with a good scalability. In addi-
tion, it outperforms other non-topology-aware approaches
whereas we tried many different locality optimizations.
Indeed, as soon as we scale beyond one or two sockets,



standard approaches fail to improve performance because
they are unable to take affinity and topology into account.
Interestingly enough, we have observed that, in contrast to
our approach, for OpenMP, the optimizations with the best
performance are application specific. Moreover, when we
move from a target architecture not featuring hyperthreading
to a target featuring hyperthreading, the proposed gains are
even more substantial showing that our approach takes the
most benefit of the available resources. Hence, our approach
is oblivious of the target architecture. To explain the gain we
have monitored hardware and software counters. For each
of the studied application they exhibit the same behavior,
namely a pronounced decrease of L3 cache misses as well
as stalled cycles with our strategy. This shows that our
affinity strategy enables the same low-level optimizations
on all these applications.

The keys of success of our strategy are the following.
First, we take structural information how threads share
data into consideration. Then, we also pay attention to the
execution platform (topology, presence or absence of hyper-
threading, etc.). Last, we abstract these characteristics in the
programming model to achieve portable performance. Our
goal was not to compare programming interfaces. Our prin-
cipal contribution is to show that, implementing an efficient,
portable, automatic and abstracted thread placement module
is achievable as soon as the programming model exhibits the
right abstraction and the runtime system implements a good
mapping strategy. Therefore, we believe that the proposed
approach is generic and can be integrated in other runtime
systems as soon as the programming model provides the
necessary abstraction: expressing the data shared by threads.

ACKNOWLEDGMENT

This work was funded by the Inria IPL multicore. The
experiments presented in this paper were carried out using
the PlaFRIM experimental testbed, being developed under
the Inria PlaFRIM development action with support from
Bordeaux INP, LaBRI and IMB and other entities: Conseil
Régional d’Aquitaine, Université de Bordeaux and CNRS
(and ANR in accordance to the programme d’investissements
d’Avenirs, see https://www.plafrim.fr/).

REFERENCES

[1] L. Yi, Enabling Locality-aware Computations in OpenMP.
University of Houston, 2011. [Online]. Available: https:
//books.google.fr/books?id=oJJwMwEACAAJ

[2] P. Virouleau et al., “Description, Implementation and Evalu-
ation of an Affinity Clause for Task Directives,” in IWOMP
2016, Nara, Japan, Oct. 2016.

[3] J. Bueno et al., “Productive programming of gpu clusters with
ompss,” in 26th Parallel & Distributed Processing Symposium
(IPDPS). IEEE, 2012, pp. 557–568.

[4] A. Muddukrishna, P. A. Jonsson, and M. Brorsson, “Locality-
aware task scheduling and data distribution for OpenMP
programs on NUMA systems and manycore processors,”
Scientific Programming, 2015.

[5] A. Drebes et al., “Topology-aware and dependence-aware
scheduling and memory allocation for task-parallel lan-
guages,” ACM Trans. Archit. Code Optim., vol. 11, no. 3,
pp. 30:1–30:25, Aug. 2014.

[6] ——, “Scalable task parallelism for NUMA: A uniform
abstraction for coordinated scheduling and memory
management,” in Proc. of the 2016 Intern. Conf. on
Parallel Architectures and Compilation, ser. PACT ’16.
New York, NY, USA: ACM, 2016, pp. 125–137. [Online].
Available: http://doi.acm.org/10.1145/2967938.2967946

[7] C. Augonnet et al., “StarPU: a unified platform for task
scheduling on heterogeneous multicore architectures,” Con-
currency and Computation: Practice and Experience, vol. 23,
no. 2, pp. 187–198, 2011.

[8] G. Bosilca et al., “Parsec: Exploiting heterogeneity to enhance
scalability,” Computing in Science & Engineering, vol. 15,
no. 6, pp. 36–45, 2013.

[9] E. Jeannot, “Symbolic Mapping and Allocation for the
Cholesky Factorization on NUMA machines: Results and
Optimizations,” Intern. J. of High Performance Computing
Applications, vol. 27, no. 3, pp. 283–290, 2013.

[10] P.-N. Clauss and J. Gustedt, “Iterative Computations with
Ordered Read-Write Locks,” Journal of Parallel and
Distributed Computing, vol. 70, no. 5, pp. 496–504, 2010.
[Online]. Available: http://hal.inria.fr/inria-00330024/en

[11] F. Broquedis et al., “hwloc: A generic framework for man-
aging hardware affinities in HPC applications,” in 2010 18th
Euromicro Conference, Feb 2010, pp. 180–186.

[12] E. Jeannot, G. Mercier, and F. Tessier, “Process Placement
in Multicore Clusters: Algorithmic Issues and Practical Tech-
niques,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 25, no. 4, pp. 993–1002, Apr. 2014.

[13] J. Dongarra et al., LINPACK Users’ Guide. Society for In-
dustrial and Applied Mathematics, 1979. [Online]. Available:
http://epubs.siam.org/doi/abs/10.1137/1.9781611971811

[14] P. N. Clauss and J. Gustedt, “Experimenting iterative compu-
tations with ordered read-write locks,” in 2010 18th Euromi-
cro Conference on Parallel, Distributed and Network-based
Processing, Feb 2010, pp. 155–162.

[15] S. Ojha and S. Sakhare, “Image processing techniques for
object tracking in video surveillance – a survey,” in Pervasive
Computing (ICPC), 2015 Intern. Conf. on, Jan 2015, pp. 1–6.

[16] T. Yang et al., “Real-time multiple objects tracking with oc-
clusion handling in dynamic scenes,” in 2005 IEEE Computer
Society Conf. on Computer Vision and Pattern Recognition
(CVPR’05), vol. 1, June 2005, pp. 970–975 vol. 1.

[17] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,”
Proceedings of the IEEE, vol. 75, no. 9, pp. 1235–1245, Sept
1987.

https://www.plafrim.fr/
https://books.google.fr/books?id=oJJwMwEACAAJ
https://books.google.fr/books?id=oJJwMwEACAAJ
http://doi.acm.org/10.1145/2967938.2967946
http://hal.inria.fr/inria-00330024/en
http://epubs.siam.org/doi/abs/10.1137/1.9781611971811

	Introduction
	Related Work
	Background and context
	Abstracted affinity add-on for ORWL thread-based runtimes
	Concept
	Implementation

	Benchmarks and application
	Livermore Kernel 23
	Matrix multiplication
	HD Video Tracking

	Experiments and results
	Testbeds and architectures
	Experiments
	Livermore Kernel 23
	Matrix multiplication
	Video tracking


	Conclusion and Discussion
	References

