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Taylor-Couette flow is inevitably associated with the visually appealing toroidal vortices, waves, and spirals that are instigated by linear instability. The linearly stable regimes, however, pose a new challenge: do they undergo transition to turbulence and if so, what is its mechanism? Maretzke et al. (2014) begin to address this question by determining the transient growth over the entire parameter space. They find that in the quasi-Keplerian regime, the optimal perturbations take the form of Taylor columns and that the maximum energy achieved depends only on the shear.

Introduction

Taylor-Couette flow is an ideal test case for hydrodynamics -its Drosophila [START_REF] Van Gils | Optimal Taylor-Couette turbulence[END_REF] or its hydrogen atom [START_REF] Tagg | The Couette-Taylor problem[END_REF]. It has been extensively investigated and its parameters can be varied at will (at least numerically) to combine shear, rotation and curvature. Inner-cylinder-only rotation, the vertical axis of figure 1, is a textbook example of a now well-understood sequence of symmetry-breaking bifurcations. The validation of the Navier-Stokes equations is often thought to date from the observation in 1923 by Taylor of the formation of the now-famous toroidal vortices he had predicted for the linear instability. In later research, increasingly ornate and beautiful experimental patterns were discovered (e.g, [START_REF] Coles | Transition in circular Couette flow[END_REF][START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF]) and corresponding numerical, asymptotic, and theoretical calculations (e.g., [START_REF] Marcus | Simulation of Taylor-Couette flow. II. Numerical results for wavy-vortex flow with one traveling wave[END_REF][START_REF] Langford | Primary instabilities and bicriticality in flow between counter-rotating cylinders[END_REF] reproduced and explained these patterns, again with remarkable accuracy.

In contrast, outer-cylinder-only rotation, the horizontal axis of figure 1, is an example of currently unexplained (sometimes called subcritical or bypass) transition to turbulence [START_REF] Coles | Transition in circular Couette flow[END_REF][START_REF] Borrero-Echeverry | Transient turbulence in Taylor-Couette flow[END_REF]) despite linear stability. Transient growth was proposed in the 1980s and 1990s as a response to this puzzle in plane parallel shear flows, e.g. plane Couette and Poiseuille flow [START_REF] Boberg | Onset of turbulence in a pipe[END_REF][START_REF] Trefethen | Hydrodynamic stability without eigenvalues[END_REF]. Although the eigenvalues governing the linear growth of perturbations all have negative real part, temporary linear growth in the energy norm may nevertheless takes place if flows are initialized with combinations of certain eigenvectors. Optimal perturbations are the initial conditions which achieve maximum growth. For plane-parallel shear flows, the famous theorem of [START_REF] Squire | On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls[END_REF] established that upon increasing the Reynolds number, the perturbations which first become linearly unstable are 2D, meaning that they vary only in the streamwise and cross-channel direction. The optimal perturbations are also 2D (or almost 2D), but in different directions, varying mainly in the spanwise and cross-channel directions. Indeed, spanwise-periodic structures (vortices and streaks) are a prominent feature of turbulent shear flows in experiments and numerical simulation. These are also present in other theories of transition, in particular the self-sustaining process of [START_REF] Waleffe | On a self-sustaining process in shear flows[END_REF]. A useful analogy can be drawn with the usual Taylor vortices, with the correspondence (streamwise ↔ azimuthal) and (spanwise ↔ axial); see, e.g., [START_REF] Nagata | Tertiary solutions and their stability in rotating plane Couette flow[END_REF] and [START_REF] Faisst | Transition from the Couette-Taylor system to the plane Couette system[END_REF].

Another subset of the stable regime, termed quasi-Keplerian, region II of figure 1, has attracted attention as a model for accretion disks [START_REF] Pringle | Accretion discs in astrophysics[END_REF], currently one of the most controversial topics in theoretical astrophysics. Ensembles of stellar matter rotating under gravitational attraction must lose angular momentum at a rate sufficient to collapse inwards. One line of research views this stellar matter as an incompressible fluid rotating with a Keplerian velosity distribution; the issue then becomes that of whether its low "molecular" viscosity can be replaced by a much higher "turbulent" viscosity. Turbulent viscosity requires turbulence, of course, raising the question of whether a Keplerian velocity profile is hydrodynamically stable [START_REF] Yecko | Accretion disk instability revisited[END_REF] 

Summary of Paper

The first calculations of transient growth for Taylor-Couette flow were carried out for counter-rotating cylinders, region IV of figure 1, by [START_REF] Hristova | Transient growth in Taylor-Couette flow[END_REF], who considered axisymmetric perturbations in the plane Couette limit of exact counter-rotation and nearly equal radii, and by [START_REF] Maretzke | Transient growth in linearly stable Taylor-Couette flows[END_REF], who investigated the linearly stable region in which transition to turbulence had been observed by [START_REF] Coles | Transition in circular Couette flow[END_REF]. [START_REF] Maretzke | Transient growth in linearly stable Taylor-Couette flows[END_REF] have accomplished a tour de force by surveying the transient growth for the entire stable three-parameter space of Taylor-Couette flow. In this task, they have been guided by the reparametrization proposed by [START_REF] Dubrulle | Stability and turbulent transport in Taylor-Couette flow from analysis of experimental data[END_REF], replacing the usual inner and outer Reynolds numbers Re i and Re o by a shear Reynolds number Re and a rotation number R Ω , based on the difference and ratio between the Ω o Ω i t 0 =0.0 × 10 -3 t 1 =0.8 × 10 -3 t 2 =1.4 × 10 -3 t 3 =2.0 × 10 -3

Figure 2. Axial cut of an optimal perturbation in the quasi-Keplerian regime and the evolution from it in time. The field is axially symmetric and, in the plane perpendicular to the axis, has a spiral shape which changes orientation over the course of time via the Orr mechanism. From [START_REF] Maretzke | Transient growth in linearly stable Taylor-Couette flows[END_REF].

angular velocities, respectively, of the two cylinders (see figure 1). By astute variation of Re, R Ω and the radius ratio η, [START_REF] Maretzke | Transient growth in linearly stable Taylor-Couette flows[END_REF] have been able to catalog the optimal growth and wavenumbers for all three stable regimes. In the course of their survey, they discovered that in most of the quasi-Keplerian regime, transient growth is optimized by perturbations that vary with the azimuthal angle but are independent (or nearly so) of the axial coordinate; see figure 2. The Taylor-Proudman theorem predicts that rapidly rotating flows are axially invariant and, indeed, [START_REF] Maretzke | Transient growth in linearly stable Taylor-Couette flows[END_REF] find that this effect is strongest for larger R Ω , near the solid-body-rotation line. Thus, the optimal perturbations are approximately perpendicular to the axisymmetric stacked tori of Taylor vortices and the eigenvectors which lead to them. Motivated by this discovery, [START_REF] Maretzke | Transient growth in linearly stable Taylor-Couette flows[END_REF] studied the case of axially-independent perturbations asymptotically using WKB theory. They arrive at the startling conclusion that the associated linear problem depends only on Re and not on R Ω . The fate of axially independent perturbations necessarily provides a lower bound of the energy that can be attained by optimal growth. This bound is independent of Re Ω and scales like Re 2/3 (see [START_REF] Yecko | Accretion disk instability revisited[END_REF]) multiplied by a universal function of η. New exact results for basic flows are few and far between. Here, [START_REF] Maretzke | Transient growth in linearly stable Taylor-Couette flows[END_REF] have accomplished two extremely powerful reductions, from three non-dimensional parameters to two and from three spatial directions to two.

The Future

The transient growth calculation of the Taylor-Couette problem by [START_REF] Maretzke | Transient growth in linearly stable Taylor-Couette flows[END_REF] is exhaustive, powerful and general. The question is that of its applicability. It remains to be established whether and how quasi-Keplerian Taylor-Couette flow undergoes transition to turbulence. Transient growth alone cannot lead to sustained transition [START_REF] Waleffe | Transition in shear flows. nonlinear normality versus nonnormal linearity[END_REF]. What is its role in predicting transition to turbulence? If traces of columnar vortices are seen in experiment or simulations in the quasi-Keplerian regime, in the same way that streamwise vortices and streaks are seen in transitional regimes in planar shear flows, this would provide evidence for the relevance of transient growth.

  Figure 1. (a) Sketch of Taylor-Couette geometry and (b) of the (Rei, Reo) plane, from Maretzke et al. (2014). The parametrization of Dubrulle et al. (2005) divides the plane into four regimes, according to the value of the rotation number RΩ. The linearly stable regime I encompasses the outer-cylinder-rotation axis and II is the quasi-Keplerian regime. Regime III contains the linearly unstable co-rotating region, while the counter-rotating regime IV contains both stable and unstable portions.

  ; Ji et al. 2006; Paoletti & Lathrop 2011; Balbus 2011; Avila 2012; Busse 2007). When maintained by rotating cylinders in Taylor-Couette flow, the Keplerian profile is linearly stable. Can it nevertheless undergo transition to turbulence as do planar shear flows, or is another mechanism involving other physical phenomena, such as the magneto-rotational instability (Balbus & Hawley 1991) the strato-rotational instability (Le Bars & Le Gal 2007), or radial throughflow (Dubrulle et al. 2005; Gallet et al. 2010) required? It is in this context that the stability of the quasi-Keplerian regime of Taylor-Couette flow has taken on significance.