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first.last@limsi.fr

Abstract
This paper explores a new discriminative training procedure for continuous-

space translation models (CTMs) which correlates better with translation
quality than conventional training methods. The core of the method lays
in the definition of a novel objective function which enables us to effec-
tively integrate the CTM with the rest of the translation system through
N -best rescoring. Using a fixed architecture, where we iteratively retrain
the CTM parameters and the log-linear coefficients, we compare various
ways to define and combine training criteria for each of these steps, drawing
inspirations both from max-margin and learning-to-rank techniques. We ex-
perimentally show that a recently introduced loss function, which combines
these two techniques, outperforms several objective functions from the liter-
ature. We also show that ensuring the consistency of the losses used to train
these two sets of parameters is beneficial to the overall performance.

1 Introduction
Over the past years, research on neural networks (NN) architectures for Natural
Language Processing has been rejuvenated. Boosted by early successes in lan-
guage modelling for speech recognition (Schwenk, 2007; Le et al, 2011), NNs
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have since been successufully applied to many other tasks (Socher et al, 2013;
Yang et al, 2013). In particular, these techniques have been applied to Statistical
Machine Translation (SMT), first to estimate continuous-space translation models
(CTMs) (Schwenk et al, 2007; Le et al, 2012; Devlin et al, 2014), more recently
to implement neural end-to-end translation systems (Cho et al, 2014; Sutskever
et al, 2014).

In phase-based SMT settings, CTMs are typically trained by maximizing the
regularized log-likelihood on some parallel training corpora, then used as an ad-
ditional feature in the conventional log-linear model (Och, 2003). Computing the
log-likelihood however requires the costly normalization of scores on the output
layer, and several alternative training objectives have been proposed to speed up
training and inference, such as the Noise Contrastive Estimation (NCE) (Gutmann
and Hyvärinen, 2010). In any case, NN training is usually performed (a) in isola-
tion from the other components of the SMT system and (b) using a criterion that is
unrelated to the actual performance of the SMT system (as measured for instance
by automatic metrics such as BLEU). Therefore, the resulting NN weights may
be under-optimal wrt their intended use.

In this paper, we study a variety of alternative training regimes aimed at ad-
dressing problems (a) and (b). Using a fixed architecture, where we iteratively
retrain the NN parameters and the log-linear coefficients in a rescoring setting,
we compare various ways to define and combine training criteria for each of these
step, drawing inspirations both from max-margin (Watanabe et al, 2007; Chiang
et al, 2008; Cherry and Foster, 2012) and learning-to-rank techniques (Hopkins
and May, 2011; Simianer et al, 2012). Our experiments show that our newly in-
troduced loss, which combines these two techniques, outperforms several widely
used objective functions from the literature; ensuring the consistency of the losses
used to train these two sets of parameters furthermore also significantly improves
our performance. Overall, we were able to report results that surpass a conven-
tional phrase-based system by more than 2.5 BLEU points. This work thus ex-
tends (Do et al, 2015b) by providing a thorough comparison of a much wider array
of training criteria expressed here in a generic framework.

Our starting point is a non-normalized extension of the n-gram CTM (Le et al,
2012) briefly revisited in section 2. We then introduce several objective functions
and the associated optimization procedures in section 3. Our proposals are evalu-
ated in an N -best rescoring step, using the framework of n-gram-based systems,
within which they integrate seamlessly1 (see section 4). We conclude (section 6)
by summing up our main findings and discussing future prospects.

1Note, however that they could be used with any phrase-based system.
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2 n-gram-based CTMs
The n-gram-based approach in Machine Translation is a variant of the phrase-
based approach (Zens et al, 2002). Introduced in (Casacuberta and Vidal, 2004),
and extended in (Mariño et al, 2006; Crego and Mariño, 2006), this approach is
based on a specific factorization of the joint probability of parallel sentence pairs,
where the source sentence has been reordered beforehand.

2.1 n-gram-based Machine Translation
Let (s, t) denote a sentence pair made of a source s and target t sides. This sen-
tence pair is decomposed into a sequence of L bilingual units called tuples defin-
ing a joint segmentation: (s, t) = (u1...uL). Tuples constitute the basic translation
units: like phrase pairs, they represent a matching between a source and a target
chunk. The joint probability of a synchronized and segmented sentence pair can
be decomposed using the n-gram assumption as follows:

P (s, t) =
L∏

i=1

P (ui|ui−1i−n+1), (1)

where ui−1i−n+1 denotes the tuple sequence ui−n+1, . . . , ui−1.2 During training, the
segmentation is obtained as a by-product of source reordering and ultimately de-
rives from initial word and phrase alignments (see (Crego and Mariño, 2006) for
details). During the inference step, the SMT decoder will compute and output the
best derivation in a small set of pre-defined reorderings.

The n-gram translation model manipulates bilingual tuples; the underlying set
of events considered is thus much larger than for word-based language models,
while the training data (parallel corpora) are typically order of magnitude smaller
than monolingual resources. As a consequence, data sparsity issues for such mod-
els are particularly severe. Effective workarounds factorize the conditional prob-
ability of tuples (1) into terms involving smaller units: the resulting model thus
splits bilingual phrases in two sequences of respectively source and target words,
synchronised by the tuple segmentation. Such bilingual word-based n-gram mod-
els were initially described in (Le et al, 2012) and extended in (Devlin et al, 2014).
We assume here a similar decomposition.

2Note that the complete model for a sentence pair involves latent variables that specify the
reordering of the source sentence, as well as its segmentation into translation units. These are
omitted henceforth for the sake of clarity.
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2.2 Neural Architectures
The estimation of n-gram probabilities can be performed via multi-layer NN
structures, as described in (Bengio et al, 2003; Schwenk, 2007) for a monolingual
language model. The standard feed-forward structure is used to estimate the trans-
lation models sketched in the previous section. We give here a brief description,
see details in (Le et al, 2012): first, each context word is projected into language
dependent continuous spaces, using two projection matrices for the source and
target languages. The continuous representations are then concatenated to form
the representation of the context, which is input to a feed-forward NN predicting
a target word.

In this architecture, the size of output vocabulary is a bottleneck when normal-
ized distributions are needed. Various workarounds have been proposed, relying
for instance on a structured output layer using word-classes (Mnih and Hinton,
2008; Le et al, 2011). A more effective alternative, which however only deliv-
ers quasi-normalized scores, is to train the network using the Noise Contrastive
Estimation or NCE (Gutmann and Hyvärinen, 2010; Mnih and Teh, 2012). This
technique is readily applicable for CTMs and has been adopted here. We there-
fore only assume that the NN outputs a positive score bθ(w, c) for each word w
given its context c; this score is simply computed as bθ(w, c) = exp(aθ(w, c)),
where aθ(w, c) is the activation at the output layer; θ denotes all the network free
parameters.

3 Training CTMs discriminatively
In our architecture, the primary role of CTMs is to rerank a set of base hypotheses
so that the best hypotheses (w.r.t some automatic metric such as BLEU (Papineni
et al, 2002)) are also the top scoring ones. Given the computational burden of
evaluating continuous models, an effective use of CTMs is to rescore a list of
N -best hypotheses, a scenario that we favor here; note that their integration in a
first pass search is also possible (Niehues and Waibel, 2012; Vaswani et al, 2013;
Devlin et al, 2014).

In reranking, the CTM score is combined with scores corresponding to other
components of the system, such as the reordering model(s) or the monolingual lan-
guage model(s), etc. We claim that CTM training should take these other scores
into account. In this section, we thus develop a generic discriminative training
framework where the training of the CTM is tightly integrated with the rest of the
system.

4



3.1 A Generic Discriminative Training Framework
The decoder generates a list of N -best hypotheses for each source sentence s.
Each hypothesis h is composed of a target sentence t along with its associated
derivation and is evaluated as follows:

Gλ,θ(s,h) =
K∑

k=1

λkfk(s,h) + λK+1fθ(s,h), (2)

where K conventional feature functions3 f1...fK , estimated during the training
phase, are scaled by coefficients λ1...λK . In equation (2), the pair (s,h) represents
all the latent variables implied in the translation process. In an n-gram-based sys-
tem, they correspond to the reordering and the segmentation into bilingual tuples
(cf. § 2.1). The continuous model used in rescoring adds a supplementary feature
fθ(s,h), which accumulates NN scores over all contexts c and words w in the
derivation:

fθ(s,h) =
∑

(w,c)∈(s,h)

log bθ(w, c).

Gλ,θ thus depends both on the NN parameters θ and on the log-linear coeffi-
cients λ. We propose to jointly train these two sets of parameters, by alternatively
updating θ through stochastic gradient descent on the training corpus and updating
λ using conventional tuning algorithms on the development data. This procedure,
also adopted in recent studies (e.g. (He and Deng, 2012; Gao and He, 2013; Gao
et al, 2014)), is sketched in algorithm 1. For practical reasons, the NN training data
is divided into mini-batches, which are used to compute the sub-gradient of the
appropriate training criterion (denoted by L(θ), see section 3.2.1) and to update
θ. After each training iteration of the CTM, the λs are retuned on the development
set. For that purpose, several optimizers can be used such as Minimum Error Rate
Training (MERT) (Och, 2003), Pairwise Ranking Optimization (PRO) (Hopkins
and May, 2011), or the Margin Infused Relaxed Algorithm (MIRA) (Crammer
and Singer, 2003). All these optimizers are implemented in MOSES.4

Figure 1 recaps the training process. Two training corpora5 are required: the
first one (out-of-domain) is used to train (see left part of Figure 1) a baseline
translation system, the second one (in-domain) (on the right part) to optimize the
NN parameters θ. Our approach departs from conventional training frameworks

3The features used in our experiments are standard phrase-based features, see e.g. (Crego et al,
2011).

4http://www.statmt.org/moses/. For MIRA, we use the KB MIRA implementation
(Cherry and Foster, 2012).

5Note that these corpora need not necessarily be distinct and can also partly overlap. For the
sake of this presentation, we refer to these corpora respectively as the out-of-domain and the in-
domain data. This also corresponds to our experimental setting
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Algorithm 1 Joint optimization of θ and λ

1: Init. of θ and λ
2: for each iteration do
3: for P mini-batch do . λ is fixed
4: Compute the sub-gradient of L(θ) for each sentence s in the mini-

batch
5: Update θ
6: end for
7: Update λ on development set . θ is fixed
8: end for

in the interaction between the NN training and the tuning of the other feature
weights (visualized by red connections in the right bottom of figure 1): for a given
set of λs, the N -best-lists generated for NN training is first rescored by the neural
model allowing us to update θ; a new pass of tuning then reestimates the λs. Note
that implementing this architecture requires to translate the in-domain corpus with
the baseline system, so as to generate the N -lists that are needed to train the NN
parameters (see below). Unlike the baseline system tuning step, we only perform
this decoding once.

3.2 Discriminative Loss Functions
In this section, we describe various loss functions that can be used to discrimina-
tively train CTMs. Starting from max-margin and pairwise ranking approaches,
we define a loss function which borrows ideas from both techniques. We also re-
call the definition of the expected-BLEU criterion,6 initially introduced in (Zens
et al, 2007) and used since in many studies, notably in (Gao et al, 2014).

3.2.1 A max-margin approach

As explained above, each hypothesis hi produced by the decoder is scored accord-
ing to (2). Its quality can also be evaluated by the sentence-level approximation
of the BLEU score SBLEU(hi). Let h∗ denote the hypothesis having the high-
est sentence BLEU score. A max-margin loss function (Freund and Schapire,
1999; McDonald et al, 2005; Watanabe et al, 2007) for estimating θ can then be

6Two variants of expected-BLEU exist in the literature: one (that we use here) takes the ex-
pectation of BLEU score over an approximation of the search space; the other, used for instance
in (Rosti et al, 2010), computes BLEU with expected n-gram statistics.
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Figure 1: The whole training process uses two corpora: the first one to train a
baseline system, while the second one to perform the joint discriminative training
of θ and λ. Each source sentence in the “in-domain” corpus needs to be processed
by the baseline system to generate a list of N -best hypotheses.

formulated as follows:

Lmm(θ) = −Gλ,θ(s,h
∗) + max

1≤j≤N
(Gλ,θ(s,hj) + costα(hj)) , (3)

where costα(hj) = α
(
SBLEU(h∗)−SBLEU(hj)

)
. The parameter α mitigates

the contribution of the cost function to the objective function; when α = 0, this
criterion is equivalent to the structured perceptron loss (Collins, 2002). This ob-
jective function aims to discriminatively learn to give the highest model score to
the hypothesis h∗ having the best sentence level BLEU. Moreover, the margin
term enforces the score difference between h∗ and the rest of the N -best list to be
greater than a margin.

However, it is often the case that the N -best list contains several good transla-
tions, that differ only slightly from the best hypothesis. The max-margin objective
function defined above nevertheless considers all hypotheses, except the best one,
to be wrong. The ranking-based approach defined below tries to correct this weak-
ness.
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3.2.2 Pairwise ranking

Inspired by (Hopkins and May, 2011), we define another objective function that
learns the ranking of a set of hypotheses with respect to their BLEU scores. As-
suming that ri denotes the rank of the hypothesis hi when the N -best list is re-
ordered according to the sentence-level BLEU, this objective is defined as:

Lpro(θ) =
∑

1≤i,k≤N

I{ri+δ≤rk,Gλ,θ(s,hi)<Gλ,θ(s,hk)}

(−Gλ,θ(s,hi) +Gλ,θ(s,hk)) , (4)

where Ix denotes an indicator function which returns 1 when the condition x is
true and 0 otherwise. This loss function only involves a subset of the N(N −1)/2
pairs of hypotheses, since two hypotheses are included in the sum only if they are
sufficiently apart in terms of their ranks: formally, the absolute difference of ranks
should be greater than a predefined threshold δ. Like in PRO (Hopkins and May,
2011), the ranking problem is thus reduced to a binary classification task taking
candidate translation pairs as inputs. A major difference with PRO, though, is the
fact that we use this loss function to train the CTM’s parameters θ, rather than the
feature weights λ.

3.2.3 Combining max-margin and pairwise ranking

The pairwise ranking criterion can be generalized with the notion of margin: for a
pair of hypotheses (hi,hk) such as ri+δ < rk, the scoring differenceGλ,θ(s,hi)−
Gλ,θ(s,hk) should exceed a positive margin. Therefore, a pair of hypotheses is
deemed critical when this constraint is violated and the set of all critical pairs of
hypotheses is defined as:

Cαδ ={(i, k) : 1 ≤ i, k ≤ N, ri + δ ≤ rk, (5)
Gλ,θ(s,hi)−Gλ,θ(s,hk) < costα(hk)− costα(hi)}.

As above, the margin takes into account the sentence-level BLEU scores via the
use of the cost function costα. Taking both the pairwise ranking and the max-
margin criterion into account, we obtain the following objective function:

Lpro−mm(θ) =
∑

(i,k)∈Cαδ

−Gλ,θ(s,hi) +Gλ,θ(s,hk). (6)

When α = 0, this function is equivalent to the pairwise ranking criterion (4).
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3.2.4 Expected-BLEU

Another way to introduce the notion of translation quality consists in approximat-
ing the expectation of the BLEU score using N -best lists. For a given source
sentence, this loss function is defined as:

LxBLEU(θ) =−
∑

1≤i≤N

SBLEU(hi)Pλ,θ(hi|s). (7)

The term Pλ,θ(hi|s) represents the probability of an hypothesis given the source
sentence and can be computed as follows:

Pλ,θ(hi|s) =
exp(γGλ,θ(s,hi))∑

1≤j≤N
exp(γGλ,θ(s,hj))

, (8)

where γ ∈ [0,+∞) is a scaling factor that flattens the distribution for γ < 1 and
sharpens it for γ > 1. Following (Auli and Gao, 2014a), this hyper-parameter is
set to 1. In comparison to the other losses, this loss function takes into account
all the hypotheses in the N -best list, weighting the contribution of each candidate
translation by a measure of its quality.

3.3 Initialization issues
Initialization is an important issue when optimizing neural networks, since the
stochastic gradient descent algorithm only converges to a local optimum. More-
over, our training procedure heavily depends on the log-linear coefficients λ.
These coefficients reflect the relevance of the associated feature functions fk for
ranking hypotheses. However, at the beginning of the discriminative training pro-
cedure, the CTM is close to its random initialization. The related feature function
(fK+1) is therefore not informative and the optimization algorithm will set its co-
efficient (λK+1) near 0. In such configuration, discriminative training is ineffective
since the error signal used to update of the CTM is also close to 0.

As a workaround, experiments (Do et al, 2014, 2015a) show that it is more
efficient to start with a NCE pre-trained NN, while the discriminative loss is used
in a fine-tuning phase. Given the pre-trained CTM’s scores, we initialize λ by
optimizing it on the development set. As the CTM has been pre-trained, this step
always delivers a positive value for λK+1, which will not mislead the discrimina-
tive training. Moreover, this strategy forces the training of θ to focus on errors
made by the system as a whole.
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4 Experiments

4.1 Tasks and Corpora
The discriminative optimization framework is evaluated in an adaptation scenario,
where large out-of-domain corpora are used to train the baseline SMT system,
while the CTM is trained on a much smaller, in-domain corpus and only serves for
rescoring. To assess the impact of this discriminative framework, the experimental
set-up is based on the TED Talks task.7 The parallel in-domain data contains 180K
sentence pairs; the out-of-domain data is much larger and contains all corpora
allowed in the translation shared task of WMT’14 (English-French), amounting
to 12M parallel sentences. In this setup, training the CTM on the in-domain data
as the effect of adapting a large scale out-of-domain system. The retuning phase
for the complete system also uses an in-domain development set.

The baseline translation system is n-code, an open source implementation8 of
the bilingual n-gram approach to MT. A full description of this system is given
in (Allauzen et al, 2013). For the NN architecture, each vocabulary word is pro-
jected into a 500-dimension space followed by two hidden layers of respectively
1000 and 500 units. Each hidden layer has a sigmoid activation function. For
discriminative training, the baseline SMT system is used to generate 300 best hy-
potheses for each sentence of the in-domain corpus. The threshold δ is set to 250.
All our MT experiments use BLEU (Papineni et al, 2002) as the automatic eval-
uation metric; all reported results are averages over 4 optimization runs (the last
update of λ). Additional experiments on hyper-parameters setting are reported
in (Do et al, 2014; Do, 2016).

4.2 Experimental results
Table 1 compares the results obtained under this configuration using the various
loss functions described in section 3.2. The upper part reports baseline scores on
the development and test sets, as well as the improvements obtained by integrating
a CTM. This model is trained using NCE and its addition outperforms the baseline
by 1 BLEU point. This score will serve as the comparison point to evaluate
discriminative loss functions. The lower part of table 1 reports the BLEU scores
obtained with a discriminatively trained CTM. The best results is obtained with
the loss function that combines the max-margin and pairwise ranking. Out of
the four losses, Lpro−mm yields the largest improvement over the NCE baseline,
increasing the BLEU score by more than 1 point. In our setting, Lpro is the second

7http://workshop2014.iwslt.org/
8http://ncode.limsi.fr/
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dev test
n-code Baseline system on WMT 28.5 32.0
n-code Baseline + CTM NCE 29.2 33.0

n-code Baseline + discriminatively trained CTM
Lmm (Max-margin), α = 100 29.6 33.1
Lpro (Pairwise ranking) 29.6 33.4
Lpro−mm, α = 75 29.8 34.1
LxBLEU (expected-BLEU) 29.2 33.0

Table 1: A comparison of discriminative loss functions

dev test
Random init. 28.8 32.7
Monolingual init. 29.6 33.6
Bilingual init. 29.8 34.1

Table 2: Comparison of initialization schemes, where the CTM is initialized ran-
domly, or with two monolingual language models, or simply pre-trained with NCE
criterion (Bilingual init.).

best choice. However, results on the development set suggest that Lpro tends to
overfit, while this effect can be reduced with the margin term of Lpro−mm.

Tables 2 and 3 provides control experiments using the best configuration ob-
served in table 1. Table 2 shows the benefits of choosing an appropriate initial
value for the NN parameter, with a variance of almost 1.5 BLEU between the best
and the worst initialization schemes. Table 3 contrasts several ways to choose the
training data: in the first setting, the baseline system is entirely in-domain, and
the NN is trained with the same data as the baseline; in the second, the baseline
system is out-of-domain, and NN training can be understood as a mere adaptation
using in-domain data. As our result show, the former approach is much worst.
Since the SMT system used to generete the N -best lists is trained on the same
data, it produced unreasonably good n-best lists for the NN learning procedure,
while this is not the case during the tuning and testing steps.9

The training procedure used so far has consistently relied on KB-MIRA to op-
timize the log-linear coefficient, while the NN parameters have been trained with
other losses. In our last experiments, we evaluate the impact of this decision and
contrast KB-MIRA with PRO (Hopkins and May, 2011) for tuning the λs. As it
turns out (Table 4), using a ranking loss both for tuning and training the NN has

9This is reflected in the train column, where we observe an important difference in BLEU
score between the both scenarios.
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dev test train
“Training”

n-code Baseline on TED 28.1 32.3 65.6
n-code Baseline + CTM NCE 28.9 33.1 64.1
n-code Baseline + CTM discriminative 29.0 33.5 64.9

“Adaptation”
n-code Baseline on WMT 28.5 32.0 33.3
n-code Baseline + CTM NCE 29.2 33.0 34.9
n-code Baseline + CTM discriminative 29.8 34.1 35.8

Table 3: BLEU scores for various data selection scenario.

a beneficial effect and we managed to obtain our best results with combinations
of PRO and Lpro (+1.3 BLEU) and of PRO and Lpro−mm (+1.6 BLEU). Note
that in this case both losses are consistent. The results obtained using consistent
max-margin criteria are comparatively much worse: this suggests that our imple-
mentation of Lmm might be suboptimal, and could be improved by smoothing the
BLEU-based criteria, as is done in KB-MIRA.

Loss for λ
MIRA PRO

Loss for θ dev test dev test
n-code Baseline 28.5 32.0 27.8 31.7
n-code Baseline + CTM NCE 29.2 33.0 28.8 33.7

n-code Baseline + discriminatively trained CTM
Lmm (Max-margin), α = 100 29.6 32.9 28.7 33.0
Lpro (Pairwise ranking) 29.6 33.4 29.2 34.3
Lpro−mm, α = 75 29.8 34.1 29.4 34.6

Table 4: Comparison between the loss functions used to optimize θ and λ

5 Related work
Conventional MT systems, be they phrase-based, n-gram based, syntax-based or
hierarchical, are typically trained in two steps: the first step (training) estimates
individual features functions; the second one (tuning) learns to combine these
features so as to optimize translation quality, for instance using Minimum Error
Rate Training (MERT) (Och, 2003). The limitations of MERT, notably its inability
to train feature sets containing more than a dozen of features, have long been
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reported, and more effective discriminative training procedures have been sought
(see (Neubig and Watanabe, 2016) for a recent review).

Early proposals have investigated the use of global optimization frameworks to
train a complete translation model (Liang et al, 2006; Blunsom et al, 2008; Blun-
som and Osborne, 2008; Dyer and Resnik, 2010; Lavergne et al, 2011, 2013). In
this framework, all the parameters are learnt discriminatively in a unified manner,
by optimizing a well-understood objective function, such as the log-likelihood,
over the entire training set. This methodology dispenses with the need to build
separate models and to tune their interpolation weights. No matter how appealing
this approach might sound, these approaches do not scale up to large systems, and
face fundamental design problems, such as the choice of appropriate references
(or pseudo-references); moreover, it is not immediately obvious how they could
integrate continous space models.

Regarding the loss function, perceptron-based learning has first been intro-
duced in (Shen and Joshi, 2005; Liang et al, 2006). However, margin-based algo-
rithms such as MIRA (Watanabe et al, 2007; Chiang et al, 2008; Cherry and Fos-
ter, 2012) are nowadays considered as more efficient to train feature-rich trans-
lation systems. This property is particularly relevant in our setting, as we learn
large sets of parameters (θ and λ). Another recent popular trend has been to adapt
the learning to rank framework to tune SMT systems (Shen et al, 2004; Shen and
Joshi, 2005; Hopkins and May, 2011; Simianer et al, 2012). The ranking task cor-
responds to the integration of CTM based on N -best list rescoring. Our objective
functions borrow from these two lines of research to both train the CTM (θ) and
to tune its contribution (λ). This procedure can thus be considered as an instance
of discriminative integrated training.

The architecture described in section 3 has previously been used to jointly train
parameters of sparse (θ) and dense (λ) features: in (He and Deng, 2012; Gao and
He, 2013; Gao et al, 2014) the sparse features are phrase pairs, in (Auli and Gao,
2014a) θ parameterizes a recurrent NNLM. Note that all these works optimize
expected-BLEU, which is another way to take multiple hypotheses (and not just
the best one) into account when training the system. In these studies, the θs are
trained only once, whereas we see benefits in performing multiple iterations of
the general procedure sketched in Algorithm 1. Also note that although N -best
rescoring is used in this work to facilitate discriminative training, the integration of
CTM’s into SMT could be performed differently, eg. with lattice reranking (Auli
et al, 2013) or direct decoding with CTM (Niehues and Waibel, 2012; Devlin et al,
2014; Auli and Gao, 2014a).

To the best of our knowledge, the most similar work on discriminative training
or adaptation of neural network models is (Gao et al, 2014). The authors pro-
pose to estimate a neural network-based phrase translation model using expected-
BLEU, while tuning λs with standard tools, a strategy we also adopt here. We
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however consider alternative loss functions and also preserve the sequential struc-
ture of joint model, where (Gao et al, 2014) uses a separate bag-of-word rep-
resentation of source and target phrases. Expected-BLEU training has also been
applied to recurrent NNLM (Auli and Gao, 2014b). For ranking language models,
(Collobert and Weston, 2008; Collobert et al, 2011) also introduce a ranking-type
objective function, but which aims only to estimate word embeddings in a multi-
task learning framework. Furthermore, (Socher et al, 2013) investigates the use of
a max-margin criterion to train a recursive neural network for syntactic parsing.
Interestingly, their model is also used to rerank N -best derivations generated by
a conventional probabilistic context-free grammar. However, as showed in our
experiments, the max-margin criterion alone is less adapted to SMT as it lacks of
a truly reliable and unambiguous metrics for evaluating translation quality.

Regarding the CTM’s structure, our model is based on the feed-forward CTM
described in (Le et al, 2012) and extended in (Devlin et al, 2014). This structure,
though simple, has been shown to achieve consistent improvement in performance
over a wide array of tasks. Moreover, efficient computational tricks are available
for this architecture and greatly speed up training and inference. While the models
in (Le et al, 2012) employ a structured output layer to reduce the cost of softmax
operations, we have chosen here to use a self-normalized NCE training, which
is also very efficient. Another form of self-normalization is presented in (Devlin
et al, 2014), but is computationnally less efficient.

This review would not be complete without mentioning Neural Machine Trans-
lation (NMT) systems (Cho et al, 2014; Bahdanau et al, 2014; Sutskever et al,
2014). These recent architectures implement an arguably more direct model of
translation, which is entirely computed with recurrent NNs; training however usu-
ally optimizes the log-likelihood, where we successfully attempt to optimize a
translation quality metric. Such discrimininative criteria could certainly also be
used for training NMT, as was already done for expected-BLEU in (Shen et al,
2015).

6 Conclusions
In this paper, we have proposed a new discriminative training procedure for continuous-
space translation models, which correlates better with translation quality than con-
ventional training methods. This procedure has been validated using an n-gram-
based CTM, but the general idea could be applied to other continuous models
which compute a score for each translation hypothesis. The core of the method
lays in the definition of a new objective function inspired both from max-margin
and Pairwise Ranking approach in MT, which enables us to effectively integrate
the CTM into the SMT system throughN -best rescoring. A major difference with
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most past efforts along these lines is the joint training of the CTM and the log-
linear parameters. In all our experiments, discriminative training, when applied
on a CTM initially trained with NCE, yields substantial performance gains.
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