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This paper explores a new discriminative training procedure for continuousspace translation models (CTMs) which correlates better with translation quality than conventional training methods. The core of the method lays in the definition of a novel objective function which enables us to effectively integrate the CTM with the rest of the translation system through N -best rescoring. Using a fixed architecture, where we iteratively retrain the CTM parameters and the log-linear coefficients, we compare various ways to define and combine training criteria for each of these steps, drawing inspirations both from max-margin and learning-to-rank techniques. We experimentally show that a recently introduced loss function, which combines these two techniques, outperforms several objective functions from the literature. We also show that ensuring the consistency of the losses used to train these two sets of parameters is beneficial to the overall performance.

Introduction

Over the past years, research on neural networks (NN) architectures for Natural Language Processing has been rejuvenated. Boosted by early successes in language modelling for speech recognition [START_REF] Schwenk | Continuous space language models[END_REF][START_REF] Le | Structured output layer neural network language model[END_REF], NNs have since been successufully applied to many other tasks [START_REF] Socher | Parsing with compositional vector grammars[END_REF][START_REF] Yang | Word alignment modeling with context dependent deep neural networks[END_REF]. In particular, these techniques have been applied to Statistical Machine Translation (SMT), first to estimate continuous-space translation models (CTMs) [START_REF] Schwenk | Smooth bilingual n-gram translation[END_REF][START_REF] Le | Continuous space translation models with neural networks[END_REF][START_REF] Devlin | Fast and robust neural network joint models for statistical machine translation[END_REF], more recently to implement neural end-to-end translation systems [START_REF] Cho | Learning phrase representations using RNN encoder-decoder for statistical machine translation[END_REF][START_REF] Sutskever | Sequence to sequence learning with neural networks[END_REF].

In phase-based SMT settings, CTMs are typically trained by maximizing the regularized log-likelihood on some parallel training corpora, then used as an additional feature in the conventional log-linear model [START_REF] Och | Minimum error rate training in statistical machine translation[END_REF]. Computing the log-likelihood however requires the costly normalization of scores on the output layer, and several alternative training objectives have been proposed to speed up training and inference, such as the Noise Contrastive Estimation (NCE) [START_REF] Gutmann | Noise-contrastive estimation: A new estimation principle for unnormalized statistical models[END_REF]. In any case, NN training is usually performed (a) in isolation from the other components of the SMT system and (b) using a criterion that is unrelated to the actual performance of the SMT system (as measured for instance by automatic metrics such as BLEU). Therefore, the resulting NN weights may be under-optimal wrt their intended use.

In this paper, we study a variety of alternative training regimes aimed at addressing problems (a) and (b). Using a fixed architecture, where we iteratively retrain the NN parameters and the log-linear coefficients in a rescoring setting, we compare various ways to define and combine training criteria for each of these step, drawing inspirations both from max-margin [START_REF] Watanabe | Online large-margin training for statistical machine translation[END_REF][START_REF] Chiang | Online large-margin training of syntactic and structural translation features[END_REF][START_REF] Cherry | Batch tuning strategies for statistical machine translation[END_REF] and learning-to-rank techniques [START_REF] Hopkins | Tuning as ranking[END_REF][START_REF] Simianer | Joint feature selection in distributed stochastic learning for large-scale discriminative training in SMT[END_REF]. Our experiments show that our newly introduced loss, which combines these two techniques, outperforms several widely used objective functions from the literature; ensuring the consistency of the losses used to train these two sets of parameters furthermore also significantly improves our performance. Overall, we were able to report results that surpass a conventional phrase-based system by more than 2.5 BLEU points. This work thus extends (Do et al, 2015b) by providing a thorough comparison of a much wider array of training criteria expressed here in a generic framework.

Our starting point is a non-normalized extension of the n-gram CTM [START_REF] Le | Continuous space translation models with neural networks[END_REF] briefly revisited in section 2. We then introduce several objective functions and the associated optimization procedures in section 3. Our proposals are evaluated in an N -best rescoring step, using the framework of n-gram-based systems, within which they integrate seamlessly1 (see section 4). We conclude (section 6) by summing up our main findings and discussing future prospects.

n-gram-based CTMs

The n-gram-based approach in Machine Translation is a variant of the phrasebased approach [START_REF] Zens | Phrase-based statistical machine translation[END_REF]. Introduced in [START_REF] Casacuberta | Machine translation with inferred stochastic finitestate transducers[END_REF], and extended in [START_REF] Mariño | N-gram-based machine translation[END_REF][START_REF] Crego | Improving statistical MT by coupling reordering and decoding[END_REF], this approach is based on a specific factorization of the joint probability of parallel sentence pairs, where the source sentence has been reordered beforehand.

n-gram-based Machine Translation

Let (s, t) denote a sentence pair made of a source s and target t sides. This sentence pair is decomposed into a sequence of L bilingual units called tuples defining a joint segmentation: (s, t) = (u 1 ...u L ). Tuples constitute the basic translation units: like phrase pairs, they represent a matching between a source and a target chunk. The joint probability of a synchronized and segmented sentence pair can be decomposed using the n-gram assumption as follows:

P (s, t) = L i=1 P (u i |u i-1 i-n+1 ), (1) 
where u i-1 i-n+1 denotes the tuple sequence u i-n+1 , . . . , u i-1 .2 During training, the segmentation is obtained as a by-product of source reordering and ultimately derives from initial word and phrase alignments (see [START_REF] Crego | Improving statistical MT by coupling reordering and decoding[END_REF] for details). During the inference step, the SMT decoder will compute and output the best derivation in a small set of pre-defined reorderings.

The n-gram translation model manipulates bilingual tuples; the underlying set of events considered is thus much larger than for word-based language models, while the training data (parallel corpora) are typically order of magnitude smaller than monolingual resources. As a consequence, data sparsity issues for such models are particularly severe. Effective workarounds factorize the conditional probability of tuples (1) into terms involving smaller units: the resulting model thus splits bilingual phrases in two sequences of respectively source and target words, synchronised by the tuple segmentation. Such bilingual word-based n-gram models were initially described in [START_REF] Le | Continuous space translation models with neural networks[END_REF] and extended in [START_REF] Devlin | Fast and robust neural network joint models for statistical machine translation[END_REF]. We assume here a similar decomposition.

Neural Architectures

The estimation of n-gram probabilities can be performed via multi-layer NN structures, as described in [START_REF] Bengio | A neural probabilistic language model[END_REF][START_REF] Schwenk | Continuous space language models[END_REF] for a monolingual language model. The standard feed-forward structure is used to estimate the translation models sketched in the previous section. We give here a brief description, see details in [START_REF] Le | Continuous space translation models with neural networks[END_REF]: first, each context word is projected into language dependent continuous spaces, using two projection matrices for the source and target languages. The continuous representations are then concatenated to form the representation of the context, which is input to a feed-forward NN predicting a target word.

In this architecture, the size of output vocabulary is a bottleneck when normalized distributions are needed. Various workarounds have been proposed, relying for instance on a structured output layer using word-classes [START_REF] Mnih | A scalable hierarchical distributed language model[END_REF][START_REF] Le | Structured output layer neural network language model[END_REF]. A more effective alternative, which however only delivers quasi-normalized scores, is to train the network using the Noise Contrastive Estimation or NCE [START_REF] Gutmann | Noise-contrastive estimation: A new estimation principle for unnormalized statistical models[END_REF][START_REF] Mnih | A fast and simple algorithm for training neural probabilistic language models[END_REF]. This technique is readily applicable for CTMs and has been adopted here. We therefore only assume that the NN outputs a positive score b θ (w, c) for each word w given its context c; this score is simply computed as b θ (w, c) = exp(a θ (w, c)), where a θ (w, c) is the activation at the output layer; θ denotes all the network free parameters.

Training CTMs discriminatively

In our architecture, the primary role of CTMs is to rerank a set of base hypotheses so that the best hypotheses (w.r.t some automatic metric such as BLEU [START_REF] Papineni | Bleu: a method for automatic evaluation of machine translation[END_REF]) are also the top scoring ones. Given the computational burden of evaluating continuous models, an effective use of CTMs is to rescore a list of N -best hypotheses, a scenario that we favor here; note that their integration in a first pass search is also possible [START_REF] Niehues | Continuous space language models using restricted Boltzmann machines[END_REF][START_REF] Vaswani | Decoding with large-scale neural language models improves translation[END_REF][START_REF] Devlin | Fast and robust neural network joint models for statistical machine translation[END_REF].

In reranking, the CTM score is combined with scores corresponding to other components of the system, such as the reordering model(s) or the monolingual language model(s), etc. We claim that CTM training should take these other scores into account. In this section, we thus develop a generic discriminative training framework where the training of the CTM is tightly integrated with the rest of the system.

A Generic Discriminative Training Framework

The decoder generates a list of N -best hypotheses for each source sentence s. Each hypothesis h is composed of a target sentence t along with its associated derivation and is evaluated as follows:

G λ,θ (s, h) = K k=1 λ k f k (s, h) + λ K+1 f θ (s, h), (2) 
where K conventional feature functions3 f 1 ...f K , estimated during the training phase, are scaled by coefficients λ 1 ...λ K . In equation ( 2), the pair (s, h) represents all the latent variables implied in the translation process. In an n-gram-based system, they correspond to the reordering and the segmentation into bilingual tuples (cf. § 2.1). The continuous model used in rescoring adds a supplementary feature f θ (s, h), which accumulates NN scores over all contexts c and words w in the derivation:

f θ (s, h) = (w,c)∈(s,h) log b θ (w, c).
G λ,θ thus depends both on the NN parameters θ and on the log-linear coefficients λ. We propose to jointly train these two sets of parameters, by alternatively updating θ through stochastic gradient descent on the training corpus and updating λ using conventional tuning algorithms on the development data. This procedure, also adopted in recent studies (e.g. [START_REF] He | Maximum expected bleu training of phrase and lexicon translation models[END_REF][START_REF] Gao | Training MRF-Based Phrase Translation Models using Gradient Ascent[END_REF][START_REF] Gao | Learning continuous phrase representations for translation modeling[END_REF]), is sketched in algorithm 1. For practical reasons, the NN training data is divided into mini-batches, which are used to compute the sub-gradient of the appropriate training criterion (denoted by L(θ), see section 3.2.1) and to update θ. After each training iteration of the CTM, the λs are retuned on the development set. For that purpose, several optimizers can be used such as Minimum Error Rate Training (MERT) [START_REF] Och | Minimum error rate training in statistical machine translation[END_REF], Pairwise Ranking Optimization (PRO) [START_REF] Hopkins | Tuning as ranking[END_REF], or the Margin Infused Relaxed Algorithm (MIRA) [START_REF] Crammer | Ultraconservative online algorithms for multiclass problems[END_REF]. All these optimizers are implemented in MOSES. 4Figure 1 recaps the training process. Two training corpora5 are required: the first one (out-of-domain) is used to train (see left part of Figure 1) a baseline translation system, the second one (in-domain) (on the right part) to optimize the NN parameters θ. Our approach departs from conventional training frameworks Algorithm 1 Joint optimization of θ and λ 1: Init. of θ and λ 2: for each iteration do Update λ on development set θ is fixed 8: end for in the interaction between the NN training and the tuning of the other feature weights (visualized by red connections in the right bottom of figure 1): for a given set of λs, the N -best-lists generated for NN training is first rescored by the neural model allowing us to update θ; a new pass of tuning then reestimates the λs. Note that implementing this architecture requires to translate the in-domain corpus with the baseline system, so as to generate the N -lists that are needed to train the NN parameters (see below). Unlike the baseline system tuning step, we only perform this decoding once.

Discriminative Loss Functions

In this section, we describe various loss functions that can be used to discriminatively train CTMs. Starting from max-margin and pairwise ranking approaches, we define a loss function which borrows ideas from both techniques. We also recall the definition of the expected-BLEU criterion,6 initially introduced in [START_REF] Zens | A systematic comparison of training criteria for statistical machine translation[END_REF]) and used since in many studies, notably in [START_REF] Gao | Learning continuous phrase representations for translation modeling[END_REF].

A max-margin approach

As explained above, each hypothesis h i produced by the decoder is scored according to (2). Its quality can also be evaluated by the sentence-level approximation of the BLEU score SBLEU (h i ). Let h * denote the hypothesis having the highest sentence BLEU score. A max-margin loss function [START_REF] Freund | Large margin classification using the perceptron algorithm[END_REF][START_REF] Mcdonald | Online large-margin training of dependency parsers[END_REF][START_REF] Watanabe | Online large-margin training for statistical machine translation[END_REF] for estimating θ can then be 
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Figure 1: The whole training process uses two corpora: the first one to train a baseline system, while the second one to perform the joint discriminative training of θ and λ. Each source sentence in the "in-domain" corpus needs to be processed by the baseline system to generate a list of N -best hypotheses. formulated as follows:

L mm (θ) = -G λ,θ (s, h * ) + max 1≤j≤N (G λ,θ (s, h j ) + cost α (h j )) , (3) 
where cost α (h j ) = α SBLEU (h * ) -SBLEU (h j ) . The parameter α mitigates the contribution of the cost function to the objective function; when α = 0, this criterion is equivalent to the structured perceptron loss [START_REF] Collins | Discriminative training methods for hidden Markov models: theory and experiments with perceptron algorithms[END_REF]. This objective function aims to discriminatively learn to give the highest model score to the hypothesis h * having the best sentence level BLEU. Moreover, the margin term enforces the score difference between h * and the rest of the N -best list to be greater than a margin. However, it is often the case that the N -best list contains several good translations, that differ only slightly from the best hypothesis. The max-margin objective function defined above nevertheless considers all hypotheses, except the best one, to be wrong. The ranking-based approach defined below tries to correct this weakness.

Pairwise ranking

Inspired by [START_REF] Hopkins | Tuning as ranking[END_REF], we define another objective function that learns the ranking of a set of hypotheses with respect to their BLEU scores. Assuming that r i denotes the rank of the hypothesis h i when the N -best list is reordered according to the sentence-level BLEU, this objective is defined as:

L pro (θ) = 1≤i,k≤N I {r i +δ≤r k ,G λ,θ (s,h i )<G λ,θ (s,h k )} (-G λ,θ (s, h i ) + G λ,θ (s, h k )) , (4) 
where I x denotes an indicator function which returns 1 when the condition x is true and 0 otherwise. This loss function only involves a subset of the N (N -1)/2 pairs of hypotheses, since two hypotheses are included in the sum only if they are sufficiently apart in terms of their ranks: formally, the absolute difference of ranks should be greater than a predefined threshold δ. Like in PRO [START_REF] Hopkins | Tuning as ranking[END_REF], the ranking problem is thus reduced to a binary classification task taking candidate translation pairs as inputs. A major difference with PRO, though, is the fact that we use this loss function to train the CTM's parameters θ, rather than the feature weights λ.

Combining max-margin and pairwise ranking

The pairwise ranking criterion can be generalized with the notion of margin: for a pair of hypotheses (h i , h k ) such as r i +δ < r k , the scoring difference G λ,θ (s, h i )-G λ,θ (s, h k ) should exceed a positive margin. Therefore, a pair of hypotheses is deemed critical when this constraint is violated and the set of all critical pairs of hypotheses is defined as:

C α δ ={(i, k) : 1 ≤ i, k ≤ N, r i + δ ≤ r k , (5) G λ,θ (s, h i ) -G λ,θ (s, h k ) < cost α (h k ) -cost α (h i )}.
As above, the margin takes into account the sentence-level BLEU scores via the use of the cost function cost α . Taking both the pairwise ranking and the maxmargin criterion into account, we obtain the following objective function:

L pro-mm (θ) = (i,k)∈C α δ -G λ,θ (s, h i ) + G λ,θ (s, h k ). (6) 
When α = 0, this function is equivalent to the pairwise ranking criterion (4).

Expected-BLEU

Another way to introduce the notion of translation quality consists in approximating the expectation of the BLEU score using N -best lists. For a given source sentence, this loss function is defined as:

L xBLEU (θ) = - 1≤i≤N SBLEU (h i )P λ,θ (h i |s). (7) 
The term P λ,θ (h i |s) represents the probability of an hypothesis given the source sentence and can be computed as follows:

P λ,θ (h i |s) = exp(γG λ,θ (s, h i )) 1≤j≤N exp(γG λ,θ (s, h j )) , (8) 
where γ ∈ [0, +∞) is a scaling factor that flattens the distribution for γ < 1 and sharpens it for γ > 1. Following (Auli and Gao, 2014a), this hyper-parameter is set to 1. In comparison to the other losses, this loss function takes into account all the hypotheses in the N -best list, weighting the contribution of each candidate translation by a measure of its quality.

Initialization issues

Initialization is an important issue when optimizing neural networks, since the stochastic gradient descent algorithm only converges to a local optimum. Moreover, our training procedure heavily depends on the log-linear coefficients λ. These coefficients reflect the relevance of the associated feature functions f k for ranking hypotheses. However, at the beginning of the discriminative training procedure, the CTM is close to its random initialization. The related feature function (f K+1 ) is therefore not informative and the optimization algorithm will set its coefficient (λ K+1 ) near 0. In such configuration, discriminative training is ineffective since the error signal used to update of the CTM is also close to 0. As a workaround, experiments [START_REF] Do | Discriminative adaptation of continuous space translation models[END_REF](Do et al, , 2015a) ) show that it is more efficient to start with a NCE pre-trained NN, while the discriminative loss is used in a fine-tuning phase. Given the pre-trained CTM's scores, we initialize λ by optimizing it on the development set. As the CTM has been pre-trained, this step always delivers a positive value for λ K+1 , which will not mislead the discriminative training. Moreover, this strategy forces the training of θ to focus on errors made by the system as a whole.

Experiments

Tasks and Corpora

The discriminative optimization framework is evaluated in an adaptation scenario, where large out-of-domain corpora are used to train the baseline SMT system, while the CTM is trained on a much smaller, in-domain corpus and only serves for rescoring. To assess the impact of this discriminative framework, the experimental set-up is based on the TED Talks task. 7 The parallel in-domain data contains 180K sentence pairs; the out-of-domain data is much larger and contains all corpora allowed in the translation shared task of WMT'14 (English-French), amounting to 12M parallel sentences. In this setup, training the CTM on the in-domain data as the effect of adapting a large scale out-of-domain system. The retuning phase for the complete system also uses an in-domain development set.

The baseline translation system is n-code, an open source implementation8 of the bilingual n-gram approach to MT. A full description of this system is given in [START_REF] Allauzen | LIMSI @ WMT13[END_REF]. For the NN architecture, each vocabulary word is projected into a 500-dimension space followed by two hidden layers of respectively 1000 and 500 units. Each hidden layer has a sigmoid activation function. For discriminative training, the baseline SMT system is used to generate 300 best hypotheses for each sentence of the in-domain corpus. The threshold δ is set to 250. All our MT experiments use BLEU [START_REF] Papineni | Bleu: a method for automatic evaluation of machine translation[END_REF] as the automatic evaluation metric; all reported results are averages over 4 optimization runs (the last update of λ). Additional experiments on hyper-parameters setting are reported in [START_REF] Do | Discriminative adaptation of continuous space translation models[END_REF][START_REF] Do | Discriminative adaptation of continuous space translation models[END_REF].

Experimental results

Table 1 compares the results obtained under this configuration using the various loss functions described in section 3.2. The upper part reports baseline scores on the development and test sets, as well as the improvements obtained by integrating a CTM. This model is trained using NCE and its addition outperforms the baseline by 1 BLEU point. This score will serve as the comparison point to evaluate discriminative loss functions. The lower part of table 1 reports the BLEU scores obtained with a discriminatively trained CTM. The best results is obtained with the loss function that combines the max-margin and pairwise ranking. Out of the four losses, L pro-mm yields the largest improvement over the NCE baseline, increasing the BLEU score by more than 1 point. In our setting, L pro is the second best choice. However, results on the development set suggest that L pro tends to overfit, while this effect can be reduced with the margin term of L pro-mm . Tables 2 and3 provides control experiments using the best configuration observed in table 1. Table 2 shows the benefits of choosing an appropriate initial value for the NN parameter, with a variance of almost 1.5 BLEU between the best and the worst initialization schemes. Table 3 contrasts several ways to choose the training data: in the first setting, the baseline system is entirely in-domain, and the NN is trained with the same data as the baseline; in the second, the baseline system is out-of-domain, and NN training can be understood as a mere adaptation using in-domain data. As our result show, the former approach is much worst. Since the SMT system used to generete the N -best lists is trained on the same data, it produced unreasonably good n-best lists for the NN learning procedure, while this is not the case during the tuning and testing steps. 9The training procedure used so far has consistently relied on KB-MIRA to optimize the log-linear coefficient, while the NN parameters have been trained with other losses. In our last experiments, we evaluate the impact of this decision and contrast KB-MIRA with PRO [START_REF] Hopkins | Tuning as ranking[END_REF] for tuning the λs. As it turns out (Table 4), using a ranking loss both for tuning and training the NN has dev test train "Training" n-code Baseline on TED 28.1 32.3 65.6 n-code Baseline + CTM NCE 28.9 33.1 64.1 n-code Baseline + CTM discriminative 29.0 33.5 64.9

"Adaptation" n-code Baseline on WMT 28.5 32.0 33.3 n-code Baseline + CTM NCE 29.2 33.0 34.9 n-code Baseline + CTM discriminative 29.8 34.1 35.8

Table 3: BLEU scores for various data selection scenario.

a beneficial effect and we managed to obtain our best results with combinations of PRO and L pro (+1.3 BLEU) and of PRO and L pro-mm (+1.6 BLEU). Note that in this case both losses are consistent. The results obtained using consistent max-margin criteria are comparatively much worse: this suggests that our implementation of L mm might be suboptimal, and could be improved by smoothing the BLEU-based criteria, as is done in KB-MIRA. [START_REF] Och | Minimum error rate training in statistical machine translation[END_REF]. The limitations of MERT, notably its inability to train feature sets containing more than a dozen of features, have long been reported, and more effective discriminative training procedures have been sought (see [START_REF] Neubig | Optimization for statistical machine translation: A survey[END_REF] for a recent review).

Early proposals have investigated the use of global optimization frameworks to train a complete translation model [START_REF] Liang | An end-to-end discriminative approach to machine translation[END_REF]Blunsom et al, 2008;Blunsom and Osborne, 2008;[START_REF] Dyer | Context-free reordering, finite-state translation[END_REF][START_REF] Lavergne | From n-gram-based to CRFbased translation models[END_REF][START_REF] Lavergne | Un cadre d'apprentissage intégralement discriminant pour la traduction statistique[END_REF]. In this framework, all the parameters are learnt discriminatively in a unified manner, by optimizing a well-understood objective function, such as the log-likelihood, over the entire training set. This methodology dispenses with the need to build separate models and to tune their interpolation weights. No matter how appealing this approach might sound, these approaches do not scale up to large systems, and face fundamental design problems, such as the choice of appropriate references (or pseudo-references); moreover, it is not immediately obvious how they could integrate continous space models.

Regarding the loss function, perceptron-based learning has first been introduced in [START_REF] Shen | Ranking and reranking with perceptron[END_REF][START_REF] Liang | An end-to-end discriminative approach to machine translation[END_REF]. However, margin-based algorithms such as MIRA [START_REF] Watanabe | Online large-margin training for statistical machine translation[END_REF][START_REF] Chiang | Online large-margin training of syntactic and structural translation features[END_REF][START_REF] Cherry | Batch tuning strategies for statistical machine translation[END_REF] are nowadays considered as more efficient to train feature-rich translation systems. This property is particularly relevant in our setting, as we learn large sets of parameters (θ and λ). Another recent popular trend has been to adapt the learning to rank framework to tune SMT systems [START_REF] Shen | Discriminative reranking for machine translation[END_REF][START_REF] Shen | Ranking and reranking with perceptron[END_REF][START_REF] Hopkins | Tuning as ranking[END_REF][START_REF] Simianer | Joint feature selection in distributed stochastic learning for large-scale discriminative training in SMT[END_REF]. The ranking task corresponds to the integration of CTM based on N -best list rescoring. Our objective functions borrow from these two lines of research to both train the CTM (θ) and to tune its contribution (λ). This procedure can thus be considered as an instance of discriminative integrated training.

The architecture described in section 3 has previously been used to jointly train parameters of sparse (θ) and dense (λ) features: in [START_REF] He | Maximum expected bleu training of phrase and lexicon translation models[END_REF][START_REF] Gao | Training MRF-Based Phrase Translation Models using Gradient Ascent[END_REF][START_REF] Gao | Learning continuous phrase representations for translation modeling[END_REF] the sparse features are phrase pairs, in (Auli and Gao, 2014a) θ parameterizes a recurrent NNLM. Note that all these works optimize expected-BLEU, which is another way to take multiple hypotheses (and not just the best one) into account when training the system. In these studies, the θs are trained only once, whereas we see benefits in performing multiple iterations of the general procedure sketched in Algorithm 1. Also note that although N -best rescoring is used in this work to facilitate discriminative training, the integration of CTM's into SMT could be performed differently, eg. with lattice reranking [START_REF] Auli | Joint language and translation modeling with recurrent neural networks[END_REF] or direct decoding with CTM [START_REF] Niehues | Continuous space language models using restricted Boltzmann machines[END_REF][START_REF] Devlin | Fast and robust neural network joint models for statistical machine translation[END_REF]Auli and Gao, 2014a).

To the best of our knowledge, the most similar work on discriminative training or adaptation of neural network models is [START_REF] Gao | Learning continuous phrase representations for translation modeling[END_REF]. The authors propose to estimate a neural network-based phrase translation model using expected-BLEU, while tuning λs with standard tools, a strategy we also adopt here. We however consider alternative loss functions and also preserve the sequential structure of joint model, where [START_REF] Gao | Learning continuous phrase representations for translation modeling[END_REF]) uses a separate bag-of-word representation of source and target phrases. Expected-BLEU training has also been applied to recurrent NNLM (Auli and Gao, 2014b). For ranking language models, [START_REF] Collobert | A unified architecture for natural language processing: Deep neural networks with multitask learning[END_REF][START_REF] Collobert | Natural language processing (almost) from scratch[END_REF]) also introduce a ranking-type objective function, but which aims only to estimate word embeddings in a multitask learning framework. Furthermore, [START_REF] Socher | Parsing with compositional vector grammars[END_REF] investigates the use of a max-margin criterion to train a recursive neural network for syntactic parsing. Interestingly, their model is also used to rerank N -best derivations generated by a conventional probabilistic context-free grammar. However, as showed in our experiments, the max-margin criterion alone is less adapted to SMT as it lacks of a truly reliable and unambiguous metrics for evaluating translation quality.

Regarding the CTM's structure, our model is based on the feed-forward CTM described in [START_REF] Le | Continuous space translation models with neural networks[END_REF] and extended in [START_REF] Devlin | Fast and robust neural network joint models for statistical machine translation[END_REF]. This structure, though simple, has been shown to achieve consistent improvement in performance over a wide array of tasks. Moreover, efficient computational tricks are available for this architecture and greatly speed up training and inference. While the models in [START_REF] Le | Continuous space translation models with neural networks[END_REF] employ a structured output layer to reduce the cost of softmax operations, we have chosen here to use a self-normalized NCE training, which is also very efficient. Another form of self-normalization is presented in [START_REF] Devlin | Fast and robust neural network joint models for statistical machine translation[END_REF], but is computationnally less efficient.

This review would not be complete without mentioning Neural Machine Translation (NMT) systems [START_REF] Cho | Learning phrase representations using RNN encoder-decoder for statistical machine translation[END_REF][START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF][START_REF] Sutskever | Sequence to sequence learning with neural networks[END_REF]. These recent architectures implement an arguably more direct model of translation, which is entirely computed with recurrent NNs; training however usually optimizes the log-likelihood, where we successfully attempt to optimize a translation quality metric. Such discrimininative criteria could certainly also be used for training NMT, as was already done for expected-BLEU in [START_REF] Shen | Minimum risk training for neural machine translation[END_REF].

Conclusions

In this paper, we have proposed a new discriminative training procedure for continuousspace translation models, which correlates better with translation quality than conventional training methods. This procedure has been validated using an n-grambased CTM, but the general idea could be applied to other continuous models which compute a score for each translation hypothesis. The core of the method lays in the definition of a new objective function inspired both from max-margin and Pairwise Ranking approach in MT, which enables us to effectively integrate the CTM into the SMT system through N -best rescoring. A major difference with
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 4 Comparison between the loss functions used to optimize θ and λ

	Loss for λ
	MIRA	PRO

Note, however that they could be used with any phrase-based system.

Note that the complete model for a sentence pair involves latent variables that specify the reordering of the source sentence, as well as its segmentation into translation units. These are omitted henceforth for the sake of clarity.

The features used in our experiments are standard phrase-based features, see e.g.[START_REF] Crego | N-code: an open-source bilingual N-gram SMT toolkit[END_REF].

http://www.statmt.org/moses/. For MIRA, we use the KB MIRA implementation[START_REF] Cherry | Batch tuning strategies for statistical machine translation[END_REF].

Note that these corpora need not necessarily be distinct and can also partly overlap. For the sake of this presentation, we refer to these corpora respectively as the out-of-domain and the indomain data. This also corresponds to our experimental setting

Two variants of expected-BLEU exist in the literature: one (that we use here) takes the expectation of BLEU score over an approximation of the search space; the other, used for instance in[START_REF] Rosti | BBN System Description for WMT10 System Combination Task[END_REF], computes BLEU with expected n-gram statistics.

http://workshop2014.iwslt.org/

http://ncode.limsi.fr/

This is reflected in the train column, where we observe an important difference in BLEU score between the both scenarios.

most past efforts along these lines is the joint training of the CTM and the loglinear parameters. In all our experiments, discriminative training, when applied on a CTM initially trained with NCE, yields substantial performance gains.